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Topological effects in ring polymers. II. Influence of persistence length
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The interplay of topological constraints and the persistence length of ring polymers in their own melt is
investigated by means of dynamical Monte Carlo simulations of a three-dimensional lattice model. We ask if
the results are consistent with an asymptotically regime where the rings behave like~compact! lattice animals
in a self-consistent network of topological constraints imposed by neighboring rings. Tuning the persistence
length provides an efficient route to increase the ring overlap required for this mean-field picture to hold: The
effectiveFlory exponent for the ring size decreases down ton&1/3 with increasing persistence length. Evi-
dence is provided for the emergence of one additional characteristic length scaledt}N0, only weakly depen-
dent on the persistence length and much larger than the excluded volume screening lengthj. At distances
larger thandt the conformational properties of the rings are governed by the topological interactions; at smaller
distances rings and their linear chain counterparts become similar.~At distances smaller thanj both architec-
tures are identical.! However, the crossover between both limits is intricate and broad, as a detailed discussion
of the local fractal dimension~e.g., obtained from the static structure factor! reveals. This is due to various
crossover effects which we are unable to separate even for the largest ring size (N51024) presented here. The
increased topological interactions also influence the dynamical properties. Mean-square displacements and
their distributions depend crucially on the ring overlap, and show evidence of the existence of additional size
and time scales. The diffusion constant of the rings goes down from effectivelyDN}N21.22 for flexible rings
with low overlap toDN}N21.68 for strongly overlapping semiflexible rings.

PACS number~s!: 61.25.Hq, 61.41.1e, 83.10.Nn, 83.20.Fk
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I. INTRODUCTION

Unconcatenated and unknotted rings in their melt are r
tively compact@1,2#. This was found in recent computation
studies @3–5#, and was expected on theoretical groun
@6–9#. Qualitatively the squeezing of the rings was attribut
to the topological constraints@see Fig. 1~a!# @10#. This is in
line with much older observations showing that dilute rin
repel each other much more strongly than their linear ch
counterparts due to the entropy loss associated with the
concatenation constraint, preventing the two rings fr
threading each other@11#. While the usual excluded volum
interaction is screened out at high chain overlap~i.e., if the
ring sizeR is larger than the sizej of the excluded volume
blob! @12,13#, topological interactions are expected to dom
nate the conformational properties if the number of overl
ping ringsp'R3f/N (N being the chain mass,f the mono-
mer density! becomes high enough.

In a simple Flory-like argument, Cates and Deutsch~CD!
@6# argued that the number of degrees of freedom lost fo
typical ring due to its topological interactions with neighbo
ing rings increases aspa, wherea is an unknown exponent
This free energy term, which favors decreasing ring size,
to be balanced by the entropy penalty for squashing a r
To be specific, this penalty was assumed to be the sam
for a Gaussian chain. Adding these contributions and m
mizing over R}Nn yields the Flory exponentn5(a

*Author to whom correspondence should be addressed.
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11)/(3a12). The simplest possible estimate fora is to say
that roughly one degree of freedom is lost for each of thep
neighbors which the ring is prevented from threading, i
a51 and hencen52/5. This is very close to the valuen
'0.39 found by us in our previous study@4#. Note that the
overlap numberp}N1/5 increases extremely weakly, and th
the only intrinsic length scale in the CD picture is the rin
sizeR itself ~possibly renormalized in terms of excluded vo
ume blobs of sizej). Again this was found to be in qualita
tively good agreement with the simulations reported in o
first paper@4#. From the CD picture one expects a simil
density crossover scaling for rings as for linear chains: T
ring size R(f), reduced by the ring sizeR0 of the dilute
reference ring, should scale withf/f* , wheref* 'N/R0

3 is
the crossover density. Having focused in Ref.@4# on flexible
rings at one fixed density, we were unable to verify th
implicit scaling assumption of the CD picture.

A different picture comes from the extensive studies
~isolated! ring polymers in gels@see Fig. 1~b!#, often mod-
eled by so-calledlattice animals~LA’s !, depicted in Fig. 1~c!
@6,7,9#. If the ring sizeR becomes larger than the typica
distancedt between the fixed topological obstacles~repre-
sented as squares in the figure! the rings are forced to retrac
their paths and the fractal dimensiondf51/n becomes that of
a strongly branched object. The question is now if it is a
possible to use this well-understood model via a stand
mean-field argument for strongly overlapping systems
rings in their own melt. Are the surrounding rings able
generate~in a self-consistent manner! a fixed mesh of topo-
logical obstacles around a reference ring? If so, isdt}R—in
4078 © 2000 The American Physical Society
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PRE 61 4079TOPOLOGICAL EFFECTS IN RING POLYMERS. II. . . .
which case the LA and CD pictures would be indistinguis
able from the scaling point of view—or does it introduce
additional ring length independent scale? In the latter ca
obviously, the above mentioned density crossover sca
would not work.~However, one can strictly only expect th
LA picture to hold in the high entanglement limit.! In any
case, there is a catch: While increasingp}b3N3n21, b being
the persistence length, the effective exponentn(p) is sup-
posed to drop down to 1/3~and even down ton51/4 for an
ideal Gaussian LA within an intermediate range of ring siz
N) @7#. Hence the LA picture might not be self-consistent,
already stressed in Ref.@6#. It is crucially the prefactorb3

~and not the inefficientN3n(p)21) which allows the simulator
to control the overlap.~This assumes that the persisten
length only weakly affects the hypothetical lengthdt which
has to be checkeda posteriori.!

This is the route we have taken in this study to test
scaling predictions~rather than the variation in densityf
which we plan to investigate in a subsequent study@14#!.
Indeed, the persistence lengthb turns out to be a very effi-
cient way to vary the overlap numberp ~additional compu-
tational overhead and reduced diffusion constants taken
account! compared to the ring mass~which we have howeve
increased fromN5512 to 1024!. This allows us to more
severely put a test on the scaling predictions of the CD s
nario than we were able to do in our previous study@4#. In
contrast to that work, the evidence presented here show
emergence of~at least! one further length scale alongsideR
which we identify withdt . Tentatively, our data are consis
tent with a broad crossover toward the LA picture in the lim
of high chain overlap which is attained by increasingb so
that the chains become more extended~though more com-
pact in the scaling sense of smallern). A typical semiflexible
coil at higher overlap is presented in Fig. 2 on the right.

