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The statistical objects characterizing turbulence in real turbulent flows differ from those of the ideal homo-
geneous isotropic model. They contain contributions from various two- and three-dimensional aspects, and
from the superposition of inhomogeneous and anisotropic contributions. We employ the recently introduced
decomposition of statistical tensor objects into irreducible representations of {B¢ S@metry grougchar-
acterized by andm indices, wherg =0...%,—j<m=j) to disentangle some of these contributions, sepa-
rating the universal and the asymptotic from the specific aspects of the flow. The diffezentributions
transform differently under rotations, and so form a complete basis in which to represent the tensor objects
under study. The experimental data are recorded with hot-wire probes placed at various heights in the atmo-
spheric surface layer. Time series data from single probes and from pairs of probes are analyzed to compute the
amplitudes and exponents of different contributions to the second order statistical objects characteyized by
=0, 1, and 2. The analysis shows the need to make a careful distinction between long-lived quasi-two-
dimensional turbulent motionglose to the groundand relatively short-lived three-dimensional motions. We
demonstrate that the leading scaling exponents in the three leading sget@s1, and 2 appear to be
different but universal, independent of the positions of the probe, the tensorial component considered, and the
large scale properties. The measured values of the scaling exponet afe=0.68+0.01, (Y=1=1.0
+0.15, andg(zj:z):l.38i 0.10. We present theoretical arguments for the values of these exponents using the
Clebsch representation of the Euler equations; neglecting anomalous corrections, the values obtained are 2/3,
1, and 4/3, respectively. Some enigmas and questions for the future are sketched.

PACS numbds): 47.27.Gs, 47.27.Jv, 05.40a

[. INTRODUCTION behavior under rotation, has to satisfy these equations indi-
vidually, independent of other components with different be-
The atmospheric boundary layer is a natural laboratory ohavior under rotation. This “foliation” of the hierarchical
turbulence that is unique in that it offers very high Reynoldsequations motivates us to expect different scaling exponents
numbers(Re). Especially if the measurements are made durfor each component belonging to a particylaector of the
ing periods when mean wind speed and direction are roughlpQ3) decomposition. A preliminary test of these ideas was
constant, one approaches “controlled” conditions that ard€Ported in Ref[2]. The main result of the analysis shown
the goals of an experiment. Students of turbulence intereste?f!oW, supporting the results in R¢2], is that in each sec-
in the scaling properties, expected to be universal in the Iimifo_r of the symmet_ry group s_calmg behavior can be found
Re—, are thus attracted to atmospheric measurements. Owith apparently universal scaling exppnents. We demonstrate
the other hand, the boundary layer suffers inherently fronPelow tha_t scale-dependent correlation functions and struc-
strong inhomogeneitgexplicit dependence of the turbulence ture functions can be usefully represented as a sum of con-
statistics on the heightwhich leads to strong anisotropies j[r|but|ons with increasing indek characterizing the |_rr_educ-
such that the vertical and horizontal directions are quite disiPle representations of §@). In such a sum theoefficients
tinguishable. In addition, one may expect the boundary layef'® not universal, but the scale d_ependence is characterized
near the ground to exhibit large scale quasi-two-dimensiond?y universal exponents. That is, a general component
eddies whose typical decay times and statistics may diffes"”(R) of the second rank structure function,
significantly from the generic three-dimensional motion. The op N N 8 8
aim of this paper is to offer systematic methods of analysisto ~ S™ (R)=([u“(x+R) —u*(x)J[u”(x+R) —u”(x)]),
resolve such difficulties, leading to a useful extraction of the 1)
universal, three-dimensional aspects of turbulence.
Fundamentally, we propose to anchor the analysis of th
statistical objects that are important in turbulence to the irre
ducible representations of the 8D symmetry group. Al-
though the turbulence that we study is nonisotropic, the S*(R)= >, aqjm(R)ngﬁm(@), 2
Navier-Stokes equations are invariant to all rotations. To- d.j,m
gether with incompressibility, this invariance implies that the
hierarchy of dynamical equations satisfied by the correlatiowhere B, are the basis functions of the §) symmetry
or structure functions are also isotropit]. This symmetry  group that depend on the direction of the unit ved®orand
was used in Ref[1] to show that every component of the ay;, are the coefficients that depend on the magnitud® of
general solution with a given indegx and hence a definite and, in gen-

gvhere(---) stands for an ensemble average, can be usefully
presented as a sum
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eral, include any scaling behavior. In other words, in terms o
of a rotation operatoD, which rotates space by an arbitrary o s
angle A, one writes A=S55cm

+]
0,BI(R)= > D) (AMBEE(R). 3
m'=—j

‘Frozen’ Pattern

The (2J+1)X(2j+1) matricestT’]Zm are the irreducible o
representations of the $8 symmetry group. The index is @L

required because, in general, there may be more than one
independent basis function with the same indigesd m. @

We note that the basis functiori;;,, depend on the unit

vector R only, whereas the amplitude coefficierdtgjm(R)
depend on the magnitude & only. Our main point is that
amplitudes scale in the inertial range, exhibiting universal FIG. 1. Schematic illustration of the experimental setups.
exponents, Shown is the positioning of the probes with respect to the mean
wind, and an explanation of how Taylor’'s hypothesis is employed.
_ For data set | there were single hot wires, and for data set Il these
agjm(R) Rgg”_ (4) were cross-wires.

Il. EXPERIMENTAL SETUP

Analyzed by usual log-log plots, a superposition such as Eq. o
(2) may well result in continuously changing slopes, as if The results presented in this paper are based on two ex-

there is no scaling. One of our main aims is to stress that thRefimental setups, which are denoted throughout as | and Il
scaling exists, but needs to be revealed by unfolding th&eSPectively. In both setups the data were acquired over the
various contributions. This approach flushes out the scaling@!t flats in Utah with a long fetch. The site of measurements

behavior even when the Reynolds number Re is low, as i¥/aS chosen to provide steady wind conditions. The surface
numerical simulationg3]. of the desert was very smooth and even. The measurements

