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Scaling structure of the velocity statistics in atmospheric boundary layers
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The statistical objects characterizing turbulence in real turbulent flows differ from those of the ideal homo-
geneous isotropic model. They contain contributions from various two- and three-dimensional aspects, and
from the superposition of inhomogeneous and anisotropic contributions. We employ the recently introduced
decomposition of statistical tensor objects into irreducible representations of the SO~3! symmetry group~char-
acterized byj andm indices, wherej 50 . . .`,2 j <m< j ! to disentangle some of these contributions, sepa-
rating the universal and the asymptotic from the specific aspects of the flow. The differentj contributions
transform differently under rotations, and so form a complete basis in which to represent the tensor objects
under study. The experimental data are recorded with hot-wire probes placed at various heights in the atmo-
spheric surface layer. Time series data from single probes and from pairs of probes are analyzed to compute the
amplitudes and exponents of different contributions to the second order statistical objects characterized byj
50, 1, and 2. The analysis shows the need to make a careful distinction between long-lived quasi-two-
dimensional turbulent motions~close to the ground! and relatively short-lived three-dimensional motions. We
demonstrate that the leading scaling exponents in the three leading sectors~j 50, 1, and 2! appear to be
different but universal, independent of the positions of the probe, the tensorial component considered, and the
large scale properties. The measured values of the scaling exponent arez2

( j 50)50.6860.01, z2
( j 51)51.0

60.15, andz2
( j 52)51.3860.10. We present theoretical arguments for the values of these exponents using the

Clebsch representation of the Euler equations; neglecting anomalous corrections, the values obtained are 2/3,
1, and 4/3, respectively. Some enigmas and questions for the future are sketched.

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.2a
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I. INTRODUCTION

The atmospheric boundary layer is a natural laboratory
turbulence that is unique in that it offers very high Reyno
numbers~Re!. Especially if the measurements are made d
ing periods when mean wind speed and direction are roug
constant, one approaches ‘‘controlled’’ conditions that
the goals of an experiment. Students of turbulence intere
in the scaling properties, expected to be universal in the li
Re→`, are thus attracted to atmospheric measurements
the other hand, the boundary layer suffers inherently fr
strong inhomogeneity~explicit dependence of the turbulenc
statistics on the height!, which leads to strong anisotropie
such that the vertical and horizontal directions are quite
tinguishable. In addition, one may expect the boundary la
near the ground to exhibit large scale quasi-two-dimensio
eddies whose typical decay times and statistics may d
significantly from the generic three-dimensional motion. T
aim of this paper is to offer systematic methods of analysi
resolve such difficulties, leading to a useful extraction of
universal, three-dimensional aspects of turbulence.

Fundamentally, we propose to anchor the analysis of
statistical objects that are important in turbulence to the i
ducible representations of the SO~3! symmetry group. Al-
though the turbulence that we study is nonisotropic,
Navier-Stokes equations are invariant to all rotations. T
gether with incompressibility, this invariance implies that t
hierarchy of dynamical equations satisfied by the correla
or structure functions are also isotropic@1#. This symmetry
was used in Ref.@1# to show that every component of th
general solution with a given indexj, and hence a definite
PRE 611063-651X/2000/61~1!/407~15!/$15.00
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behavior under rotation, has to satisfy these equations i
vidually, independent of other components with different b
havior under rotation. This ‘‘foliation’’ of the hierarchica
equations motivates us to expect different scaling expon
for each component belonging to a particularj sector of the
SO~3! decomposition. A preliminary test of these ideas w
reported in Ref.@2#. The main result of the analysis show
below, supporting the results in Ref.@2#, is that in each sec-
tor of the symmetry group scaling behavior can be fou
with apparently universal scaling exponents. We demonst
below that scale-dependent correlation functions and st
ture functions can be usefully represented as a sum of c
tributions with increasing indexj characterizing the irreduc
ible representations of SO~3!. In such a sum thecoefficients
are not universal, but the scale dependence is characte
by universal exponents. That is, a general compon
Sab(R) of the second rank structure function,

Sab~R![^@ua~x1R!2ua~x!#@ub~x1R!2ub~x!#&,
~1!

where~¯! stands for an ensemble average, can be usef
presented as a sum

Sab~R!5 (
q, j ,m

aq jm~R!Bq jm
ab ~R̂!, ~2!

whereBq jm are the basis functions of the SO~3! symmetry
group that depend on the direction of the unit vectorR̂, and
aq jm are the coefficients that depend on the magnitude oR
and, in gen-
407 ©2000 The American Physical Society
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408 PRE 61KURIEN, L’VOV, PROCACCIA, AND SREENIVASAN
eral, include any scaling behavior. In other words, in ter
of a rotation operatorOL which rotates space by an arbitra
angleL, one writes

OLBq jm
ab ~R̂!5 (

m852 j

1 j

Dm8m
~ j !

~L!Bq jm
ab ~R̂!. ~3!

The (2j 11)3(2 j 11) matricesDm8m
( j ) are the irreducible

representations of the SO~3! symmetry group. The indexq is
required because, in general, there may be more than
independent basis function with the same indicesj and m.
We note that the basis functionsBq jm depend on the uni
vector R̂ only, whereas the amplitude coefficientsaq jm(R)
depend on the magnitude ofR only. Our main point is that
amplitudes scale in the inertial range, exhibiting univer
exponents,

aq jm~R!}Rz2
~ j !

. ~4!

Analyzed by usual log-log plots, a superposition such as
~2! may well result in continuously changing slopes, as
there is no scaling. One of our main aims is to stress that
scaling exists, but needs to be revealed by unfolding
various contributions. This approach flushes out the sca
behavior even when the Reynolds number Re is low, a
numerical simulations@3#.

Obviously, to isolate tensorial components belonging
sectors other than the isotropic, one needs to collect
from more than one probe. In Sec. II we present the exp
mental configuration and the conditions of measurement,
discuss the nature of the data sets. We demonstrate there
having two probes is actually sufficient to read surprising
rich information about anisotropic turbulence. We have
far used two types of geometries: one consisting of t
probes at the same height above the ground, and the o
with two probes vertically separated. In both cases the in
probe separation is orthogonal to the mean wind. The ca
is that we must rely on Taylor’s hypothesis@4# to generate
scale-dependent structure functions. In anisotropic flows
validity and optimal use of this method require discussi
and this is done in Sec. III. In that section we also exam
the issues concerning two- and three-dimensional aspec
the flow pattern, and determine the outer scaleL at which
three-dimensional scaling behavior ceases to exist. In Sec
we present the main results of the analysis. We demons
that the second-order structure function is best described
superposition of contributions belonging to different sect
of the SO~3! symmetry group by extracting the coefficien
and exponents that appear in superposition~2!. The scaling
exponents depend onj, and we will demonstrate that they a
an increasing function ofj. For j 50, 1, and 2 our data analy
sis leads to the exponent values 0.6860.01, 1.060.15, and
1.3860.10, respectively. In Sec. V we present theoreti
considerations that determine these exponents neglectin
termittency corrections, based on the Clebsch representa
of the Euler equation. Section VI offers a summary of t
principal conclusions, and a discussion of the road ahea
s
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II. EXPERIMENTAL SETUP

The results presented in this paper are based on two
perimental setups, which are denoted throughout as I an
respectively. In both setups the data were acquired over
salt flats in Utah with a long fetch. The site of measureme
was chosen to provide steady wind conditions. The surf
of the desert was very smooth and even. The measurem
were made between 6 and 9 P.M. in a summer season du
which nearly neutral stability conditions prevailed. Th
boundary layer was very similar to that on a smooth fl
plate. In set I the data were acquired simultaneously fr
two single hot-wire probes at a height of 6 m above the
ground, with a horizontal separation of 55 cm, nomina
orthogonal to the mean wind; see Fig. 1. The Taylor micr
cale Reynolds number was about 10 000. Set II was acqu
from an array of three cross-wires, arrangedaboveeach other
at heights of 11, 27, and 54 cm, respectively. The Tay
microscale Reynolds numbers for this set were 900, 14
and 2100, respectively. The hot wires, about 0.7 mm
length and 6mm in diameter, were calibrated just prior t
mounting them on the mounting posts and checked imm
ately after dismounting. The hot wires were operated
DISA 55M01 constant-temperature anemometers. The
quency response of the hot wires was typically good up to
kHz. The voltages from the anemometers were suitably
pass filtered and digitized. The voltages were consta
monitored on an oscilloscope to ensure that they did
exceed the digitizer limits. The Kolmogorov scales we
about 0.75 mm~set I! and 0.5–0.7 mm~set II!. Table I lists
a few relevant facts about the data records analyzed h

The various symbols have the following meanings:Ū is the
local mean velocity,u8 is the root-mean-square velocity,^«&
is the energy dissipation rate obtained by the assumptio
local isotropy and Taylor’s hypothesis,h andl are the Kol-
mogorov scale and Taylor microscale, respectively, the
croscale Reynolds numberRl[u8l/n, and f s is the sam-
pling frequency.

