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Grains and gas flow: Molecular dynamics with hydrodynamic interactions
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We introduce a simple model for granular flows with hydrodynamic interactions. The hydrodynamic part of
the model relies on a coarse grained picture of the granular medium, and is described in terms of the pressure
by a local Darcy law. The model thus avoids the large computational cost of solving for detailed hydrodynamic
flow fields between grains. The solid phase is described explicitly in terms of grains by event driven molecular
dynamics. In the first two test cases, the model is employed to simulate a sedimenting and a fluidized particle
bed. It is shown that the qualitative aspects of both phenomena are correctly captured: The sedimenting
particles form a sharp upper front and move according to the theoretical prediction, which is also given. When
external pressure gradients are applied the bed fluidizes, and spontaneously produces bubbles of the shape
observed experimentally. Moreover, these bubbles are seen to merge, as is experimentally observed.

PACS number~s!: 81.05.Rm, 47.11.1j, 83.50.2v
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I. INTRODUCTION

Particle flow with both direct and fluid interactions b
tween particles is found in a wide variety of systems. Th
systems include fluidized beds, sedimenting particles,
many granular flows. In fluidized beds@1–3#, which are em-
ployed industrially in order to enhance mixing processes
well known instability produces bubbles above a given g
flow rate. In sedimenting systems differences in particle s
are known to cause segregation and structure forma
@4,5#. In granular flows many distinct phenomena govern
by gas–grain interactions are known: even in a station
settled bed of grains a bubble of air will rise and dissolve
it moves @6#. In gas-filled hourglasses intermittent flow a
well as bubble formation will occur due to the volume e
change between the gas and grain phases~see Refs.@7# and
@8#, which introduce the ‘‘ticking hour glass’’!.

Both the fundamental and industrial interest in these p
nomena call for reliable numerical modeling. However, th
complex nature makes such modeling challenging, an
wide variety of model descriptions with different levels
detail and complexity exist. At the one end particles are
scribed in geometrical detail and the fluid flow is describ
in full on the subparticle scale, while at the other end b
the particle and fluid dynamics are coarse grained at a s
larger than the particles, using conservation relations as
starting point@6,9#. At the detailed extreme the models ta
the interacting particles to define moving boundary con
tions for the Navier-Stokes equations@10–13#. In these mod-
els the interparticle fluid flow field represents the finest le
of resolution. An intermediate approach is taken by Andre
and O’Rourke@14#. They implemented a method based
the coupling of a continuum description of the gas and
kinetic description~given by a Boltzmann equation! of the
particles.

At the detailed end where the description resolves
flow field between the particles, the computational effort
quired per particle is too large for many applications. Ho
ever, for many of the large scale phenomena of interest
level of detail in the description is not needed. In the pres
PRE 611063-651X/2000/61~4!/4054~6!/$15.00
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model the particles constitute the finest level of detail, a
are described by molecular dynamics~MD!, and the hydro-
dynamics is described only on a coarse grained level. In
fluid component of the simulation model the particles a
considered collectively as a deformable porous medium w
a ~Carman-Kozeny! permeability given by the local particle
density. The main advantage of this scheme is to kee
microscopic description of the particles with the ability th
gives to describe strong density variations like shock fro
as well as friction and stagnant particle regions, while avo
ing the large computational cost of obtaining the interparti
fluid flow field.

The model of Tanaka and co-workers@15,16# is perhaps
the one that most closely resembles the present model. H
ever, the description they gave of the fluid dynamics includ
both inertial and drag forces, and is thus given in terms
both the fluid pressure and the velocity field. By neglecti
the fluid inertia entirely we are able to describe the interp
ticle fluid in terms of the pressure alone. The fact that flu
inertia is neglected and the fluid described in terms of
pressure alone gives a model which appears simpler,
presumably more efficient, than existing models with expli
particle descriptions. The conceptual and computational s
plicity along with the ability to reproduce physical effec
like the bubbling of fluidized beds represent the main virtu
of the present approach. Also, while the model by Tana
et al.describes the fluid as incompressible, the present mo
has a tunable fluid compressibility.