Of course, the CD and LA pictures are not necessa
contradictory in that they might provide useful heuristic d
scriptions in different overlap limits. In the computational

FIG. 1. Sketch of topological constraints and their effects.~a!
The top chains present allowed conformations of unknotted
~more importantly! unconcatenated rings. The rings cannot turn in
knotted configurations~not shown! or the concatenated configura
tions shown on the bottom. It is this nonlinkage constraint wh
tends tosqueezea ring in semidilute solutions and melts. The inte
play between the topological constraint and the effective b
lengthb ~in contrast to the monomer sizea) is studied here.~b! One
ring in a network of fixed topological constraints or obstacle
~squares! imposing a strongly entangled and compact conformati
~c! An equivalent lattice animal~LA !: In the high overlap limit
rings are expected to behave effectively like LA’s. This is mea
field picture for a reference ring within a self-consistent topologi
network imposed by the surrounding rings.
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important regime~depending onb) where the rings expe
successfully neighboring chains and form relatively den
coils, the mean-field assumption of the LA approach has
break down. A typical chain for low overlap is shown Fig.
on the left. The CD picture isa priori a good candidate to
describe this regime where overlapp and topological inter-
actions are weak. A possible choice for the unknown C
exponent in this regime is the limiting casea→0 and, hence,
n'1/2, i.e., the topological constraints mainly contribu
logarithmic corrections to a closed@10# Gaussian chains o
blobs. Evidence for this~justifying a posteriorithe squeezing
term used by CD! is presented below.

Our paper is arranged as follows: In Sec. II we give
short synopsis of the model and the simulation techniq
used. To understand the special effects linked to the unc
catenation constraint, we need reference date at the s
chain and persistence length to compare with. This is p
vided in Sec. III, where we review some properties of dilu
semiflexible ring polymers. In Sec. IV, we investigate t
statistics of ring polymers in their melt as a function of t
stiffness, comparing them with dilute rings and dense lin
chains from Refs.@15,16#. ~Note that in most figures we
compare features discussed subsequently in Secs. III and!
Possible scaling scenarios are discussed and a detailed a
sis of the local fractal dimension is presented. Section
briefly presents our first results on the dynamics of semifl
ible ring polymers. We conclude with a summary of o
results.

d

d

.

-
l

FIG. 2. Configurational snapshots of rings of massN5256:
dilute flexible ring in the middle, flexible (s50) ring in the melt
(f50.5) on the left, and corresponding semiflexible (s53) coil
on the right. The overlap has increased by factor 3 between
flexible and semiflexible chains in the melt. To obtain a simi
effect by increasing the chain mass we would have to increaseN by
at least two orders of magnitude.
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4080 PRE 61M. MÜLLER, J. P. WITTMER, AND M. E. CATES
II. ALGORITHM AND PARAMETERS

As in our previous study we investigate the properties
unknotted and unconcatenated rings in the framework of
bond fluctuation model~BFM! @17#. Many static and dy-
namic properties of linear chains are known for this com
tationally efficient, coarse grained lattice model. A sm
number of chemical repeat units is mapped onto a lat
monomer such that the relevant characteristics
polymers—excluded volume and connectivity—are retain
Each monomer blocks a unit cell of the three-dimensio
cubic lattice from further occupancy. Adjacent monome
along a polymer are connected via one of 108 allowed b
vectors of lengths 2,A5, A6, 3, andA10. Here and in the
following all spatial distances are measured in units of
lattice spacing. This set of bonds allows for 87 different bo
angles and, hence, results in a good approximation to ch
in continuous space. The bond vectors are chosen such
the local excluded volume interactions prevent the rin
from crossing each other during their motion. This conser
tion of the topology ensures that the rings remain neit
knotted with themselves nor concatenated with one ano
during the course of the simulation. We evolve the ring co
formations via random local monomer displacements.

As explained in the Sec. I, a crucial parameter is the ov
lap numberp, which increases only very weakly withN, but
much more strongly with the persistence length. In orde
tune the persistence length, we impose a simple intramol
lar potential which favors straight bond angles:E(Q)
5s cos(Q). Here Q denotes the complementary angle b
tween two successive bonds, ands the dimensionless energ
scale ~setting kBT51). This potential has been used a
investigated in various studies on linear polymer chains
filling fraction f50.5 of occupied lattice sites@16,19#. This
is of importance because it is reasonable to assume tha
short length scales~for long enough chains! neither ring clo-
sure nor topological constraints are pertinent. This statem
will be corroborated later in Sec. IV, when we discuss
local ring structure~Fig. 6!. Note for now that other loca
quantities like the mean bond lengthl, ^cos(Q)& ~i.e., the
mean stiffness energy per monomer! or the acceptance rateA
are identical for rings and their linear counterparts. Hen
one expects to find the same local rigidityb(s) for rings as
for linear chains, whereb5be

L is easily obtained from the
mean-square end-to-end vector^Re

2& and the known Flory
exponent of linear chains. See Tables I and II for the dil
(f50) and dense limits (f50.5), respectively. The sys

TABLE I. Persistence length dependent properties for dil
(f50) rings and linear chains: Mean cosine of the bond-bo
angle^cos(Q)&, mean bond lengthl, effective bond length of linear
chainbe

L and ringsbe
R , acceptance rateA, and the diffusion constan

NDN . These values characterize the asymptotic behavior of l
linear chains as well as rings.

s ^cos(Q)& l be
L be

R A NDN

0 20.193 2.736 3 1.55 0.254 0.032
1 20.394 2.724 3.32 1.73 0.224 0.026
2 20.554 2.706 3.94 1.89 0.193 0.021
3 20.668 2.703 4.24 2.24 0.165 0.019
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tems containing dilute rings and linear chains have b
simulated for reasons of comparison. Not surprisingly
quantities featured in Tables I and II depend somewhat
the volume fraction@15,16#. Note that at the densityf
50.5 of occupied lattice sites, many static and dynamic f
tures ofmolten linear polymer materials are reproduced
the BFM. For example, the single chain conformations ob
Gaussian statistics down to the screening lengthj(s50)
'6 of the excluded volume interaction obtained by the sta
structure factor@15#.

We have restricted ourselves to valuess<3, because we
found tentative evidence for the onset of a nematic orde
valuess>4. Due to the lower conformational entropy, ring
tend to order nematically at lower stiffnesses than linear m
ecules.~For linear chains an isotropic to nematic transition
found close tos'6 @16#.! Moreover, increasing the stiffnes
also decreases the number of statistically independent
ments, and we want to keep finiteN effects low, even for
small ring lengths.

The algorithm described above has been implemented
a massively parallel Cray T3E computer@18#. Using a two-
dimensional geometric decomposition of the simulation g
of linear extensionL5128, we employ 64 T3E processor
The simulations involve about 40 000 hours of single proc
sor CPU time.