For set I we need to test whether the separation betw

FIG. 1. Schematic illustration of the experimental setu
Shown is the positioning of the probes with respect to the m
wind, and an explanation of how Taylor’s hypothesis is employ
For data set I there were single hot wires, and for data set II th
were cross-wires.
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TABLE I. Data sets I~first line! and II ~2nd–4th lines!.

Height
meters

Ū
~ms21!

u8
~ms21!

102^«&,
~m2 s23!

h
~mm!

l
~cm! Rl

f s , per
channel~Hz!

No. of
samples

6 4.1 1.08 1.1 0.75 15 10 500 10 000 43107

0.11 2.7 0.47 6.6 0.47 2.8 900 5000 83106

0.27 3.1 0.48 2.8 0.6 4.4 1400 5000 83106

0.54 3.5 0.5 1.5 0.7 6.2 2100 5000 83106
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the two probes is indeed orthogonal to the mean wind.~We
do not need to worry about this point in set II, since t
probes are above each other.! To do so we computed th
cross-correlation function̂u1(t1t)u2(t)&. Hereu1 and u2
refer to velocity fluctuations in the direction of the me
wind, for probes 1 and 2, respectively. If the separation w
precisely orthogonal to the mean wind, this quantity sho
be maximum fort50. Instead, for set I, we found the max
mum shifted slightly tot50.022 s, implying that the separa
tion was not precisely orthogonal to the mean wind. To c
rect for this effect, the data from the second probe were t
shifted by 0.022 s. This amounts to a change in the ac
value of the orthogonal distance. We computed this effec
distance to beD'54 cm ~instead of the 55 cm that was s
physically!. We choose coordinates such that the mean w
direction is along the 3-axis, the vertical direction is alo
the 1-axis, and the third direction orthogonal to these is
2-axis. We denote these directions by the three unit vec
n̂, m̂, andp̂, respectively. The raw data available from se
is u(3)(t) measured at the positions of the two probes. In
II each probe reads a linear combination ofu(3)(t) and
u(1)(t) from which each component is extractable. Fro
these data we would like to compute the scale-depen
structure functions, using Taylor’s hypothesis to surrog
space for time. This needs a careful discussion, which
given below.

III. THEORETICAL CONSTRUCTS: TAYLOR’S
HYPOTHESIS, INNER AND OUTER SCALES

A. Taylor’s hypothesis

Decades of research on the statistical aspects of hydr
namic turbulence are based on Taylor’s hypothesis@4–7#,
which asserts that the fluctuating velocity field measured
a given probe as a function of time,u(t), is the same as the

velocity u(R/Ū) where Ū is the mean velocity andR5

2Ūt is the distance to a position ‘‘upstream’’ where th
velocity is measured att50. The natural limitation on Tay-
lor’s hypothesis is provided by the typical decay time
fluctuations of scaleR. Within the classical scaling theory o
Kolmogorov, this time scale is the turnover timeR/AS(R)
whereS(R)[Saa(R). With this estimate, Taylor’s hypoth

esis is expected to be valid whenAS(R)/Ū→0. Since
S(R)→0 whenR→0, the hypothesis becomes exact in th
limit. We will use this aspect to match the units while rea
ing a distance from a combination of space and time in
vals.

Reference@7# presented a detailed analysis of the con
quences of Taylor’s hypothesis on the basis of an exa
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soluble model. It also proposes ways for minimizing the s
tematic errors introduced by the use of Taylor’s hypothe
In light of that analysis we will use an ‘‘effective’’ windUeff
for surrogating the time data. This velocity is a combinati

of the mean windŪ and the root-mean-squareu8,

Ueff[AŪ21~bu8!2, ~5!

whereb is a dimensionless parameter. Evidently, when
employ the Taylor hypothesis in log-log plots of structu
functions using time series measured in asingle probe, the
value of the parameterb is irrelevant, because it merel
changes the~arbitrary! units of length~i.e., yields an arbi-
trary intercept!. When we mix real distance between tw
probes and surrogated distance according to Taylor’s hyp
esis, the parameterb becomes a unit fixer. The numerica
value of this parameter was found in Ref.@7# by the require-
ment that the surrogated and directly measured struc
functions coincide in the limitR→0. When we do not have
the necessary data we will use values ofb suggested by the
exactly soluble model treated in Ref.@7#. This value ofb
'3. We have checked that the scaling exponents chang
no more than a few percent upon changingb by 30%. Fur-
ther, this choice can be justifieda posterioriby the quality of
the fit of to the predicted scaling functions.

When we have two probes placed at different heights,
mean velocities andu8 as measured by the probes do n
coincide. In applying Taylor’s hypothesis one needs to
cide the most appropriate value ofUeff . This question was
addressed in detail in Ref.@7#, with the final conclusion that
the choice depends on the velocity profile between the pro
In the case oflinear shear the answer is

Ueff[AŪ1
21Ū2

2

2
1b

u18
21u18

2

2
, ~6!

where the subscripts 1 and 3 refer to the two probes, res
tively.

In all subsequent expressions, we will therefore den
separations byR, and invariably this will mean Taylor-
surrogated time differences or a combination of real a
Taylor-surrogated distances. The effective velocity will
Eqs. ~5! or ~6! depending on whether the probes are at
same height or at different heights.

B. Inner and outer scales in the atmospheric boundary layer

In seeking scaling behavior one needs to find the in
and outer scales. Below the inner scale second order s
ture functions have an analytic dependence on the separa
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FIG. 2. Log-log plots of the longitudinal component of the second order structure function. Panel~a! is for data set I, and panel~b! for
data set II.
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S(R);R2, and above the outer scale they should tend t
constant value. In Fig. 2 we show the longitudinal struct
functions

S33~R!5^„u~3!~x1R!2u~3!~x!…2& ~7!

computed from a single probe in set I, and from the probe
0.54 m in set II. In Fig. 3 we also consider the transve
structure function

S11~R!5^„u~1!~x1R!2u~1!~x!…2& ~8!

computed from the probe at 0.54 m in set II; see Fig. 3. T
spatial scales are computed using the local mean wind
both cases, since we do not expect the scaling exponen
the single-probe structure function to be affected by
choice of advection velocity. However, this choice does
termine the value ofR corresponding to a particular tim
scale, but we expect that any correction to the numer
value ofR is small for a different choice of advection velo
ity, and not crucial for the qualitative statements that follo
In Fig. 2 we clearly see theR2 behavior characterizing th
transition from the dissipative to the inertial range. As is w
known @8#, this behavior persists for about a half-deca
above the ‘‘nominal’’ Kolmogorov length scaleh. There is a
region of crossover and then the isotropic scaling;R0.68

FIG. 3. Log-log plot of the transverse component of the sec
order structure function computed from data set II.
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expected for small scales in the inertial range begins.
thus have no difficulty in identifying the inner scale; it
simply revealed as a natural crossover length in these d

Next, since we cannot expect to fit with a single powe
law for larger scales and must include scaling contributio
due to anisotropy@2#, we need to estimate the largest sca
that should be included in our fitting procedure using t
SO~3! decomposition machinery. We expect that the con
butions due to anisotropy will account for scaling behav
up to the outer scale of the three-dimensional flow patte
The task now is to identify that scale. One approach is s
ply to use the scale where the longitudinal structure funct
tends to a constant, corresponding to the scale across w
the velocity signal has decorrelated. It becomes immedia
apparent that this is not a reasonable estimate of the l
scale. Figure 2 shows that the longitudinal structure funct
stays correlated up to scales that are at least an orde
magnitude larger than the height at which the measurem
is made. On the other hand, the transverse structure func
computed from the probe at 0.54 m~Fig. 3! ceases to exhibit
scaling behavior at a scale that is of the order of the vert
distance of the probe from the ground.

