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Grains and gas flow: Molecular dynamics with hydrodynamic interactions
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We introduce a simple model for granular flows with hydrodynamic interactions. The hydrodynamic part of
the model relies on a coarse grained picture of the granular medium, and is described in terms of the pressure
by a local Darcy law. The model thus avoids the large computational cost of solving for detailed hydrodynamic
flow fields between grains. The solid phase is described explicitly in terms of grains by event driven molecular
dynamics. In the first two test cases, the model is employed to simulate a sedimenting and a fluidized particle
bed. It is shown that the qualitative aspects of both phenomena are correctly captured: The sedimenting
particles form a sharp upper front and move according to the theoretical prediction, which is also given. When
external pressure gradients are applied the bed fluidizes, and spontaneously produces bubbles of the shape
observed experimentally. Moreover, these bubbles are seen to merge, as is experimentally observed.

PACS numbegps): 81.05.Rm, 47.1%4:j, 83.50—~v

[. INTRODUCTION model the particles constitute the finest level of detail, and
are described by molecular dynami@®4D), and the hydro-

Particle flow with both direct and fluid interactions be- dynamics is described only on a coarse grained level. In the
tween particles is found in a wide variety of systems. Thesdluid component of the simulation model the particles are
systems include fluidized beds, sedimenting particles, andonsidered collectively as a deformable porous medium with
many granular flows. In fluidized bed$—3], which are em- a (Carman-Kozenypermeability given by the local particle
ployed industrially in order to enhance mixing processes, alensity. The main advantage of this scheme is to keep a
well known instability produces bubbles above a given gasmicroscopic description of the particles with the ability this
flow rate. In sedimenting systems differences in particle sizgjives to describe strong density variations like shock fronts
are known to cause segregation and structure formatioas well as friction and stagnant particle regions, while avoid-
[4,5]. In granular flows many distinct phenomena governedng the large computational cost of obtaining the interparticle
by gas—grain interactions are known: even in a stationaryluid flow field.
settled bed of grains a bubble of air will rise and dissolve as The model of Tanaka and co-workdiks,16| is perhaps
it moves[6]. In gas-filled hourglasses intermittent flow as the one that most closely resembles the present model. How-
well as bubble formation will occur due to the volume ex- ever, the description they gave of the fluid dynamics includes
change between the gas and grain phdses Refs[7] and  both inertial and drag forces, and is thus given in terms of
[8], which introduce the “ticking hour glasg’ both the fluid pressure and the velocity field. By neglecting

Both the fundamental and industrial interest in these phethe fluid inertia entirely we are able to describe the interpar-
nomena call for reliable numerical modeling. However, theirticle fluid in terms of the pressure alone. The fact that fluid
complex nature makes such modeling challenging, and @ertia is neglected and the fluid described in terms of the
wide variety of model descriptions with different levels of pressure alone gives a model which appears simpler, and
detail and complexity exist. At the one end particles are depresumably more efficient, than existing models with explicit
scribed in geometrical detail and the fluid flow is describedparticle descriptions. The conceptual and computational sim-
in full on the subparticle scale, while at the other end bothplicity along with the ability to reproduce physical effects
the particle and fluid dynamics are coarse grained at a scalie the bubbling of fluidized beds represent the main virtues
larger than the particles, using conservation relations as thef the present approach. Also, while the model by Tanaka
starting point6,9]. At the detailed extreme the models take et al. describes the fluid as incompressible, the present model
the interacting particles to define moving boundary condi-has a tunable fluid compressibility.
tions for the Navier-Stokes equatiofi0—-13. In these mod- The purpose of the present paper is to study and validate
els the interparticle fluid flow field represents the finest levelthe model. The final application we have in mind concerns
of resolution. An intermediate approach is taken by Andrewdocally dense granular flows with hydrodynamic interactions,
and O’Rourke[14]. They implemented a method based onlike the ticking hourglass and related experiments. However,
the coupling of a continuum description of the gas and ahe model is directly applicable to sedimentation processes
kinetic description(given by a Boltzmann equatiprof the  and fluidized bedq417], and these phenomena provide a
particles. natural testing ground. Considered as a model, the main ad-

