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Three-dimensional dendrite-tip morphology at low undercooling
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We investigate the three-dimensional morphology of the dendrite tip using the phase-field method. We find
that, for low undercoolings, this morphology is ostensibly independent of anisotropy strength except for a
localized shape distortion near the tip that only affects the value of the tip radiukich is crudely approxi-
mated byp~(1—-a)p,, Wherep,, is the Ivantsov tip radius of an isothermal paraboloid with the same tip
velocity ande is the stiffness anisotrogyThe universal tip shape, which excludes this distortion, is well fitted
by the formz= —r2/2+ A,r* cos 4 where|z| is the distance from the tip and all lengths are scaleg by
This fit yieldsA, in the range 0.0040.005 in good quantitative agreement with the existing tip morphology
measurements in succinonitrlleaCombeet al, Phys. Rev. 52, 2778(1995], which are reanalyzed here and
found to be consistent with a single cas thode nonaxisymmetric deviation from a paraboloid. Moreover, the
fin shape away from the tip is well fitted by the power law — a|x|>® with a~0.68. Finally, the character-
ization of the operating state of the dendrite tip is revisited in the light of these results.

PACS numbses): 68.70+w, 81.10.Aj, 64.70.Dv, 81.30.Fb

[. INTRODUCTION growth axisz with all lengths scaled by,,. The improved
prediction A,=1/96 has been obtained in a subsequent
The shape of crystal dendrites was first suggested by Panalysis[6].
papetroy 1] to be parabolic, and slightly more than a decade To characterize the shape further behind the tip, Brener
later Ivantsov demonstratd@] that a paraboldparaboloid remarked that the cross-sectional shape of needle crystal den-
is an exact solution of the steady-state growth equations idrites perpendicular to the growth axis can be assumed to
two (three dimensions when capillary effects are entirely evolve with increasing distande| from the tip as a two-
neglected and the interface is isothermal. He derived theimensional growth shape in tima=|z|/V). The area of

well-known relationship this shape increases linearly in time, and thajs as
= exp(—s) S(z)=2mp,,|2, (©)]
A=P|Uexp(P,,,)f ds——— (1)
Pry S wherep,, is defined by Eq(1) with V being the actual tip

velocity. This area corresponds to the well-known self-

between the Peclet numbey,=p,,V/(2D) and the dimen- similarity solution of a growing circle in two dimensions and
sionless undercooling = (T —T..)/(L/c,) for a paraboloid is also the exact cross-sectional area of the three-dimensional
of tip velocity V and tip radiusp,, whereD is the thermal Ivantsov paraboloid of revolution. The above mapping is
diffusivity, Ty is the melting temperaturd,,, is the initial  presumed to become justified far enough away from the tip
temperature of the undercooled liquldjs the latent heat of where the component of the heat flux alongan be ne-
melting, andc,, is the specific heat at constant pressure.  glected. Using this mapping and the results of a previous

In more recent history, the development of solvability analysis of two-dimensional anisotropic Laplacian growth at
theory[3,4] has led to the additional and crucial understand-constant flux[8], he predicted that the width of the four
ing that the anisotropic surface energy acts as a singular pedendrite fins should increase as the 3/5 power of the distance
turbation that uniquely selects the tip velocity, and also alterdehind the tig7], yielding the expression
the entire dendrite shapb—7]. According to this theory, the U3
scaling paramete&*=2Dd0/p|2UV (whered,, defined be- 3(0*) 1x]55

low, is the capillary length approaches a constant at low == 5

undercooling that only depends on the anisotropy strength

(denoted here by, for a crystal with an underlying cubic  wherex is the interface coordinate normal to theuis in a
symmetry, and scales as* ~ ¢, in the limit of vanishingly (010 section of the tip andr5 (o*) is the tip scaling pa-
small anisotropy. In this same limit, Ben Amar and Brenerrameter in two (threg dimensions. Moreover, the ratio

[5] have predicted that capillary effects lead to a universa{,; /o* becomes independent of anisotropy for weak anisot-
fourfold deviation from a paraboloid of the form ropy with (o3 /0*)Y3~1.

