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A threshold for the stability of the solution of integral equations for the pair correlation function of a
classical fluid can be determined from the Floquet matrix for the iterative form of the integral equation.
Correspondingly, a measure of the structural stability of the fluid, analogous to the Lindemann ratio for a solid,
is provided by the Lyapunov exponektthat is related to the perturbed dynamics. The behaviox af a
function of density, temperature, interatomic potential, and closure relations for the integral equation, is
analyzed and discussed. In analogy with the Lindemann parameter, we find—for the hypernetted-chain-type
closures—thah (T/T;,sy) is “quasiuniversal,” i.e., very weakly dependent on the interaction potential, up to
a temperaturd@/T;,s,~5, whereT,, . is the stability-threshold temperature. We show how this result connects
the Lyapunov exponent measure of the pair structure with the equation of state of the fluid.

PACS numbg(s): 05.70.Ce, 05.70.Fh, 61.20.Gy

I. INTRODUCTION In three dimension$3D), Hansen and Verlet considered
the height of the first peak of the structure fac8y,, as an
The semiempirical melting criterion proposed by Linde- analog of Lindemann'’s criterion on the fluid side, and found
mann in 1910 states that for the three-dimensi¢dB) mon-  that the valueS,,,,=2.85 correlates well with the freezing
atomic crystal, on average, the ratio of the root-mean-squargensity of simple fluidg5]. The Hansen-Verlet rule, with a
(rms) displacement of the atoms from their equilibrium lat- larger value forS,,,, can be used to estimate the freezing
tice sites (x?))2 to the nearest neighbor distandds ap- line of 2D fluids as well. The “residual multiparticle en-
proximately a universal numbes=((x?))¥¥d=6,=0.15 tropy” (RMPE) also provides a measure of the fluid struc-
[1,2]. Lindemann’s ratiod is a measure of the structural ture which correlates well with the freezing lifé]. This
stability of the solid in the sense that a small valuesos  criterion can be successfully applied also in PD08].
consistent with the standard picture of a solid, i.e., a system Using the concept of an effective hard-sphere diameter
of localized atoms, confined around their equilibrium lattice(e.g., in the context of variational thermodynamic perturba-
positions by a “cage” made by their neighbors. As the tem-tion theorie$, melting and freezing criteria valid for hard-
perature increases or the density decreasdéscreases until core particles can be extended to fluids with continuous po-
it gets so large §= §,) that localization is destroyed, and the tentials in both 3D and 204,9]. In particular, with the
original picture of an ordered solid is no longeelf- advent of the approximation of universality of the bridge
consistentThe “critical” value &, marks the limit of struc- functions[10], a hard-sphere freezing criterion was proposed
tural stability of the solid, beyond which another descriptionin terms of the value of the bridge function at zero separa-
of the structure is called for. Lindemann’s ratio is an ex-tion, b(r=0) [4]. It so happens that the freezing rulgr
ample of a measure of the structure which can be used te-0)=50, applies equally well in both 2D and 3D. A “dy-
define a stability limit, because it addresses a feature that isamical” criterion for the freezing of colloidal systems,
used in the buildup of the structure itself. It is valid for a which is valid also in 2D, was proposed bywen, Palberg,
variety of real and model crystals, quite independently of theand Simon11]. Recently, it was found that hard-core fluids
specific atomic interactions: Lindemann’s limit correlatesexhibit a structural precursor of the freezing transition, which
well with the thermodynamic stability threshold of a solid, manifests itself through a shoulder which emerges in the sec-
namely, with the melting lin¢1,2]. ond peak of the radial distribution functigri]. It is not
In two dimensiong2D), the rms displacement of particles known if such a precursor holds, in general, for monatomic
in a crystal diverges logarithmically with the system size.fluids.
However, if written in terms of the Debye temperature, the Other freezing criteria arise from the properties of solu-
Lindemann’s criterion can be empirically extended also totions of integral equations for the pair distribution function
2D. Similarly, the Ross generalizatid@] of Lindemann’s  of the fluid[12], or from the instability of the iterative solu-
criterion, using the value of the thermal free energy, can be&ions of such equationg3]. In particular, the stability limit
applied (with another threshold valdiealso in 2D[4]. The of the hypernetted-chai(HNC) equation[14,15 with re-
defect-mediated Kosterlitz-Thouless-Halperin-Nelson-spect to its defining diagrammatic iteration loop, falls close
Young (KTHNY) theory of melting in 2D vyields a to the freezing density for a large variety of interaction pair
Lindemann-type formula without any adjustable consfaht  potentials, in both 2D and 3D13]. Subsequently, a more
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general analysis revealed that equal resdiéswithin the iterative method to Eq(2), one generates, starting from
numerical uncertainty of the calculationfor the threshold some initial valuef, successive approximations to the solu-
density are obtained through a study of the Floquet matrixion through the mapping

for the iterative form of the integral equation used for the

calculation of the pair structurl6]. More specifically, the frra=Af,. 3)