It appears that we are observing extremely flat ‘‘qua
two- dimensional’’ eddies that are correlated over very lo
distances in the horizontal direction but have a compa
tively small vertical velocity component. Accordingly th
vertical velocity component is dominated bybona fidethree-
dimensional turbulence. Since we know that the presenc
the boundary must limit the size of the largest thre
dimensional structures, the height of the probe should
something of an upper bound on the largest thr
dimensional flow patterns that can be detected in exp
ments. Thus the size of the largest three-dimensional st
tures is more accurately determined by the decorrela
length of the transverse structure function. The theory
scaling behavior in three-dimensional turbulence can u
fully be applied to only those flow patterns that are ess
tially three dimensional. The extended flat eddies must
described in terms of a separate theory, including notion
two-dimensional turbulence which has very different scal
properties@9#. This is not the ambition of the present work
Rather, in the following analyses, we choose our outer sc
L in the horizontal direction to be of the order of the deco
relation length of thetransversestructure function~where
available! or of the height of the probe. We will see belo

d
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FIG. 4. The structure function computed from
the single-probe data, set I.~a! shows thex2

minimization by the best-fit value of the expone
in the isotropic sectorz2'0.68 for the single-
probe structure function in the range 0.2,R/D
,4.5. ~b! shows the fit using the best value ofz2

obtained in~a!, indicating the peel-off from iso-
tropic behavior at the end of the fitted range.
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that these two are the same to within a factor of 2; takinL
to be as twice the height of the probe is consistent with
our data. We use this estimate in our study of both tra
verse, longitudinal and mixed objects.

IV. EXTRACTING THE UNIVERSAL EXPONENTS
OF HIGHER j SECTORS

In this section we describe a procedure for extracting
scaling exponents that appear in superposition~2!. Prelimi-
nary results on the scaling exponentz2

( j 52) , obtained under
the assumption of cylindrical symmetry, were announced
Ref. @2#. The analysis here is more complete, and takes
account the full tensorial structure. We show that taking i
account the full broken symmetry is feasible, and the fi
results are essentially the same. Both sets of results are
in agreement with analysis of numerical simulations@3#. The
results concerningz2

( j 51) are new.
In order to extract a particularj contribution and the as

sociated scaling exponent, one would ideally like to poss
the statistics of the velocity at all points in a thre
dimensional grid. One could then extract thej contribution of
particular interest by multiplying the full structure functio
by the appropriateBq, j ,m and integrating over a sphere o
radius R. Orthogonality of the basis functions ensures th
only the j contribution survives the integration. One cou
then perform this procedure for variousR and extract the
scaling behavior. This method was adopted successfull
Ref. @3# using data from direct numerical simulations. T
experimental data are limited to a few points in space, so
integration over the sphere is not possible. We are faced
a true superposition of contributions from variousj sectors
with no simple way of disentangling them. However we c
do the next best thing and use the postulate that the sca
exponents form a hierarchy of increasing values for incre
ing j. This can be interpreted to mean that anisotropic effe
appear to increase with increasing scale. Since we look
the lowest order anisotropic contributions in our analyses,
perform a two-stage procedure to separate the various
tors. First we look at the small scale region of the inert
range to determine the extent of the fit with a single~isotro-
pic! exponent. We then seek to extend this range by incl
ing appropriate anisotropic tensor contributions, and ob
the additional scaling exponents using a least-squares fi
procedure. The following two sections discuss the proced
for determining the j 52 and 1 scaling contributions t
second-order statistics.
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A. j 52 component

In the second-order structure function defined alrea
viz.,

Sab~R!5^„ua~x1R!2ua~x!…„ub~x1R!2ub~x!…&,
~9!

the j 52 component of the SO~3! symmetry group corre-
sponds to the lowest order anisotropic contribution tha
symmetric in the indices, and has even parity inR ~due to
homogeneity!. Although the assumption of axisymmetr
used in Ref.@2# seemed to be justified from the excelle
qualities of fits obtained, we attempt to fit the same data~set
I! with the full tensor form for thej 52 contribution. The
derivation of the full j 52 contribution to the symmetric
even parity, structure function appears in Appendix A.

To begin with, we seek the range over which the isotro
scaling exponent holds for data set I. We measure all se
ration distances in units ofD50.54 m which is the distance
between the probes. The lower bound to the inertial rang
this set is estimated to begin atR/D'0.2 ~see the discussion
in Sec. III B!. We then find the range of scales over whi
the structure function

S33~R,u50!5^„u1
~3!~x1R!2u1

~3!~x!…2&, ~10!

with the subscript 1 denoting one of the two probes, can
fitted with a single exponent; this then would indicates t
limit of isotropic scaling. We find that for points in the rang
0.2,R/D,4.5 a least squares fitting procedure yields a be
fit valuez250.6860.01@Fig. 4~a!#. Figure 4~b! shows the fit
to the structure function computed from a single probe in
I with just the j 50 contribution. Above this range, we ar

FIG. 5. Thex2 minimization by the best-fit value of the expo
nent in thej 52 anisotropic sector from the fit to both theu50 and
u-dependent structure functions in the ranges 0.2,R/D,25 and 1
,R/D,25, respectively.
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FIG. 6. The structure functions compute
from data set I and fit with thej 50 and full j
52 tensor contributions using the best-fit valu
of exponentsz250.68 andz2

(2)51.38. Panel~a!
shows the fit to the single-probe~u50! structure
function in the range 0.2,R/D,25, and panel
~b! shows the fit to theu-dependent structure
function in the range 1,R/D,25.
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unable to obtain a good fit to the data with just the isotro
exponent and Fig. 4~b! shows the peel-off from isotropic
behavior aboveR/D'4.5. We point out that for range
higher than this, one can indeed able to find a ‘‘best-fi
exponent for the curve, but the value of the exponent rap
decreases and the quality of the fit is compromised.

To find thej 52 anisotropic exponent we need to use d
taken from both probes. To clarify the procedure, we show
Fig. 1 the geometry of set I. What is computed is actuall

S33~R,u!5^@u1
~3!~Uefft1Uefft R̃!2u2

~3!~Uefft !#
2&. ~11!
ov
-
n-

f
lue
o

o
12
ll
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e
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’
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a
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Here u5arctan(D/Uefft R̄), t R̄5Ū/Ueff , and R

5AD21(ŪefftR̃)2. Ueff is defined by Eq.~5! with b53. For
simplicity we shall refer from now on to such quantities a

S33~R,u!5^„u1
~3!~x1R!2u2

~3!~x!…2&. ~12!

Next we fix the scaling exponent of the isotropic sector
0.68, and find thej 52 anisotropic exponent that results fro
fitting to the full j 52 tensor contribution. We fit the object
in Eqs. ~10! and ~12! to the sum of thej 50 ~with scaling
exponentz250.68! and thej 52 contributions~see Appen-
dix A!
S33~R,u!5Sj 50
33 ~R,u!1Sj 52

33 ~R,u!

5c0S R

D D z2

@21z22z2 cos2 u#1aS R

D D z2
~2!

@~z2
~2!12!22z2

~2!~3z2
~2!12!cos2 u12z2

~2!~z2
~2!22!cos4 u#

1bS R

D D z2
~2!

@~z2
~2!12!~z2

~2!13!2z2
~2!~3z2

~2!14!cos2 u1~2z2
~2!11!~z2

~2!22!cos4 u#

1a9,2,1S R

D D z2
~2!