The purpose of the present paper is to study and valid
the model. The final application we have in mind conce
locally dense granular flows with hydrodynamic interaction
like the ticking hourglass and related experiments. Howev
the model is directly applicable to sedimentation proces
and fluidized beds@17#, and these phenomena provide
natural testing ground. Considered as a model, the main
vantage of these phenomena is their ability to resolve in
vidual particle motion and deal with large density contra
without loss of numerical stability or accuracy, while mai
taining computational performance by virtue of a simple d
scription of the fluid. In simulations the sedimenting particl
4054 © 2000 The American Physical Society
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PRE 61 4055GRAINS AND GAS FLOW: MOLECULAR DYNAMICS . . .
form a well known shock front at the upper surface, a
below that a roughly constant density@4#. The sedimentation
velocity is shown to conform to a theoretical predictio
which follows rather directly from the design of the mode
The simulated fluidized bed produces bubbles spontaneo
These bubbles are sharply defined as void spaces, and h
characteristic experimental shape. Also, they exhibit the
perimentally observed interaction that make them merge
larger bubbles as they rise@2,18#.

II. MODEL

Figure 1 illustrates conceptually the basis for the mod
The gas flow, shown by the arrows, takes place betw
grains that define a local permeabilityk(rs).

A. Gas dynamics

Although the equation of motion is derived in Ref.@8#, we
rederive it briefly here for completeness. We shall take
permeability to depend on the local volume fractionrs51
2f (f is the porosity! of the solid phase according to th
Carman-Kozeny relation@19#

k~rs!5
a2

9K

~12rs!
3

rs
2

, ~1!

where a is the ~spherical! particle radius, and the consta
K.5 is obtained experimentally for a packing of spheres

The evolution equation for the gas pressure is based
the conservation laws for the gas and grain masses. The
servation of the granular volume fractionrs may be written

]rs

]t
1“•~rsu!50, ~2!

where u is the granular velocity. The conservation of th
mass density of the air,ra , may be written

]ra

]t
1“•S raFu2

k~rs!

m
“PG D50, ~3!

FIG. 1. A conceptual picture of the dynamics. The MD partic
move according to Newton’s laws while the pressure evolves
cording to a local Darcy law for which the particles form a poro
medium.
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where P and m is the gas pressure and viscosity, resp
tively. Here the gas current has both an advective te
caused by the motion of the grains, and a diffusive te
describing the Darcy flow in the local rest frame of referen
for the sand. Substitutingrs512f into Eq. ~2!, we obtain

2
]f

]t
1“•@~12f!u#50. ~4!

Using the isothermal equation of state for an ideal gas,ra
}fP, we can write Eq.~3! in the form

]~fP!

]t
1“•S fPFu2

k

m
“PG D50. ~5!

By eliminating]f/]t between Eqs.~5! and~4!, a small ma-
nipulation gives

fS ]P

]t
1u•“PD5“•S fP

k

m
“PD2P“•u. ~6!

In this equation the left hand side is just the substantial
rivative of the pressure. The first term on the right hand s
describes the Darcy flow in the local rest frame of referen
of the grains. The last term describes pressure changes d
changes in the grain density. See Ref.@3# for a more elabo-
rate discussion of continuum equations like Eq.~6!.

Finally, the numerical solution of Eq.~6! can be simpli-
fied by dividing the pressure into average and fluctuat
parts:P5P01P8. In the experiments we wish to study, th
changes in pressure are only a small fraction of atmosph
pressure, soP8!P0. Neglecting terms of orderO(P8/P0) in
Eq. ~6! leads to

f
]P8

]t
5P0“•S f

k

m
“P8D2P0“•u. ~7!

The simplifications leading to this equation are by no me
crucial. In applications where they are needed the negle
terms may well be reinserted.

