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Topological effects in ring polymers. Il. Influence of persistence length
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The interplay of topological constraints and the persistence length of ring polymers in their own melt is
investigated by means of dynamical Monte Carlo simulations of a three-dimensional lattice model. We ask if
the results are consistent with an asymptotically regime where the rings beha(eolkpact lattice animals
in a self-consistent network of topological constraints imposed by neighboring rings. Tuning the persistence
length provides an efficient route to increase the ring overlap required for this mean-field picture to hold: The
effectiveFlory exponent for the ring size decreases down/461/3 with increasing persistence length. Evi-
dence is provided for the emergence of one additional characteristic lengttdseal®, only weakly depen-
dent on the persistence length and much larger than the excluded volume screening leAgtlistances
larger thard; the conformational properties of the rings are governed by the topological interactions; at smaller
distances rings and their linear chain counterparts become sifiladistances smaller thaf both architec-
tures are identical However, the crossover between both limits is intricate and broad, as a detailed discussion
of the local fractal dimensiofe.g., obtained from the static structure fagtaveals. This is due to various
crossover effects which we are unable to separate even for the largest rinbl si2®24) presented here. The
increased topological interactions also influence the dynamical properties. Mean-square displacements and
their distributions depend crucially on the ring overlap, and show evidence of the existence of additional size
and time scales. The diffusion constant of the rings goes down from effeciyghyN ~ 122 for flexible rings
with low overlap toDyN~ 188 for strongly overlapping semiflexible rings.

PACS numbeps): 61.25.Hq, 61.4%e, 83.10.Nn, 83.20.Fk

I. INTRODUCTION +1)/(3x+2). The simplest possible estimate feris to say
that roughly one degree of freedom is lost for each ofghe
Unconcatenated and unknotted rings in their melt are relaneighbors which the ring is prevented from threading, i.e.,
tively compac{1,2]. This was found in recent computational =1 and hencev=2/5. This is very close to the value
studies [3-5], and was expected on theoretical grounds~0.39 found by us in our previous stuf#]. Note that the
[6—9]. Qualitatively the squeezing of the rings was attributedoverlap numbepe N increases extremely weakly, and that
to the topological constrain{see Fig. 1a)] [10]. This is in  the only intrinsic length scale in the CD picture is the ring
line with much older observations showing that dilute ringssizeR itself (possibly renormalized in terms of excluded vol-
repel each other much more strongly than their linear chaimme blobs of siz&). Again this was found to be in qualita-
counterparts due to the entropy loss associated with the utively good agreement with the simulations reported in our
concatenation constraint, preventing the two rings fronfirst paper[4]. From the CD picture one expects a similar
threading each othgd 1]. While the usual excluded volume density crossover scaling for rings as for linear chains: The
interaction is screened out at high chain overleg., if the  ring size R(¢), reduced by the ring siz®, of the dilute
ring sizeR is larger than the siz€ of the excluded volume reference ring, should scale with/ ¢* , where¢* ~N/R} is
blob) [12,13, topological interactions are expected to domi-the crossover density. Having focused in Hdi. on flexible
nate the conformational properties if the number of overlaprings at one fixed density, we were unable to verify this
ping ringsp~R3#/N (N being the chain masg; the mono-  implicit scaling assumption of the CD picture.
mer density becomes high enough. A different picture comes from the extensive studies on
In a simple Flory-like argument, Cates and Deuté€D)  (isolated ring polymers in gel§see Fig. 1b)], often mod-
[6] argued that the number of degrees of freedom lost for @led by so-calledattice animals(LA’s ), depicted in Fig. (c)
typical ring due to its topological interactions with neighbor-[6,7,9. If the ring sizeR becomes larger than the typical
ing rings increases gs*, wherea is an unknown exponent. distanced; between the fixed topological obstacl@spre-
This free energy term, which favors decreasing ring size, hasented as squares in the figutlee rings are forced to retrace
to be balanced by the entropy penalty for squashing a ringheir paths and the fractal dimensidp= 1/v becomes that of
To be specific, this penalty was assumed to be the same asstrongly branched object. The question is now if it is also
for a Gaussian chain. Adding these contributions and minipossible to use this well-understood model via a standard
mizing over RxN" vyields the Flory exponentr=(«  mean-field argument for strongly overlapping systems of
rings in their own melt. Are the surrounding rings able to
generatdin a self-consistent mannea fixed mesh of topo-
* Author to whom correspondence should be addressed. logical obstacles around a reference ring? If sal,isR—in
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FIG. 1. Sketch of topological constraints and their effe¢s.
The top chains present allowed conformations of unknotted and
(more importantly unconcatenated rings. The rings cannot turn into
knotted configurationgnot shown or the concatenated configura-
tions shown on the bottom. It is this nonlinkage constraint which
tends tosqueeza ring in semidilute solutions and melts. The inter-
play between the topological constraint and the effective bond
lengthb (in contrast to the monomer sizg is studied herelb) One
ring in a network offixed topological constraints or obstacles
(squaresimposing a strongly entangled and compact conformation.
(c) An equivalent lattice animalLA): In the high overlap limit
rings are expected to behave effectively like LA’s. This is mean-
field picture for a reference ring within a self-consistent topological
network imposed by the surrounding rings.

which case the LA and CD pictures would be indistinguish-
able from the scaling point of view—or does it introduce an o fiexible ring in the middle, flexiblect=0) ring in the melt
add_monal ring length mdep_endent scal_e? In the latter CasQ,—0.5) on the left, and corresponding semiflexibte<(3) coil
obviously, the above mentioned density crossover scalingy, the right. The overlap has increased by factor 3 between the
would not work.(However, one can strictly only expect this fiexinle and semiflexible chains in the melt. To obtain a similar

LA picture to hold in the high entanglement limitn any  effect by increasing the chain mass we would have to incridse
case, there is a catch: While increasprgb®N3"~ %, bbeing  at least two orders of magnitude.

the persistence length, the effective exponefp) is sup-

posed to drop down to 1/@&nd even down te=1/4 for an g’mportant regime(depending orb) where the rings expel

ideal Gaussian LA within an intermediate range of ring size . . . )
N) [7]. Hence the LA picture might not be self-consistent, aSsuccessfully neighboring chains and form relatively dense

already stressed in Relf6]. It is crucially the prefactob? coils, the mean-figld assu_mption of the LA _approach has to
(and not the inefficienty®*(P)~1) which allows the simulator break down. A typical chain for low overlap is shown Fig. 2