@22z2
~2!~z2

~2!12!sinu cosu12z2
~2!~z2

~2!22!cos3 u sinu#1a9,2,2S R

D D z2
~2!

3@22z2
~2!~z2

~2!22!cos2 u sin2 u#1a1,2,2S R

D D z2
~2!

@22z2
~2!~z2

~2!22!sin2 u#. ~13!
ture
ing
on-

in
he
o-

in
te
nce
l

a
e
is
We fit the experimentally generated functions to the ab
form using values ofz2

(2) ranging from 0.5 to 3. Each itera
tion of the fitting procedure involves solving for the six u
known, nonuniversal coefficients. The best value ofz2

(2) is
the one that minimizes thex2 for these fits; from Fig. 5 we
obtain this to be 1.3860.15. The fits with this choice o
exponent are displayed in Fig. 6. The corresponding va
of the six fitted coefficients is given in Table II. The range
scales that are fitted to this expression is 0.2,R/D,25 for
the u50 ~single-probe! structure function and 1,R/D,25
for theuÞ0 ~two-probe! structure function. We are unable t
fit with Eq. ~13! to larger scales—that is, larger than about
meters—without losing the quality of the fit in the sma
scales. This is roughly twice the height of the probe from
ground. Based on the discussion in Sec. II C, we should b
the regime of the largest scales where the three-dimensi
theory would hold. Therefore, this limit to the fitting range
consistent with our expectations for the maximum scale
e

s
f

e
in
al

f

three-dimensional turbulence. We conclude that the struc
functions exhibits scaling behavior over the whole scal
range, but this important fact is missed if one does not c
sider a superposition of thej 50 and j 52 contributions.

We thus conclude that the estimate for thej 52 scaling
exponentz2

(2)'1.38. This same estimate was obtained
Ref. @2# using only the axisymmetric terms. The value of t
coefficientsa andb are again close in magnitude but opp
site in sign—just as in Ref.@2#, giving a small contribution to
S33(R,u50). The nonaxisymmetric contributions vanish
the case ofu50. The contribution of these terms to the fini
u function is relatively small because the angular depende
appears as sinu and sin2 u, both of which are small for smal
u ~large R!; and hence previously we were able to obtain
good fit to just the axisymmetric contribution. Finally, w
note that the total number of free parameters in this fit
seven~six coefficients and one exponent!. This brings up the
possibility of having ‘‘overfit’’ the data. The relative ‘‘flat-
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TABLE II. The scaling exponents and the six coefficients in units of~m/sec!2 as determined from the
nonlinear fit of Eq.~7! to data set I.

z2 z2
(2) c03103 a3103 b3103 a9,2,13103 a9,2,23103 a1,2,23103

0.68 1.3860.10 760.5 23.260.3 2.660.3 20.1460.02 25.660.7 2460.5
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ness’’ of thex2 function near its minimum in Fig. 5 could b
indicative of the large number of free parameters in the
However, the value of the exponent is perfectly in agreem
with the analysis of numerical simulations@3# in which one
can properly integrate the structure function against the b
functions, eliminating all contributions except that of thej
52 sector. Furthermore, fits to the data in the vicinity
z2

(2)51.38 show enough divergence from experiment that
are satisfied about the genuineness of thex2 result.

B. Extracting the j 51 component

The homogeneous structure function defined in Eq.~9! is
known from properties of symmetry and parity to possess
contribution from thej 51 sector~see Appendix B 2!, the j
52 sector being its lowest order anisotropic contributor.
order to isolate the scaling behavior of thej 51 contribution
in atmospheric shear flows we must either explicitly co
struct a new tensor object which will allow for such a co
tribution, or extract it from the structure function itself com
puted in the presence ofinhomogeneity. In the former case
we construct the tensor

Tab~R!5^@ua~x1R!2ua~x!#†ub~x1R!1ub~x!#&.
~14!

This object vanishes both whena5b, and whenR is in the
direction of homogeneity. From data set II we can calcul
this function for nonhomogeneous scale-separations~in the
shear direction!. In general, this will exhibit mixed parity and
symmetry; we cannot use the incompressibility condition
reduce our parameter space. Therefore, to minimize the
number of fitting parameters, we examine only the antisy

FIG. 7. Thex2 minimization by the best-fit value of the expo
nent z2

(1) of the j 51 anisotropic sector from the fit to th

u-dependentT̃31(R,u) function in the range 1,R/D,2.2.
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metric contribution. We derive the tensor contributions in t
j 51 sector for the antisymmetric case in Appendix B 1, a
use this to fit for the unknownj 51 exponent. We describe
the results of this analysis below. For completeness, we h
derived the tensor contributions in thej 51 sector for the
symmetric case as well in Appendix B 2. This can be used
find j 51 exponent for the inhomogenous structure functio
which is symmetric but has mixed parity. We do not pres
the results of that analysis here essentially because they
consistent with those from the antisymmetric case.

Returning now to consideration of the antisymmetric p
of the tensor object defined in Eq.~14!, viz.

T̃ab~R!5
Tab~R!2Tba~R!

2
5^ua~x!ub~x1R!&

2^ub~x!ua~x1R!&, ~15!

which will only have contributions from the antisymmetr
j 51 basis tensors. An additional useful property of this o
ject is that it does not have any contribution from the isot
pic j 50 sector spanned bydab andRaRb. This allows us to
isolate thej 51 contribution and determine its scaling exp
nent z2

(1) starting from the smallest scales available. Usi
data~set II! from the probes at 0.27 m~probe 1! and at 0.11
m ~probe 2!, we calculate

T̃31~R!5^u2
~3!~x!u1

~1!~x1R!&2^u1
~3!~x1R!u2

~1!~x!&,
~16!

where again superscripts denote the velocity component
subscripts denote the probe by which this component is m
sured. The goal is to fit this experimental object to the ten
form derived in Appendix B 1, Eq.~B7!,

T̃31~R,u,f50!52a3,1,0R
z2

~1!
sinu1a2,1,1R

z2
~1!

1a3,1,21Rz2
~1!

cosu. ~17!

Figure 7 gives thex2 minimization of the fit as a function
of z2

(1) . We obtain the best value to be 160.15 for the final
fit. This is shown in Fig. 8. The fit in Fig. 8 peels off a
aroundR/D52. The values of the coefficients correspondi
to the exponentz2

(1)51 are given in Table III. The maximum
range of scales over which the fit works is of the order of
height of the probes from the ground, consistent with
considerations presented earlier. This value of the sca
exponent of thej 51 sector is entirely new. Again, we hav
satisfied ourselves that a different value of the expon
yields a substantially poorer fit to the data.

Finally, to increase our confidence about the value of
exponentz2

(1) , we also measured the second-order struct
function S33(R,u) from probe 1 at 0.27 m and probe 2
0.11 m. Due to the inhomogeneity this function contains
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contribution from j 51, with six unknown scalar function
that need to be fitted. The best value ofz2

(1) was found to be
1.0560.15, but the sharpness of thej2 test is not as good
due to the large number of fitted parameters. Nevertheles
satisfied ourselves that the quoted value of the scaling e
nentz2

(1) appears genuine.
In Sec. V we will present theoretical considerations

show that the valuez2
(1)51 is predicted by a version o

classical dimensional analysis. The present findings sig
cantly strengthen our proposition@1# that the scaling expo
nents in the various sectors~at least up toj 52! are indeed
universal.

V. THEORETICAL DETERMINATION OF z2
„J…

FOR j 51 AND 2

In this section we present dimensional considerations
determine the ‘‘classicalK41’’ values expected ofz2

(1) and
z2

(2) . We work at the same level as theK41 approach tha
yields the valuez2

(0)52/3. This is justified since the differ

ences between any two valuesz2
( j ) and z2

( j 8) for j Þ j 8 are
considerably larger than the intermittency corrections to
ther of them. We note, however, that the issue of anoma
exponents in turbulence has now multiplied several-fold
all the j sectors, in light of the apparent universality that h
unfolded in this work.

It is easiest to produce a dimensional estimate forz2
(2) .