At the detailed end where the description resolves thevantage of these phenomena is their ability to resolve indi-
flow field between the particles, the computational effort re-vidual particle motion and deal with large density contrasts
quired per particle is too large for many applications. How-without loss of numerical stability or accuracy, while main-
ever, for many of the large scale phenomena of interest thitaining computational performance by virtue of a simple de-
level of detail in the description is not needed. In the presenscription of the fluid. In simulations the sedimenting particles
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where P and u is the gas pressure and viscosity, respec-
tively. Here the gas current has both an advective term
caused by the motion of the grains, and a diffusive term
describing the Darcy flow in the local rest frame of reference
for the sand. Substitutings=1— ¢ into Eq. (2), we obtain

by -
- VA= gul=0. @

Using the isothermal equation of state for an ideal ggs,
«pP, we can write Eq(3) in the form

I(#P)
at

+v-(¢P

u— —vp )=o. )
)

FIG. 1. A conceptual picture of the dynamics. The MD particles By eliminating d¢/dt between Eqs(5) and(4), a small ma-
move according to Newton’s laws while the pressure evolves acnipulation gives
cording to a local Darcy law for which the particles form a porous
medium. JP
4

K
E+U-VP)=V~(¢P;VP)—PV-U- (6)

form a well known shock front at the upper surface, and

below that a roughly constant densfgj. The sedimentation In this equation the left hand side is just the substantial de-
velocity is shown to conform to a theoretical prediction, rivative of the pressure. The first term on the right hand side
which follows rather directly from the design of the model. describes the Darcy flow in the local rest frame of reference
The simulated fluidized bed produces bubbles spontaneouslgf the grains. The last term describes pressure changes due to
These bubbles are sharply defined as void spaces, and havel@nges in the grain density. See H&. for a more elabo-
characteristic experimental shape. Also, they exhibit the exrate discussion of continuum equations like Eg).

perimentally observed interaction that make them merge into Finally, the numerical solution of Eq6) can be simpli-

larger bubbles as they rig&,18]. fied by dividing the pressure into average and fluctuating
parts:P=Py+ P’. In the experiments we wish to study, the
Il. MODEL changes in pressure are only a small fraction of atmospheric

pressure, s®’'<P,. Neglecting terms of orded(P'/Py) in
Figure 1 illustrates conceptually the basis for the modelEq. (6) leads to
The gas flow, shown by the arrows, takes place between
grains that define a local permeabilitfps).

!

A LS IR 7
¢7—0'¢; —FoV-u. (7)

A. Gas dynamics The simplifications leading to this equation are by no means

Although the equation of motion is derived in RE8], we  crucial. In applications where they are needed the neglected
rederive it briefly here for completeness. We shall take theerms may well be reinserted.

permeability to depend on the local volume fractiop=1 For the numerical implementation it is convenient to non-
— ¢ (¢ is the porosity of the solid phase according to the dimensionalize Eq(7). Writing the characteristic magnitude
Carman-Kozeny relatiofl9] of the permeabilityx,=a?/45, we may introduce the char-
2 (1-py)® acteristic grain velocityJo=(xo/u)py9, Where pg is the
S

(1) ~mass density of the material that makes up the grains. Intro-
ducing the characteristic length scélea characteristic time
scaler=1/U follows. The dimensional quantities may then

wherea is the (spherical particle radius, and the constant P& written in terms of nondimensiongdrimed quantities as

K=5 is obtained experimentally for a packing of spheres. P=PoP’, u=Uou’, x=Ix’, and t=rt’. Substituting

The evolution equation for the gas pressure is based offl€se relations into Eq7), we obtain
the conservation laws for the gas and grain masses. The con-