to control the overlap(This assumes that the persistence®n the left. The CD picture i priori a good candidate to
length only weakly affects the hypothetical lengthwhich de;crlbe this regime whert_a overlgpand topological inter-
has to be checked posteriori) actions are weak. A possible choice for the unknown CD
This is the route we have taken in this study to test theexponentin this regime is the limiting case-0 and, hence,
scaling predictiongrather than the variation in densitpg ~ v~1/2, i.e., the topological constraints mainly contribute
which we plan to investigate in a subsequent st{iti]). logarithmic corrections to a closefl0] Gaussian chains of
Indeed, the persistence lendthturns out to be a very effi- blobs. Evidence for thi§ustifying a posteriorithe squeezing
cient way to vary the overlap number(additional compu- term used by CDis presented below.
tational overhead and reduced diffusion constants taken into Our paper is arranged as follows: In Sec. Il we give a
account compared to the ring magahich we have however short synopsis of the model and the simulation technique
increased fromN=512 to 1024. This allows us to more used. To understand the special effects linked to the uncon-
severely put a test on the scaling predictions of the CD scesatenation constraint, we need reference date at the same
nario than we were able to do in our previous stidj; In ~ chain and persistence length to compare with. This is pro-
contrast to that work, the evidence presented here shows tivided in Sec. Ill, where we review some properties of dilute
emergence ofat least one further length scale alongsie  semiflexible ring polymers. In Sec. IV, we investigate the
which we identify withd,. Tentatively, our data are consis- statistics of ring polymers in their melt as a function of the
tent with a broad crossover toward the LA picture in the limit stiffness, comparing them with dilute rings and dense linear
of high chain overlap which is attained by increasingo  chains from Refs[15,16. (Note that in most figures we
that the chains become more extenddgtbugh more com- compare features discussed subsequently in Secs. Il and IV.
pact in the scaling sense of smaligr A typical semiflexible  Possible scaling scenarios are discussed and a detailed analy-
coil at higher overlap is presented in Fig. 2 on the right.  sis of the local fractal dimension is presented. Section V
Of course, the CD and LA pictures are not necessarilybriefly presents our first results on the dynamics of semiflex-
contradictory in that they might provide useful heuristic de-ible ring polymers. We conclude with a summary of our
scriptions in different overlap limits. In the computationally results.

FIG. 2. Configurational snapshots of rings of mass 256:
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TABLE |. Persistence length dependent properties for dilute TABLE Il. Persistence length dependent properties for rings and
(¢=0) rings and linear chains: Mean cosine of the bond-bondinear chains at high volume fractioi=0.5: Mean cosine of the
angle(cos@)), mean bond length effective bond length of linear bond-bond anglg/cos@®)), mean bond length, effective bond
chainbt and ringsbs, acceptance rat®, and the diffusion constant Iengthb',; for linear chains, acceptance rageand differential Flory
NDy. These values characterize the asymptotic behavior of long@xponent v fitted over the four largest chains available

linear chains as well as rings. (see Fig. 3.
o (cos®)) I b. b A NDy o (cos@®)) I bs A Vet
0 —0.193 2.736 3 155 0.254 0.032 0 —0.106 2.632 3.2 0.1529 0.41
1 —0.394 2724  3.32 173 0.224 0.026 1 —0.348 2.614 3.7 0.1329 0.39
2 —0.554 2706 394 189 0193 0.021 2 —0.544 2.602 4.5 0.1136 0.36
3 —0.668 2703 424 224 0165 0.019 3 —0.676 2.593 5.3 0.0983 0.33
Il. ALGORITHM AND PARAMETERS tems containing dilute rings and linear chains have been

simulated for reasons of comparison. Not surprisingly the
As in our previous study we investigate the properties ofquantities featured in Tables | and Il depend somewhat on
unknotted and unconcatenated rings in the framework of théne volume fraction[15,16/. Note that at the densityp
bond fluctuation mode(BFM) [17]. Many static and dy- =0.5 of occupied lattice sites, many static and dynamic fea-
namic properties of linear chains are known for this compu+tures ofmoltenlinear polymer materials are reproduced by
tationally efficient, coarse grained lattice model. A smallthe BFM. For example, the single chain conformations obey
number of chemical repeat units is mapped onto a latticgsaussian statistics down to the screening lengftr=0)

monomer such that the relevant characteristics 0fg of the excluded volume interaction obtained by the static
polymers—excluded volume and connectivity—are retainedstructure factof15].

Each monomer blocks a unit cell of the three-dimensional We have restricted ourselves to Va|ueg3, because we

cubic lattice from further occupancy. Adjacent monomersfound tentative evidence for the onset of a nematic order at
along a polymer are connected via one of 108 allowed bongajuess=4. Due to the lower conformational entropy, rings
vectors of lengths 2,/5, 6, 3, and\10. Here and in the tend to order nematically at lower stiffnesses than linear mol-
following all spatial distances are measured in units of theacules(For linear chains an isotropic to nematic transition is
lattice spacing. This set of bonds allows for 87 different bondfound close tar~6 [16].) Moreover, increasing the stiffness
angles and, hence, results in a good approximation to chaingso decreases the number of statistically independent seg-
in continuous space. The bond vectors are chosen such thafents, and we want to keep finité effects low, even for

the local excluded volume interactions prevent the ringsmall ring lengths.

from crossing each other during their motion. This conserva- The algorithm described above has been implemented on
tion of the topology ensures that the rings remain neitheg massively parallel Cray T3E compufdi8]. Using a two-
knotted with themselves nor concatenated with one anoth&fimensional geometric decomposition of the simulation grid
during the course of the simulation. We evolve the ring conf linear extensiorL =128, we employ 64 T3E processors.

formations via random local monomer displacements. The simulations involve about 40 000 hours of single proces-
As explained in the Sec. |, a crucial parameter is the oversor CPU time.
lap numbem, which increases only very weakly with, but As shown in Table IIl, this allows us to investigate ring

much more strongly with the persistence length. In order tasystems with 131 072 monomers and chain masses 0p to
tune the persistence length, we impose a simple intramolecu= 1024. The data for flexible rings have been used as starting
lar potential which favors straight bond angleE(®)  configurations for simulations at higher persistence length. In
= o cos@). Here ® denotes the complementary angle be-most cases rings diffused at least a spatial distance of their
tween two successive bonds, andhe dimensionless energy radius of gyration before any conformational data were col-
scale (setting kgT=1). This potential has been used andlected. The simulation runs were extended up to five times
investigated in various studies on linear polymer chains athe relaxation time for sampling the ring conformations.
filling fraction ¢=0.5 of occupied lattice sitgd6,19. This  Note that we could not meet this stringent criterion for the
is of importance because it is reasonable to assume that g@miflexible >0) systems at our largest malsis=1024.
short length scaleor long enough chainseither ring clo-  The resulting data appear to be time independent, and we
sure nor topological constraints are pertinent. This statememresume them to be equilibrated, but they have not diffused
will be corroborated later in Sec. IV, when we discuss thegyer a radius of gyration. These three data points-(, 2,
local ring structure(Fig. 6). Note for now that other local and 3 have to be taken with care.

quantities like the mean bond length(cos@)) (i.e., the As can be deduced from Table IIl, a relatively small in-
mean stiffness energy per monomer the acceptance rafe  crease in persistence length is a very effective way to in-
are identical for rings and their linear counterparts. Hencerease the overlap number<R.>/N. To give some num-
one expects to find the same local rigidityo) for rings as  pers, increasing the stiffness parameterfrom 0 to 3

for linear chains, Whel’d!)=b|é is easily obtained from the amounts to increasing by a factor 3 forN=256 (seen in
mean-square end-to-end vecid®?) and the known Flory Fig. 2 and by a factor 5 foN=512. To achieve a similar
exponent of linear chains. See Tables | and Il for the diluteeffect by tuning the contour length requires an increase by
(¢=0) and dense limits ¢=0.5), respectively. The sys- two (respectively threeorders of magnitudg20].
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TABLE lIl. Ring radius of gyrationR,, diameterR,, and (reduced diffusion constantN Dyn10® for
different ring sizesN and stiffnesses at ¢=0.5.

o=0 o=1 o=2 o=3

N (R (R NDJIC® (R} (R) (R) (R) (R) (R) NDWIO

16 12.9 42.3 5.87 16.4 54.1 21.3 73.9 26.2 95.3 1.94
32 25.7 80.6 5.18 32.9 102 44.7 141 60.2 198 1.23
64 49.3 150 4.21 63 189 84.5 251 117 353 0.77
128 92.2 275 3.65 115 337 150 430 203 579 0.4
256 169 492 3.23 204 581 250 700 330 910 0.38
512 297 856 343 978 420 1157 490 1315