One simply asserts@5# that thej 52 contribution is the first
one appearing inSab(R) due to the existence of a shea
Since the shear is a second rank tensor, it can appear lin
in the j 52 contribution toSab(R). Seeking ananalyticcor-
rection to theK41 scaling, we write, for anym, 2 j <m
< j ,

Sj 52
ab ~R!;Tabgd

]Ūg

]r d f ~R,ē !. ~18!

FIG. 8. The fittedT̃31(R,u) function. The dots indicate the data
and the line is the fit.

TABLE III. The values of the exponents and coefficients@in

units of ~m/sec!2# obtained from the fit to the functionT̃31(R,u).

z2
(1) a3,1,0 a2,1,1 a3,1,21

160.15 0.011660.001 0.012460.001 20.006260.001
we
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HereTabgd is a constant dimensionless tensor made ofdab,
Ra/R, andbilinear contributions made of the three unit ve
tors p̂, m̂, and n̂, as exemplified in Appendix A. The wa
Eq. ~18! is represented means that the dimensional func
f (R,ē) stands for the response of the second-order struc
function to a small external shear. Ad such it is an inher
property of isotropic turbulence. Within the standar
Kolomogorov-41 dimensional reasoning this function in t
inertial interval can be made only of the mean energy fl
per unit time and mass,ē andR itself. The only combination
of ē andR that yields the right dimensions of the functionf
is ē1/3R4/3. Therefore

Sj 52
ab ~R!;Tabgd

]Ūg

]r d ē1/3R4/3. ~19!

We thus find a ‘‘classicalK41’’ value of z2
(2)54/3. Thus this

simple argument seems to rationalize nicely the experim
tally found valuez2

(2)51.3860.1.
To understand the value ofz2

(1) we cannot proceed in the
same way. We need a contribution that is linear~rather than
bilinear! in the unit vectorsp̂, m̂, and n̂. We cannot con-
struct a contribution that is linear in the shear involvingē
with an exponent differing from 4/3. There seems to be
fundamental difference between thej 52 contribution and
the j 51 term. While the former can be understood as
inhomogeneous term linear in the forced shear, thej 51
term, being more subtle, may be connected to a solution
some homogeneous equation well within the inertial interv
In fact, all the known inertial-interval spectra in turbule
systems are related to the existence of a a flux of some con-
served quantity which has a representation as an integra
some density ink space. For example the kinetic energy m
be written as*dkuu(k,t)u2. A well-known other integral of
motion in hydrodynamics with such a presentations is
helicity

H5E dr ~u•“3u!. ~20!

Thus the helicity may be considered as a natural candid
which is responsible for a new solution in the inertial interv
that may rationalize thej 51 finding. We show that this is
not the case in the following way.

The dimensionality ofH ~denoted as@H#! differs from the
dimensionality of the energyE by one length: @H#
5@E/R#. Correspondingly, the dimensionality of the helici
flux, h̄ may be written as

@ h̄#5@ ē/R#. ~21!

This means that in turbulence with energy and helicity flux
one has at one’s disposal a dimensionless factor in the f
h̄R/ ē. This means that the second order structure funct
S(R,ē,h̄) cannot be found just by dimensional reasoni
even within theK41 approach. Nevertheless, assuming t
at small helicity fluxes~i.e., when h̄R/ ē!1! the function
S(R,ē,h̄) may be expanded in powers ofh̄ we can justify the
first order correction due to helicity,dhS, as
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dhS~R,ē,h̄!;~ē !21/3h̄R5/3. ~22!

The value of the inferred scaling exponent, i.e., 5/3, is mu
larger than the value unity found experimentally. We th
need to find another invariant that may rationalize the fi
ings.

The only invariance in addition to the conservation
helicity that we are aware of in the inviscid limit is th
Kelvin circulation theorem, which, however, does not fu
nish a local integral ink space in the Eulerian representatio
The only way that is apparent to us to expose this invaria
in a useful way is the Clebsch representation, in which o
writes the Euler equation in terms of one complex fie
a(r ,t); see, for example, Ref.@10#. In the k representation
the Fourier component of the velocity fieldu(k,t) is deter-
mined from a bilinear combination of the complex field:

u~k,t !5
1

8p3 E d3k1d3k2C~k1 ,k2!a* ~k1 ,t !a~k2 ,t !,

~23!

C~k1 ,k2!5
1

2 S k11k22~k12k2!
k1

22k2
2

uk12k2u2D . ~24!

It is well known @10# that this representation exposes a lo
conserved integral of motion, which is

P5
1

8p3 E d3kka* ~k,t !a~k,t !. ~25!

Note that this conserved quantity is a vector, and it can
have a finite mean in an isotropic system. Consider no
correctiondpS(R,ē,p̄) to the second order structure fun
tion due to a fluxp̄ of the integral of motionp̄. The dimen-
sionality of p̄ is @p̄#5@ ē2/3/R1/3# and therefore now the di
mensionless factor isp̄R1/3/ ē2/3. Assuming again analyticity
and expandability ofdpS at small values of the fluxp̄, one
finds that

Sj 51
ab ~R!;Tabgp̄gR, ~26!

whereTabg is a constant dimensionless tensorlinear in the
unit vectorsp̂, m̂, andn̂. We thus find the ‘‘classicalK41’’
value z2

(1)51, which should be compared with the expe
mental findingz2

(1)5160.15.
We stress that Eqs.~26! and ~19! are the analogs of the

standard isotropic dimensional estimate

Sj 50
aa ~R!;~ēR!2/3. ~27!

We thus conclude that dimensional analysis predicts that
ues 2/3, 1, and 4/3 forz2

( j ) , with j 50, 1, and 2, respectively
This appears to be in satisfactory agreement with the exp
mentally extracted values of these exponents. We sho
state, however, that we do not know at present how to c
tinue this line of argument forj .2.

VI. SUMMARY, CONCLUSIONS,
AND THE ROAD AHEAD

In summary, we considered the second order tensor fu
tions of velocity in the atmospheric boundary layers. T
h
s
-

f

.
e
e

l

ot
a

l-

ri-
ld
n-

c-
e

following conclusions appear important.
~1! The atmospheric boundary layer exhibits thre

dimensional statistical turbulence intermingled with acti
ties whose statistics are quite different. The latter are ed
with a quasi- two-dimensional nature, correlated over
tremely large distances compared to the height of the m
surement, having little to do with the three-dimensional flu
tuations discussed above.

~2! We found that the ‘‘outer scale of turbulence,’’ a
measured by the three-dimensional statistics, is of the o
of twice the height of the probe.

~3! The inner scale is the the usual dissipative crosso
which is clearly seen as the scale connecting two differ
slopes in log-log plots.

~4! Between the inner and the outer scales, Eq.~2! appears
to offer an excellent representation of the structure functi
Using contributions withj 50, 1, and 2, we could fit the
whole range very accurately.

~5! The scaling exponentsz2
( j ) are measured as 0.6

60.01, 160.15, and 1.3860.10, respectively.
~6! Classical K41 dimensional considerations yield t

numbers 2/3, 1, and 4/3, respectively. To obtainz2
(2)54/3, all

that we need is to assume a contribution linear in the sh
To obtain z2

(1)51 we need to identify a nonobvious con
served quantity which allows a new solution in the depth
the inertial interval. To our knowledge, this is the first tim
that Clebsch variables allowed an understanding of a fun
mentally new universal scaling exponent.

If the trends seen here continue for higherj values, we can
rationalize the apparent tendency toward isotropy with
creasing scales. If indeed every anisotropic contribution
troduced by the large scale forcing~or boundary conditions!

decays as (R/L)z2
( j )

with increasingz2
( j ) as a function ofj,

then obviously whenR/L→0 only the isotropic contribution
survives. This is a pleasing notion that justifies the model
of turbulence as isotropic at small scales.