2 Our goal in this paper is to use the phase-field method to
7= — — + A,r*cos 4, 2 _obtaln_ a character_|zat|0n of the dendrite tip morphology that
2 4 4 @ is sufficiently detailed and accurate to test the above theoret-
ical predictions and to make a critical comparison with ex-
where A,=1/88 is independent of anisotropy strength andisting benchmark experimen{®,10]. The present simula-
(r,¢) are the polar coordinates in the plane normal to thelions are based on a novel adaptive-step diffusion Monte
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Carlo method 11,12 that provides an efficient treatment of
the large scale diffusion field away from the growing struc-
ture. Thus this method allows us to investigate a relatively
low undercooling rang&~0.1 (P,,~0.03), in contrast to
previous simulations that were limited to Peclet numbers of
order unity[13]. As it turns out, and this is one of the main
findings in this paper, the tip morphology in this Peclet num-
ber range is already ostensibly independent of anisotropy

strength and undercooling, except for a localized shape dis-
tortion at the tip that is not experimentally relevant. We are
therefore able to compare meaningfully this morphology to ,

existing detailed dendrite shape measurements in succinoni-
trile [9] and xenon[10], even though these measurements
were carried out at even smallar.

In the next section, we review the basic equations of the
symmetric model of dendritic growth in three dimensions
and briefly summarize our numerical methods. The numeri-
cal results are then presented in Sec. Il and discussed in Sec.
IV. Finally, a summary and conclusions are presented in Sec.
V. FIG. 1. Snapshot of a three-dimensional simulated dendrite with

A=0.1 ande,=0.025.

II. BASIC EQUATIONS

We study the standard symmetric model of soIidificationSimUIate. the time-dependent Qvolution of a single dendrite
in a pure undercooled melt that assumes equal thermal dif™ until steady-state growth is reached. Since we are pri-

N ; L : : arily interested in a low undercooling regime, we use the
L%S;x;ge;(;g;rgéog%s:%;qu'd phases. The basic equatlon%];sults of the asymptotic analysis of Karma and Rappg)

in order to choose the interface width in the phase-field

au=DV2, (5)  model about an order of magnitude smaller tparand thus
much larger thaml, for smallA. This analysis also allows us
va=D(d5u|s— dnul)), (6 to choqse the model parameters so as to make kinetic effects
vanishingly small. Moreover, we use a recently developed
2 Monte Carlo algorithm to integrate efficiently the diffusion
u=—d02 [a(ﬁ)+a§_a(ﬁ)]xi, (7) equation in the liquid away from the growing structure. In
i=1 |

this approach, space is divided into two regions. The first
. L . region consists of the solid plus a thin liquid layer surround-
vr\ghere floI(Ijowmg commo? %Ot?]tlor.l"_(T_.Tm)/(L.I/.EP.) IS 4ng the interface where the deterministic phase-field equa-
the scale temp_erature e _t at s zero in equilibnum anG;,n5 are solved on a cubic lattice with the same choice of
equal 1o _A. in the liquid .far from th? .'“te”"f"ce' computational parameters as in Ref3]. The second region
‘9.“u|' (‘9““|S.) is the ”Orma' gradient af on th_e I|qU|d(sqI|d) is the rest of the liquid where the diffusion equation is solved
side of the interfacey, is the normal velocity of the inter- ,qing an ensemble of random walkers that take progressively
face, ¢; are the local angles between the normato the  |arger steps with increasing distance away from the interface.
interface and the two local principal directions on the inter-The a|gorithm used to interface the deterministic and sto-
face, «; are the principal curvaturesly=y,TyC, /L% is the  chastic solutions of the diffusion equation in these two re-
microscopic capillary length, angi(n) = yoa(n) is the an-  gions and to update the walkers has been summarized in Ref.
isotropic surface energy where [11] where it was used to study the early stage of dendritic
evolution. It has also been exposed in more details in Ref.
[12] together with the results of numerical tests and need not
be redescribed here.