K(Ps)zg_K

2
Ps

servation of the granular volume fractigg may be written ¢1: Pely’ ( ¢* V’P’) v ®)
' (1-¢)?
P
(9—IS+V (psu) =0, (2)  where the Peclet number is defined as
Uol u :Pglg

whereu is the granular velocity. The conservation of the
mass density of the aip,, may be written

e= Pokg Po | 9)

The Peclet number derives its name from the fact that it may

k(ps) VPD —0, 3) be interpreted as the ratio between a diffusive time scale and

Ipa
—+tV: . . .
v an advective If{Ug) time scale. Note that it reduces to the

ot

Pa| U~
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ratio between the hydrostatic pressyrgg caused by the
grains and the background pressig The simplifications
leading to Eq(7) imply a small Peclet number. In the simu-
lations that follow, we use Pe2x 10~ 4.

Equations(6) and (1) describe fluid flow where the fluid
inertia may be neglected. This is generally possible when the
Reynolds numbef20] is small or the problem at hand is
such that inertia effects are not important. The Reynolds
number is small when the particles are small. With air as the
fluid and the particles glass spheres a freely falling particle
will acquire a Reynolds number of the order 1 when the
particle diameter is around 0.1 mm. This implies that parpendicular ton are left unchanged: the particles are perfectly
ticles must be small. However, when particles become largesmooth, so we can ignore their rotation. Collisions between a
the description does not break down in a dramatic way as thparticle and the walls can be considered in the same way,
first corrections in the Reynolds number amount to smalkxcept that the wall has infinite mass.
corrections in the pressure forces on the particles. As fluid The algorithm for computing the grain trajectories is out-
inertia becomes increasingly important, however, it affectdined below.
not only the fluid-particle coupling but also the fluid dynam- (1) Advance all particles by the time steyt, assuming
ics itself, and in these cases an equation describing the flowhe particles do not interact. Sindg must be chosen so that
of fluid momentum, like the Euler equati¢6], is needed. particles move only a small fraction of their diameter each
time step, the pressure force can be taken as a constant dur-
ing the short timeAt. Therefore, the particles are advanced
along parabolic line segments, corresponding to free flight in
a constant force field.

(2) Compile a list of all overlapping particles.

(3) Scan through the list of overlapping patrticles. If any
pair has relative velocities such that the two particles are
wherep is the number density of particlegjs the gravitym  @Pproaching each other, implement a collision between these
is the particle massF, is the interparticle force, ang two _parUcIes. Th_ere are two types of collisions: energy con-
=pepg/m is the number density. What distinguishes theServing e_md dissipative. If a par.tlcle.has already suffereq a
present model from conventional models of granular matericollision in the current or preceding time step, then all colli-
als is the pressure force per parti®lé®/p. It is the pressure SIONS involving that particle are energy conserving. Other-
gradient obtained from the continuum equati@h, distrib- ~ Wise, they are dissipative. This rule is necessary to avoid

s(x)

2a—

particle /

extension

FIG. 2. The particle halo function.

B. Particle dynamics

The particles evolve according to Newton’s second law:

dv_
mm—

VP

mg+ FI_T’ (10)

uted over the particles present in that volume.
Nondimensionalizing Eq10) gives

11

wherez is a unit vector pointing upwards, and Fr has the

form of a Froude number

_Ug_ Uo/g
=l

(12

T

The Froude number can be considered as the ratio between

two time scalest, /g, the time it takes for a falling particle
to accelerate from rest tdy; and 7=1/U,, the time for a
particle falling at speed), to travel a distancé

In this paper, we use a version of the “time-of-contact

model” [21], which is an event-driven algorithm to solve Eq.
(10). Soft sphere molecular dynami¢22] and contact dy-

inelastic collapsgan infinite number of collisions in finite
time [22]). Repeat this step until all pairs of particles are
separating. Then go to steép).