As shown in Table III, this allows us to investigate rin
systems with 131 072 monomers and chain masses upN
51024. The data for flexible rings have been used as star
configurations for simulations at higher persistence length
most cases rings diffused at least a spatial distance of t
radius of gyration before any conformational data were c
lected. The simulation runs were extended up to five tim
the relaxation time for sampling the ring conformation
Note that we could not meet this stringent criterion for t
semiflexible (s.0) systems at our largest massN51024.
The resulting data appear to be time independent, and
presume them to be equilibrated, but they have not diffu
over a radius of gyration. These three data points (s51, 2,
and 3! have to be taken with care.

As can be deduced from Table III, a relatively small i
crease in persistence length is a very effective way to
crease the overlap numberp}Re

3/N. To give some num-
bers, increasing the stiffness parameters from 0 to 3
amounts to increasingp by a factor 3 forN5256 ~seen in
Fig. 2! and by a factor 5 forN5512. To achieve a similar
effect by tuning the contour length requires an increase
two ~respectively three! orders of magnitude@20#.

e
d

g

TABLE II. Persistence length dependent properties for rings a
linear chains at high volume fractionf50.5: Mean cosine of the
bond-bond anglê cos(Q)&, mean bond lengthl, effective bond
lengthbe

L for linear chains, acceptance rateA, and differential Flory
exponent ne f f fitted over the four largest chains availab
~see Fig. 3!.

s ^cos(Q)& l be
L A ne f f

0 20.106 2.632 3.2 0.1529 0.41
1 20.348 2.614 3.7 0.1329 0.39
2 20.544 2.602 4.5 0.1136 0.36
3 20.676 2.593 5.3 0.0983 0.33
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TABLE III. Ring radius of gyrationRg , diameterRe , and ~reduced! diffusion constantNDN103 for
different ring sizesN and stiffnessess at f50.5.

s50 s51 s52 s53

N ^Rg
2& ^Re

2& NDN103 ^Rg
2& ^Re

2& ^Rg
2& ^Re

2& ^Rg
2& ^Re

2& NDN103

16 12.9 42.3 5.87 16.4 54.1 21.3 73.9 26.2 95.3 1.94
32 25.7 80.6 5.18 32.9 102 44.7 141 60.2 198 1.23
64 49.3 150 4.21 63 189 84.5 251 117 353 0.77
128 92.2 275 3.65 115 337 150 430 203 579 0.4
256 169 492 3.23 204 581 250 700 330 910 0.38
512 297 856 343 978 420 1157 490 1315
1024 514 1474 539 1680 620 1784 710 2140
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III. DILUTE RINGS REVISITED

As a reference for the subsequent section on stron
overlapping rings ~where the unconcatenation constra
matters! we briefly revisit some properties of flexible an
semiflexibledilute rings and their linear counterparts. Ba
cally, the remaining unknottedness constraint and the
quirement of ring closure@10# do not matter: Dilute rings
behave broadly like linear chains.

The simplest quantity to characterize the chain struct
as a function of the stiffness parameters is the overall chain
size versus chain lengthN. The size of the rings is measure
first with the usual mean-square radius of gyration^Rg

2&. As
a second measure, we sample the mean-square dis

^Rn
2&5^(RW i2RW i 1n)2& ~averaged over all monomersi ) be-

tween pairs of monomers that aren monomers apart along
the contour. In particular, for rings, we define the mea
square ring diameter̂ Re

2&5^Rn
2&un5N/2 . ~For the linear

chains^Re
2&5^Rn

2&un5N denotes the usual mean-square e
to-end distance.! In Fig. 3 the diameterRe5^Re

2&1/2 for flex-
ible and semiflexible dilute rings is plotted versusN. Not
included are the linear counterparts of sameN and s. ~But
see Fig. 4.! The data are well fitted for all the persisten
lengths considered byRe5beN

n with the classical Flory ex-
ponentn5n0'3/5 @21#. The effective bond lengthbe en-
codes the persistence length effect. It is tabulated for lin
chains ~L! and rings~R! in Table I. Similar fits have also
been performed for the radius of gyration. We find, indep
dent of chain size and persistence length, the following re
tions:be

L/be
R'1.89,bg

L/be
L'A6, andbe

R/bg
R'1.79. Note that

in fitting we have disregarded the three smallest masseN
516, 32, and 64 to minimize finite size effects. We ha
checked for~the remaining! finite size effects~not shown!:
The ~negative! curvature in the data points is surprising
weak andsimilar for linear chains and rings. It is slightly
stronger for the radius of gyration than for the diame
which probes larger distances. While we cannot rule out
the asymptotic exponents of the ring chains are slightly
ferent from their linear counterparts, for all practical pu
poses of relevance here we may conclude that neither
ring closure nor the non-self-knottedness constraint are
tinent.

We are now in the position to rescale the effects of
persistence length for both linear chains and rings by e
mating for the linear chain the numbergk of correlated
monomers along the chain and the associated Kuhn le
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k5 lgk ( l being the measured mean length of the BF
bond!. Rewriting Re5beN

n5k(N/gk)
n yields gk

5(be / l )1/(12n) and k5 l (be / l )1/(12n). Obviously this
scaling-based definition ofk and gk is arbitrary to within
prefactors of order 1. The proposed rescaling works succ
fully for dilute linear chains and rings, as shown in Fig.
Here we have plotted the reduced diametersu5Re /k versus
the number of statistical segmentsv5N/gk . A similar figure
was obtained for the radius of gyration~not shown!. Note
that only a part of the linear chain configurations used
characterize the stiffness effects for dilute systems are
cluded in the figure.

In Fig. 5 we show the bond-bond correlation functio

^eW i•eW i 1n&, where eW i denotes one of the bond vectors
monomeri ~say the ‘‘right’’ one in a given list!. Only values
for rings are included~the values for linear chains bein
identical for long enough chains!. As it should, the bond-
bond correlation functions for different persistence leng
collapse onto a single scaling curve, when plotted ver

FIG. 3. DiameterRe vs chain lengthN for differents for dilute
~open symbols! and dense~full symbols! rings. The dilute rings are
characterized by the same Flory exponentn5n0'0.59 as their lin-
ear counterparts~not shown!. For large enough chains this is inde
pendent ofs. For the dense chains the effective fractal dimens
df51/n becomes much larger, depending strongly on the chain
gidity: flexible chains (s50) compare well withn50.4 ~dashed
line!, semiflexible chains (s53) with n51/3 ~solid line!.
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4082 PRE 61M. MÜLLER, J. P. WITTMER, AND M. E. CATES
n/gk ~not shown!. Note that this scaling and the~supposed!
exponential decay is sometimes preferred to define the n
ber of correlated monomersgk and the persistence lengthk
rather than our definition based on the measured effec
bond lengthb and the well-known~and for rings confirmed!
Flory exponent. However, the correlation function for dilu
chains~both linear and rings! certainly doesnot decrease as a
pure exponential~not shown!. This is due to~nonuniversal!
short range packing effects and~more importantly! to long
range excluded volume correlations. In addition to this

FIG. 4. Reduced diameteru5Re /k vs reduced chain massv
5N/gk for dilute (f50, open symbols! and dense (f50.5, full
symbols! linear chains~top two lines! and rings~bottom!. The chain
flexibility s changes as indicated in the figure. The lines indic
~effective! exponents~from top to bottom! n50.59 for dilute linear
chains,n50.5 for dense linear chains,n50.59 for dilute rings,n
50.4 for dense, flexible (s50) rings, andn51/3 for semiflexible
(s53) rings in the melt. Note that the dense rings do not colla
on one master curve as their linear counterparts.