We exploit the cubic symmetry to reduce simulation time
for a material with an underlying cubic symmetry, with the by only integrating a part of a single dendrite afthe do-
y, andz axes chosen parallel to th&00] directions. In writ- main x>0, 0<y<x and z>Xx), taking advantage of the
ing down the interface conditio(Y), we have purposely ne- symmetry planes defined by=0, y=0, x=y, andx=z.
glected the effect of interface kinetics that is believed to berhe whole dendrite can then be reconstructed by successive
negligible for the low undercooling range where benchmarkreflections at these planes, and the result of one of our simu-
shape measurements have been carrie@®L6]. Moreover, lations is shown in Fig. 1. These simulations were performed
theoretical shape predictions to ddfe-7] have neglected on regular lattices of size 24240x800 and each took
this effect. about 200 h of CPU time on a 525 MHz DEC-8400 com-

We use two different numerical methods. The first, andputer. Note that almost no sidebranches can be discerned,
main one used here, is the phase-field apprdadtily that  although the length of the dendrite arms is more than 40
allows us to study the dendrite shape for the full cubic formtimes the tip radius of curvature. For the analysis of the
of the surface energy defined by E®). In particular, we steady-state shapes, we used only the part of the dendrite

4e
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grown at a constant tip velocity, which corresponds to about 20000 y y y
one third of the arm length in Fig. 1. To check whether the
shape is well converged, we performed one run in which the ’
dendrite arm growing along the positizalirection was “cut 15000 - Y /
off” sufficiently far behind the tip, and its further evolution J /
was simulated in a smaller box moving with the dendrite tip / /
for several diffusion times/V?). No significant change of ©,_o A
the shape was observed. In addition, this (ien A=0.1 and E 10000 r Y
€,=0.025) yielded data which extend considerably farther v ;7
behind the tip than for the other parameters, well to within ’ o005 As01
the range where sidebranches are observed in experiments 5000 | //// L e4=0.025’A=O.2
The second numerical method is the standard boundan e £ 200125 A= 02
integral method 16] that can be used to solve directly the 77 n ;
sharp-interface steady-state growth equations with the sim: 0 Z . . .
plified axisymmetric form of surface energy 0 100 200 300 400

lzI/W,

, (9 FIG. 2. Plot of the cross-sectional argz) vs distancez| from

the tip for different growth parameters. Lengths are measured here
which is obtained by averaging the full cubic fori®) over ip units of Wy, the_thick_ness of the diffuse interfaces in the phase-
the polar anglep in thex-y plane;d is the angle between the field model as defined in Ref13].
local normal to the solid-liquid interface and thaxis. This ) ) ) ) . .
method only describes axisymmetric tip shapes and is thud isothermal paraboloid growing with the same tip velocity
only used here as an additional basis of comparison wit@S the phase-field shape for the different undercoolings and
phase-field results regarding the anisotropy-dependent shafisotropies investigated here. This indicates thatp,, is

distortion in the tip neighborhood and the selected tip operPotentially a good scaling parameter for the entire dendrite
ating state. shape, as will be confirmed below. Therefore, unless other-

wise stated, all lengths will be rescaled py, for the re-
minder of this paper. The origin of theaxis is chosen to
coincide with the tip position of the nonaxisymmetric den-
A. Equal cross-sectional area shape drite shape.

The cross-sectional area of solid normal to the growth It is also useful to define the equal cross-sectional area
axis was calculated using the formula (ECSA) shape

1—

a(n)=(1-3¢,)

3
cos o+ — sin“ﬁ)

€4
1—-3e, 4

IIl. NUMERICAL RESULTS

12
, (12

1/2 S(Z)
[T

1 27
EJO der?(z,¢)