We now need to definp andu in terms of the particle
positions and velocities; (i labels individual particles In
order to obtain a continuous density field we will distribute
the particle mass in a halo which goes continuously to zero
around the particle. This is a standard procedure, and is done
by introducing the halo function

S(X—Xp)

|
0 otherwise,

1

ly—Yol
(1— | Pxexelly=yol<l

(13

wherex is the particle position anxj, is the position of a site

namics [23] could be used instead. In the event-drivenin the lattice on whiclP is computed. This function is shown
method, the output velocities after a collision are computedn Fig. 2. The lattice constant Is ands has the property that

directly in terms of the input velocities. ¥ is the relative
velocity between two particles, aml is a normal vector

pointing along the line of centers, the normal component o

the output velocity’ is v/-n=—rv-n, wherer<1 is the
restitution coefficient. When<1 the collisions are dissipa-
tive, and setting =1 conserves energy. The velocities per-

it distributes a particle mass over the four nearest lattice
sites, i.e., over a region larger than the particle interaction

]radius. This follows from the observation that

2k S(X—x) =1, (14)
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wherek labels the nearest lattice sitds<1, ... ,4 on @awo-  two dimensions, we wish to simulate a two-dimensid2al)
dimensional square lattiteThe on-site mass density and system because it is numerically less expensive. However,
velocity u are now easily defined as the Carman-Kozeny equatidf) is a three-dimensional rela-
\ tion as it gives the permeability in terms of the volume frac-
tion of spheres, and we wish in the end to compare our
P(XO)E; S(Xi—Xo), (19 results to real three-dimensional experiments. Consequently
we need to transform the area fraction of grains in the simu-
N lations p®®), to the volume fractiorps in such a way that
jEpu(xo)EZ S(X,—Xg)Vi , (16 the closed packed value go@ZD) corresponds to the closed
=1 packed value opg. This is approximately achieved by the

whereN is the particle number and the particle velocity. f[ransformatlorps—(2/3)pg ), which we use in the follow-

The advantage of these definitions is thaandu now vary N9 ) ) o ) .
smoothly as functions particle positions. The divergence Ir_1the S|mulat_|ons we use a distribution of'partlcle.S|zes to
V.u is evaluated as a finite difference. avoid the two-dimensional hexagonal ordering. To improve
Just as the halo function may be used to obtain smootH€ rélation between the two- and thrDee-o-IimensionaI packing
particle input to Eq.(6), it may be used the other way; to densities the closed packed valuepdt™ will eventually be
distribute the pressure forces on the particles. The pressufgéasured and compared to the three-dimensional random
gradient term in Eq(10) is evaluated at point as closed packed values. For the present validation process
however, this is not needed, and we use the 2/3 factor.
VP
T:; S(X=X) (VP)i/ pic, 17 lIl. SEDIMENTATION

where the sum is taken over all grid point¥ ), is the The simplest application of our model, and one that cor-
pressure gradient at grid poiktandp, is the density. Since responds to a common experimental measurement, is the de-
the halo function is nonzero only at the four nearest gridtermination of sedimentation velocities. A volume is initially
points, there will be only four terms in the sum. Recall thatfilled with a uniform mixture of gas and particles, and then
Vp is the rate at which momentum is being transferred fromthe particles are allowed to settle. Experimentally, one ob-
the fluid to the particles. Equatiofl7) simply states that a serves a sharp boundary between the clear fluid at the top of
particle’s share of the momentum deposited at a certain grithe container and the particle phase below. This front moves
point is proportional to that particle’s contribution to the den-with a well defined velocity, called the sedimentation veloc-

sity at that same grid point. ity, which depends on the initial density of the particles. This
experiment is easy to simulate; in Fig. 3, we show a typical
C. Implementation snapshot from a simulation: the sharp front at the top of the

vessel is visible. Another feature is the variations of particle

For the model to work in practice it is necessary {0 intro- jo g \which form below the front, not unlike the structure
duce a cutofipyi, on the density. This has both physical and ¢, mation observed in Batchelor and van Rensburg's sedi-

numerical reasons. Physically there is no sense in defining RAentation experiments with two particle siZd3. In Fig. 4,

permeability field if the particle density is too0 low. The o compare the sedimentation velocities observed in the