1024 514 1474 539 1680 620 1784 710 2140

ll. DILUTE RINGS REVISITED k=Igy (I being the measured mean length of the BFM

As a reference for the subsequent section on stronglyzo(r;)(z'“)1,5?\9;”“22 d Ee:l(bg:\l“):l,l((lq\l,,/)gk) Obv?gilgli t?]lfs

overlapping rings(where the unconcatenation Consnamtscaling-based definition df and g, is arbitrary to within

matt_ers we t_)riefly_revisit some pr operties of flexible anc_j prefactors of order 1. The proposed rescaling works success-
semiflexibledilute rings and their linear counterparts. BaS|-fully for dilute linear chains and rings, as shown in Fig. 4
cally, the remaining unknottedness constraint and the r flere we have plotted the reduced diaﬁetepsR Ik versu§ '

: . o . R
quirement of ring closur¢10] do not matter: Dilute rings the number of statistical segmemtsN/g, . A similar figure

behave broadly like linear chains. was obtained for the radius of gyratidnot shown. Note

The sir_nplest quan_tity to characteri_ze the chain stru_ctur?hat only a part of the linear chain configurations used to
as a function r?f .thcle St'f:lge_?ﬁ pqrameicbfrl;s the overall chain d characterize the stiffness effects for dilute systems are in-
size versus chain lengi. The size of the rings is measured 404 iy the figure.

first with the usual mean-square radius of gyrat&). As In Fig. 5 we show the bond-bond correlation function
a second measure, we sample the mean-square distance

s o ] €-€.n), Wheree; denotes one of the bond vectors of
<Rﬁ>:<(R_i_ Ri.n)?) (averaged over all monomei3 be- mcl)ntl)rnngri (say thel“right” one in a given list Only values
tween pairs of monomers that anemonomers apart along ¢ rings are includedthe values for linear chains being
the contour. In partlculazr, for Jings, we define the mean-gentical for long enough chainsAs it should, the bond-
square ring diameteRg) =(R5)|n-ni2. (For the linear  hong correlation functions for different persistence lengths
chains(RZ) = (R?%)|,—n denotes the usual mean-square endollapse onto a single scaling curve, when plotted versus
to-end distance.In Fig. 3 the diameteR,=(R2)*? for flex-
ible and semiflexible dilute rings is plotted vershis Not ' ' T ' " A
included are the linear counterparts of sasend o. (But . ® 6=0
see Fig. 4. The data are well fitted for all the persistence 10
lengths considered big.=bN"” with the classical Flory ex- = o=l
ponentv=vy~3/5 [21]. The effective bond length, en- ¢0=3
codes the persistence length effect. It is tabulated for linea A o=3
chains(L) and rings(R) in Table I. Similar fits have also
been performed for the radius of gyration. We find, indepen-
dent of chain size and persistence length, the following rela- ©
tions: bg/b5~1.89, by/bg~ /6, andby/bg~1.79. Note that
in fitting we have disregarded the three smallest mabkes
=16, 32, and 64 to minimize finite size effects. We have
checked for(the remaining finite size effectgnot shown: K
The (negative curvature in the data points is surprisingly 10" |
weak andsimilar for linear chains and rings. It is slightly &
stronger for the radius of gyration than for the diameter L . . ‘ . . s
which probes larger distances. While we cannot rule out that 16 32 64 128 256 512 1024
the asymptotic exponents of the ring chains are slightly dif- N
ferent from their linear counterparts, for all praCtiC"_il pur g, 3. DiametelR, vs chain lengtiN for different o for dilute
poses of relevance here we may conclude that .nelther tI~k%pen symbolsand denséfull symbols rings. The dilute rings are
ring closure nor the non-self-knottedness constraint are Pegnaracterized by the same Flory exponenrty,~0.59 as their lin-
tinent. ear counterparténot shown. For large enough chains this is inde-

We are now in the position to rescale the effects of thependent ofo. For the dense chains the effective fractal dimension
persistence length for both linear chains and rings by estid,=1/» becomes much larger, depending strongly on the chain ri-
mating for the linear chain the numbey, of correlated gidity: flexible chains ¢&=0) compare well withv=0.4 (dashed
monomers along the chain and the associated Kuhn lengiime), semiflexible chainsd¢=3) with »=1/3 (solid line).
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FIG. 4. Reduced diameter=R./k vs reduced chain mass
=N/gy for dilute (¢=0, open symbolsand dense ¢$=0.5, full
symbolg linear chaingtop two lineg and rings(bottom. The chain

flexibility o changes as indicated in the figure. The lines indicate

(effectivel exponentgfrom top to bottom »=0.59 for dilute linear
chains,»=0.5 for dense linear chaing,=0.59 for dilute rings,v
=0.4 for dense, flexible€=0) rings, andv=1/3 for semiflexible

(o=3) rings in the melt. Note that the dense rings do not collapse

on one master curve as their linear counterparts.

n/g, (not shown. Note that this scaling and tHsupposed

exponential decay is sometimes preferred to define the num

ber of correlated monomerg, and the persistence lengkh

rather than our definition based on the measured effective

bond lengthb and the well-knowr(and for rings confirmed
Flory exponent. However, the correlation function for dilute
chains(both linear and ringscertainly doesiotdecrease as a
pure exponentia{not shown. This is due to(nonuniversal
short range packing effects arichore importantly to long

range excluded volume correlations. In addition to this we ¢/ 6

0.3 T T

© N= 256
o N=512
0 N=1024

0.2

0.1

<€,8,>

0.0

40

FIG. 5. Bond-bond correlation functiofeye,) for dilute (¢
=0) and molten ¢=0.5) rings fore=0 (connected by thin lings
and o= 3 (connected by fat lingsfor various chain masses as in-
dicated in the figure. At high chain overld@pigh density and rigid-
ity) we find a pronounced negative dip in the correlation function.
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a = < 6=0, =0
(@) N=1024 6023, 00
0 o=0, $=0.5 -
00=3, $=0.5

df
-1
4 T
(b) < N=64
o N=512 ;g:c
O N=1024 O
3 =uu
df 2 g T T T T ot~
Guinier
—_
0 @ I'{'\ 1
10’
r= 27t/q
Differential fractal dimension d¢(q)

=—dlog(S(q))/dlog(@) vs r=2=/q. (a) Dilute and molten rings

of massN=1024. The line indicates an ideal Gaussian ring of same
radius of gyration as a flexible and dilute rindp) Rings in their
melt (¢=0.5). The dotted line is a comparison with linear chains
(N=256,4=0.5). Within the first blob[r<¢(o)], linear chains
and rings behave identically.

prefer our method for statistical reasons.