FIG. 5. Bond-bond correlation function̂e0en& for dilute (f
50) and molten (f50.5) rings fors50 ~connected by thin lines!
ands53 ~connected by fat lines! for various chain masses as in
dicated in the figure. At high chain overlap~high density and rigid-
ity! we find a pronounced negative dip in the correlation functio
-

e

e

prefer our method for statistical reasons.
Additional information about the local structure of th

flexible and semiflexible rings comes from the structu
factor S(q) which is of direct experimental relevance
The slopes of the structure factor in log-log coordina
define the differential fractal dimension df(q)
52d log„S(q)…/d log(q). The general shape ofS(q) was
discussed in Ref.@4#. Here we present onlydf(q) which
contains all the information. It is equivalent in the limit o
long chains (q→0, qRg@1) to the inverse of the Flory ex
ponentn. Figure 6~a! showsdf(q) for dilute rings~thin sym-
bols! of massN51024 plotted versusr 52p/q. For large
distances the rings are well described by the classical Gui
expansion S(q)'N„12(Rgq)2/3… ~not shown!; hence
df(qRg→0)→0. For small distancesr' l one finds the
usual spurious Bragg peak of the structure factor@4# due to

e

e

.

FIG. 6. Differential fractal dimension df(q)
52d log„S(q)…/d log(q) vs r 52p/q. ~a! Dilute and molten rings
of massN51024. The line indicates an ideal Gaussian ring of sa
radius of gyration as a flexible and dilute ring.~b! Rings in their
melt (f50.5). The dotted line is a comparison with linear chai
(N5256,f50.5). Within the first blob@r ,j(s)#, linear chains
and rings behave identically.
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local packing effects giving rise to negativedf-values. We
note a weaks dependence due to BFM related lattice e
fects: A slightly different set of bond vectors is preferre
This is in line with the fact that also the mean bond vec
varies weakly with persistence length, as shown in Tabl
In between both limits we find a broad plateau for the fle
ible rings withdf51/n0'1.7 ~upper horizontal line! due to
the excluded volume interactions. Semiflexible rings sho
as expected from linear chains, a shoulder at aboutdf51
~upper horizontal line! due to the local rigidity of the rings
Note that the curves for linear dilute chains~not included!
are very similar. The only qualitative difference is th
‘‘hump’’ between the plateau and the Guinier regime. This
due partially to the ring closure, as one can easily see
calculating the static structure factor for a Gaussian r
~solid line!.

IV. CONFORMATIONAL PROPERTIES OF DENSE RINGS

A. Compact, but strongly overlapping rings

While dilute rings essentially behave like their line
counterparts, this becomes very different for unconcaten
rings in the melt. This is shown in the dramatic decrease
the chain size of rings~full symbols! in Fig. 3 as compared
with dilute reference rings~open symbols!. Certainly, linear
chain sizes also decrease with increasing density due to
screening of the excluded volume correlations@12,15#, but to
nowhere near this extent, as Fig. 4 illustrates. Moreover,
slopes ofRe versusv5N/gk decrease strongly with persis
tence length~see Table II.! For flexible rings (s50) the data
points ~for N5128–1024) are fitted by an~effective! expo-
nent n50.4. For our stiffest rings we observen(s53)
'1/3. This last result is indeed consistent with the comp
LA scaling behavior predicted for rings at high enough ov
lap p.

These results are also in agreement with the density
tribution of a ring around its center of mass, shown for rin
in Fig. 7. We see that for flexible rings~main figure! the
overlap p must be very small; nearly all monomers fro
neighboring rings are expelled. From the Flory exponenn
'0.4 measured above one expects the density inside the
to decrease asr;N20.2. This is confirmed. In the inset w
present the corresponding plot for semiflexible ringss
53). Since the effective Flory exponent isn51/3 we expect
the density inside the ring to be independent of the ring s
The ring length independence of the density is observed
N*128 for s52 ~not shown! and N*64 for s53. This
supports the idea that the LA regime is reached earlier
stiffer rings. Though rings in this regime show compact sc
ing (n'1/3), the asymptotically constant densityr is fairly
small. Thus the density ofother rings in the correlation hole
of a given ring islarger for stiff than for flexible rings~Fig.
7!. This holds for the ring sizes studied; it does not exclu
similar strong overlap behavior for flexible, but much larg
rings.

B. First evidence for additional length scale

We have to stress, however, that the above exponents
only effective exponents. The curves are strongly~nega-
tively! curved, as one can easily visualize by plottingR/N1/3
.
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versusN ~not shown!. Alternatively, one can characteriz
this curvature via the differential Flory exponentn(N) de-
fined from the increase between chain lengthN and 2N @4#.
This reveals~not shown! that n(N) decreases continuousl
from n'1/2, i.e., nearly Gaussian behavior, for smaller rin
down to the slopes indicated in Fig. 3 for the largest mas
we were able to simulate. In our previous study@4# we have
attributed the observed curvature to classical finite-size
fects which also appear for linear chains. That is, we h
not attributed them to topological effects, but excluded v
ume interactions visible due to the finite number of blobs
one admits this as theonly physical origin of the curvature
~excluding, e.g., additional length scales! it is indeed reason-
able to attempt to obtain the asymptotic exponent by cla
cal finite-size extrapolation method. In this method, the lo
slope n(N) ~obtained from the diameter and the radius
gyration! is plotted versus the reduced blob sizej/R, where
R is itself given in a self-consistent manner by th
asymptotic behavior. This works generally well for line
polymers. Proceeding along these lines we obtained
asymptotic exponent ofn'0.4 ~which we now obtain di-
rectly after includingN51024). This value happened to co
incide with the CD picture (a51 @6#!, which made us per-
haps more confident than we should have been~in Ref. @4#!
of having characterized the asymptotic behavior.