Obviously, to isolate tensorial components belonging toVereé made between 6 and 9 P.M. in a summer season during
sectors other than the isotropic, one needs to collect datynich nearly neutral stability conditions prevailed. The
from more than one probe. In Sec. Il we present the experiooundary layer was very similar to that on a smooth flat
mental configuration and the conditions of measurement, an@late. In set | the data were acquired simultaneously from
discuss the nature of the data sets. We demonstrate there tfi&P Single hot-wire probes at a height 6 m above the
having two probes is actually sufficient to read surprisingly 9round, with a horizontal separation of 55 cm, nominally
rich information about anisotropic turbulence. We have sg®rthogonal to the mean wind; see Fig. 1. The Taylor micros-
far used two types of geometries: one consisting of twocale Reynolds number was abput 10000. Set Il was acquired
probes at the same height above the ground, and the othP™M an array of three cross-wires, arrangeveeach other
with two probes vertically separated. In both cases the inter®t N€ights of 11, 27, and 54 cm, respectively. The Taylor
probe separation is orthogonal to the mean wind. The cave&icroscale Reynolds numbers for this set were 900, 1400,
is that we must rely on Taylor's hypothedi] to generate and 2100, respe_cnvgly. The hot wires, abou.t 0.7 mm in
scale-dependent structure functions. In anisotropic flows th#ngth and 6um in diameter, were calibrated just prior to
validity and optimal use of this method require discussionmounting them on the mounting posts and checked immedi-
and this is done in Sec. Ill. In that section we also examineXely after dismounting. The hot wires were operated on
the issues concerning two- and three-dimensional aspects BfSA 55MO1 constant-temperature anemometers. The fre-
the flow pattern, and determine the outer sdalat which ~ duency response of the hot wires was typically good up to 20
three-dimensional scaling behavior ceases to exist. In Sec. I¥HZ- The voltages from the anemometers were suitably low
we present the main results of the analysis. We demonstraR®Ss filtered and digitized. The voltages were constantly
that the second-order structure function is best described ag@nitored on an oscilloscope to ensure that they did not
superposition of contributions belonging to different sectors€xceed the digitizer limits. The Kolmogorov scales were
of the SA3) symmetry group by extracting the coefficients @00ut 0.75 mntset ) and 0.5-0.7 mniset I)). Table | lists
and exponents that appear in superposit@n The scaling & few relevant facts about the data records arEIyzed here.
exponents depend gnand we will demonstrate that they are The various symbols have the following meaningsis the
an increasing function gf Forj=0, 1, and 2 our data analy- local mean velocityu’ is the root-mean-square velocity,)
sis leads to the exponent values 05801, 1.0-0.15, and is the energy dissipation rate obtained by the assumption of
1.38+0.10, respectively. In Sec. V we present theoreticallocal isotropy and Taylor's hypothesig,and\ are the Kol-
considerations that determine these exponents neglecting imogorov scale and Taylor microscale, respectively, the mi-
termittency corrections, based on the Clebsch representatiamoscale Reynolds numb&,=u’\/v, and fg is the sam-
of the Euler equation. Section VI offers a summary of thepling frequency.
principal conclusions, and a discussion of the road ahead.  For set | we need to test whether the separation between
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TABLE |. Data sets I(first line) and Il (2nd—4th lines

Height u u’ 10%(e), 7 A fs, per No. of
meters (ms™Y) (ms™Y (m?s79) (mm) (cm) R, channel(Hz) samples
6 4.1 1.08 1.1 0.75 15 10500 10000 x40’
0.11 2.7 0.47 6.6 0.47 2.8 900 5000 x80°
0.27 3.1 0.48 2.8 0.6 4.4 1400 5000 x80°
0.54 35 0.5 1.5 0.7 6.2 2100 5000 xa0f

the two probes is indeed orthogonal to the mean wiide  soluble model. It also proposes ways for minimizing the sys-
do not need to worry about this point in set I, since thetematic errors introduced by the use of Taylor's hypothesis.
probes are above each othefo do so we computed the In light of that analysis we will use an “effective” wintll .
cross-correlation functiou,(t+ 7)u,(t)). Hereu, andu,  for surrogating the time data. This velocity is a combination
refer to velocity fluctuations in the direction of the mean 4f the mean windJ and the root-mean-squats,

wind, for probes 1 and 2, respectively. If the separation were

precisely orthogonal to the mean wind, this quantity should Uer=VU2+ (bu’)?, (5)

be maximum forr=0. Instead, for set I, we found the maxi-

mum shifted slightly tor=0.022's, implying that the separa- \yhereb is a dimensionless parameter. Evidently, when we
tion was not precisely orthogonal to the mean wind. To Coremploy the Taylor hypothesis in log-log plots of structure
rec;t for this effect, the (_jata from the second prope were time,nctions using time series measured isiagle probe, the
shifted by 0.022 s. This amounts to a change in the actuglgjye of the parameteb is irrelevant, because it merely
value of the orthogonal distance. We computed this effectivenanges thearbitrary units of length(i.e., yields an arbi-
distance to beA~54 cm (instead of the 55 cm that was set ary intercept When we mix real distance between two
physically. We choose coordinates such that the mean wingyohes and surrogated distance according to Taylor's hypoth-
direction is along the 3-axis, the vertical direction is alongesis, the parametds becomes a unit fixer. The numerical
the 1-axis, and the third direction orthogonal to these is thga)ue of this parameter was found in REF] by the require-
2-axis. We denote these directions by the three unit veCtorfent that the surrogated and directly measured structure
A, m, andp, respectively. The raw data available from set | fnctions coincide in the limiR—0. When we do not have

is u®)(t) measured at the positions of the two probes. In sefhe necessary data we will use valuesbafuggested by the

Il each probe reads a linear combination Wf)(t) and  exactly soluble model treated in Réf7]. This value ofb
u®(t) from which each component is extractable. From<3 we have checked that the scaling exponents change by
these data we would like to compute the Scale'dependerﬂfo more than a few percent upon Changmgy 30%. Fur-

structure functions, using Taylor's hypothesis to surrogateher, this choice can be justifiedposterioriby the quality of
space for time. This needs a careful discussion, which ighe fit of to the predicted scaling functions.

given below. When we have two probes placed at different heights, the
mean velocities andi’ as measured by the probes do not
IIl. THEORETICAL CONSTRUCTS: TAYLOR'S coincide. In applying Taylor's hypothesis one needs to de-
HYPOTHESIS, INNER AND OUTER SCALES cide the most appropriate value bf.. This question was
addressed in detail in R€f7], with the final conclusion that
A. Taylor's hypothesis the choice depends on the velocity profile between the probe.

Decades of research on the statistical aspects of hydrody? the case ofinear shear the answer is
namic turbulence are based on Taylor's hypoth¢4dis7],
which asserts that the fluctuating velocity field measured by \/U§+ U3  uj?+uj?
a given probe as a function of time(t), is the same as the eff— 2 * 2

velocity u(R/U) where U is the mean velocity andR=
—Ut is the distance to a position “upstream” where the where the subscripts 1 and 3 refer to the two probes, respec-

velocity is measured at=0. The natural limitation on Tay- Vely. _ _
lor's hypothesis is provided by the typical decay time of In aII' subsequent expressions, we vv_|II therefore denote
fluctuations of scal® Within the classical scaling theory of Separations byR, and invariably this will mean Taylor-

Kolmogorov, this time scale is the turnover tirféyS(R) surrogated time differences or a combination of real and
whereS(R)E’S‘m(R) With this estimate, Taylor's hypoth- Taylor-surrogated distances. The effective velocity will be

esis is expected to be valid whefS(R)/U—0. Since E;ﬁe(?]e?;é? )0? ifzz}?é?gn?ﬂevivghﬁtger the probes are at the
S(R)—0 whenR—0, the hypothesis becomes exact in this
limit. We will use this aspect to match the units while read-
ing a distance from a combination of space and time inter-
vals. In seeking scaling behavior one needs to find the inner
Referencd 7] presented a detailed analysis of the conseand outer scales. Below the inner scale second order struc-
qguences of Taylor's hypothesis on the basis of an exactlyure functions have an analytic dependence on the separation,

(6)

B. Inner and outer scales in the atmospheric boundary layer
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FIG. 2. Log-log plots of the longitudinal component of the second order structure function. (Baisefor data set I, and panéb) for
data set II.

S(R)~R?, and above the outer scale they should tend to @xpected for small scales in the inertial range begins. We
constant value. In Fig. 2 we show the longitudinal structurethus have no difficulty in identifying the inner scale; it is
functions simply revealed as a natural crossover length in these data.
SHR) = (U (x+R) —uD(x))?) @ Next, since we cannot expegt to fit with a single power-
law for larger scales and must include scaling contributions

computed from a single probe in set |, and from the probe a‘f‘”e to anisotrop_yz], we n_eed to (_as.timate the Iargestl scales
0.54 m in set Il. In Fig. 3 we also consider the transversdhat should be included in our fitting procedure using the
structure function SQO(3) decomposition machinery. We expect that the contri-

butions due to anisotropy will account for scaling behavior
SHR)=((UP(x+R)—u(x))?) (8)  up to the outer scale of the three-dimensional flow patterns.