Additional information about the local structure of the
flexible and semiflexible rings comes from the structure
factor S(q) which is of direct experimental relevance.
The slopes of the structure factor in log-log coordinates
define the differential fractal dimension d{(q)
=—dlog(S(q))/dlog(q). The general shape d&(q) was
discussed in Ref[4]. Here we present onlg;(q) which
contains all the information. It is equivalent in the limit of
long chains §—0, qR;>1) to the inverse of the Flory ex-
ponentv. Figure &a) showsd(q) for dilute rings(thin sym-
bolg of massN=1024 plotted versus=2mx/qg. For large
distances the rings are well described by the classical Guinier
expansion S(q)%N(l—(qu)ZIB) (not shown; hence
di(qR;—0)—0. For small distances~I| one finds the
usual spurious Bragg peak of the structure fa¢tdrdue to
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local packing effects giving rise to negatidg-values. We Wr o_ o 1.0 ¢ ON=16
note a weaks dependence due to BFM related lattice ef- © 0 N=32
fects: A slightly different set of bond vectors is preferred. 5% %5 z::?gs
This is in line with the fact that also the mean bond vector 2o = aN=256
varies weakly with persistence length, as shown in Table I. o . 0.5 v N=512
In between both limits we find a broad plateau for the flex- ! B>N=1024
ible rings withd;= 1/vy~1.7 (upper horizontal linpdue to o

the excluded volume interactions. Semiflexible rings show,’\s 05

as expected from linear chains, a shoulder at alpetl Q
(upper horizontal lingdue to the local rigidity of the rings.
Note that the curves for linear dilute chaifrsot included

are very similar. The only qualitative difference is the
“hump” between the plateau and the Guinier regime. This is
due partially to the ring closure, as one can easily see by
calculating the static structure factor for a Gaussian ring

' X 0.0 SRt
(solid line). 0.0 0.5 1.0 15 2.0

IV. CONFORMATIONAL PROPERTIES OF DENSE RINGS . . . o . .
FIG. 7. Single chain density distribution with respect to its cen-

A. Compact, but strongly overlapping rings ter of mass for dense systemts=0.5 with flexible rings ¢=0) vs

While dilute rings essentially behave like their linear reduced distance/R,. The density at the center of the coil de-

. . 3 -0.2 ; H H
counterparts, this becomes very different for unconcatenateti€ases Rg/N=N""< in agreement with the effective exponent
rings in the melt. This is shown in the dramatic decrease of®M Fig. 3. but always remains larger than @.4The inset pre-
the chain size of ring&full symbolg in Fig. 3 as compared sen_ts the same for semlflexm_)le rlngszé.:’u); the (rescaled distri-
with dilute reference ringéopen symbols Certainly, linear bution density becomes chain length independentNisr64 (the

L o - 2! density at the center0.25¢).
chain sizes also decrease with increasing density due to the
screening of the excluded volume correlatiph®,15, but to

nowhere near this extent, as Fig. 4 illustrates. Moreover, the™ ia the diff ial FI N) d
slopes ofR, versusv =N/g, decrease strongly with persis- [NiS curvature via the differential Flory exponentN) de-

tence lengti{see Table I). For flexible rings ¢=0) the data ﬁ?‘?d from Ithe incrﬁase br:atween c(rj]ain lenytiand 2N [4]. |
points (for N=128-1024) are fitted by afeffective) expo- ;r IS r?i/e? s(_not S OV‘I”) that V(.N) bercl:rease? contlnlijou_sy
nent »=0.4. For our stiffest rings we observe(o=3) rom v~1/2, i.e., nearly Gaussian behavior, for smaller rings

~1/3. This last result is indeed consistent with the compacfiown to th§| slf)pe_s |n|d|::attlad in Fig. 3_for thte éarges:] Masses
LA scaling behavior predicted for rings at high enough over-V€ WEre abie 1o Simulale. in our previous s U ﬂ/yV(_a ave
lap p. attrlbute(_j the observed curvature to c_IassmaI fl_nlte—5|ze ef-
These results are also in agreement with the density didects W_h'Ch also appear for '”_“eaf chains. That is, we have
tribution of a ring around its center of mass, shown for ringsr'ot afctnbute(_j the”? to topological effgcts, but excluded vol-
in Fig. 7. We see that for flexible ring@na,in figure the ume interactions visible due to the finite number of blobs. If
overlap p must be very small; nearly all monomers from one adm'ts this as thgnly physical ongin O.f the curvature
neighboring rings are expelled. From the Flory exponent (excluding, e.g., add|t|0'nal length sca)lgss indeed reason- .
~0.4 measured above one expects the density inside the ri le to attempt to obtain the asymptotic exponent by classi-
. _ L , . | finite-size extrapolation method. In this method, the local
t ~N7%2 Th f . In th t ; : e
0 decrease as IS is confirmed. In the inset we slope v(N) (obtained from the diameter and the radius of

resent the corresponding plot for semiflexible rin A .
23) Since the effegtive FI%r)[/) exponentiis- 1/3 we expgesct( gyration is plotted versus the reduced blob s&Z&, where
! R is itself given in a self-consistent manner by the

the density inside the ring to be independent of the ring size. ; . . .
The ring length independence of the density is observed fo‘i"lsymptOtIC behawo.r. This works gengrally well for.hnear
N=128 for o=2 (not shown and N=64 for o=3. This ponmers_. Proceeding along the_se lines we obtalne_d an
supports the idea that the LA regime is reached earlier foﬁsymptotlc .expor_lent 85%0'4 (Wh.'Ch we now obtain di-
stiffer rings. Though rings in this regime show compact Scal__rec_t(ij aft_er: |rr1]clud|ng\_|— 10241‘ This vaI;]J_e g\appsned to co-
ing (v=~1/3), the asymptotically constant densityis fairly :’?CI e with the %D plc;[]urez@—lh[G]%avx ICh made us per-
small. Thus the density aftherrings in the correlation hole aps more confident than we should have béerRef. [4])

. L . . : : f having characterized the asymptotic behavior.
of a given ring islarger for stiff than for flexible rings(Fig. 0 . :
7). This holds for the ring sizes studied; it does not exclude The excluded volume effectand their screeninglo cer-

similar strong overlap behavior for flexible, but much Iarger,talnly contribute to the g_eneral Crossover scenario. This is
fings. shown below when we discuss the structure fackig. 6).

But a danger remains that we may have missed additional

physics, in the form of an additional length scdtet in-

cluded in the simple CD pictuyewhich controls the behav-
We have to stress, however, that the above exponents ai@ of molten rings.

only effective exponents. The curves are strondiyega- Thus one of the key claims made in Rpf] was that the

tively) curved, as one can easily visualize by plottRiNY®  only relevant length scale in dense rings is the chain size

ersusN (not shown. Alternatively, one can characterize

B. First evidence for additional length scale
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FIG. 8. Reduced aregal)/(R%) vs N for dilute rings (open 03 , ,
symbolg and molten ringsfull symbols for different o. Note the 0 e o “," e
logarithmic, but systematic, correction to the scaling for the latter. 10' 10° 10° 10