The excluded volume effects~and their screening! do cer-
tainly contribute to the general crossover scenario. This
shown below when we discuss the structure factor~Fig. 6!.
But a danger remains that we may have missed additio
physics, in the form of an additional length scale~not in-
cluded in the simple CD picture!, which controls the behav
ior of molten rings.

Thus one of the key claims made in Ref.@4# was that the
only relevant length scale in dense rings is the chain s

FIG. 7. Single chain density distribution with respect to its ce
ter of mass for dense systemsf50.5 with flexible rings (s50) vs
reduced distancer /Rg . The density at the center of the coil de

creases (Rg
3/N}N20.2, in agreement with the effective expone

from Fig. 3!, but always remains larger than 0.4f. The inset pre-
sents the same for semiflexible rings (s53); the ~rescaled! distri-
bution density becomes chain length independent forN<64 ~the
density at the center'0.25f).
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itself. This was shown in various scaling plots, e.g., of t
reduced mean ring ‘‘area’’̂uau&/^Rg

2&5const. The areaa is
defined as a signed quantity~the component in that directio
of the vector area of a ring! that vanishes for any configura
tion in which the ring exactly retraces its own steps. Qua
tatively, one expects that a ring which is only very weak
threaded by the surrounding rings has a very small area.
should hold in particular while we approach the LA lim
The reduced areâuau&/^Rg

2& has been~log-linear! plotted in
Fig. 8 versus ring massN for dilute rings~empty symbols!
and rings in the melt~full symbols! of different flexibility.
For ~long enough! dilute rings the ratio is indeed chai
length ~and persistence length! independent. For the dens
limit, however, we now find evidence of~logarithmic! cor-
rections to the expected CD scaling~plateau!. The reduced
area decreases systematically as a function of mass—th
in contrast to what was deduced from a~linear-linear! plot in
Ref. @4#. Note that the ratio also decreases with respect tos:
stiffer rings are likely to be less threaded by other rings. T
is consistent with the LA picture, where stiffer~and hence
larger! rings are forced to retrace their own steps in a n
work of fixed obstacles.

C. Failure of classical scaling analysis without additional
length scale

More stringent tests for the CD picture are posed by
following two scaling analyses, which try to allow for
varying persistence length under the assumption of no
additional length scale for topological interactions. They
presented in Fig. 4 and in the inset of Fig. 9.

In the first we replot the reduced ring sizeu5Re /k versus
the number of statistical unitsv5N/gk as we did in Sec. III
for dilute rings. The values ofk andgk used in Fig. 4 for the
dense linear chains and rings are the same as for the d
systems@22#. The difference from the behavior of linea
chains is striking: The ring data for differents linesdiverge,
while the linear chain data clearly collapse~on the expected
slope n50.5). This is a physically unsound resu
flexibility-dependent universality classes for rings are di
cult to accept.

The second scaling test is the ‘‘classic’’u5R(s,f
50.5)/R0 versusv5f/f* 'N/R0

3 mentioned in Sec. I@12#.
This is shown in the inset of Fig. 9. Both the ring diame

FIG. 8. Reduced areâuau&/^Rg
2& vs N for dilute rings ~open

symbols! and molten rings~full symbols! for different s. Note the
logarithmic, but systematic, correction to the scaling for the latt
e

-

is

is

s

t-

e

w
e

te

r

~full symbols! and radius of gyration~empty symbols! at f
50.5 have been included. As reference chain sizeR0 we
used the measured radius of gyration for a dilute ring
given s. Again, the scaling attempt fails to account for da
of more than one chain stiffness.

For the moment we may conclude that there is clear e
dence of one or more additional length scales. At this po
we still do not know how this hypothetical length scaledt

depends on ring and persistence lengths, nor do we k
what physics it represents: however, since it arises for ri
and not for linear chains, we can presume a topological
gin.

D. Evidence for a chain length independent lengthdt

Another striking effect which we are able to see due to
persistence length variation is shown in Fig. 5 for the bon
bond correlation function of dense rings. As before, for
lute chains this correlation function becomes chain len
independent for the large masses indicated in the figure.
flexible rings the correlation function drops down slight
below zero within three monomers and approaches then
from below. When the persistence length is increased a m
remarkable negative correlation becomes visible, indicat
that the polymer is likely to fold back after ten monomers f
(s53) @23#. Needless to say, the correlation function f
dilute rings does not show anything faintly similar. The p
sition and depth of this anticorrelation dip increase withs.
We stress that the position and shape of the dip are c
length independent. If this effect has something to do w

.

FIG. 9. Two scaling attempts for diameter~full symbols! and
radius of gyration~empty symbols! at different flexibilities as indi-
cated in the figure. In the inset we try the traditional scalingu
5R/R0 vs v5f/f* 'R0

3f/N. The poor scaling evidences add
tional length scales. In the main figure we explore the possibility
a length scaledt assumed to be independent of both massN and
persistence lengths. We plot u5R/dt vs v5N/gt , where we set
arbitrarily dt51 and fix gt /gk5(dt /k)2 self-consistently with the
observed effective Gaussian behavior at short distances. All
points collapse. The slopes indicate Gaussian behavior forR,dt

(n150.5: solid line! behavior for R,dt , and compact LA (n2

51/3: dashed line! behavior for larger distances.
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the additional length scaledt mentioned above, as we be
lieve, this is a piece of evidence for its chain length indep
dence.

E. A scaling scenario

This observation forms the basis for the next scaling p
posal attempted in Fig. 9. We assume here that there is
additional, mass independent, length scaledt . Hence the as-
sociated numbergt of monomers between the topologic
obstacles is also mass independent, but depends on the
conformational properties. These are complicated, as wil
revealed below~see Figs. 6 and 10!. However, as we have
observed above~Fig. 3!, short rings are reasonably approx
mated by Gaussian statistics and we may writegt
5gk(dt /k)1/n1, wheren1 is some effective exponent close
1/2 characterizing the~messy! statistics at distancesk!r
!dt . We want to plotu5R/dt versusN/gt , whereR de-
notes either the diameter~full symbols! or the radius of gy-
ration ~empty symbols!. We still need to fix the persistenc
length dependence ofdt . For simplicity, we suppose thatdt
is only weakly affected bys, and arbitrarily setdt51, i.e.,
we neglect any stiffness dependence ofdt itself. Hencegt
}1/gk andv5Ngk . This assumes that the effect ofs is to
increaseR/dt ~allowing the asymptotic regime to be access
for smallerN) by increasingR at ~nearly! constantdt . This
idea is very much the opposite of what we tried in Fig.
where we hadv5N/gk , and stiffer chains with fewer statis
tical units were considered as being effectively ‘‘shorter
As shown in Fig. 9, this simple proposal is successful,
though a weak dependence ofdt on s cannot be ruled out
Moreover, it is self-consistent: The local statistics is inde
well described by the Gaussian behaviorn1'1/2. This might
be interpreted as thea→0 limit of the CD proposal. The
data collapse over two orders of magnitude inv justifies a
posteriori the neglect of a stiffness dependence ofdt . At
large distances data points fordifferent persistence length
fall together on one slope ofn251/3, which is consisten