The task now is to identify that scale. One approach is sim-
computed from the probe at 0.54 m in set Il; see Fig. 3. Theply to use the scale where the longitudinal structure function
spatial scales are computed using the local mean wind itends to a constant, corresponding to the scale across which
both cases, since we do not expect the scaling exponent foine velocity signal has decorrelated. It becomes immediately
the single-probe structure function to be affected by theapparent that this is not a reasonable estimate of the large
choice of advection velocity. However, this choice does descale. Figure 2 shows that the longitudinal structure function
termine the value oR corresponding to a particular time stays correlated up to scales that are at least an order of
scale, but we expect that any correction to the numericamagnitude larger than the height at which the measurement
value ofR is small for a different choice of advection veloc- is made. On the other hand, the transverse structure function
ity, and not crucial for the qualitative statements that follow.computed from the probe at 0.54 (ffig. 3) ceases to exhibit
In Fig. 2 we clearly see thR? behavior characterizing the scaling behavior at a scale that is of the order of the vertical
transition from the dissipative to the inertial range. As is welldistance of the probe from the ground.
known [8], this behavior persists for about a half-decade It appears that we are observing extremely flat “quasi-
above the “nominal” Kolmogorov length scale Thereisa two- dimensional” eddies that are correlated over very long
region of crossover and then the isotropic scalin@R®®®  distances in the horizontal direction but have a compara-
tively small vertical velocity component. Accordingly the
vertical velocity component is dominated bgna fidethree-
dimensional turbulence. Since we know that the presence of
the boundary must limit the size of the largest three-
dimensional structures, the height of the probe should be
something of an upper bound on the largest three-
dimensional flow patterns that can be detected in experi-

100

1071,

2

~ 10 ments. Thus the size of the largest three-dimensional struc-
- tures is more accurately determined by the decorrelation
- length of the transverse structure function. The theory of

w 103 . . . . .
: scaling behavior in three-dimensional turbulence can use-

fully be applied to only those flow patterns that are essen-
tially three dimensional. The extended flat eddies must be
described in terms of a separate theory, including notions of
two-dimensional turbulence which has very different scaling
propertieg 9]. This isnot the ambition of the present work.
Rather, in the following analyses, we choose our outer scale
L in the horizontal direction to be of the order of the decor-
FIG. 3. Log-log plot of the transverse component of the seconde€lation length of thetransversestructure function(where

order structure function computed from data set Il. available or of the height of the probe. We will see below
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that these two are the same to within a factor of 2; taking
to be as twice the height of the probe is consistent with al

our data. We use this estimate in our study of both transg;z

verse, longitudinal and mixed objects.

IV. EXTRACTING THE UNIVERSAL EXPONENTS
OF HIGHER j SECTORS

scaling exponents that appear in superposit@®n Prelimi-

the assumption of cylindrical symmetry, were announced i
Ref.[2]. The analysis here is more complete, and takes int

account the full broken symmetry is feasible, and the final
results are essentially the same. Both sets of results are al
in agreement with analysis of numerical simulatip8F The
results concerning¥ =) are new.

In order to extract a particulgrcontribution and the as-

dimensional grid. One could then extract jlfeontribution of
particular interest by multiplying the full structure function
by the appropriateB,; » and integrating over a sphere of
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FIG. 4. The structure function computed from
the single-probe data, set (@) shows they?
minimization by the best-fit value of the exponent
in the isotropic secto,~0.68 for the single-
probe structure function in the range €.R/A
<4.5.(b) shows the fit using the best value &f
obtained in(a), indicating the peel-off from iso-
tropic behavior at the end of the fitted range.

A. j=2 component

In the second-order structure function defined already,

S*(R) =((U*(x+R) —u(x)(u’(x+R) —uf(x))),

the j=2 component of the S@) symmetry group corre-
sponds to the lowest order anisotropic contribution that is
In this section we describe a procedure for extracting théymmetric in the indices, and has even parityRindue to
homogeneity. Although the assumption of axisymmetry

nary results on the scaling exponeft2, obtained under used in Ref[2] seemed to be justified from the excellent

rgualities of fits obtained, we attempt to fit the same data
é) with the full tensor form for thej=2 contribution. The
derivation of the fullj=2 contribution to the symmetric,

account the full tensorial structure. We show that taking into . X . .
gven parity, structure function appears in Appendix A.

To begin with, we seek the range over which the isotropic
§8aling exponent holds for data set I. We measure all sepa-
ration distances in units ak=0.54 m which is the distance
between the probes. The lower bound to the inertial range in
this set is estimated to begin RtA=~0.2 (see the discussion
sociated scaling exponent, one would ideally like to possesg Sec. 111 B). We then find the range of scales over which
the statistics of the velocity at all points in a three-the structure function

S¥(R,0=0)=((u(x+R) —u(x))?),

(10)

radius R. Orthogonality of the basis functions ensures thatwith the subscript 1 denoting one of the two probes, can be
only the | contribution survives the integration. One could fitted with a single exponent; this then would indicates the
then perform this procedure for variols and extract the limit of isotropic scaling. We find that for points in the range
scaling behavior. This method was adopted successfully if.2<R/A<4.5 a least squares fitting procedure yields a best-
Ref. [3] using data from direct numerical simulations. The fit value {,=0.68+ 0.01[Fig. 4a)]. Figure 4b) shows the fit
experimental data are limited to a few points in space, so thto the structure function computed from a single probe in set

integration over the sphere is not possible. We are faced withwith just the j=0 contribution. Above this range, we are

a true superposition of contributions from varigusectors
with no simple way of disentangling them. However we can

do the next best thing and use the postulate that the scaling
exponents form a hierarchy of increasing values for increas-
ing j. This can be interpreted to mean that anisotropic effects

appear to increase with increasing scale. Since we look for

o
=

the lowest order anisotropic contributions in our analyses, we

perform a two-stage procedure to separate the various se
tors. First we look at the small scale region of the inertial
range to determine the extent of the fit with a singéotro-

pic) exponent. We then seek to extend this range by includ

C-

ing appropriate anisotropic tensor contributions, and obtain
the additional scaling exponents using a least-squares fitting FIG. 5. They? minimization by the best-fit value of the expo-
procedure. The following two sections discuss the procedur@ent in thej =2 anisotropic sector from the fit to both ti#e=0 and
for determining thej=2 and 1 scaling contributions to ¢-dependent structure functions in the ranges<@R?2A <25 and 1
<R/A <25, respectively.

second-order statistics.
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= ﬁ..,,.,y' 25 .’.;-3”/- FIG. 6. The structure functions computed
S 20 ',.r"‘ sl ‘,.ﬂ" from data set | and fit with thg=0 and full j
® 15 f_,.'” = e =2 tensor contributions using the best-fit values
3 J,."' o 15 o of exponents;,=0.68 and¢$?=1.38. Panela)
8 10 /’ @ .- shows the fit to the single-proti@=0) structure
5 Ay function in the range 02R/A<25, and panel
. { L () 5;‘,'" e (b) shows the fit to thed-dependent structure
0 5 10 15 20 25 30 0 5 10 15 20 25 30 function in the range £ R/A<25.
R/A R/A
unable to obtain a good fit to the data with just the isotropicHere 6= arctan\/Uqgtp, ==U/Uq, and R

exponent and Fig. ) shows the. peel-off from isotropic _ m U,y is defined by Eq(5) with b=3. For
behavior aboveR/A~4.5. We point out that for ranges gsimpjicity we shall refer from now on to such quantities as
higher than this, one can indeed able to find a “best-fit”
exponent for the curve, but the value of the exponent rapidly S¥(R, 0)=((UP(x+R)—u¥ (x))?). (12)
decreases and the quality of the fit is compromised.