For the numerical implementation it is convenient to no
dimensionalize Eq.~7!. Writing the characteristic magnitud
of the permeabilityk05a2/45, we may introduce the char
acteristic grain velocityU05(k0 /m)rgg, where rg is the
mass density of the material that makes up the grains. In
ducing the characteristic length scalel, a characteristic time
scalet[ l /U0 follows. The dimensional quantities may the
be written in terms of nondimensional~primed! quantities as
P5P0P8, u5U0u8, x5 lx8, and t5tt8. Substituting
these relations into Eq.~7!, we obtain

f
]P8

]t8
5Pe21

“8•S f4

~12f!2
“8P8D 2“8•u8, ~8!

where the Peclet number is defined as

Pe5
U0lm

P0k0
5

rglg

P0
. ~9!

The Peclet number derives its name from the fact that it m
be interpreted as the ratio between a diffusive time scale
an advective (l /U0) time scale. Note that it reduces to th

c-
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ratio between the hydrostatic pressurerglg caused by the
grains and the background pressureP0. The simplifications
leading to Eq.~7! imply a small Peclet number. In the simu
lations that follow, we use Pe5231024.

Equations~6! and ~1! describe fluid flow where the fluid
inertia may be neglected. This is generally possible when
Reynolds number@20# is small or the problem at hand i
such that inertia effects are not important. The Reyno
number is small when the particles are small. With air as
fluid and the particles glass spheres a freely falling part
will acquire a Reynolds number of the order 1 when t
particle diameter is around 0.1 mm. This implies that p
ticles must be small. However, when particles become la
the description does not break down in a dramatic way as
first corrections in the Reynolds number amount to sm
corrections in the pressure forces on the particles. As fl
inertia becomes increasingly important, however, it affe
not only the fluid-particle coupling but also the fluid dynam
ics itself, and in these cases an equation describing the
of fluid momentum, like the Euler equation@16#, is needed.

B. Particle dynamics

The particles evolve according to Newton’s second la

m
dv

dt
5mg1FI2

“P

r
, ~10!

wherer is the number density of particles,g is the gravity,m
is the particle mass,FI is the interparticle force, andr
5rsrg /m is the number density. What distinguishes t
present model from conventional models of granular mat
als is the pressure force per particle“P/r. It is the pressure
gradient obtained from the continuum equation~6!, distrib-
uted over the particles present in that volume.

Nondimensionalizing Eq.~10! gives

Fr
dv8

dt8
52 ẑ1

FI

mg
2Pe21

“8P8

rs
, ~11!

where ẑ is a unit vector pointing upwards, and Fr has t
form of a Froude number

Fr[
U0

2

gl
5

U0 /g

t
. ~12!

The Froude number can be considered as the ratio betw
two time scales:U0 /g, the time it takes for a falling particle
to accelerate from rest toU0; and t5 l /U0, the time for a
particle falling at speedU0 to travel a distancel.

In this paper, we use a version of the ‘‘time-of-conta
model’’ @21#, which is an event-driven algorithm to solve E
~10!. Soft sphere molecular dynamics@22# and contact dy-
namics @23# could be used instead. In the event-driv
method, the output velocities after a collision are compu
directly in terms of the input velocities. Ifv is the relative
velocity between two particles, andn̂ is a normal vector
pointing along the line of centers, the normal componen
the output velocityv8 is v8•n̂52rv•n̂, wherer<1 is the
restitution coefficient. Whenr ,1 the collisions are dissipa
tive, and settingr 51 conserves energy. The velocities pe
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pendicular ton̂ are left unchanged: the particles are perfec
smooth, so we can ignore their rotation. Collisions betwee
particle and the walls can be considered in the same w
except that the wall has infinite mass.

The algorithm for computing the grain trajectories is ou
lined below.

~1! Advance all particles by the time stepDt, assuming
the particles do not interact. SinceDt must be chosen so tha
particles move only a small fraction of their diameter ea
time step, the pressure force can be taken as a constant
ing the short timeDt. Therefore, the particles are advanc
along parabolic line segments, corresponding to free fligh
a constant force field.