itself. This was shown in various scaling plots, e.g., of the |G, 9. Two scaling attempts for diametéull symbolg and
reduced mean ring “areal|a|)/( Rs>=COHSt. The areais  radius of gyrationlempty symbolsat different flexibilities as indi-
defined as a signed quantityhe component in that direction cated in the figure. In the inset we try the traditional scaling
of the vector area of a ringhat vanishes for any configura- =R/R, vs v=¢/$* ~R3#/N. The poor scaling evidences addi-
tion in which the ring exactly retraces its own steps. Quali-tional length scales. In the main figure we explore the possibility of
tatively, one expects that a ring which is only very weaklya length scaled; assumed to be independent of both mhisand
threaded by the surrounding rings has a very small area. Thiersistence lengthr. We plotu=R/d; vs v=N/g,, where we set
should hold in particular while we approach the LA limit. arbitrarily di=1 and fixg/gc=(d./k)* self-consistently with the
The reduced areda|>/(Rg> has beerflog-lineay plotted in ob;erved effective Gaussu’;m_ be_hawor at sh_ort dlstan_ces. All data
Fig. 8 versus ring masN for dilute rings(empty symbols points collap§e. _The slope_s indicate Gaussian behavioRfod,
and rings in the meltfull symbols of different flexibility. ~ (¥270-5: solid ling behavior forR<d,, and compact LA ¢
For (long enough dilute rings the ratio is indeed chain =1/3: dashed lingbehavior for larger distances.
length (and persistence lengtlindependent. For the dense
limit, however, we now find evidence dfogarithmig cor-  (full symbolg and radius of gyratioiempty symbols at ¢
rections to the expected CD scalifiglateay. The reduced =0.5 have been included. As reference chain $gewe
area decreases systematically as a function of mass—this iged the measured radius of gyration for a dilute ring of
in contrast to what was deduced frontliaear-lineaj plotin  given . Again, the scaling attempt fails to account for data
Ref.[4]. Note that the ratio also decreases with respeet:to of more than one chain stiffness.
stiffer rings are likely to be less threaded by other rings. This  Fgr the moment we may conclude that there is clear evi-
is consistent with the LA picture, where stifféand hence gence of one or more additional length scales. At this point,
largen rings are forced to retrace their own steps in a netyye still do not know how this hypothetical length scale
work of fixed obstacles. depends on ring and persistence lengths, nor do we know
what physics it represents: however, since it arises for rings
and not for linear chains, we can presume a topological ori-
gin.

More stringent tests for the CD picture are posed by the
following two scaling analyses, which try to allow for a D. Evidence for a chain length independent lengttd,
varying persistence length under the assumption of no new
additional length scale for topological interactions. They are

C. Failure of classical scaling analysis without additional
length scale

Another striking effect which we are able to see due to the

presented in Fig. 4 and in the inset of Fig. 9. persistence length variation is shown in Fig. 5 for the bond-
In the first we replot the reduced ring size: R, /k versus bond correlation function of dense rings. As before, for di-
the number of statistical uniis=N/g, as we didein Sec. || lute chains this correlation function becomes chain length

for dilute rings. The values df andg, used in Fig. 4 for the independent for the large masses indicated in the figure. For
dense linear chains and rings are the same as for the diluiexible rings the correlation function drops down slightly
systems[22]. The difference from the behavior of linear below zero within three monomers and approaches then zero
chains is striking: The ring data for differeatlinesdiverge ~ from below. When the persistence length is increased a most
while the linear chain data clearly collap@m the expected remarkable negative correlation becomes visible, indicating
slope v=0.5). This is a physically unsound result; that the polymer is likely to fold back after ten monomers for
flexibility-dependent universality classes for rings are diffi- (c=3) [23]. Needless to say, the correlation function for
cult to accept. dilute rings does not show anything faintly similar. The po-
The second scaling test is the *“classiai=R(o,¢  sition and depth of this anticorrelation dip increase with
=0.5)/R, versusv = ¢/ ¢p* ~N/R3 mentioned in Sec.[l12].  We stress that the position and shape of the dip are chain
This is shown in the inset of Fig. 9. Both the ring diameterlength independent. If this effect has something to do with
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with the LA picture. Note the later crossover of the radius of
gyration onto thev, slope. This might be related to the fact
thatRy probes smaller distances.

The above proposal may in principle be generalized to
incorporate excluded volume effects on intermediate scales
k<r<¢ where the statistics is governed by the exponent
vo=0.59 for dilute rings. Note that the strong dependence of
the excluded volume screening lengihon the persistence
length is checked by the small difference betwegmandv;.

(We plan to consider this problem in a subsequent study on
density effectd14].) This offers an effective simplification

1 for the molten chains¢=0.5) of interest in this study: Both
length scaleg andk are of same order, and we are not able
to separate the effects in any case, as we are going to show
now.

10 L > 0
n F. Local conformational properties: Structure factor

FIG. 10. DistanceR, between a chain contour of lengthfor So far we have considered mainly global properties like
¢=0.5. Main figure: Flexible and semiflexibler¢&3) chains of  the ring diameteR, or the ring area. We wish now to char-
various chain lengtiN as indicated in the figure. Inset: Differential acterize thdocal conformational properties by measuring the
fractal dimensiond¢(n)=1/v(n) for N=1024 ando=0 (dotted  single chain structure factoB(q) and the mean-square
line), =1 (dashed ling ando =3 (solid line). length(R2), both introduced in Sec. Ill, and the differential
fractal dimensionsl;(q) associated with both quantities. We
will first consider the fractal dimension obtained frd®q)
as presented in Fig. 6, and then compare this in Sec. IVF
below) with d; obtained from(R2) and shown in Fig. 10.

_ ) The differential fractal dimension for our longesN (
E. A scaling scenario =1024) rings in the melt$=0.5) is depicted in Fig. &

This observation forms the basis for the next scaling proand compared with their dilute counterparts. The Bragg peak
posal attempted in Fig. 9. We assume here that there is orat r~| is much more pronounced than for the dilute chains
additional, mass independent, length sahleHence the as- (not fully showrn. We again note small, but distinct,
sociated numbeg; of monomers between the topological o-dependent packing effects. Not surprisingly, at very large
obstacles is also mass independent, but depends on the loch$tances the structure is again well described by the Guinier
conformational properties. These are complicated, as will bexpansionsee Sec. I)landd¢(q) vanishes smoothly.
revealed belowsee Figs. 6 and J0However, as we have Obviously one wants to understand the behavior between
observed abovéFig. 3), short rings are reasonably approxi- the (featureless and trivialGuinier and the(nonuniversal
mated by Gaussian statistics and we may wrile  Bragg part. To stress this regime, in Fighpwe plot the
=g,(d,/k)"1, wherev, is some effective exponent close to differential fractal dimensiord(q) versusr=2x/q chop-

1/2 characterizing thémessy statistics at distancek<r ping off distances <| and the Guinier part. Data are for
<d;. We want to plotu=R/d; versusN/g;, whereR de- flexible (¢=0) and semiflexible §=3) rings and linear
notes either the diametéfull symbols or the radius of gy- chains in the melt. For small distances whdfe1 the data
ration (empty symbols We still need to fix the persistence for all d; are very similar.(Note the smallo-dependent
length dependence af;, . For simplicity, we suppose thal packing effects mentioned aboyét d;(r~4)=1 the semi-

is only weakly affected byr, and arbitrarily setd;=1, i.e., flexible systems branch off the much steeper line for flexible
we neglect any stiffness dependencedpfitself. Henceg; chains(top line). This also applies to the data for=1 and 2
«1/g, andv=Ng,. This assumes that the effect @fis to  (not shown. We stress that the difference between different
increaseR/d; (allowing the asymptotic regime to be accessedo is gradual, and that systems of flexible rings do not con-
for smallerN) by increasingr at (nearly constantd;. This  stitute a singular limit. Because of the small blob sfze.,
idea is very much the opposite of what we tried in Fig. 4the very strong interactions with the surrounding ringe
where we had =N/g,, and stiffer chains with fewer statis- are unable to separate rigidity and excluded volume effects:
tical units were considered as being effectively “shorter.” Semiflexible rings do not show the “shoulder” df~1 we

As shown in Fig. 9, this simple proposal is successful, alsaw for dilute ringqthe dotted line in Fig. @&)].