Lyapunov exponent related to the dynamics corresponding tg

the diagrammatic iteration process provides a measure of tHe the sequence gf successive approximatipih$ converges
pair correlation function of the fluid with a criticdthresh- ~ towards a valué™, thenf” is a fixed point for the operator

old) value signaling the stability limit densitp;,o;. Such A I-€. @ solution of Eq(2): f*=Af*. The operator de-
critical values agree with those obtained by direct observaSCriPes how the values assumedflyver the whole system
tion of the iteration process. are to be “processed” in order to determine the valué af

The Lindemann ratio has a rather direct relation to the? 9iven point. As suggested by the fixed-point form of Eq.
structure and thermodynamics of the solid, so that the moti(?) In a state of thermodynamic equilibrium a condition of
vation for its definition and the physical meaning of its ap- detailed balance” holds between the local valuefoind

plication are clear. On the other hand, the precise physicdnat resulting from the resummed contribution of indirect
meaning of the various measures introduced for the ”quid:orrelatlons at intermediate points of the system. This sort of

structure, and the reason why their critical values correlate sfytérnal balance between the local and global properties of

well with freezing, are not well understood, and deserve furihe function, which ultimately determines the density profile

ther study. Among these, the criterion based on the?f the fluid, can be used to define a "measure” of the pair
Lyapunov-exponent measure of the fluid structure seems structure with a reIated_ defmmon of stability thre;hol_d.
be the closest in spirit to Lindemann’s measure for the solid, N fact [16], let us imagine to perturb thequilibrium
since it addresses thelf-consistencyf a process by which ~correlation functiorf™(r) by an arbitrary perturbatiod(r).
the typical structurénamely, the pair correlation, in the fluid 1he perturbed,nonequilibrium correlation function f(r)
casé is obtained. =f*(r)+ o(r) is proce;sed py the operatAwhich, to flrs_t

In this paper we continue our study of the behavior of thedrder in the perturbation, yieldst 5(r), where the matrix
Lyapunov exponent as a function of density, temperatureM = (?A/df) |4« is the Floguet matrix acting on the perturba-
interaction potential, and closure relations for the integrafion vector(in numerical applications is represented by a
equation. In Sec. Il we recall the definition of the Lyapunov-9rid of N points, the functiorf is an N vector andA is a
exponent measure of the structure from our previous worl-dependentNxXN matrix) [18]. In turn, M& can now be
[16]. New results are presented in Sec. Ill which are anaconsidered as a perturbation which, when processed by the
lyzed and discussed in Sec. IV. In particular, we find forSystem, gives origin to a new perturbatibtm 5, and so on.
HNC-type closures thak(T/Ti,s) is nearly “universal” 'I_'he successive iterations of this procedgre_generaftetla
when plotted as a function of the rafféT;,s;, whereT;, is  OUS dyngmlcsonsllsju.ng of repeat_ed apphgatlons of the Flo-
the stability-threshold temperature. When compared with &uet matrix to the initial perturbatiod,, which can be rep-
recent density-functional-theo§pFT) analysis of the equa- resented as follows:
tion of state of simple classical systelfis/], this “univer-

sality” manifestly demonstrates an intimate connection of I3l anl S (4)
the Lyapunov-exponent measure of the fluid pair structure [l =0 7’
with the thermal part of the contribution of the interactions to
the equation of state. where
IM 3,(n)]
II. LYAPUNOV-EXPONENT STABILITY MEASURE Snzw, (5)
n