~2! Compile a list of all overlapping particles.
~3! Scan through the list of overlapping particles. If an

pair has relative velocities such that the two particles
approaching each other, implement a collision between th
two particles. There are two types of collisions: energy co
serving and dissipative. If a particle has already suffere
collision in the current or preceding time step, then all co
sions involving that particle are energy conserving. Oth
wise, they are dissipative. This rule is necessary to av
inelastic collapse~an infinite number of collisions in finite
time @22#!. Repeat this step until all pairs of particles a
separating. Then go to step~1!.

We now need to definer and u in terms of the particle
positions and velocitiesvi ( i labels individual particles!. In
order to obtain a continuous density field we will distribu
the particle mass in a halo which goes continuously to z
around the particle. This is a standard procedure, and is d
by introducing the halo function

s~x2x0!

5H S 12
ux2x0u

l D S 12
uy2y0u

l D , ux2x0u,uy2y0u, l

0 otherwise ,
~13!

wherex is the particle position andx0 is the position of a site
in the lattice on whichP is computed. This function is show
in Fig. 2. The lattice constant isl, ands has the property tha
it distributes a particle mass over the four nearest lat
sites, i.e., over a region larger than the particle interact
radius. This follows from the observation that

(
k

s~x2xk!51, ~14!

FIG. 2. The particle halo function.
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wherek labels the nearest lattice sites (k51, . . . ,4 on atwo-
dimensional square lattice!. The on-site mass density an
velocity u are now easily defined as

r~x0![(
i 51

N

s~xi2x0!, ~15!

j[ru~x0![(
i 51

N

s~xi2x0!vi , ~16!

whereN is the particle number andvi the particle velocity.
The advantage of these definitions is thatr andu now vary
smoothly as functions particle positions. The divergen
“•u is evaluated as a finite difference.

Just as the halo function may be used to obtain smo
particle input to Eq.~6!, it may be used the other way; t
distribute the pressure forces on the particles. The pres
gradient term in Eq.~10! is evaluated at pointx as

“P

r
5(

k
s~x2xk!~“p!k /rk , ~17!

where the sum is taken over all grid points, (“p)k is the
pressure gradient at grid pointk, andrk is the density. Since
the halo function is nonzero only at the four nearest g
points, there will be only four terms in the sum. Recall th
“p is the rate at which momentum is being transferred fr
the fluid to the particles. Equation~17! simply states that a
particle’s share of the momentum deposited at a certain
point is proportional to that particle’s contribution to the de
sity at that same grid point.

C. Implementation

For the model to work in practice it is necessary to int
duce a cutoffrmin on the density. This has both physical a
numerical reasons. Physically there is no sense in defini
permeability field if the particle density is too low. Th
Carman-Kozeny permeability gives a reasonable predic
only whenrs.0.25 @24#. Numerically the pressure compu
tations will encounter problems in the form of instabilitie
both when the permeability becomes too high and when
source term becomes too erratic, as will happen whenrs
→0. Therefore, we shall takers5rmin wherever the mea
sured density in Eq.~15! is less thanrmin . This introduces a
cutoff on the permeability,k,k(rmin). Likewise, when the
pressure force on the dilute particles are computed, we s
usermin in place of the actual density when it is too sma
This implies that the pressure ‘‘feels’’ a permeability corr
sponding to a higher than actual particle density. Cor
spondingly, the particles are subjected to the force“P/r
5“P/rmin , whenrs,rmin . This means that the particles i
the volume cellDV corresponding to a lattice site will no
absorb the entire force“PDV when rs,rmin . However,
due to the overestimate made byk(rs) in dilute regions, the
force per particle will still be larger than the single partic
Stokes drag@20#. This means that the error made by intr
ducing the cutoff is mainly that dilute particles fall somewh
more slowly than they should.