FIG. 10. DistanceRn between a chain contour of lengthn for
f50.5. Main figure: Flexible and semiflexible (s53) chains of
various chain lengthN as indicated in the figure. Inset: Differentia
fractal dimensiondf(n)51/n(n) for N51024 ands50 ~dotted
line!, s51 ~dashed line!, ands53 ~solid line!.
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with the LA picture. Note the later crossover of the radius
gyration onto then2 slope. This might be related to the fa
that Rg probes smaller distances.

The above proposal may in principle be generalized
incorporate excluded volume effects on intermediate sc
k!r !j where the statistics is governed by the expon
n050.59 for dilute rings. Note that the strong dependence
the excluded volume screening lengthj on the persistence
length is checked by the small difference betweenn0 andn1.
~We plan to consider this problem in a subsequent study
density effects@14#.! This offers an effective simplification
for the molten chains (f50.5) of interest in this study: Both
length scalesj andk are of same order, and we are not ab
to separate the effects in any case, as we are going to s
now.

F. Local conformational properties: Structure factor

So far we have considered mainly global properties l
the ring diameterRe or the ring area. We wish now to cha
acterize thelocal conformational properties by measuring th
single chain structure factorS(q) and the mean-squar
length^Rn

2&, both introduced in Sec. III, and the differentia
fractal dimensionsdf(q) associated with both quantities. W
will first consider the fractal dimension obtained fromS(q)
as presented in Fig. 6, and then compare this in Sec. I
below! with df obtained from^Rn

2& and shown in Fig. 10.
The differential fractal dimension for our longest (N

51024) rings in the melt (f50.5) is depicted in Fig. 6~a!
and compared with their dilute counterparts. The Bragg p
at r' l is much more pronounced than for the dilute cha
~not fully shown!. We again note small, but distinc
s-dependent packing effects. Not surprisingly, at very la
distances the structure is again well described by the Gui
expansion~see Sec. III! anddf(q) vanishes smoothly.

Obviously one wants to understand the behavior betw
the ~featureless and trivial! Guinier and the~nonuniversal!
Bragg part. To stress this regime, in Fig. 6~b! we plot the
differential fractal dimensiondf(q) versusr 52p/q chop-
ping off distancesr , l and the Guinier part. Data are fo
flexible (s50) and semiflexible (s53) rings and linear
chains in the melt. For small distances wheredf,1 the data
for all df are very similar.~Note the smalls-dependent
packing effects mentioned above.! At df(r'4)51 the semi-
flexible systems branch off the much steeper line for flexi
chains~top line!. This also applies to the data fors51 and 2
~not shown!. We stress that the difference between differe
s is gradual, and that systems of flexible rings do not co
stitute a singular limit. Because of the small blob size~i.e.,
the very strong interactions with the surrounding rings! we
are unable to separate rigidity and excluded volume effe
Semiflexible rings do not show the ‘‘shoulder’’ atdf'1 we
saw for dilute rings@the dotted line in Fig. 6~a!#.

At these small distances, smaller than the blob sizej @15#,
linear chains behave exactly like their ring counterparts
the same flexibility. This proves, as assumed above, tha
small scales thes effects are the same for both architecture
and justifies the use of the persistence lengthb ~and the as-
sociated valuesgk andk) obtained from linear chains. It als
shows that it was natural in Ref.@4# to attempt a finite-size
scheme in terms of the correlation hole, at least when
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assumes the CD picture to hold, i.e.,R being the only length
scale.

However, the rescaling in Fig. 4 didnot work for molten
rings ~in contrast to linear chains!. This is due to effects
caused by the ring closure and topology which intervene
larger distancesr @j ~and in particularly atr @dt): The frac-
tal dimensiondf for rings continues to rise while the linea
chains become roughly Gaussian, i.e.,df'2 @24#. The more
flexible the rings, the more this increase becomes suppre
@see the flexible chains of massN.256 in Fig. 6~b!#. This
gives the more rigid systems a chance to catch up@in df(q)]
to the more flexible ones—and this after having consum
fewer monomers on short scales.

The above discussion is only valid if the chains are ac
ally large enough, i.e.,r !Rg or S(q)!N, to fall on the
asymptotic (s-dependent! curves. The closure constrain
~rather than the topology! forces smaller rings@e.g.,N564 in
Fig. 6~b!# to form rather dense globules of blobs.

For ~asymptotically! long rings there are now two pos
sible scenarios: Either all thes lines merge again at larg
enough distances, or they become parallel.@We reject a
crossing of thedf(s) lines as unphysical.# Unfortunately we
are at present unable to decide unambiguously between t
two. However, we believe it more likely that all the line
eventually merge and that the asymptotic properties of r
polymers are independent of the persistence lengthb @25#.
Hence, for large distancesr .r * (s), the evolution ofdf(r )
again becomesindependentof s. It is tempting in view of
the scaling in Fig. 9 to setr * 5dt @26#.

G. Local conformational properties: Contour distanceRn

We consider finally the average distanceRn

5^(RW i2RW i 1n)2&1/2 between the ends of a ring contour se
ment of lengthn. Similar to the discussion above forS(q),
we define a differential fractal dimension 1/df

5d log(Rn)/d log(n). Note thatS(q) and ^Rn
2& are not just

simply Fourier transforms of each other. They contain diff
ent information: theS(q52p/Rn) monomers of the refer
ence ring within a volume of radius'Rn around an arbitrary
monomer of the same ring also comprise monomers far a
from the ring contour, i.e., much larger thann. This contri-
bution is certainly small for linear chains@henceS(q)}n
@12##, but becomes more and more important while the rin
become more compact~with increasings andN).