The nonlinear integral equations that are obtained by

supplementing the Ornstein-Zernik®Z) relation with some and | f(r)||= \/(Eilzl)fz(ri) is the norm of a functiorf de-

appropriate closuréviz., an independent relation between fined over a mesh afl points. Assuming that the norm of the

the total and direct correlation functiohk4]), have the form  perturbation dependgs long as it remains infinitesimadx-
ponentially on the number of iterations, i.e|d,(r)|
=|8o(r)||2*", where\ is the Lyapunov exponent related to

f(r)=K(r,f(r))+f K(r=s.f(f[r=s)f(s)ds, (1)  the perturbation dynamics, one can write the average expo-

nential stretching of initially nearby points as

where f(r) typically denotes the total correlation function

h(r) andK is a kernel that depends on the approximate clo-

sure adopted foec(r). Such integral equations can be written

in the form

1 n—-1

A= Iim—Iogz< 11 s). (6)

n*)OOn 1=0
The actual number of iterations after whighreaches its

f(r)=Af(r), (2)  saturation value depends on the density, ranging from a few

tens at low density to a few hundreds near the instability

wheref(r) e S describes the particle distribution of the sys- point. Though, in principle, the Lyapunov exponent depends

tem investigatedSis a set of a metric space, addS—Sis  on the initial perturbationSy(r), we found[16] that wildly

an operator mappingonto itself. When applying the simple different forms of the initial perturbation lead to essentially



4092 G. MALESCIO, P. V. GIAQUINTA, AND Y. ROSENFELD PRE 61

2 T T N 1 N T 0
[ 1 -0.05
15[ §
[ —Y -0.1
a I |
B N a A -0.15
£ ]
0.2
05 ]
[ 0,25 §
0 I T R T T -0.3
0 0.2 0.4 0.6 0.8 1
1/s
~ FIG. 1. Ratio of the instability densityins; to the freezing den- FIG. 2. Lyapunov exponent as function of the reduced density,
sity ps for inverse-power potentials, within the HN@ots, PY  for the Lennard-Jones potential Bit= 2.74 within the HNC(dots),
(circles, and MS(squares approximations. PY (circles, and MS(squaresapproximations.

identical values of. Consequently, this quantity provides a _ . . . : :
measure of the stability of the solution, and thus of the sta- 1€ ratio of the instability density to the freezing density,

bility of the fluid structure as defined through the inte ralpi“St/‘of is plotteq i.n Fig. 1 for the inverse-pqwer potentials
equi'/;xtion. g g as calculated within the PY and HNC equations. The value

assumed byi,st/ps for the PY approximation in the Cou-
lomb limit is out of scale, being close to 16. We note that, at
variance with the PY closure, the value @f,s; found in the

We calculated\ for a variety of pair potentialghard- HNC approximation moderately departs from the freezing
sphere, inverse-power, Yukawa, Lennard-Jofied], and density in the Coulomb limit only. In this respect, the
various closures of the OZ integral equatidtiNC, Percus- marked failure of the PY approximation as the potential gets
Yevick (PY), Martynov-SarkisoMS)] [14,15. In view of  softer and softer looks more dramatic than the loss of accu-
the rather intensive computaions involved we focused atterfacy shown by the same approximation in relation to the
tion on the HNC and PY closures, and on the inverse powefore standard structural and thermodynamic properties of
and Yukawa as two one parameter families of potentialsthe model. We conclude that the proposed estimate of the
with 0n|y exp|orat0ry calculations for the LJ system and theinStabi”ty threshold reveals as a more Stringent test of the

MS closure. For the inverse-power potentials, physical “soundness” of the closure than its very capacity to
account for a reliable representation of the pair structure of

Ill. RESULTS

_ s the fluid. As can be seen in Fig. 2 for the LJ systenTat
bs(r)=e T @) =2.74, the various closures’ results faf ., are rather close
' to pf =1.113, as expected from their results for the steep
as well as for the LJ potential, inverse power potentials, with the HNC and MS closures
1 6 behaving similarly.
bLy(r)=4e (Z) _(E) ) Figures 3 and 4 show the behavior of the Lyapunov ex-
r r) |

we usep* =pad and T* =kgT/e as reduced variables, and, o o TS T
for hard spheres s&=«), the packing fraction » ]
=(m/6)pcs. If one measures distances in units of the
Wigner-Seitz radiusyys= (3/4mp)*?, the inverse-power po-

tentials can be written in the form

kgT

< r
os(1) = ©

wherel'= (e/kgT) (o/ayw3=[(47/3)p* 13/ T* is a dimen-
sionless coupling parameter. Correspondingly, the Yukawe
potential takes the form

0.4 0.6 0.8 1
¢v(r) _T s
=—e (10) ; i
kgT r FIG. 3. Lyapunov exponent as function BfT';,s; for inverse
) . power potentials within the HNC approximation. Symbols: triangles
The zero-screening caser€0) obviously reduces to the (s=1), dots 6=4), circles 6=6), squares §=12), diamonds