though a weak dependence @yf on o cannot be ruled out. At these small distances, smaller than the blob §igE5],
Moreover, it is self-consistent: The local statistics is indeedinear chains behave exactly like their ring counterparts of
well described by the Gaussian behavigr=1/2. This might  the same flexibility. This proves, as assumed above, that on
be interpreted as the—0 limit of the CD proposal. The small scales the effects are the same for both architectures,
data collapse over two orders of magnitudevijustifiesa  and justifies the use of the persistence lerg{fand the as-
posteriori the neglect of a stiffness dependencedpf At sociated valueg, andk) obtained from linear chains. It also
large distances data points fdifferent persistence lengths shows that it was natural in Re#] to attempt a finite-size
fall together on one slope of,=1/3, which is consistent scheme in terms of the correlation hole, at least when one

the additional length scald, mentioned above, as we be-
lieve, this is a piece of evidence for its chain length indepen
dence.
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assumes the CD picture to hold, i.B.pbeing the only length 10' . T
scale.
However, the rescaling in Fig. 4 diabt work for molten
rings (in contrast to linear chains This is due to effects
caused by the ring closure and topology which intervene al
larger distances> ¢ (and in particularly at>d;): The frac-
tal dimensiond; for rings continues to rise while the linear
chains become roughly Gaussian, idgs=2 [24]. The more o 10
flexible the rings, the more this increase becomes suppresse
[see the flexible chains of mads>256 in Fig. Gb)]. This
gives the more rigid systems a chance to catchiml;(q)]

to the more flexible ones—and this after having consumed ——- N=128, 6=0
fewer monomers on short scales. // ' ds —-— N=256, 6=0

The above discussion is only valid if the chains are actu- /,. — N=128, 6=3
ally large enough, i.e.f <Ry or S(q)<N, to fall on the 107 /._1 L )
asymptotic ¢-dependent curves. The closure constraint 10 1‘; 10
(rather than the topologyorces smaller ringge.g.,N=64 in 6DN'[/F{g
Fig. 6(b)] to form rather dense globules of blobs.

For (asymptotically long rings there are now two pos- FIG. 11. Reduced mean-square displacements vs reduced time

sible scenarios: Either all the lines merge again at large for two rigidities and different chain lengths as indicated in the
enough distances, or they become parallgé¥e reject a figure. The scaling works reasonably well for flexible chaims (
crossing of thed¢(¢) lines as unphysicdlUnfortunately we fO). However, it is inconsistent with the semiflexible=€ 3) con-

are at present unable to decide unambiguously between thefigurations.

two. However, we believe it more likely that all the lines

eventually merge and that the asymptotic properties of ringstiffer chains show more compact scaling than flexible ones.
polymers are independent of the persistence lemgfB5].  Qualitatively, thea=3 curve is even consistent with tig

Hence, for large distances>r* (o), the evolution ofd;(r) =4 window predicted for Gaussian LA[F].
again becomemdependenbdf o. It is tempting in view of In brief, the advantage to use stiff chains is due to an
the scaling in Fig. 9 to set* =d, [26]. additional length scald,=N°. Flexible chains, very compact
on short length scaldsee the snapshot on the left of Fig, 2
G. Local conformational properties: Contour distanceR,, “waste” a large numbelg; of monomers. Systems witN

<g; (that is, Ry<d;) feature onlyone characteristic size,
their own size, and show CD scaliffigith «=0). Semiflex-
e i _ ible chains, however, using fewer monomers at short dis-
ment of lengthn. Similar to the discussion above f&q),  tances belowd,, can explore larger distances and become
we define a differential fractal g|men5|on 41/ more compact in the scaling sense: They do this by having a
=dlog(R,)/dlog(n). Note thatS(q) and (Ry) are not just |gyer ceiling on the local density of a single ring, thereby

simply Fourier transforms of each other. They contain differ-enhancing the topological interaction with their neighbors
ent information: theS(q=2w/R,) monomers of the refer- (thys increasingl;).

ence ring within a volume of radius R, around an arbitrary

monomer _of the same r_ing also comprise monomers far_ away V. DYNAMICS OF RINGS IN THE MELT

from the ring contour, i.e., much larger thanThis contri-

bution is certainly small for linear chaindienceS(q)«n The differences in the ring statistics should strongly influ-

[12]], but becomes more and more important while the ringence their dynamic behavior. But, as pointed out in R&f.

become more compacwith increasinge andN). there is some experimental evidence that the dynamics of
We have plottedR?,, in the main part of Fig. 10 versus  rings are similar to their linear counterparts, at least up to the

<N/2 for various ring length masses, as indicated in thdargest molecular masses that can readily be obtained. Our

figure. Both flexible ¢=0) and semiflexible §=3) are in-  simulation data, presented below, confirm this.

cluded. The lines of the stiffer rings are stronger curved. For We characterize the dynamics by measuring three differ-

n<N/2 all curves collapse on a chain length independengnt mean-square displacement functions describing

(but o dependentmaster curve. Obviously, in the limit of the motion of monomersg;(t)=([R,(t)—R,(0)]?) in

n—N/2 the ring closure forceR, to level off towardR,,  the laboratory frame, the motion of monomers in

i.e., 16 has to vanish. The inset shows the differential frac-the center-of-mass frame of a given ring,(t)

tal dimensiond; for our longest ringsN=1024 for three  =([Rn(t) = R¢.m.(t) —Rn(0)+ R (0)]?), and the motion

different persistence lengths. Indeelg for smalln increases  of the center of mass itsetfs(t) = ([ R¢ m (t) = Re.m.(0)1%).

with o. For short flexible rings the fractal dimension takesAs shown in Fig. 11, the mean square displacements for

more or less a Gaussian value. Consistent with Fig. 6 we aréexible rings collapse onto chain length independent master

unable to separate clearly the different length scales, aneurves when the mean square displacements are rescaled by

observe broad crossover lines. As mentioned abdydyas  the radius of gyratiomRS), and the time by the characteristic

trivially to diverge forn~N/2 and data point®>N/4 are relaxation time(RS}/DN. Here Dy is the diffusion coeffi-

influenced by this upper cutoff. However, we again see thatient (presented in Fig. )2obtained from the asymptotic

We consider finally the average distanc&,
=((Ri—Ri;n)>)"? between the ends of a ring contour seg-
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FIG. 12. Diffusion constantdDy reduced by the acceptance Semiflexible rings ¢=0.50=3): deviations from the Gaussian
rate A vs N for rings (full symbolg and linear chaingempty sym-  behavior at GDAt/RS:0.0Z indicate an abundance of slow mono-
bols). We consider dilute, flexiblee=0) chains(circles and flex-  mers (presumably within the “trunk” of the lattice animal tree.
ible (c=0, squaresand semiflexible ¢=3, diamondschains in  The solid line represents the Gaussian distribution.
the melt (»=0.5). The lines correspond to effective power laws.

reptation of linear chains. In this sense, the dynamics of
behavior of the center of mass motigg(t)/t (bold line of  (more and more entangledngs is the analog of reptation in
slope 1 on the right melts of linear molecules. We do not find any signature of

Closer inspection shows, however, that the collapse is nairm retraction in the motion of ring polymers. The latter
perfect. This is in agreement to what was observed by Browmyould result in an exponential decrease of the diffusion with
and Szame[5]. In any case, this scaling is not born out for ring size like in star polymerg27].
the semiflexible §=3) systems of madd =128 depicted in In the (suspectedLA limit, the ring conformations should
Fig. 11. This does not come as a surprise in view of what wegpossess an hierarchical structure. Studying the motion of a
have described above in Sec. IV about the scaling of conforsingle ring in a network of(explicitly) fixed obstacles,
mational properties. It is worth noting than in inspection of Obukov et al. suggested that the outer arms of a LA can
the differential slope of the motion of monomegg(t) (not  rearrange much faster than the inner struc{ifie This re-
shown) shows(a small, but distingtregion with slope 0.32 sults in a broad range of relaxation times. We investigated
instead of the classical Rouse-like anomalous diffusion exthis by monitoring the distribution of mean square displace-
ponent~1/2. ments of monomers for flexible ringNE 256 ando=0)