To find thej =2 anisotropic exponent we need to use data0
taken from both probes. To clarify the procedure, we show ir}it'
Fig. 1 the geometry of set I. What is computed is actually

Next we fix the scaling exponent of the isotropic sector as
68, and find thg¢ =2 anisotropic exponent that results from
ting to the full j =2 tensor contribution. We fit the objects
in Egs. (10) and (12) to the sum of thg =0 (with scaling

exponent{,=0.68 and thej=2 contributions(see Appen-
S®R,0)=([u® (Uggt + Uetr) — U (Ueg) 19). (11)  gix A)

S¥(R,0)=S24(R,0)+ S ,(R,0)
g(Z)

427 43+ 2)008 0+ 208~ 2) 008 0]

R\ ¢ R
=CO<K) [2+(,— ¢, c08 0]+a A

R|&
K) (&7 +2)(£57+3) = {737+ 4)c08 0+ (207 + 1) (£~ 2)cos 0]

+b
& @) #2) - 2)( A2) , R|%
+aga| 1 [—2¢(L5+2)sing coso+ 257 (57— 2)cos 6sind]+ag, A
|
X[—202({—2)cog Osir? 0] +ay 54 K) [—202(¢5)—2)sir? 6). (13

We fit the experimentally generated functions to the abovehree-dimensional turbulence. We conclude that the structure
form using values of$? ranging from 0.5 to 3. Each itera- functions exhibits scaling behavior over the whole scaling
tion of the fitting procedure involves solving for the six un- range, but this important fact is missed if one does not con-
known, nonuniversal coefficients. The best value/gf is  sider a superposition of the=0 andj=2 contributions.

the one that minimizes thg? for these fits; from Fig. 5 we  We thus conclude that the estimate for fe2 scaling
obtain this to be 1.380.15. The fits with this choice of exponent{$?~1.38. This same estimate was obtained in
exponent are displayed in Fig. 6. The corresponding valueRef.[2] using only the axisymmetric terms. The value of the
of the six fitted coefficients is given in Table Il. The range of coefficientsa andb are again close in magnitude but oppo-
scales that are fitted to this expression is<ORRA<25 for  site in sign—just as in Ref2], giving a small contribution to
the #=0 (single-probe structure function and €R/A<25  S*(R,#=0). The nonaxisymmetric contributions vanish in
for the #+0 (two-probe structure function. We are unable to the case ob=0. The contribution of these terms to the finite
fit with Eq. (13) to larger scales—that is, larger than about 126 function is relatively small because the angular dependence
meters—without losing the quality of the fit in the small appears as sifiand sirf 6, both of which are small for small
scales. This is roughly twice the height of the probe from thed (large R); and hence previously we were able to obtain a
ground. Based on the discussion in Sec. Il C, we should be igood fit to just the axisymmetric contribution. Finally, we
the regime of the largest scales where the three-dimensionabte that the total number of free parameters in this fit is
theory would hold. Therefore, this limit to the fitting range is seven(six coefficients and one exponé&nthis brings up the
consistent with our expectations for the maximum scale opossibility of having “overfit” the data. The relative “flat-
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TABLE II. The scaling exponents and the six coefficients in unit§mfsed? as determined from the
nonlinear fit of Eq.(7) to data set I.

& 2 CoX 10° ax10® bx 10 Ag21X10°  ag,,X10°  a;,,x10°

0.68 1.38-0.10 7+0.5 —-3.2£0.3 2.6£0.3 —0.14+0.02 —5.6x0.7 —4+0.5

ness” of they? function near its minimum in Fig. 5 could be metric contribution. We derive the tensor contributions in the
indicative of the large number of free parameters in the fitj =1 sector for the antisymmetric case in Appendix B 1, and
However, the value of the exponent is perfectly in agreementise this to fit for the unknowp=1 exponent. We describe
with the analysis of numerical simulatioh3] in which one the results of this analysis below. For completeness, we have
can properly integrate the structure function against the basigerived the tensor contributions in the=1 sector for the
functions, eliminating all contributions except that of the symmetric case as well in Appendix B 2. This can be used to
=2 sector. Furthermore, fits to the data in the vicinity offind j=1 exponent for the inhomogenous structure function,
(22)= 1.38 show enough divergence from experiment that wevhich is symmetric but has mixed parity. We do not present
are satisfied about the genuineness of gheesult. the results of that analysis here essentially because they are
consistent with those from the antisymmetric case.
Returning now to consideration of the antisymmetric part

B. Extracting the j=1 component ' . : h
of the tensor object defined in EGL4), viz.

The homogeneous structure function defined in @yis

known from properties of symmetry and parity to possess no T¥(R)-TP¥R)

contribution from thej =1 sector(see Appendix B the | T*A(R)= > (U ()UP(x+R))
=2 sector being its lowest order anisotropic contributor. In
order to isolate the scaling behavior of the 1 contribution —<u/3(x)u“(x+ R)), (15

in atmospheric shear flows we must either explicitly con- ' o _ .
struct a new tensor object which will allow for such a con-Wwhich will only have contributions from the antisymmetric

tribution, or extract it from the structure function itself com- j =1 basis tensors. An additional useful property of this ob-
puted in the presence a@fhomogeneityln the former case, ject is that it does not have any contribution from the isotro-

we construct the tensor pic j =0 sector spanned b§*? andR“R?. This allows us to
isolate thej =1 contribution and determine its scaling expo-
T*P(R)=([u*“(x+R) —u“()J[uP(x+R) +uf(x)]). nent $V starting from the smallest scales available. Using

(14 data(set Il) from the probes at 0.27 rfprobe 2 and at 0.11

This object vanishes both wher= 3, and wherR is in the m (probe 3, we calculate

direction of homogeneity. From data set Il we can calculate

this function for nonhomogeneous scale-separati@gmshe

shear direction In general, this will exhibit mixed parity and

symmetry; we cannot use the incompressibility condition t0yhere again superscripts denote the velocity component and

reduce our parameter space. Therefore, to minimize the fing},pscripts denote the probe by which this component is mea-

number of fitting parameters, we examine only the antisymy req. The goal is to fit this experimental object to the tensor
form derived in Appendix B 1, EqB7),

THR) = (U ouM (x+ R)) = (Ui (x+ R)ug” (%)),
(16

-5
x10
: . =a1 AV AD
0 D TR, 0,0=0)=—az 1 R2 sinf+ay; R
° o. &Y
g le . +az;_1R*2 cosé. a7
M 0
°. o Figure 7 gives the/? minimization of the fit as a function
n, © v S of £, We obtain the best value to ber0.15 for the final
. o fit. This is shown in Fig. 8. The fit in Fig. 8 peels off at
¢ % ..' aroundR/A =2. The values of the coefficients corresponding
%, I to the exponent$'=1 are given in Table IIl. The maximum
2 '0.. ..-‘ range of scales over which the fit works is of the order of the
*essens®’ height of the probes from the ground, consistent with the
0 considerations presented earlier. This value of the scaling
0 0.6 1.0 1.5 2.0 2. exponent of thg =1 sector is entirely new. Again, we have

satisfied ourselves that a different value of the exponent
yields a substantially poorer fit to the data.
Finally, to increase our confidence about the value of the
FIG. 7. Thex? minimization by the best-fit value of the expo- exponentZ{?), we also measured the second-order structure
nent {59 of the j=1 anisotropic sector from the fit to the function S*}(R,6) from probe 1 at 0.27 m and probe 2 at
6-dependent®Y(R, 6) function in the range ¥ R/A<2.2. 0.11 m. Due to the inhomogeneity this function contains a