Although the practical implementation of the prese
model in three dimensions is not significantly harder than
e
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two dimensions, we wish to simulate a two-dimensional~2D!
system because it is numerically less expensive. Howe
the Carman-Kozeny equation~1! is a three-dimensional rela
tion as it gives the permeability in terms of the volume fra
tion of spheresrs , and we wish in the end to compare o
results to real three-dimensional experiments. Conseque
we need to transform the area fraction of grains in the sim
lations rs

(2D) , to the volume fractionrs in such a way that
the closed packed value ofrs

(2D) corresponds to the close
packed value ofrs . This is approximately achieved by th
transformationrs5(2/3)rs

(2D) , which we use in the follow-
ing.

In the simulations we use a distribution of particle sizes
avoid the two-dimensional hexagonal ordering. To impro
the relation between the two- and three-dimensional pack
densities the closed packed value ofrs

(2D) will eventually be
measured and compared to the three-dimensional ran
closed packed values. For the present validation proc
however, this is not needed, and we use the 2/3 factor.

III. SEDIMENTATION

The simplest application of our model, and one that c
responds to a common experimental measurement, is the
termination of sedimentation velocities. A volume is initial
filled with a uniform mixture of gas and particles, and th
the particles are allowed to settle. Experimentally, one
serves a sharp boundary between the clear fluid at the to
the container and the particle phase below. This front mo
with a well defined velocity, called the sedimentation velo
ity, which depends on the initial density of the particles. Th
experiment is easy to simulate; in Fig. 3, we show a typi
snapshot from a simulation: the sharp front at the top of
vessel is visible. Another feature is the variations of parti
density which form below the front, not unlike the structu
formation observed in Batchelor and van Rensburg’s se
mentation experiments with two particle sizes@4#. In Fig. 4,
we compare the sedimentation velocities observed in
simulations with theoretical values predicted by assum
that the density below the sedimentation front is unifor
and the particles fall without accelerating.

Since the particle volume that is transported downwa
must be compensated for by an equal volume upflow of flu
it is a simple matter to derive a theoretical value for t
sedimentation velocity. The conservation of volume mea
that

~12f!u52u1
k~f!

m
“P, ~18!

where u is the local velocity of the grains and the oth
quantities are as defined previously. Solving this equation
u, we obtain

u5
k~f!

m~22f!
“P. ~19!

Now the neglect of inertial effects means that the press
forces must balance the grain weight, i.e.,“P5rsrgg
5rg(12f)g, wherersrg is the bulk density of the grains
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rg is the density of the material that make up the grains,
g is the acceleration of gravity. Now using Eq.~1!, we obtain
the sedimentation velocity

u52U0

~12rs!
3

rs~11rs!
ẑ , ~20!

FIG. 3. Simulation of a sedimentation experiment. There
18 104 particles, and the size of the domain is 62l 392l . The values
of the dimensionless numbers are Pe50.0002 and Fr51. This pic-
ture shows a snapshot att530t. The walls are perfectly smooth.

FIG. 4. The sedimentation velocityu, scaled by the typical ve-
locity U0, as a function of granular volume fractionrs . Each data
point corresponds to the results of one simulation at a differ
initial density. The solid line shows the theoretical result shown
Eq. ~20!.
d

where as beforeU05a2rgg/(45m).
Figure 3 shows a snapshot of a sedimentation simulat

and Fig. 4 the sedimentation velocityvy5u/U0 which is
measured by averaging over a series of such simulati
Each simulation runs for 50t, and data are recorded eve
Dt510t. First, average density and velocity profiles are o
tained by averaging horizontally. Then, to exclude the set
material at the bottom of the simulation, points with a velo
ity of less than half the maximum are excluded. To exclu
the data points contaminated by the clear region above
settling material, the maximum density of the remaini
points is found, and points with less than two-thirds of th
density are also excluded. The remaining points are avera
to give a single (r,vy) pair for each time. Then the five
points for each simulation are combined to give the sin
point on the graph. Each simulation has 18 104 particles,
a container width of 60l , with the height adjusted to give th
desired density~it ranges from 60l to 124l ). The particles
have diameters uniformly distributed in@0.7dmax anddmax],
wheredmax50.5l . The coefficient of restitution isr 50.8.