We have plottedRn in the main part of Fig. 10 versusn
<N/2 for various ring length masses, as indicated in
figure. Both flexible (s50) and semiflexible (s53) are in-
cluded. The lines of the stiffer rings are stronger curved.
n!N/2 all curves collapse on a chain length independ
~but s dependent! master curve. Obviously, in the limit o
n→N/2 the ring closure forcesRn to level off towardRe ,
i.e., 1/df has to vanish. The inset shows the differential fra
tal dimensiondf for our longest ringsN51024 for three
different persistence lengths. Indeed,df for smalln increases
with s. For short flexible rings the fractal dimension tak
more or less a Gaussian value. Consistent with Fig. 6 we
unable to separate clearly the different length scales,
observe broad crossover lines. As mentioned above,df has
trivially to diverge for n'N/2 and data pointsn.N/4 are
influenced by this upper cutoff. However, we again see t
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stiffer chains show more compact scaling than flexible on
Qualitatively, thes53 curve is even consistent with thedf
54 window predicted for Gaussian LA’s@7#.

In brief, the advantage to use stiff chains is due to
additional length scaledt}N0. Flexible chains, very compac
on short length scales~see the snapshot on the left of Fig. 2!,
‘‘waste’’ a large numbergt of monomers. Systems withN
<gt ~that is, Rg!dt) feature onlyone characteristic size,
their own size, and show CD scaling~with a50). Semiflex-
ible chains, however, using fewer monomers at short d
tances belowdt , can explore larger distances and beco
more compact in the scaling sense: They do this by havin
lower ceiling on the local densityr of a single ring, thereby
enhancing the topological interaction with their neighbo
~thus increasingdf).

V. DYNAMICS OF RINGS IN THE MELT

The differences in the ring statistics should strongly infl
ence their dynamic behavior. But, as pointed out in Ref.@4#,
there is some experimental evidence that the dynamic
rings are similar to their linear counterparts, at least up to
largest molecular masses that can readily be obtained.
simulation data, presented below, confirm this.

We characterize the dynamics by measuring three dif
ent mean-square displacement functions describ
the motion of monomersg1(t)5^@Rn(t)2Rn(0)#2& in
the laboratory frame, the motion of monomers
the center-of-mass frame of a given ringg2(t)
5^@Rn(t)2Rc.m.(t)2Rn(0)1Rc.m.(0)#2&, and the motion
of the center of mass itselfg3(t)5^@Rc.m.(t)2Rc.m.(0)#2&.
As shown in Fig. 11, the mean square displacements
flexible rings collapse onto chain length independent ma
curves when the mean square displacements are rescale
the radius of gyration̂Rg

2&, and the time by the characterist
relaxation time^Rg

2&/DN . Here DN is the diffusion coeffi-
cient ~presented in Fig. 12! obtained from the asymptotic

FIG. 11. Reduced mean-square displacements vs reduced
for two rigidities and different chain lengths as indicated in t
figure. The scaling works reasonably well for flexible chainss
50). However, it is inconsistent with the semiflexible (s53) con-
figurations.
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behavior of the center of mass motiong3(t)/t ~bold line of
slope 1 on the right!.

Closer inspection shows, however, that the collapse is
perfect. This is in agreement to what was observed by Bro
and Szamel@5#. In any case, this scaling is not born out f
the semiflexible (s53) systems of massN5128 depicted in
Fig. 11. This does not come as a surprise in view of what
have described above in Sec. IV about the scaling of con
mational properties. It is worth noting than in inspection
the differential slope of the motion of monomersg1(t) ~not
shown! shows~a small, but distinct! region with slope 0.32
instead of the classical Rouse-like anomalous diffusion
ponent'1/2.

In Fig. 12 we present the self-diffusion constant of line
chains~empty symbols! and rings as a function of their siz
N. The circles correspond to isolated swollen chains. T
diffusion constant is the same for linear chains and rings
scales likeDN;1/N. Of course our Monte Carlo simulation
do not incorporate hydrodynamic interactions, and the
namics is expected to be Rouse-like@13#. The squares corre
spond to flexible chains in the meltf50.5. It is important to
note that rings are alwaysfasterthan their linear counterpar
of same mass. As shown in the figure, the diffusion coe
cient are well fitted by~effective! power laws:DN}N21.22

for rings andDN}N21.5 for linear chains. As emphasized i
Ref. @4#, both linear chains and rings scale with the size
their correlation holeDN}R23. The diamonds in Fig. 12
display the results of semi-flexible rings (s53) at melt den-
sity f50.5. The dependence of the diffusion constant for
larger ring sizes studied is stronger than for flexible cha
and obeys the apparent relationDN;N21.68. This is roughly
consistent with the data of Brown and Szamel, who fou
D;N21.54 for large flexible rings@5#. Both sets of simula-
tion data are likely to be affected by crossover effects.

This observation is in accord with theoretical calculatio
which calculate the diffusion constant of rings via the moti
of kinks along the contour. This diffusion of kinks along th
molecules is also the dominant relaxation mechanism in

FIG. 12. Diffusion constantsNDN reduced by the acceptanc
rateA vs N for rings ~full symbols! and linear chains~empty sym-
bols!. We consider dilute, flexible (s50) chains~circles! and flex-
ible (s50, squares! and semiflexible (s53, diamonds! chains in
the melt (f50.5). The lines correspond to effective power laws
ot
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reptation of linear chains. In this sense, the dynamics
~more and more entangled! rings is the analog of reptation in
melts of linear molecules. We do not find any signature
arm retraction in the motion of ring polymers. The latt
would result in an exponential decrease of the diffusion w
ring size like in star polymers@27#.

In the~suspected! LA limit, the ring conformations should
possess an hierarchical structure. Studying the motion
single ring in a network of~explicitly! fixed obstacles,
Obukov et al. suggested that the outer arms of a LA c
rearrange much faster than the inner structure@7#. This re-
sults in a broad range of relaxation times. We investiga
this by monitoring the distribution of mean square displa
ments of monomers for flexible rings (N5256 ands50)
and semiflexible ones (N5256 ands53) after a time inter-
val Dt'2.33105 Monte Carlo steps. This corresponds to
time scale which is shorter than the diffusion timeDN /Rg

2

of the ring. Note that both curves~in Fig. 13! correspond to
roughly the same time periodand the same mean value o
the monomer displacement. The center of mass diffus
constant differs, however, by an order of magnitude. Hen
the major difference in the dynamic behavior does not st
from a difference in the local dynamics~e.g., a slight de-
crease of the acceptance ratio of the Monte Carlo moves
to the additional bond angle potential!, but reflects the inter-
play between conformations/topology and the dynamics. N
tably, the monomer mean square displacements for flex
rings are Gaussian distributed, while the distribution of se
flexible systems is non-Gaussian. This is consistent w
simulations of rings in a network of fixed obstacles@7#.