(1)
2

g
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HereT%/? is a constant dimensionless tensor madéf,
R¢/R, andbilinear contributions made of the three unit vec-
, tors p, M, andn, as exemplified in Appendix A. The way
e Eq. (18) is represented means that the dimensional function
- f(R,€) stands for the response of the second-order structure
function to a small external shear. Ad such it is an inherent
property of isotropic turbulence. Within the standard
o] Kolomogorov-41 dimensional reasoning this function in the
: inertial interval can be made only of the mean energy flux
. \..w;(“ per unit time and masg, andR itself. The only combination
1.0 1.5 2.0 2.5 of e andR that yields the right dimensions of the functibn
R/A is €*R*3, Therefore

x1073

731 (R, 0)
o = [\S] w IS (6,1} (o)}
o

FIG. 8. The fittedT*(R, §) function. The dots indicate the data,

Y
and the line is the fit. SZ5(R)~ Th7I— e RIS, (19

contribution fromj=1, with six unknown scalar functions We thus find a “classicak41” value of§(22)=4/3. Thus this
that need to be fitted. The best valueg? was found to be  gimple argument seems to rationalize nicely the experimen-
1.05+0.15, but the sharpness of ti§é test is not as good, tally found valueZ®)=1.38+0.1.

due to the large number of fitted parameters. Nevertheless we To understandzthe value djﬁl) we cannot proceed in the
satisfied ourselves that the quoted value of the scaling eXP%ame wav. We need a contribution that is linéather than
nent$Y) appears genuine. Y.

. . ) . bilinean in the unit vectorsh, m, andh. We cannot con-
In Sec. V we will present theoretical considerations to

M_ 4 - ) . struct a contribution that is linear in the shear involviag
show that the valug;=1 is predicted by a version of iy an exponent differing from 4/3. There seems to be a

classical dimensional analysis. The present findings signifis,nqamental difference between the2 contribution and
cantly strengthen our propositida] that the scaling expo- e j=1 term. While the former can be understood as an
nents in the various sectofat least up tg =2) are indeed inhomogeneous term linear in the forced shear, jthel
universal. term, being more subtle, may be connected to a solution of
some homogeneous equation well within the inertial interval.
In fact, all the known inertial-interval spectra in turbulent
systems are related to the existen€¢@a @ flux of some con-
) ) ) ) _ _ served quantity which has a representation as an integral of
In this section we present dimensional considerations tQ,me density itk space. For example the kinetic energy may
determine the “classicak41” values expected ofs" and  pe written asfdk|u(k,t)|2. A well-known other integral of
(). We work at the same level as thet1 approach that motion in hydrodynamics with such a presentations is the
yields the value/$”)=2/3. This is justified since the differ- helicity

ences between any two valué§’ and ¢§") for j#j’ are

considerably larger than the intermittency corrections to ei-
ther of them. We note, however, that the issue of anomalous
exponents in turbulence has now multiplied several-fold, to
all thej sectors, in light of the apparent universality that hasThus the helicity may be considered as a natural candidate

V. THEORETICAL DETERMINATION OF f(zj)
FOR j=1 AND 2

H=fdr(u-V><u). (20

unfolded in this work.
It is easiest to produce a dimensional estimate4gt.
One simply assertf5] that thej =2 contribution is the first

one appearing ir8*¥(R) due to the existence of a shear.

which is responsible for a new solution in the inertial interval
that may rationalize th¢=1 finding. We show that this is
not the case in the following way.

The dimensionality oH (denoted agH ]) differs from the

Since the shear is a second rank tensor, it can appear lineagymensionality of the energyE by one length: [H]

in the j=2 contribution toS**(R). Seeking aranalytic cor-
rection to theK41 scaling, we write, for anyn, —j<m
=j,

ur

Ju
Sy (R)~TA7? s

f(Re). (18

TABLE Ill. The values of the exponents and coefficiefits
units of (m/se@?] obtained from the fit to the functioTNﬁ?’l(R,e).

e
1+0.15

az11 azi-1

0.01240.001

az10

0.0116:0.001 —0.0062+-0.001

=[E/B]. Correspondingly, the dimensionality of the helicity
flux, h may be written as

[h1=[€R]. (21)

This means that in turbulence with energy and helicity fluxes
one has at one’s disposal a dimensionless factor in the form

hR/e. This means that the second order structure function

S(R,?,F) cannot be found just by dimensional reasoning
even within theK41 approach. Nevertheless, assuming that

at small helicity fluxes(i.e., whenhR/e<1) the function

S(R, €,h) may be expanded in powersﬁﬁ/ve can justify the
first order correction due to helicity,S, as
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S S(REh)~ (e YhRo3 22 following conclusions appear important. o
hS(R.€h)~(e) 22 (1) The atmospheric boundary layer exhibits three-
The value of the inferred scaling exponent, i.e., 5/3, is muchlimensional statistical turbulence intermingled with activi-
larger than the value unity found experimentally. We thusties whose statistics are quite different. The latter are eddies

need to find another invariant that may rationalize the findWith @ quasi- two-dimensional nature, correlated over ex-
ings. tremely large distances compared to the height of the mea-

The only invariance in addition to the conservation of surement, having little to do with the three-dimensional fluc-

helicity that we are aware of in the inviscid limit is the tua(tlzt)m\?vglsfgldize?hg??xg.“outer scale of turbulence.” as
Kelvin circulation theorem, which, however, does not fur- . ; NAITR '

) . . . . . measured by the three-dimensional statistics, is of the order
nish a local integral itk space in the Eulerian representation.

) e - of twice the height of the probe.
_The only way that is apparent to us to expose this invariance (3) The inner scale is the the usual dissipative crossover,

| N O"nhich is clearly seen as the scale connecting two different
writes the Euler equation in terms of one complex f|elds|Opes in log-log plots.

a(r,t); see, for example, Ref10]. In the k representation (4) Between the inner and the outer scales, @pappears
the Fourier component of the velocity fieldk,t) is deter- g offer an excellent representation of the structure function.
mined from a bilinear combination of the complex field: Using contributions withj=0, 1, and 2, we could fit the

whole range very accurately.

u(k,t)=i3 Bk, a3k, W (K, Ky)a (kyHa(kyt), (5) The scaling exponentgy) are measured as 0.68
8m +0.01, 1+0.15, and 1.380.10, respectively.
assica imensional considerations vyield the
(23 (6) Classical K41 di ional iderati ield th
1 K2 K2 numbers 2/3, 1, and 4/3, respectively. To obtgfi=4/3, all
1712 that we need is to assume a contribution linear in the shear.
=—| ki+k,—(ki—kp) m———]. : : : -
Wk ko) =3 kitke=(ki—k) [k, —ky|? 24 15 obtain (V=1 we need to identify a nonobvious con-

] ) ) served quantity which allows a new solution in the depth of
It is well known[10] that this representation exposes a localthe inertial interval. To our knowledge, this is the first time

conserved integral of motion, which is that Clebsch variables allowed an understanding of a funda-
1 mentally new universal scaling exponent.
- 3Ll 4% If the trends seen here continue for highgalues, we can
1 8 f d*kka® (k,nack,b). (25 rationalize the apparent tendency toward isotropy with de-

_ o _ creasing scales. If indeed every anisotropic contribution in-
Note thaj[ Fh|s consgrved quantity is a vector, anq it cannofroduced by the large scale forcirigr boundary conditions
have a finite mean in an isotropic system. Consider now %ecays as I'\Q/L)g(z” with increasingg(zj) as a function of,

correction 3,5(R,e,m) 1o the second order structure func- then obviously wheR/L— 0 only the isotropic contribution

gicz)r:];ilti{{e ga_filg?afjoit[rglé?éi%a;gg Thoetlrc(;?gfe-rr?gvslt?snd-i- survives. This is a pleasing notion that justifies the modeling
y ola IS [ m|=1 € of turbulence as isotropic at small scales.