In Fig. 12 we present the self-diffusion constant of linearand semiflexible onesN= 256 ando=3) after a time inter-
chains(empty symbolsand rings as a function of their size val At~2.3x10° Monte Carlo steps. This corresponds to a
N. The circles correspond to isolated swollen chains. Theime scale which is shorter than the diffusion tirt)(,-eJ/Rg2
diffusion constant is the same for linear chains and rings. Ibf the ring. Note that both curve Fig. 13 correspond to
scales likeDy~ 1/N. Of course our Monte Carlo simulations roughly the same time periognd the same mean value of
do not incorporate hydrodynamic interactions, and the dythe monomer displacement. The center of mass diffusion
namics is expected to be Rouse-liK&3]. The squares corre- constant differs, however, by an order of magnitude. Hence,
spond to flexible chains in the mejt=0.5. Itis importantto  the major difference in the dynamic behavior does not stem
note that rings are alwaysasterthan their linear counterpart from a difference in the local dynamidg.g., a slight de-
of same mass. As shown in the figure, the diffusion coefficrease of the acceptance ratio of the Monte Carlo moves due
cient are well fitted by(effective power laws:Dy=<N~1??  to the additional bond angle potentiabut reflects the inter-
for rings andD =N~ 1 for linear chains. As emphasized in play between conformations/topology and the dynamics. No-
Ref. [4], both linear chains and rings scale with the size oftably, the monomer mean square displacements for flexible
their correlation holeDy<R~3. The diamonds in Fig. 12 rings are Gaussian distributed, while the distribution of semi-
display the results of semi-flexible rings € 3) at melt den-  flexible systems is non-Gaussian. This is consistent with
sity ¢=0.5. The dependence of the diffusion constant for thesimulations of rings in a network of fixed obstac[&3.
larger ring sizes studied is stronger than for flexible chains From these different probes of the ring dynamics we con-
and obeys the apparent relatibp,~N~18 This is roughly  clude that the dynamics for flexible and semiflexible chains
consistent with the data of Brown and Szamel, who foundare qualitatively different, at least for the chain lengths we
D~N~1%for large flexible ringgd5]. Both sets of simula- were able to probe. There appears to be clear evidence for
tion data are likely to be affected by crossover effects. the occurrence of a second length and time scale for our

This observation is in accord with theoretical calculations,semiflexible chaingwhich haveR=d,), but not for our flex-
which calculate the diffusion constant of rings via the motionible ones(which haveR=d;). Qualitatively we again con-
of kinks along the contour. This diffusion of kinks along the clude that stiffer rings are closer to the LA limit than their
molecules is also the dominant relaxation mechanism in th@exible counterparts. However, even for the largest ring size
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and stiffness our data are still affected by the small numbefing increases only like logj. Rings larger thanl, appear to
of arms, and we expect pronounced finite-size effects to thge governed by the topological interactions, and are more
asymptotic behavior for large rings in the melt. An investi- compact(in the scaling sense of smalle). They are well
gation of the dynamics of even larger ring$x 256) is un-  characterized by an effective Flory exponent=1/3. This
fortunately beyond our computational facilities at present. scaling scenario is broadly consistent with the concept of
lattice animals(LA’s) within a network of topological ob-
VI. CONCLUSIONS s_tacles created in a self-consistent manner by surrounding
rings[7,9]. These LA’s appear to be made of locally Gauss-
In summary, we have presented extensive Monte Carlgan chain pairs at short distances.
simulations of semidilute solutions and melts of flexible and  Our (more ambitiousdiscussion of the differential fractal
semiflexible ring polymers. The rings are neither knotteddimensiond; (obtained from the static structure fact®fq)
with themselves nor concatenated with each other. and/or the spatial distan&®,(n) between a contour segment
In order to have a reference with systems where the norof length n) reveals very rich and broad crossover effects:
linkage constraint does not play a role, we have briefly conexcluded volume versus persistence lengthexcluded vol-
sidered dilute solutions of rings. They appear to be extremelyme versus ring closure, and ring siReversus topological
similar to their linear counterparts, both with respect to statifength scalal, . As shown in Figs. 6 and 10, it is not possible
cal and dynamical properties. THeemaining topological  to separate the different length scales unambiguously and to
unknottedness constraint seems not to be pertif@tlt at  disentangle their physick28]. In view of the (restricted
least not for the chain sizedNE 1024) we have considered range of parameterdN(=1024p<3,$=0.5) we are able to
here. The ring extension scales lik~N” with »~0.59.  simulate, this does not come as a surprise. Much more sur-
This was also made evident from the study of the differentiaprising is the success and the simplicity of the scaling sce-
fractal dimensiond;(q) obtained from the static structure nario of Fig. 9 for the global chaiR size described in the
factor S(q). Dilute rings do not differ from linear chains paragraph above. There, all the intricate short range physics
with regard to the influence of finite persistence len@h was cast irone effective exponenti, for all chain and per-
least for large enough ringsThe dynamics is Rouse-like sistence lengths. It just turns out that the Gaussian vajue
Dy~N"*, because our Monte Carlo simulations ignore hy-=1/2 (i.e., «—0) fits the data particularly well. Similarly,
drodynamical interaction‘free draining limit”). In short,  while »,=1/3 is certainly the asymptotic value, this does not
from a practical point of view topology is irrelevant. exclude the possibility of a large intermediate window with
This is dramatically different in the high density limit ,,=1/4[7,29]. Indeed the differential fractal dimensions for
(¢=0.5) with strongly overlapping entangled rings whereour largest and stiffest configurations clearly exceesd 3.
topological constraints tend to squeeze the rings into relathis is in favor of an ultracompact transient, which should
tively compact objects. We have varied the stiffness of thehen eventually also become evident in the ring sizes for

rings so as to tune the overlap between different rings. Du@ven larger chain lengthd than we are at present able to
to the rather compact structure of the molecules in the meligimulate.

increasing the stiffness is much more efficient than increas- Additional evidence for the crossover to a strongly en-
ing the ring size. Essentially, stiffer chains “waste” less tangled regime characterized by an additional length stale
monomers on short distances and have more monomers lefbmes from our brief investigation of the ring dynamics. The
to meander through the topological constraints imposed b¥caled time dependence of the monomer displacements dif-
neighboring rings. Indeed theffectiveFlory exponent’(N)  fers from the master curve in the non-entangled regime, and
obtained from the high chain length behavior of chain diam-the monomer displacements at times smaller than the relax-
eter and radius of gyration shows a strong effect with regardtion time are non-Gaussian distributed, as expected for
to the persistence length, decreasing frem0.4 for flexible | A’s [7]. The diffusion constant for chains in the melt scales

chains =0) to »~1/3 for our stiffest systemso(=3).  like Dy~N~%22 for flexible chains. This decrease @y
Chain stiffness allows a reduction into more “compact”  ~N~168 for semiflexible systemso=3). Again these ex-
values byincreasing(at a givenv) the overlap parameter ponents are presumably only effective values due to a broad
pocb®N3 1, crossover between unentangled and entangled regimes. The