From these different probes of the ring dynamics we c
clude that the dynamics for flexible and semiflexible cha
are qualitatively different, at least for the chain lengths
were able to probe. There appears to be clear evidence
the occurrence of a second length and time scale for
semiflexible chains~which haveR>dt), but not for our flex-
ible ones~which haveR<dt). Qualitatively we again con-
clude that stiffer rings are closer to the LA limit than the
flexible counterparts. However, even for the largest ring s

FIG. 13. Probability distribution of mean-square displaceme
of monomers at short times. Flexible rings (f50.5,s50): Gauss-
ian distribution of monomer displacements at 6DDt/Rg

250.42.
Semiflexible rings (f50.5,s53): deviations from the Gaussia
behavior at 6DDt/Rg

250.02 indicate an abundance of slow mon
mers ~presumably! within the ‘‘trunk’’ of the lattice animal tree.
The solid line represents the Gaussian distribution.
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and stiffness our data are still affected by the small num
of arms, and we expect pronounced finite-size effects to
asymptotic behavior for large rings in the melt. An inves
gation of the dynamics of even larger rings (N.256) is un-
fortunately beyond our computational facilities at present

VI. CONCLUSIONS

In summary, we have presented extensive Monte C
simulations of semidilute solutions and melts of flexible a
semiflexible ring polymers. The rings are neither knott
with themselves nor concatenated with each other.

In order to have a reference with systems where the n
linkage constraint does not play a role, we have briefly c
sidered dilute solutions of rings. They appear to be extrem
similar to their linear counterparts, both with respect to st
cal and dynamical properties. The~remaining! topological
unknottedness constraint seems not to be pertinent@21#, at
least not for the chain sizes (N51024) we have considere
here. The ring extension scales likeR;Nn with n'0.59.
This was also made evident from the study of the differen
fractal dimensiondf(q) obtained from the static structur
factor S(q). Dilute rings do not differ from linear chain
with regard to the influence of finite persistence length~at
least for large enough rings!. The dynamics is Rouse-like
DN;N21, because our Monte Carlo simulations ignore h
drodynamical interactions~‘‘free draining limit’’ !. In short,
from a practical point of view topology is irrelevant.

This is dramatically different in the high density lim
(f50.5) with strongly overlapping entangled rings whe
topological constraints tend to squeeze the rings into r
tively compact objects. We have varied the stiffness of
rings so as to tune the overlap between different rings. D
to the rather compact structure of the molecules in the m
increasing the stiffness is much more efficient than incre
ing the ring size. Essentially, stiffer chains ‘‘waste’’ le
monomers on short distances and have more monomers
to meander through the topological constraints imposed
neighboring rings. Indeed theeffectiveFlory exponentn(N)
obtained from the high chain length behavior of chain dia
eter and radius of gyration shows a strong effect with reg
to the persistence length, decreasing fromn'0.4 for flexible
chains (s50) to n'1/3 for our stiffest systems (s53).
Chain stiffness allows a reduction inn to more ‘‘compact’’
values byincreasing~at a givenn) the overlap paramete
p}b3N3n21.

Rings with topological constraints do not follow the cla
sical one parameter scaling withf/f* for linear chains
where the size of the~dilute! chain of massN and stiffnesss
sets the only relevant length scale@12#. This is in disagree-
ment with the fundamental assumption of the CD picture@6#.
In order to scale the chain lengthR5R(N,s) we were
forced to assume an additional chain length independ
length scaledt}gt

n1. Supposing a weaks dependence ofdt
and choosingn1 self-consistently, this yields a satisfacto
data collapse andn1'1/2, as demonstrated in Fig. 9. Fo
small chains,R!dt , the topological interactions are wea
The rings resemble their linear counterparts and behave
fectively like closed Gaussian chains of blobs. This regim
consistent with thea→0 limit of the CD scenario, i.e., due
to the nonlinkage constraint the free energy of a refere
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ring increases only like log(p). Rings larger thandt appear to
be governed by the topological interactions, and are m
compact~in the scaling sense of smallern). They are well
characterized by an effective Flory exponentn251/3. This
scaling scenario is broadly consistent with the concept
lattice animals~LA’s ! within a network of topological ob-
stacles created in a self-consistent manner by surroun
rings @7,9#. These LA’s appear to be made of locally Gaus
ian chain pairs at short distances.

Our ~more ambitious! discussion of the differential fracta
dimensiondf ~obtained from the static structure factorS(q)
and/or the spatial distanceRn(n) between a contour segmen
of length n) reveals very rich and broad crossover effec
excluded volumej versus persistence lengthk, excluded vol-
ume versus ring closure, and ring sizeR versus topological
length scaledt . As shown in Figs. 6 and 10, it is not possib
to separate the different length scales unambiguously an
disentangle their physics@28#. In view of the ~restricted!
range of parameters (N<1024,s<3,f50.5) we are able to
simulate, this does not come as a surprise. Much more
prising is the success and the simplicity of the scaling s
nario of Fig. 9 for the global chainR size described in the
paragraph above. There, all the intricate short range phy
was cast inoneeffective exponentn1 for all chain and per-
sistence lengths. It just turns out that the Gaussian valuen1
51/2 ~i.e., a→0) fits the data particularly well. Similarly
while n251/3 is certainly the asymptotic value, this does n
exclude the possibility of a large intermediate window w
n251/4 @7,29#. Indeed the differential fractal dimensions fo
our largest and stiffest configurations clearly exceeddf53.
This is in favor of an ultracompact transient, which shou
then eventually also become evident in the ring sizes
even larger chain lengthsN than we are at present able
simulate.

Additional evidence for the crossover to a strongly e
tangled regime characterized by an additional length scaldt
comes from our brief investigation of the ring dynamics. T
scaled time dependence of the monomer displacements
fers from the master curve in the non-entangled regime,
the monomer displacements at times smaller than the re
ation time are non-Gaussian distributed, as expected
LA’s @7#. The diffusion constant for chains in the melt scal
like DN;N21.22 for flexible chains. This decrease toDN
;N21.68 for semiflexible systems (s53). Again these ex-
ponents are presumably only effective values due to a br
crossover between unentangled and entangled regimes.
similarity of the dynamics of melts of rings and linear chai
suggests that our observations for rings might also be p
nent to the dynamics of linear chains. Indeed, it is tempt
to relate the topological constraints which lead to the latt
animal behavior for rings to the entanglements in line
chains. While the topological interactions do not influen
the static conformations of linear chains, however, rings
fer the additional possibility to investigate the effect of t
pology in the static behavior.

In any case, our simulation data cover only the onse
LA behavior and our estimates for the scaling functions
the conformational statistics and the dynamics are likely
be subjected to corrections due to the very small numbe
arms. In the future we plan to corroborate further the disc
sion of the dynamical properties~increasing the number o
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statistical segments! and to investigate the static and dynam
cal scaling properties with regard to the monomer densitf
@14#.
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