; = 1/322/3 ; ; i
mensionless factor iR/, Assuming again analyticity We need to raise a few words of caution here. First, we

?Qgseg]r::ndablllty 0B,,S at small values of the fluxr, one have largely disregarded thehomogeneityof the flow (ex-
! cept in the case of=1 when the second-order correlation
Sjafl(R)NTaﬁy;yR, (26) function vanlshe_s in a homoge.neous enseblnlallied concen-
trated on the anisotropy. The inhomogeneity implies that in

whereT%8” is a constant dimensionless tendioear in the  general the structure functions depend not only on the sepa-

unit vectorsp, , andf. We thus find the “classicak41” ration vectorR but also on the reference point of measure-
value é«(zl): 1, which should be compared with the experi- ment. The implications of this are manifold: the incompress-
mental findingg(zl)zlio.la ibility constraint that has been used to eliminate

We stress that Eq$26) and (19) are the analogs of the contributions to thg =0 and 2 sectors loses its efficacy, the
standard isotropic dimensional estimate SQO(3) decomposition becomes more complicated, etc. It ap-

pears that in a fuller theory one needs to consider the simul-

SﬁgO(R)N(;R)ZB_ (27)  taneous breaking of translation and rotation symmetries, but
we leave this development to the future.

We thus conclude that dimensional analysis predicts that val- In addition, we really have no idea about the values of the

ues 2/3, 1, and 4/3 fafy)) , with j=0, 1, and 2, respectively. exponents foj =3. Moreover, we are not even sure that they

This appears to be in satisfactory agreement with the experre well defined. To understand the difficulty one needs to

mentally extracted values of these exponents. We shoulxamine the hierarchical equations for the correlation func-

state, however, that we do not know at present how to contions. These equations contain integrals used to eliminate the

tinue this line of argument foy>2. pressure contributions. The integrals were proven to con-
verge(in the IR and UV limits when the exponents, lies
VI. SUMMARY, CONCLUSIONS, within the “window of convergence” which i%0,4/3 [11].
AND THE ROAD AHEAD We see that with) =3 we may reach beyond this window of

convergence(this being questionable even for our experi-
In summary, we considered the second order tensor funanental finding ofj =2!), and we are not guaranteed to have
tions of velocity in the atmospheric boundary layers. Thethe kind of local theory that is thought to be a prerequisite to
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scaling behavior.

(2)
Another enigma is related to the apparent success of the +bREZ | — ({2 +3) (Y +2)8*(n-R)?
considerations of Sec. V to rationalize the numerical values
of the exponents found in the experiment. There is, however, RYRP

2 2 a
no well-defined procedure of continuing the estimates for + +(LP+3)({F +2)nn?

£Y) for j=3. Whether this is related to the locality issue is

not understood at present. R*RP(n-R)?

+(202+1)(P-2)

In conclusion, it appears that we have here an exciting R*
possibility of generalizing the scaling structure of the statis-
tical turbulence to many sectors of the symmetry group, —([£D12— 2)(R*NP+ REN)(n-R
gaining a much better understanding of the structure of a (L&) A A )]
theory. There exist, however, large patches of terra incognita (A2)

on our map, patches that we hope to penetrate in future workyhere /{?) is the universal scaling exponent for the2
anisotropic sector, and and b are independent unknown
ACKNOWLEDGMENTS coefficients to be determined by the boundary conditions.
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4 (2) (23
S fz,m=§ dg2mR% BIS (R, (A3)

acquiring the data. possible ways of arriving at the the samand runs over all
such terms with the same parity and symmaetayconse-
APPENDIX A: FULL FORM FOR THE j=2 quence of homogeneity and hence the constraint of incom-
CONTRIBUTION FOR THE HOMOGENEOUS CASE pressibility) [1]. In our case, even parity and symmetric in

the two indices. In all that follows, we work closely with the
Each indexj in the SO(3) decomposition of amrank  procedure outlined in Refl]. Following the convention in
tensor labels a 2+1 dimensional SO(3) representation. Ref.[1], the g's to sum over areg={1,7,9,%. The incom-

Each dimension is labeled by=—j,—j+1...j. Thej=0 pressibility conditiond, ,u“=0 coupled with homogeneity
sector is the isotropic contribution while higher ordées  can be used to give relations between #e , for a given
should describe any anisotropy. The=0 terms are well (jm). That is, forj=2, m=-2,...,2,
known,
(£ =2)ay ot 2(¢5 = 2)a7 o+ (65 +2) 89 5m=0,
aRpB
SQBO(R) CoR%Z (2+ ¢,) 5%~ 52 R R , (A1) a1Y2m+(§(22)+3)a7Y2m+ §(22)a52m=0. (A4)

We solve Eqs(3) in order to obtainas,, andaz,, in

where{,~0.68 is the known universal scaling exponent for t€rms of linear combinations @f; 2y, andag s

the isotropic contribution, and, is an unknown coefficient g om([ {212 — 12— 2) +ag ([ {212+ 5752 +6)
that depends on the boundary conditions of the flow. For thes ,,,= B ' ,
j =2 sector which is the lowest contribution to anisotropy to & -2)

the homogeneous structure function, the=0 (axisymmet- Ay (2= 12— ag (24 £2) (A5)
ric) terms were derived from constraints of symmetry, even a7, 2m= L.2m 2 5 9.2m 2
parity (because of homogenejtgnd incompressibility on the ’ 2({-2)

second-order structure functigg]

Using the above constraints on the coefficients, we are
now left with a linear combination of just two linearly inde-
pendent tensor forms for each
Sy mo(R)=aRe | ({2 ~2) 6P~ (2({P +6 . 2

sz,mfo( ) (52 ) 52 (§2 ) ijz,m=ag,2mR§2 [_ §(22)(2+§(2))B7 2m(R)
@ 2
R*RA(n-R) +2057((9 = 2)Bg5n(R)+([ £ 12+ 5.5 +6)

(n-R)?
R? R*

X 8P + 2§(2)(€(2) 2)
B&S(R)]+a, ZmRéz 20222 -2)
XBffém(F‘e)—éf)(z; ~2)B%,(R)

+([P 12— P -2)BES (R (A6)

([P 438 +6)nn”

-2

=7 (RNA+RPn?*)(n-R)
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The task remains to find the explicit form of the basis R @gBR2Y. (R
52m( ) d%d ]m( )
tensor functions8¢’ 2m(R), 9e{1,7,9.3, me{*x1,=2}:
BiSm(RI=R25“*RIY,(R), We obtain them={+1,+2} basis functions in the fol-
lowing derivation. We first note that it is more convenient to
B8 (R)=R I R*P+REI*IR?Y ,n(R), form a real basis from th&®2Y,,(R) since we ultimately
wish to fit to real quantities and extract real best-fit param-
B§m(R) =R *R*RPR2Y,(R), eters. We therefore forl?Y ,(R) (k=—1,0,1) as follows:

R?Y,o(R)=R?Y,(R)=R?cog 6=R?,

(R)= Yo, 1(R) R2(cos¢>—isin¢)cosasin0+(cos¢+isin¢)cosﬁsin0

= 2 i
> > R“ cosé sin 6 cosg¢

R%Y,_,(R)=R? Yoo
=R3Ry,

Yoo 1(R) +Yoq(R) 2 (cos¢— >i sin)cosh sin 6— (cosg+i sin¢)cosé sin g
—2i B —2i

R?Y,.1(R)=R? =R?cosésindsing

= R3 RZ )
(A7)