Carman-Kozeny permeability g.ives a reasonable predictiogjn, jations with theoretical values predicted by assuming
on!y whenps>0.25 [24]. Numerlcglly the Pressuré CoOmpu- hat the density below the sedimentation front is uniform,
tations will encounter problems in the form of instabilities 5,4 the particles fall without accelerating.

both when the permeability becomes too high and when the  gjnce the particle volume that is transported downwards
source term becomes too erratic, as will happen when st he compensated for by an equal volume upflow of fluid,
—0. Therefore, we shall takgs=pmin wherever the mea- i is 5 simple matter to derive a theoretical value for the

sured density in EQ19) is less tharpm,. This introduces a  segimentation velocity. The conservation of volume means
cutoff on the permeabilityx < x(pmin). Likewise, when the  ¢5¢

pressure force on the dilute particles are computed, we shall

usepmin in place of the actual density when it is too small. k(&)

This implies that the pressure “feels” a permeability corre- (1-¢p)u=—u+——-VP, (18
sponding to a higher than actual particle density. Corre- K

spondingly, the particles are subjected to the fowce/p
=VP/pmin, Whenps<pnin- This means that the particles in
the volume cellAV corresponding to a lattice site will not

where u is the local velocity of the grains and the other
quantities are as defined previously. Solving this equation for

absorb the entire forc¥ PAV when ps<pnin. However, u, we obtain

due to the overestimate made kyps) in dilute regions, the

force per particle will still be larger than the single particle u= «(¢) VP (19)
Stokes drad20]. This means that the error made by intro- u(2=¢)

ducing the cutoff is mainly that dilute particles fall somewhat

more slowly than they should. Now the neglect of inertial effects means that the pressure

Although the practical implementation of the presentforces must balance the grain weight, i.&/,P=pp,0
model in three dimensions is not significantly harder than in=p4(1— ¢)g, wherepgp, is the bulk density of the grains,
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where as befor&),=a’p,g/(45u).

Figure 3 shows a snapshot of a sedimentation simulation,
and Fig. 4 the sedimentation velocity,=u/U, which is
measured by averaging over a series of such simulations.
Each simulation runs for 5 and data are recorded every
At=10r. First, average density and velocity profiles are ob-
tained by averaging horizontally. Then, to exclude the settled
material at the bottom of the simulation, points with a veloc-
ity of less than half the maximum are excluded. To exclude
the data points contaminated by the clear region above the
settling material, the maximum density of the remaining
points is found, and points with less than two-thirds of this
density are also excluded. The remaining points are averaged
to give a single g,vy) pair for each time. Then the five
points for each simulation are combined to give the single
point on the graph. Each simulation has 18 104 particles, and
a container width of 60 with the height adjusted to give the
desired densityit ranges from 6Dto 124). The particles
have diameters uniformly distributed [0.7d . and d 5],
whered,,,,=0.9. The coefficient of restitution is=0.8.

The full line in Fig. 4 shows the theoretical result for
homogeneous sedimentation Eg0). In spite of the density
inhomogeneities shown in Fig. 3, the observed sedimentation
values agree well with the theoretical prediction when
>0.3. We attribute the discrepancy between measurement
and theory forps<0.3 to the presence of regions where the
local densityp falls below p.,i,=0.25. These regions are
caused by local density fluctuations, and here the permeabil-

FIG. 3. Simulation of a sedimentation experiment. There arety «(pnyn) IS smaller thank(p). Consequently, the mea-
18 104 particles, and the size of the domain i5X622 . The values  sured settling velocity becomes smaller than the velocity pre-

of the dimensionless numbers are=R®0002 and Fr1. This pic-  dicted by the theory which does not include the effect of the
ture shows a snapshot &t 307. The walls are perfectly smooth.  density cutoff.