The full line in Fig. 4 shows the theoretical result fo
homogeneous sedimentation Eq.~20!. In spite of the density
inhomogeneities shown in Fig. 3, the observed sedimenta
values agree well with the theoretical prediction whenrs
.0.3. We attribute the discrepancy between measurem
and theory forrs,0.3 to the presence of regions where t
local densityr falls below rmin50.25. These regions ar
caused by local density fluctuations, and here the permea
ity k(rmin) is smaller thank(r). Consequently, the mea
sured settling velocity becomes smaller than the velocity p
dicted by the theory which does not include the effect of
density cutoff.

IV. FLUIDIZED BEDS

As a next test of the model we inject a constant flux of
at the bottom while removing an equilivalent flux from th
top in order to produce the bubbling behavior as obser
experimentally in gas fluidized beds@1,17,18#. The air is
injected by adjusting the pressure in the bottom row of g
points according to the assumption that the air is isotherm
We specify the amount of air by the volume it would occu
if P5P0. Thus a volume injection ofDV is implemented by
a pressure increaseDP52PDV/V, whereV is the volume
of the region where the pressure is increased. Thus, in Fig
a total of 240l 2 is injected at the bottom, and the equivale
amount is removed from the top. The formation of bubbles
a salient phenomenon in gas–grain flow, of which the mo
captures the main features.

Figure 5 shows a time series of a fluidization simulati
with initial alternating layers of black and white particle
The particles differ by their color only. The computation w
carried out with 18 104 particles and the size of the domai
60l 384l . A ~two-dimensional! volume of air of 240l 2 was
injected uniformly across the bottom during the first 20t of
the simulation. The entire simulation took about 3 h on a
workstation.

Three main features of this simulation should be not
First the bubbles form spontaneously when the pressure
ference is turned on. Second, small bubbles coalesce as
move upwards, forming larger bubbles. Finally, the shape
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the bubbles have the same qualitative features that are
served experimentally@18#. The two first features are als
seen experimentally@1,18#. The first and last of the abov
features were also observed in the simulations of Kawagu
et al. @16#. We note that due to the lack of sliding frictio
between the particles in the present simulations, the sys

FIG. 5. A time sequence showing the simulation of fluidizatio
The times are given in dimensionless units. The dimension
numbers were Pe50.0002 and Fr51.
c

,

h

tt.

. E
b-

hi

m

may start forming bubbles at a denser state than in real
tems. Furthermore, the bubbles next to the walls rise ab
mally quickly because there is no friction at the walls. T
stationary layer of particles at the very bottom is caused
the discretization of the pressure field, and is a numer
rather than physical effect.

V. CONCLUSION

In conclusion we have introduced a model where gr
and gas flow couples. This has been done with a guid
principle of maximizing the conceptual and numerical si
plicity. For that reason the particles move without rotati
and friction, though there is a coefficient of restitution, a
fluid that is inertia is neglected. This allows for a very simp
description as the fluid is described in terms of a Darcy la
and the particles in terms of event-driven molecular dyna
ics. In both fluidization phenomena and granular flows th
is often a multitude of different scales that need to be
solved. For that reason numerical efficiency is often cruc
and the problem may only be modeled if less relevant inf
mation and details of the process are discarded. The resu
the simplification made in the present model is a relativ
efficient and robust computational scheme with most of
versatility of more involved models. In particular the mod
shows much promise for the application to granular flows
which it is now being applied.

The model has been implemented on two test problem
sedimentation and fluidization. The sedimentation veloc
measured in the simulations agreed with the anticipated
oretical velocity, save for corrections due to structure form
tion in the sedimenting bed. In the case of fluidized beds
simulations reproduced the key qualitative features kno
from experiments, i.e., spontaneous bubble formation, c
lescence of these bubbles, and the characteristic bu
shapes.
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