=R?sin 2¢ sir? =2R;R,,

Yol R) =Y, o(R) r2 (cos 2p+1i sin 2¢)sir? §— (cos 24— i sin 2¢)sir? 6

2% 5\ — P2
R%Y2-2(R)=R 2i 2i

, Y2 R + Y, 5(R) =2 (COS 2p+i sin 2¢)sir? 8+ (cos 2p—i sin 2¢)sirn? 6

R?Y,.o(R)= 5 = > =R? cos 2¢ sir? §=R;—R3,
|

This new basis ofR?Y,(R) is equivalent to using the ngfl(ﬁ):namﬁju nfme,

RZY]-m(R) themselves as they form a complete, orthogonal o

(in the newk’s) set. We omit the normalization constants for Big,l(ﬁ): R™25°F(R-n)(R-p),

the spherical harmonics for notational convenience. The sub-
scripts onR denote its components along thend)( 2(p),

2 anfB B . anp Bna
and 3) directions.m denotes the shear directiop, the BY5 {(R)=RZ[(R*pP+RFp*)(R-n) +(R*n’+RFn")

horizontal direction parallel to the boundary and orthogonal X(R-p)],
to the mean wind direction, amithe direction of the mean (A9)
wind. This notation makes it simple to take the derivatives Bg,gyl(li):R‘zR“RfB(R- n(R-p),

when we form the different basis tensors and the only thing
to remember is that Bgéyl(li):n"‘p‘ﬂ—nﬁp“,
d*R;=9%(R-m)=m*, R
B{%, 2(R)=2R"?5**(R-m)(R-p),
9“Ry=9“(R-p)=p*, (A8)

B35 _2(R)=2R’[(R*p?+RPp*)(R-m) +(R*m*

I“Ry=3d%(R-n)=n".
TR +RPM)(R-p)],

We use the above identities to proceed to derive the basis

tensor functions Bg5_,(R)=2R2R*RF(R-m)(R-p),
Bi% 1(R)=R"?5"*(R-n)(R-m), BZ5 _,(R)=2(m*pf+mPpY),
BY5_1(R)=R2[(R*mP+RPm*)(R-n)+ (R*n’+RFn*) B4 (R)=R 25"/ (R-m)?—(R-p)?],
X(R-m)],

B%5 (R)=2R %[ (R“m?+ RPm®)(R-m)— (R*p?+ RPp®)
B§3. 1(R)=R’R*RA(R-n)(R-m), % (R-p)],
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Bg5 (R) =R 2R*RP[(R-m)2—(R-p)?],

BZ5 (R)=2(m*mP—ppf).

Note that for each dimensiok the tensor is bilinear in
some combination of two basis vectors from the sgtp,
and n. Substituting these tensors forms into E46), we
obtain the full tensor forms for th¢=2 nonaxisymmetric
terms, with two independent coefficients for edch

14 (2) - o o o o
Sk 1(R)=ag,_ 1R {— ¥ (2+ ()R (R*MP+RPmM*)(R- n) + (RN + RPn®) (R-m) ]+ 22 ({9 - 2)

_ (2)
XRTRURA(R-N)(R-m) + ([(F' 12+ 55 +6)(n“mP+nfm*)} +a, 1R {2057 (¢ -2)

XR728%F(R-n)(R-m)— {22 - 2)R™ [ (R*MP+ RPm*)(R-n) + (R*NP+ RPn)(R-m) ]+ ([ £2]?

— %' =2)(n*mP+nfm*)},

o3 (2) - o o o (23
Sy k-1(R) =29, 1R%? {— [P (2+ {P)R™Z[(R*pP+REP)(R-n) + (R* NP+ REN)(R- p) ]+ 202 ({5 - 2)

XR™ARZRE(R-N)(R- )+ ([ {212+ 572+ 6) (n“ph+nfp)t +a, 5 RE {202 ({2 —2)R25°F(R- )

X(R-p)— {2({2 = 2)R™2[(RPpP+RPpY)(R-n) + (R*NP+ RPn®)(R- p) 1+ ([ {5212~ {2 — 2) (n“p#P

+nfp)},

(A10)

Sy _o(R) =89 oRE {— 2022+ (PR A (RepP+REp™) (R-m) + (R'MP+ REM?) (R- p) ]+ 202 ({2~ 2)

XRT4RRE(R- p)(R-m) + ([ {12+ 575+ 6) (mpP+mPp)} +ay , oRE (2£2((F —2)R25%(R-m)

X (R-p)=2457({ = 2)R7I[(R*p +RPp*)(R-m) + (R + RPm™) (R- p) ]+ 2([ {571~ £ = 2) (m°p”

+mPp9)},

14 (2) _ o (43 o o
S,k a(R)=ag, RZ {— 2P (2+ ()R (RMP+RPM®) (R-m) — (R*pP+REp)(R- p) ]+ 2L 2 (L7 - 2)

X RTRARA[(R-m)2— (R p)2]+ 2([ {212+ 52+ 6)(memPB — pPpe)} +ay , REZ {2027~ 2)

XR™25*F[(R-m)?—(R-p)?] - 2L (£ — )R (R*mP+ RPm?)(R-m) — (R*p?+ RPp*)(R- p) ]

+2([¢212- (2= 2)(m*“mP - pPp)}.

Now we want to use this form to fit for the scaling expo-

nent 52 in the structure functiors®3(R) from data set |,
wherea= =3 and the azimuthal angle &fin the geometry
is ¢p=/2:

S2 k= -1(R.0,¢=m/2)=0,

(2)
S2,11(R 0, p=m2) =ag, R [—2¢2(£P+2)
X sin 6 cosf+ 2L (52 —2)

X cos 4sind],
(A1)

S k= —2(R.0,=m/2)=0,

(2)
S2 - 2(R0,p=m2)=ag, R% [—202(P—2)
X cog gsirf 0]+ alyzszZ(zz)

X[ —2¢(55 - 2)sirt 0].

We see that choosing a particular geometry eliminates
certain tensor contributions. In the case of set | we are left
with three independent coefficients for# 0, the two coef-
ficients from them=0 contribution[Eq. (A2)], and the
single coefficient from the isotropic sectohl), giving a
total of six fit parameters. The general forms in EGSL0)
can be used along with the=0 (axisymmetri¢ contribution
(A1) to fit to any second-order tensor object. For conve-
nience, Table IV shows the number of independent coeffi-
cients that a few different experimental geometries we have
will allow in the j=2 sector. It must be kept in mind that
these forms are to be used only when there is known to be
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TABLE IV. The number of free coefficients in the=2 sector for homogeneous turbulence and for
different geometries.

d=ml2, a=p=3 ¢=0, a=p=3 ¢=0, a=p=1 ¢=0, a=3, =1
k 6+0 6=0 6+0 6=0 6+0 6=0 6+0 6=0
0 2 2 2 2 2 2 2 0
-1 0 0 1 0 1 0 2 2
1 1 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0
2 2 0 2 0 2 2 2 0
Total 5 2 5 2 5 4 6 2
homogepeity. If the_rg 'is inhompgeneity, then we can_not ap- RY;,_o(R)=RY; (R)=Rcosf=Rs,
ply the incompressibility condition to provide constraints in ’ '
the various parity and symmetry sectors, and we must in 2 2
> M ; : : ~ A Y11(R)+Y14(R) L
general mix different parity objects, using only the geometry RY,,_;(R)=R— B =Rsinfsing=R,,
of the experiment itself to eliminate any terms. 2i (B5)
APPENDIX B: j=1 COMPONENT 5 . Yl—l(ﬁ)_Yl 1(@) -
IN THE INHOMOGENEOUS CASE RY; . _1(R)=R— 5 : —Rsingcos¢=R;.
1. Antisymmetric contribution
We consider the tensor The final forms are
aB BY_p-lipanB__ a
To(R) = ((U(x+R) — u*(x))(UF(x+ R) + UA(X))). B31 R =R [R*n—RFn],