Coulomb, inverse-power potentiag£€1). (hard-spheres
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0 . T T e Teena®® which is independent of the_ pair potential. This reflects the
] fact that the thermal potential energgn top of the Made-
] lung, static lattice, energyfor a harmonic solid is given by
] 3 1 5
) o : : - - un=5ksT=5K(p)é (13
7\’ 0.02 1 2 2
04l ‘ . . 1 ] so that the ratio of its value to that at threshold, at constant
00| I density, is universal
] Y o, (14)
s 085 09 095 1 1 Uth »inst - inst-
L 1 L L N 1 L L L 1 L L L
0.4 0.6 0.8 1 Now, our results for the inverse power potentials and
L] b Yukawas show that to good approximation
FIG. 4. Lyapunov exponent as function BfT;,; for Yukawa AN=F(T/Tphs) =F(Tinst/ T) (15
potentials within the HNC approximation. Symbols: triangles ( . . . ) )
=0), dots @=1.83), circles ¢=3.34). is a universal function off/T;,s;, independent of potential,

for both the HNC approximate closure and other related clo-
sures, with slightly different values for the functiénit can

e shown from the equation of state for these fluids that
19,18 if we subtract from the potential energylaid Made-
lémg term in order to obtain a thermal potential eneugy,
we obtain a nearly universal dependence of the rBtjg./T,

ponent, plotted as a function of the ratigT';,s, for the
inverse-power and Yukawa potentials, respectively, in th
HNC approximation. As the density increases at fixed tem
perature A becomes less and less negative, thus signaling
less efficacious damping of the perturbatisee Sec. )l
The slope of the curve, initially rather steep, decreases rap-
idly but smoothly with the density in such a way that it might
appear that the loss of stability of the soluti@orresponding Uth rinst

to the vanishing ofa), would occur only asymptotically. for both the HNC approximation and numerical simulation

Instead, at a density, slightly smaller tharp;s;, the slope  results, with slightly different functionsy. Specifically
of the curve changes abruptly andeventually vanishes for [18,19

p=pinst- AS is better seen from the insets of Figs. 3 and 4,
two distinct branches meet at with a different slope. In- 9(0.1sx=1)=x"? (HNC),
deed, within the limits of numerical accuracy of the calcula- o5 s .
tion, the derivatived\/dp has a discontinuity ap. whose 9(0.1=x=1)=x"" (simulation. (17)
value depends on both the potential and the integral closure. Thys similarly to the Lindemann ratio, the Lyapunov-
However, the general behavior, which was originally ob-exnonent measure exhibits a nearly universal behavior, when
served for hard spher¢$6], remains the same. expressed as function of the ratio of the temperature to the
threshold temeperature, and this scaling property is shared
with the thermal potential energy. On the basis of the
fundamental-measure free energy functional for hard spheres
From the results obtained the HNC emerges as the onlgnd thermodynamic perturbation theory, a unified analytic
approximate closure considered here which behaves overalescription of classical bulk solids and fluids was obtained
properly for all potentials. The most important result of thisrecently [18], predicting correctly major features of their
work is the finding for the HNC closur@-igs. 3 and #that  equations of state and freezing parameters as obtained by
as function of the ratid/T;,s;, WhereT;,s; is the stability- simulations. The fundamentally different fluid and solid
threshold temperature, the Lyapunov exponef/T;,s) is  asymptotic high density expansions for the potential energy,
guasiuniversal, i.e., very weakly dependent on the interactiofeaturing a static-lattice Madelung term and the harmonic

Uth

=0(I'/Tins) =9(Tinst/T), (16)

IV. ANALYSIS AND DISCUSSION

potential up toT/T s~ 5. $kgT correction, on one hand, and a fluid Madelung energy
In the case of the Lindemann parameter, it is easy to showith a ~ T3/ thermal energy correction, on the othégth
for a harmonic solid that originate from the same singulariiy the hard-spherefree
energy functional. A similar asymptotic behavior, with the
T |12 same fluid Madelung energy but with a different exponent
50((—) , (11  for the thermal energy, is exhibited by the HNC approxima-
K(p) tion [19]. It appears from these studigk9,1§ that the fluid

structure for repulsive potentials can be represented by an

whereK (p) is the force constant. Thus, the ratio &fo its ~ asymptotic high-density expansion, and the scaling relations
threshold valugat same densilyis given by in terms of['/T';,,s; are manifestations of this property. From
this point of view, the Lyapunov-exponent measure, even
s though not directly measuring a fluid structure parameter
—=(TITipe) ™2 (12)  (like the height of the first peak of the structure fagtoan
oL nevertheless be related to the asymptotic expansion.
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