We need to raise a few words of caution here. First,
have largely disregarded theinhomogeneityof the flow ~ex-
cept in the case ofj 51 when the second-order correlatio
function vanishes in a homogeneous ensemble!, and concen-
trated on the anisotropy. The inhomogeneity implies tha
general the structure functions depend not only on the se
ration vectorR but also on the reference point of measu
ment. The implications of this are manifold: the incompre
ibility constraint that has been used to elimina
contributions to thej 50 and 2 sectors loses its efficacy, th
SO~3! decomposition becomes more complicated, etc. It
pears that in a fuller theory one needs to consider the sim
taneous breaking of translation and rotation symmetries,
we leave this development to the future.

In addition, we really have no idea about the values of
exponents forj >3. Moreover, we are not even sure that th
are well defined. To understand the difficulty one needs
examine the hierarchical equations for the correlation fu
tions. These equations contain integrals used to eliminate
pressure contributions. The integrals were proven to c
verge~in the IR and UV limits! when the exponentsz2 lies
within the ‘‘window of convergence’’ which is~0,4/3! @11#.
We see that withj 53 we may reach beyond this window o
convergence~this being questionable even for our expe
mental finding ofj 52!!, and we are not guaranteed to ha
the kind of local theory that is thought to be a prerequisite
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scaling behavior.
Another enigma is related to the apparent success of

considerations of Sec. V to rationalize the numerical val
of the exponents found in the experiment. There is, howe
no well-defined procedure of continuing the estimates
z2

( j ) for j >3. Whether this is related to the locality issue
not understood at present.

In conclusion, it appears that we have here an excit
possibility of generalizing the scaling structure of the sta
tical turbulence to many sectors of the symmetry gro
gaining a much better understanding of the structure o
theory. There exist, however, large patches of terra incog
on our map, patches that we hope to penetrate in future w
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APPENDIX A: FULL FORM FOR THE j 52
CONTRIBUTION FOR THE HOMOGENEOUS CASE

Each indexj in the SO(3) decomposition of ann-rank
tensor labels a 2j 11 dimensional SO(3) representatio
Each dimension is labeled bym52 j ,2 j 11....j . The j 50
sector is the isotropic contribution while higher orderj’s
should describe any anisotropy. Thej 50 terms are well
known,

Sj 50
ab ~R!5c0Rz2F ~21z2!dab2z2

RaRb

R2 G , ~A1!

wherez2'0.68 is the known universal scaling exponent f
the isotropic contribution, andc0 is an unknown coefficien
that depends on the boundary conditions of the flow. For
j 52 sector which is the lowest contribution to anisotropy
the homogeneous structure function, them50 ~axisymmet-
ric! terms were derived from constraints of symmetry, ev
parity ~because of homogeneity! and incompressibility on the
second-order structure function@2#

Sj 52,m50
ab ~R!5aRz2

~2!F ~z2
~2!22!dab2z2

~2!~z2
~2!16!

3dab
~n•R!2

R2 12z2
~2!~z2

~2!22!
RaRb~n•R!2

R4

1~@z2
~2!#213z2

~2!16!nanb

2
z2

~2!~z2
~2!22!

R2 ~Ranb1Rbna!~n•R!G
he
s
r,
r

g
-
,
a
ta
k.

-
i-
m-
a
-

-
to

r

e

n

1bRz2
~2!F2~z2

~2!13!~z2
~2!12!dab~n•R!2

1
RaRb

R2 1~z2
~2!13!~z2

~2!12!nanb

1~2z2
~2!11!~z2

~2!22!
RaRb~n•R!2

R4

2~@z2
~2!#224!~Ranb1Rbna!~n•R!G ,

~A2!

where z2
(2) is the universal scaling exponent for thej 52

anisotropic sector, anda and b are independent unknow
coefficients to be determined by the boundary conditio
We would now like to derive the remainingm561 andm
562 components,

Sj 52,m
ab 5(

q
qq,2,mRz2

~2!
Bq,2,m

ab ~R̂!, ~A3!

wherez2
( j 52) is the scaling exponent of thej 52 SO(3) rep-

resentation of then52 rank correlation function. The
Bq, j ,m

ab (R̂) are the basis functions in the SO~3! representation
of the structure function, Theq label denotes the differen
possible ways of arriving at the the samej, and runs over all
such terms with the same parity and symmetry~a conse-
quence of homogeneity and hence the constraint of inc
pressibility! @1#. In our case, even parity and symmetric
the two indices. In all that follows, we work closely with th
procedure outlined in Ref.@1#. Following the convention in
Ref. @1#, the q’s to sum over areq5$1,7,9,5%. The incom-
pressibility condition]aua50 coupled with homogeneity
can be used to give relations between theaq, j ,m for a given
~j,m!. That is, for j 52, m522, . . . ,2,

~z2
~2!22!a1,2,m12~z2

~2!22!a7,2,m1~z2
~2!12!a9,2,m50 ,

a1,2,m1~z2
~2!13!a7,2,m1z2

~2!a5,2,m50. ~A4!

We solve Eqs.~3! in order to obtaina5,2,m and a7,2,m in
terms of linear combinations ofa1,2,m anda9,2,m :

a5,2,m5
a1,2,m~@z2

~2!#22z2
~2!22!1a9,2,m~@z2

~2!#215z2
~2!16!

2z2
~2!~z2

~2!22!
,

~A5!

a7,2,m5
a1,2,m~22z2

~2!!2a9,2,m~21z2
~2!!

2~z2
~2!22!

.

Using the above constraints on the coefficients, we
now left with a linear combination of just two linearly inde
pendent tensor forms for eachm:

Sj 52,m
ab 5a9,2,mRz2

~2!
†2z2

~2!~21z2
~2!!B7,2,m

ab ~R̂!

12z2
~2!~z2

~2!22!B9,2,m
ab ~R̂!1~@z2

~2!#215z2
~2!16!

3B5,2,m
ab ~R̂!‡1a1,2,mRz2

~2!
†2z2

~2!~z2
~2!22!

3B1,2,m
ab ~R̂!2z2

~2!~z2
~2!22!B7,2,m

ab ~R̂!

1~@z2
~2!#22z2

~2!22!B5,2,m
ab ~R̂!‡. ~A6!
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The task remains to find the explicit form of the bas
tensor functionsBq,2,m

ab (R̂), qP$1,7,9,5%, mP$61,62%:

B1,2,m
ab ~R̂![R22dabRjY2m~R̂!,

B7,2,m
ab ~R̂![R22@Ra]b1Rb]a#R2Y2m~R̂!,

B9,2,m
ab ~R̂![R24RaRbR2Y2m~R̂!,
na
or
u

na

e
in

as
B5,2,m
ab ~R̂![]a]bR2Yjm~R̂!,

We obtain them5$61,62% basis functions in the fol-
lowing derivation. We first note that it is more convenient
form a real basis from theR2Y2m(R̂) since we ultimately
wish to fit to real quantities and extract real best-fit para
eters. We therefore formR2Ỹ2k(R̂) (k521,0,1) as follows:
R2Ỹ20~R̂!5R2Y20~R̂!5R2 cos2 u5R3
2,

R2Ỹ221~R̂!5R2
Y221~R̂!2Y211~R̂!

2
5R2

~cosf2 i sinf!cosu sinu1~cosf1 i sinf!cosu sinu

2
5R2 cosu sinu cosf

5R3R1 ,

R2Ỹ211~R̂!5R2
Y221~R̂!1Y211~R̂!

22i
5R2

~cosf2. i sinf!cosu sinu2~cosf1 i sinf!cosu sinu

22i
5R2 cosu sinu sinf

5R3R2 ,
~A7!

R2Ỹ222~R̂!5R2
Y22~R̂!2Y222~R̂!

2i
5R2

~cos 2f1 i sin 2f!sin2 u2~cos 2f2 i sin 2f!sin2 u

2i
5R2 sin 2f sin2 u52R1R2 ,

R2Ỹ212~R̂!5R2
Y22~R̂!1Y222~R̂!