(B1) .
BsA (R)=R 2e*P*R(R-n),
This object is trivially zero fora=p. In our experimental

setup, we measure at points separated in the shear direction, B$A (R)=R 2¢*frn
and therefore have inhomogeneity, which makes the object - .
of mixed parity and symmetry. We cannot apply the incom- Bgﬁ,l(é): R Rpf—RFpa],

pressibility condition in same parity and symmetry sectors as
before to provide constraints. We must in general use all
seven irreducible tensor forms. This would mean fitting for
7xX3=21 independent coefficients plus one expor‘éﬁ)t in

the anisotropic sector, together with two coefficients in the
isotropic sector. In order to pare down the number of param- w5 A paef DB
eteﬁr we are fitting for, we look at the antisymmetric part of B31-1(R) =R [R*M”—R"m“],
T*%(R):

B34 (R)=R 2e"P*R,(R-p), (B6)

B34 (R)=R 2e*frp

Bsf 1(R)=R 2€*P¥R,(R-m),
~TAR)-TP4R)

s o
THR) 2 BSS_ (R)=R 2e%frm,.

=(u(x)uf(x+R))—(UA(x)u*(x+R)), (B2) Note that, for a giverk, the representations are symmetric
about a particular axis in our chosen coordinate sygtem
which will only have contributions from the antisymmetric =m (sheay, 2=p (horizonta), and 3=n (mean-wind].

j=1 basis tensors. These are antisymmetric, odd parity We now have nine independent terms, and we cannot ap-
R ply incompressibility in order to reduce the number of inde-
B34 n=R [R*#—RPI*"IRY (R, (B3)  pendent coefficients in our fitting procedure. We use the geo-
_ _ _ metrical constraints of our experiment to do this. Thus for
and antisymmetric, even parity ¢=0 (vertical separation «=3, andB=3,
ByE =R~ 2e%¥#R RY; 1(R), B31dR,0,¢6=0)=—sing,
A 31 = =
ngm: _ZGQBM§MRY1,m(R)- (B4) Bzvlyl(R,a,(ﬁ 0) 11 (B7)

-~ B3 _1(R,0,¢=0)=cosé.
As with thej =2 case we form a real badisY; ,(R) from 311l $=0)

the (in general complex RYl,m(Ii) in order to obtain real There are no contributions from the reflection-symmetric
coefficients in our fits: terms in thej =0 isotropic sector since these are symmetric
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in the indices. The helicity term ip=0 also does not con- TABLE V. The number of free coefficients in the symmetjic
tribute because of the geometry. So, to lowest order, =1 sector for inhomogeneous turbulence and for different geom-
etries.

TAR) =T (R
(R)=Ti=:(R) $=0, a=B=3  ¢=0,a=B=1 ¢=0, a=3, B=1

- a3'1]0( R)( - Sin 0) + azvl’l( R) + a3’1'_ 1( R)COSQ.

k 6+0 6=0 6+0 6=0 6+0 6=0

(B8)
3 3 2 1 2 0
We have three unknown independent coefficients and one 1 1 0 1 0 0 0
unknown exponent to fit for in our data. -1 2 0 3 0 2 1
Total 6 3 6 1 4 1

2. Symmetric contribution

We consider the structure function aB B _ ~ A
Bgi(R)=R 2[R*e#*'R,d,+RFe“*'R,d,IRY1(R),
S*A(R) = ((u*(x+R) —u“(x))(uP(x+R) —uP(x))) (B13)

(B9) BeA (R =[€/*"R,d,d,+ €’*'R,3,d3]R Y1 (R)=O0.

in the case where we have homogeneous flow. This object i§/e yse the real basis & 1Y,,(R), which are formed from
symmetric in the indices by construction, and it is easily seerh,lYlm(F})_ Both Bgﬁk(ﬁ) and Bgﬁk(ﬁ) vanish because

that homogeneity implies even parity R we take the double derivative of an object of single power in

S*A(R)=SPY(R), R We thus have four different contributions to symmetric
j=1 and each of these is of three dimensi@os — 1, 0, and
S*(—R)=S*A(R). (810) 1), giving in general 12 terms in all:

We reason that this object cannot exhibjt=al contribution Bi4 (R)=R '8*¥(R-n),
from the S@3) representation in the following manner. Ho- R
mogeneity allows us to use the incompressibility conditions B?ﬁyo( R)=R Y R*n+RPfn“],

9,8"=0, B3% (R)=R3R°RA(R-n),

; (B11)

9pST=0 Bg# (R)=R2[(R*mP+RPm*)(R- p)
separately on the basis tensors of a given parity and symme- —(R*pP+REP*)(R-m)],
try in order to give relationships between their coefficients.
For the even pariyy, symmetric case we have, for g.er]'eral Bi’ﬁ 1(§): R 15%(R-p),
=2, just two basis tensors, and they must occur in some .
linear combination with incompressibility providing a con- B?ﬁyl(ﬁ)=R’l[R“pBJrRBp“],

straint between the two coefficients. However, ferl we
only have one such tensor in the even parity, symmetric

group. Therefore, by incompressibility, its coefficient must ng,l(R):R_sRaRB(R‘p)* (B14)
vanish. Consequently, we cannot havg=al contribution ~
for the even parity(homogeneous symmetric structure Bgi (R =R (R*m’+Rm)(R-n)

function. Now, we consider the case as available in experi-
ment whenR has some component in the inhomogeneous
direction. Now it is no longer true th&8*#(R) is of even

—(R*nP+RPn%)(R-m)],

parity, and, moreover, it is also not possible to use incom- B _1(R) =R 6*¥(R-m),

pressibility as above to exclude the existence pfd con- R

tribution. We must look at alj=1 basis tensors that are B4 1(R)=R[R*m’+RPm"],

symmetric, but not confined to even parity. These are odd A

parity, symmetric Bs4 _1(R)=R°R*RA(R-m),
BIAK(R)=R™'6" RYy(R), B28_,(R)=R™ 4 (R*p#+RPp“)(R-n)

BA(R)=R™[R*#+RF“IRYi(R), —(RP+R)(R-p)].
B A PN (A (B12)  These are all the possibje=1 contributions to the symmet-
Bgik(R)=R™°R'R"RY(R), ric, mixed parity(inhomogeneousstructure function.
. L For our experimental setup Il, we want to analyze the

Bgﬁk(R)sRaaaﬂvak(R)so, inhomogeneous structure function in the caseB=3, and

azimuthal anglep=0 (which corresponds to vertical separa-
and even parity, symmetric tion), and we obtain the basis tensors



PRE 61 SCALING STRUCTURE OF THE VELOCITY ... 421

B3 o 0) =cosé, B _1(0)=sing,
B3 o 8)=2 cosb, B3> 1(#)=cog dsing.
33 _ . - .
Bo1d 0)= cos’ 0, Table V gives the number of free coefficients in the symmet-
33 . (B15) ric j=1 sector in the fit to the inhomogeneous structure
Bg1,4(0)=—2cosfsing, function for various geometrical configurations.
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