pg is the density of the material that make up the grains, and

g is the acceleration of gravity. Now using Ed), we obtain

the sedimentation velocity As a next test of the model we inject a constant flux of air
at the bottom while removing an equilivalent flux from the
top in order to produce the bubbling behavior as observed

IV. FLUIDIZED BEDS

3
:_UOM 3 (200  experimentally in gas fluidized bed4,17,18. The air is
ps(1+ps) injected by adjusting the pressure in the bottom row of grid
points according to the assumption that the air is isothermal.
0.0 , , , We specify the amount of air by the volume it would occupy

if P=Pgy. Thus a volume injection chV is implemented by
a pressure increaseP=—PAV/V, whereV is the volume
of the region where the pressure is increased. Thus, in Fig. 5,
05 t 1 a total of 240 is injected at the bottom, and the equivalent
amount is removed from the top. The formation of bubbles is
a salient phenomenon in gas—grain flow, of which the model
1o) captures the main features.
10 | & 1 Figure 5 shows a time series of a fluidization simulation
with initial alternating layers of black and white particles.
The particles differ by their color only. The computation was
carried out with 18 104 particles and the size of the domain is

-1.502 03 02 o5 06 601 X 84l. A (two-dimensional volume of air of 240? was

’ ’ : ' ' injected uniformly across the bottom during the first-2f
Ps the simulation. The entire simulation took aibd@® h on a
FIG. 4. The sedimentation velocity, scaled by the typical ve- Workstation.

locity Ug, as a function of granular volume fractigny. Each data Three main features of this simulation should be noted.
point corresponds to the results of one simulation at a differenfirst the bubbles form spontaneously when the pressure dif-
initial density. The solid line shows the theoretical result shown inference is turned on. Second, small bubbles coalesce as they
Eqg. (20). move upwards, forming larger bubbles. Finally, the shape of

u/U,
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may start forming bubbles at a denser state than in real sys-
t=151 t=201 tems. Furthermore, the bubbles next to the walls rise abnor-
mally quickly because there is no friction at the walls. The
stationary layer of particles at the very bottom is caused by
the discretization of the pressure field, and is a numerical
rather than physical effect.

V. CONCLUSION

In conclusion we have introduced a model where grain
and gas flow couples. This has been done with a guiding
principle of maximizing the conceptual and numerical sim-
plicity. For that reason the particles move without rotation
and friction, though there is a coefficient of restitution, and
=301 =401 fluid t_ha; is inertia is n_eglected. _This _allows for a very simple

description as the fluid is described in terms of a Darcy law,
and the particles in terms of event-driven molecular dynam-
ics. In both fluidization phenomena and granular flows there
is often a multitude of different scales that need to be re-
solved. For that reason numerical efficiency is often crucial,
and the problem may only be modeled if less relevant infor-
mation and details of the process are discarded. The result of
the simplification made in the present model is a relatively
efficient and robust computational scheme with most of the
versatility of more involved models. In particular the model
shows much promise for the application to granular flows, to

FIG. 5. A time sequence showing the simulation of fluidization. Which it is now being applied.

The times are given in dimensionless units. The dimensionless The model has been implemented on two test problems—
numbers were Pe0.0002 and F1. sedimentation and fluidization. The sedimentation velocity

measured in the simulations agreed with the anticipated the-
the bubbles have the same qualitative features that are obretical velocity, save for corrections due to structure forma-
served experimentally18]. The two first features are also tion in the sedimenting bed. In the case of fluidized beds the
seen experimentally1,18]. The first and last of the above simulations reproduced the key qualitative features known
features were also observed in the simulations of KawaguchHirom experiments, i.e., spontaneous bubble formation, coa-
et al. [16]. We note that due to the lack of sliding friction lescence of these bubbles, and the characteristic bubble
between the particles in the present simulations, the systeshapes.
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