2
5R2

~cos 2f1 i sin 2f!sin2 u1~cos 2f2 i sin 2f!sin2 u

2
5R2 cos 2f sin2 u5R1

22R2
2.
This new basis ofR2Ỹ2k(R) is equivalent to using the
R2Yjm(R) themselves as they form a complete, orthogo
~in the newk’s! set. We omit the normalization constants f
the spherical harmonics for notational convenience. The s
scripts onR denote its components along the 1(m), 2(p),
and 3(n) directions.m denotes the shear direction,p the
horizontal direction parallel to the boundary and orthogo
to the mean wind direction, andn the direction of the mean
wind. This notation makes it simple to take the derivativ
when we form the different basis tensors and the only th
to remember is that

]aR15]a~R•m!5ma,

]aR25]a~R•p!5pa, ~A8!

]aR35]a~R•n!5na.

We use the above identities to proceed to derive the b
tensor functions

B1,2,21
ab ~R̂!5R22dab~R•n!~R•m!,

B7,2,21
ab ~R̂!5R22@~Ramb1Rbma!~R•n!1~Ranb1Rbna!

3~R•m!#,

B9,2,21
ab ~R̂!5R22RaRb~R•n!~R•m!,
l

b-

l

s
g

is

B5,2,21
ab ~R̂!5namb1nbma,

B1,2,1
ab ~R̂!5R22dab~R•n!~R•p!,

B7,2,1
ab ~R̂!5R22@~Rapb1Rbpa!~R•n!1~Ranb1Rbna!

3~R•p!#,
~A9!

B9,2,1
ab ~R̂!5R22RaRb~R•n!~R•p!,

B5,2,1
ab ~R̂!5napb1nbpa,

B1,2,22
ab ~R̂!52R22dab~R•m!~R•p!,

B7,2,22
ab ~R̂!52R22@~Rapb1Rbpa!~R•m!1~Ramb

1Rbma!~R•p!#,

B9,2,22
ab ~R̂!52R22RaRb~R•m!~R•p!,

B5,2,22
ab ~R̂!52~mapb1mbpa!,

B1,2,2
ab ~R̂!5R22dab@~R•m!22~R•p!2#,

B7,2,2
ab ~R̂!52R22@~Ramb1Rbma!~R•m!2~Rapb1Rbpa!

3~R•p!#,
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B9,2,2
ab ~R̂!5R22RaRb@~R•m!22~R•p!2#,

B5,2,2
ab ~R̂!52~mamb2papb!.
o-
Note that for each dimensionk the tensor is bilinear in
some combination of two basis vectors from the setm, p,
and n. Substituting these tensors forms into Eq.~A6!, we
obtain the full tensor forms for thej 52 nonaxisymmetric
terms, with two independent coefficients for eachk:
Sj 52,k521
ab ~R!5a9,2,21Rz2

~2!

$2z2
~2!~21z2

~2!!R22@~Ramb1Rbma!~R•n!1~Ranb1Rbna!~R•m!#12z2
~2!~z2

~2!22!

3R24RaRb~R•n!~R•m!1~@z2
~2!#215z2

~2!16!~namb1nbma!%1a1,221Rz2
~2!

$2z2
~2!~z2

~2!22!

3R22dab~R•n!~R•m!2z2
~2!~z2

~2!22!R22@~Ramb1Rbma!~R•n!1~Ranb1Rbna!~R•m!#1~@z2
~2!#2

2z2
~2!22!~namb1nbma!%,

Sj 52,k51
ab ~R!5a9,2,1R

z2
~2!

$2z2
~2!~21z2

~2!!R22@~Rapb1Rbpa!~R•n!1~Ranb1Rbna!~R•p!#12z2
~2!~z2

~2!22!

3R24RaRb~R•n!~R•p!1~@z2
~2!#215z2

~2!16!~napb1nbpa!%1a1,2,1R
z2

~2!

$2z2
~2!~z2

~2!22!R22dab~R•n!

3~R•p!2z2
~2!~z2

~2!22!R22@~Rapb1Rbpa!~R•n!1~Ranb1Rbna!~R•p!#1~@z2
~2!#22z2

~2!22!~napb

1nbpa!% ,
~A10!

Sj 52,k522
ab ~R!5a9,2,22Rz2

~2!

$22z2
~2!~21z2

~2!!R22@~Rapb1Rbpa!~R•m!1~Ramb1Rbma!~R•p!#12z2
~2!~z2

~2!22!

3R24RaRb~R•p!~R•m!1~@z2
~2!#215z2

~2!16!~mapb1mbpa!%1a1,222Rz2
~2!

$2z2
~2!~z2

~2!22!R22dab~R•m!

3~R•p!22z2
~2!~z2

~2!22!R22@~Rapb1Rbpa!~R•m!1~Ramb1Rbma!~R•p!#12~@z2
~2!#22z2

~2!22!~mapb

1mbpa!%,

Sj 52,k52
ab ~R!5a9,2,2R

z2
~2!

$22z2
~2!~21z2

~2!!R22@~Ramb1Rbma!~R•m!2~Rapb1Rbpa!~R•p!#12z2
~2!~z2

~2!22!

3R24RaRb@~R•m!22~R•p!2#12~@z2
~2!#215z2

~2!16!~mamb2pbpa!%1a1,2,2R
z2

~2!

$2z2
~2!~z2

~2!22!

3R22dab@~R•m!22~R•p!2#22z2
~2!~z2

~2!22!R22@~Ramb1Rbma!~R•m!2~Rapb1Rbpa!~R•p!#

12~@z2
~2!#22z2

~2!22!~mamb2pbpa!%.
tes
left

e-
ffi-

ave
t
be
Now we want to use this form to fit for the scaling exp
nent z2

(2) in the structure functionS33(R) from data set I,
wherea5b53 and the azimuthal angle ofR in the geometry
is f5p/2:

Sj 52,k521
33 ~R,u,f5p/2!50,

Sj 52,k51
33 ~R,u,f5p/2!5a9,2,1R

z2
~2!

@22z2
~2!~z2

~2!12!

3sinu cosu12z2
~2!~z2

~2!22!

3cos3 u sinu#,
~A11!

Sj 52,k522
33 ~R,u,f5p/2!50,
Sj 52,k52
33 ~R,u,f5p/2!5a9,2,2R

z2
~2!

@22z2
~2!~z2

~2!22!

3cos2 u sin2 u#1a1,2,2R
z2

~2!

3@22z2
~2!~z2

~2!22!sin2 u#.

We see that choosing a particular geometry elimina
certain tensor contributions. In the case of set I we are
with three independent coefficients formÞ0, the two coef-
ficients from them50 contribution @Eq. ~A2!#, and the
single coefficient from the isotropic sector~A1!, giving a
total of six fit parameters. The general forms in Eqs.~A10!
can be used along with thek50 ~axisymmetric! contribution
~A1! to fit to any second-order tensor object. For conv
nience, Table IV shows the number of independent coe
cients that a few different experimental geometries we h
will allow in the j 52 sector. It must be kept in mind tha
these forms are to be used only when there is known to



for

PRE 61 419SCALING STRUCTURE OF THE VELOCITY . . .
TABLE IV. The number of free coefficients in thej 52 sector for homogeneous turbulence and
different geometries.

k

f5p/2, a5b53 f50, a5b53 f50, a5b51 f50, a53, b51

uÞ0 u50 uÞ0 u50 uÞ0 u50 uÞ0 u50

0 2 2 2 2 2 2 2 0
21 0 0 1 0 1 0 2 2

1 1 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0

2 2 0 2 0 2 2 2 0
Total 5 2 5 2 5 4 6 2
ap
in
t
tr

ti
je
m
a
a

fo

th
m
o

ic

ic

ap-
e-
eo-
for

ric
ric
homogeneity. If there is inhomogeneity, then we cannot
ply the incompressibility condition to provide constraints
the various parity and symmetry sectors, and we mus
general mix different parity objects, using only the geome
of the experiment itself to eliminate any terms.

APPENDIX B: j 51 COMPONENT
IN THE INHOMOGENEOUS CASE

1. Antisymmetric contribution

We consider the tensor

Tab~R!5^„ua~x1R!2ua~x!…„ub~x1R!1ub~x!…&.
~B1!