Rings with topological constraints do not follow the clas- similarity of the dynamics of melts of rings and linear chains
sical one parameter scaling with/ ¢* for linear chains suggests that our observations for rings might also be perti-
where the size of th&lilute) chain of masd and stiffnessr  nent to the dynamics of linear chains. Indeed, it is tempting
sets the only relevant length scdlE2]. This is in disagree- to relate the topological constraints which lead to the lattice
ment with the fundamental assumption of the CD picféie  animal behavior for rings to the entanglements in linear
In order to scale the chain lengtR=R(N,o) we were chains. While the topological interactions do not influence
forced to assume an additional chain length independerthe static conformations of linear chains, however, rings of-
length scaled,>g,"1. Supposing a wealr dependence ai;  fer the additional possibility to investigate the effect of to-
and choosingr; self-consistently, this yields a satisfactory pology in the static behavior.
data collapse and,~1/2, as demonstrated in Fig. 9. For  In any case, our simulation data cover only the onset of
small chainsR<d;, the topological interactions are weak. LA behavior and our estimates for the scaling functions of
The rings resemble their linear counterparts and behave efhe conformational statistics and the dynamics are likely to
fectively like closed Gaussian chains of blobs. This regime ide subjected to corrections due to the very small number of
consistent with thex— 0 limit of the CD scenario, i.e., due arms. In the future we plan to corroborate further the discus-
to the nonlinkage constraint the free energy of a referencesion of the dynamical propertigincreasing the number of



PRE 61 TOPOLOGICAL EFFECTS IN RING POLYMERS. L .. 4089

statistical segmenftand to investigate the static and dynami- a TRACS visitor and J.-C. Desplat for visualizations of the
cal scaling properties with regard to the monomer dengity ring conformationsFig. 2). A generous grant of CPU time
[14]. on the Cray T3E computers at the EPCC in Edinburgh and
the HLR Stuttgart as well as partial financial support by the
DFG under Grant Bi314-17 are gratefully acknowledged.
J.P.W. acknowledges stimulating discussions with S.P.

M.M. benefitted from interesting discussions with W. Obukov that triggered this study. Finally he would like to
Paul, K. Binder, and K.S. Schweizer. He thanks E.P.C.C. fothank C. Gay and J.-L. Barrat for detailed comments con-
very kind hospitality and financial support during his stay ascerning the topological constraints.

ACKNOWLEDGMENTS

[1] Unknotted and unconcatenated ring polymers have actually overhead(to calculate the additional potentiathe reduced
been made and investigated experimentally. In Réf.the acceptance raté (see Table I, and (more importantly the
reader will find a detailed account of results and technical dif- slower diffusion(see Fig. 12 are taken into account.
ficulties related to ring synthesis and contamination with linear[21] Recently the effects of non-self-knotting for dilute rings with
rings. We do not wish to repeat this hef@lso see Ref[2].) extremely weak excluded volume interactions were investi-
All these studies focus on dynamical properties. No experi-  gated by J. M. Deutsch, Phys. Rev.58, R2539(1999. His
mental study of the radius of gyration of rings in melt appears  \jonte Carlo simulations indicate surprisingly that the exten-

to have been made until now—despite the fact that any rea-  jon of these chains still scale with the same exponent
sonable description of dynamics requires a good understanding ~3/5 due to the unknottedness constraint

5 _cl)_f ;oano(rjmatlﬁlnzl pFraopertl_es. 4s.p Adv. Ch Ph [22] We have also tried values based on the effective bond lengths
2] 7é i(fggg(;' - A Rotstein, and S. Prager, Adv. Chem. Phys. for Gaussian chains from Rdf16] quoted in Table Il. How-
’ ’ ever, the results are virtually identical.
%ﬂ 1I\;I F;/Tg;ljé? ?]ndps'v\;?tfx]l::’ gﬂn%cEméleégi]Z 12&55(1235& [23] Let us assume that the ring consists of uncorrelated needlelike
. P ' T ' ' arms of a fixed lengtiA. Two segments on the same arm are

5063(1996. . . o .
[5] S. Brown and G. Szamel, J. Chem. Phy89, 6184 (1998 either parallel or antiparallel; the directions of different arms
i are completely uncorrelated. For this crude model the bond-

[6] M. E. Cates and J. M. Deutsch, J. PhyBrance 47, 2121 NN
(1986. bond correlation functioqe;e;, ) decays linearly from 1 at

[7] S. P. Obukhov, M. Rubinstein, and T. Duke, Phys. Rev. Lett. =~ N=0 to —1/2 atn=A, and then increases linearly to O rat
73, 1263(1999. =2A. For larger distances along the chains there are no
[8] M. G. Brereton and T. A. Vilgis, J. Phys. 28, 1149(1995. correlations by construction. This motivates the assumption
[9] A. R. Khokhlov and S. K. Nechaev, Phys. Lett. 42 156 that a minimum in the bond-bond correlation function is asso-
(1989; J. Phys. 116, 1547 (1996. ciated with a backfolding, and the position of the minimum is
[10] Note that ring closure is aecessarycondition for the topo- an estimate of the arm length. Certainly, there is a distribution
logical constraints we are focusing on. It is a relatively simple of arm lengths, and the correlation along an arm is not perfect.
matter to conceive an algorithm for closed chains which vio- This will broaden the minimum. More important, the above
late topology. Hence closure and topology constraints are re-  argument neglects the hierarchical structure of lattice animals
lated, but distinct, properties. and only captures local correlations.
[11] M. D. Frank-Kamenetskii, A. V. Lukashin, and A. V. Volo- [24] Note that even for linear chains of length=256 we do not
godskii, Nature(London 258 398 (1975. obtain a perfect Gaussian plateau, but rather a flattish hump
[12] P.-G. de GennesScaling Concepts in Polymer Physi@Sor- [see Fig. @b)]. This provides an important warning. Even for

nell University Press, Ithaca, NY, 1979

[13] M. Doi and S. F. EdwardsThe Theory of Polymer Dynamics

(Clarendon Press, Oxford, 1986
[14] M. Mdiller, J. P. Wittmer, and M. E. Catdsinpublishegl

the linear chains it is tricky to reach the asymptotic limit for
the differential fractal dimension.

[25] Admittingly a priori it is not excluded thab triggers a con-

tinuous spectrum of universality classes.

[15] W. Paul, K. Binder, D. Heermann, and K. Kremer, J. Phys. 11[26] Accepting that all lines will merge eventually, we have to ask

1, 37(1992); J. Chem. Phys95, 7726(1991).

[16] J. Wittmer, W. Paul, and K. Binder, Macromoleculgs; 7211
(1992.

[17] H.-P. Deutsch and K. Binder, J. Chem. Ph§4, 2294(1992);
|. Carmesin and K. Kremer, Macromolecul2f 2819(1988.

[18] M. Mdiller, EPFL Supercomput. ReV, 21 (1995.

[19] M. Miiller, Macromolecule8, 6556 (1995; M. Miller and
A. Werner, J. Chem. Phy407, 10 764(1997.

how they will do so. The simplest suggestion is that they all
merge together at one point. Then no persistence length,

e.g., theds(o=0) line, is singled out. Otherwise one may

characterize each persistence length by the pditr) where

it joins the flexible ring lined;(c=0).

[27] J. Klein, Macromolecule49, 105(1986.
[28] Not to mention logarithmic corrections due to weak topologi-

cal interactions in thee— 0 limit of the CD regime.

[20] These estimates depend strongly on the further evolution of thE29] It was estimated in S. P. Obukhov, M. Rubinstein, and R. H.
effective Flory exponent(N) discussed below. However, the Colby, Macromolecule7, 3191(1994) that thed;=4 regime
balance remains strongly favorable even if the computational  could last untilN= 230 000.