This object is trivially zero fora5b. In our experimental
setup, we measure at points separated in the shear direc
and therefore have inhomogeneity, which makes the ob
of mixed parity and symmetry. We cannot apply the inco
pressibility condition in same parity and symmetry sectors
before to provide constraints. We must in general use
seven irreducible tensor forms. This would mean fitting
733521 independent coefficients plus one exponentz2

(1) in
the anisotropic sector, together with two coefficients in
isotropic sector. In order to pare down the number of para
eter we are fitting for, we look at the antisymmetric part
Tab(R):

T̃ab~R!5
Tab~R!2Tba~R!

2

5^ua~x!ub~x1R!&2^ub~x!ua~x1R!&, ~B2!

which will only have contributions from the antisymmetr
j 51 basis tensors. These are antisymmetric, odd parity

B3,1,m
ab 5R21@Ra]b2Rb]a#RY1,m~R̂!, ~B3!

and antisymmetric, even parity

B4,1,m
ab 5R22eabmRmRY1,m~R̂!,

B2,1,m
ab 5R22eabm]mRY1,m~R̂!. ~B4!

As with the j 52 case we form a real basisRỸ1,k(R̂) from
the ~in general! complex RY1,m(R̂) in order to obtain real
coefficients in our fits:
-

in
y

on,
ct
-
s
ll
r

e
-

f

RỸ1,k50~R̂!5RY1,0~R̂!5R cosu5R3 ,

RỸ1,k51~R̂!5R
Y1,1~R̂!1Y1,1~R̂!

2i
5R sinu sinf5R2 ,

~B5!

RỸ1,k521~R̂!5R
Y1,21~R̂!2Y1,1~R̂!

2
5R sinu cosf5R1 .

The final forms are

B3,1,0
ab ~R̂!5R21@Ranb2Rbna#,

B4,1,0
ab ~R̂!5R22eabmRm~R•n!,

B2,1,0
ab ~R̂!5R22eabmnm ,

B3,1,1
ab ~R̂!5R21@Rapb2Rbpa#,

B4,1,1
ab ~R̂!5R22eabmRm~R•p!, ~B6!

B2,1,1
ab ~R̂!5R22eabmpm ,

B3,1,21
ab ~R̂!5R21@Ramb2Rbma#,

B4,1,21
ab ~R̂!5R22eabmRm~R•m!,

B2,1,21
ab ~R̂!5R22eabmmm .

Note that, for a givenk, the representations are symmetr
about a particular axis in our chosen coordinate system@1
5m ~shear!, 25p ~horizontal!, and 35n ~mean-wind!#.

We now have nine independent terms, and we cannot
ply incompressibility in order to reduce the number of ind
pendent coefficients in our fitting procedure. We use the g
metrical constraints of our experiment to do this. Thus
f50 ~vertical separation!, a53, andb53,

B3,1,0
31 ~R,u,f50!52sinu,

B2,1,1
31 ~R,u,f50!51, ~B7!

B3,1,21
31 ~R,u,f50!5cosu.

There are no contributions from the reflection-symmet
terms in thej 50 isotropic sector since these are symmet
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in the indices. The helicity term inj 50 also does not con
tribute because of the geometry. So, to lowest order,

T̃ab~R!5T̃j 51
ab ~R!

5a3,1,0~R!~2sinu!1a2,1,1~R!1a3,1,21~R!cosu.

~B8!

We have three unknown independent coefficients and
unknown exponent to fit for in our data.

2. Symmetric contribution

We consider the structure function

Sab~R!5^„ua~x1R!2ua~x!…„ub~x1R!2ub~x!…&
~B9!

in the case where we have homogeneous flow. This obje
symmetric in the indices by construction, and it is easily se
that homogeneity implies even parity inR:

Sab~R!5Sba~R!,

Sab~2R!5Sab~R!. ~B10!

We reason that this object cannot exhibit aj 51 contribution
from the SO~3! representation in the following manner. Ho
mogeneity allows us to use the incompressibility conditio

]aSab50,
~B11!

]bSab50

separately on the basis tensors of a given parity and sym
try in order to give relationships between their coefficien
For the even parity, symmetric case we have, for generj
>2, just two basis tensors, and they must occur in so
linear combination with incompressibility providing a co
straint between the two coefficients. However, forj 51 we
only have one such tensor in the even parity, symme
group. Therefore, by incompressibility, its coefficient mu
vanish. Consequently, we cannot have aj 51 contribution
for the even parity~homogeneous!, symmetric structure
function. Now, we consider the case as available in exp
ment whenR has some component in the inhomogeneo
direction. Now it is no longer true thatSab(R) is of even
parity, and, moreover, it is also not possible to use inco
pressibility as above to exclude the existence of aj 51 con-
tribution. We must look at allj 51 basis tensors that ar
symmetric, but not confined to even parity. These are
parity, symmetric

B1,1,k
ab ~R̂![R21dabRỸ1k~R̂!,

B7,1,k
ab ~R̂![R21@Ra]b1Rb]a#RỸ1k~R̂!,

~B12!
B9,1,k

ab ~R̂![R23RaRbRỸ1k~R̂!,

B5,1,k
ab ~R̂![R]a]bRỸ1k~R̂![0,

and even parity, symmetric
e

is
n

s

e-
.

e

ic
t

i-
s

-

d

B8,1,k
ab ~R̂![R22@RaebmnRm]n1RbeamnRm]n#RỸ1k~R̂!,

~B13!
B6,1,k

ab ~R̂![@ebmnRm]n]a1ebmnRm]n]b#RỸ1k~R̂![0.

We use the real basis ofR21Ỹ1k(R̂), which are formed from
R21Y1m(R̂). Both B5,1,k

ab (R̂) and B6,1,k
ab (R̂) vanish because

we take the double derivative of an object of single power
R. We thus have four different contributions to symmet
j 51 and each of these is of three dimensions~k521, 0, and
1!, giving in general 12 terms in all:

B1,1,0
ab ~R̂!5R21dab~R•n!,

B7,1,0
ab ~R̂!5R21@Ranb1Rbna#,

B9,1,0
ab ~R̂!5R23RaRb~R•n!,

B8,1,0
ab ~R̂![R22@~Ramb1Rbma!~R•p!

2~Rapb1Rbpa!~R•m!#,

B1,1,1
ab ~R̂!5R21dab~R•p!,

B7,1,1
ab ~R̂!5R21@Rapb1Rbpa#,

B9,1,1
ab ~R̂!5R23RaRb~R•p!, ~B14!

B8,1,1
ab ~R̂![R22@~Ramb1Rbma!~R•n!

2~Ranb1Rbna!~R•m!#,

B1,1,21
ab ~R̂!5R21dab~R•m!,

B7,1,21
ab ~R̂!5R21@Ramb1Rbma#,

B9,1,21
ab ~R̂!5R23RaRb~R•m!,

B8,1,21
ab ~R̂![R22@~Rapb1Rbpa!~R•n!

2~Ranb1Rbna!~R•p!#.

These are all the possiblej 51 contributions to the symmet
ric, mixed parity~inhomogeneous! structure function.

For our experimental setup II, we want to analyze t
inhomogeneous structure function in the casea5b53, and
azimuthal anglef50 ~which corresponds to vertical separ
tion!, and we obtain the basis tensors

TABLE V. The number of free coefficients in the symmetricj
51 sector for inhomogeneous turbulence and for different geo
etries.

k

f50, a5b53 f50, a5b51 f50, a53, b51

uÞ0 u50 uÞ0 u50 uÞ0 u50

0 3 3 2 1 2 0
1 1 0 1 0 0 0

21 2 0 3 0 2 1
Total 6 3 6 1 4 1
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B1,1,0
33 ~u!5cosu,

B7,1,0
33 ~u!52 cosu,

B9,1,0
33 ~u!5cos3 u,

~B15!
B8,1,1

33 ~u!522 cosu sinu,
d

v.
B1,1,21
33 ~u!5sinu,

B9,1,21
33 ~u!5cos2 u sinu.

Table V gives the number of free coefficients in the symm
ric j 51 sector in the fit to the inhomogeneous structu
function for various geometrical configurations.
v
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