S<z>=J%[z/f<x,y,z>+1]dxdy, (10 fol2)=

wherey(x,y,z) is the phase field that varies froml inthe  wherer(z,¢) is the radial coordinate of the full nonaxisym-
solid to —1 in the liquid in the present modé¢ll3] and metric shape. This is simply the axisymmetric shape that has
¥(X,y,2)=0 defines the solid-liquid interface. This formula the same cross-sectional area as the full shape, and the above
is accurate far enough away from the tip, but of course not atesults imply at once that,(z) coincides away from the tip

the tip itself, which suffices for the present purposes. Plots ofvith the Ivantsov paraboloid. The ECSA shape is shown as
S(z) vs |z| are shown in Fig. 2 for different undercoolings solid squares in Fig. 3 together with the parabolic fit obtained
and anisotropy strengthsS(z) is accurately fitted by a by using Egs(11) and(12). The parabolic fit is extended all
straight line sufficiently away from the tip. This allows us to the way to its tip positiorg, for illustrative purposes.

define the “parabolic” tip radiusp,, of a paraboloid of

revolution with the same cross-sectional area as the nonaxi- B. Nonaxisymmetric tip morphology

symmetric phase-field shape. Such a paraboloid has a cross-

sectional area Longitudinal sections of the dendrite tip in tige=0° and

¢=45° planes that correspond to the “fins” and “valleys”
Sy(2)=2mpy(zo—2) for z<z, (11) of the nonaxisymmetric shape, respectively, are superim-
posed in Fig. 3. The two contours coincide in the upper
wherez, is its tip position. By fitting the linear part &(z) region of the tip, where the shape is essentially axisymmet-
away from the tip computed from E{LO) with Eq. (11), we ric, but depart from a paraboloi@lashed line in Fig. Bin a
obtain an accurate estimate @f (note thatz, need not co-  small region near the tip that will be examined more closely
incide with the tip position of the full nonaxisymmetric in Sec. IllC. The important point here, especially relevant
shape, see belgwThe quality of this fit will be illustrated for comparisons between simulations and experiments, is
below in Fig. 17, where it is compared to a different methodthat aside from this localized tip distortion the entire tip
for determiningp,, . shape scales with,, and is ostensibly independent of an-
Remarkably, and in good agreement with theoretical exisotropy strength and undercooling over the range investi-
pectation[Eq. (3)], p, coincides to within a numerical accu- gated here. This is clearly demonstrated by the nearly perfect
racy of 1-2 % with the Ivantsov tip radiys,=2DP,,/V of  superposition of longitudinal and transverse sections of the
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FIG. 3. Sections of phase-field shapes in #he0° plane(solid
line) and ¢=45° plane(dotted ling, equal cross-sectional area
shape(solid squares and parabolic fit of the lattefdashed ling
Parameters arA=0.1 ande,=0.025.

various tip shapes shown in Figs. 4 and 5, respectively.
three-dimensional view of this universal tip morphology i
shown in Fig. 6.

In order to test if the analytical form defined by E®)

S

provides an accurate description of the nonaxisymmetric ti[?

shape, we determinefl, by minimizing the spatially aver-
aged root-mean-squafems) deviation(§z%)%?, between the
actual shape in th€010) plane and the polynomial form
=—r2/2+ A,r* over the interval %&|z|<n wheren was var-
ied from 4 to 20 in steps of 2. The resulting valuesfafand
(62%)Y2 are plotted for the different undercoolings and an-
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FIG. 5. Superposition of transverse tip sections g+ 0.025,
A=0.1 (solid lineg, €,=0.025, A=0.2 (dotted line¥, and e,
=0.0125, A=0.2 (dashed lines Cross sections are taken at
|z|/p, =246 ... .

%hape. However, the dependencefAgfon n is rather weak:

A, varies between about 0.004 and 0.005 rfiobetween 4
and 10. A comparison of the polynomial fit and the com-
uted fin shape is shown in Fig. 9, showing an excellent
verlap up to 1p,, behind the tip.

We have examined how the for(g) with the above pro-
cedure to determiné, fits the entire nonaxisymmetric
shape, and not just the fin. This is illustrated in Fig. 10 where
we compare the transverse sections of the computed phase-
field tip shape with the ones corresponding to the fg¢gn

(o)

isotropy strengths in Figs. 7 and 8, respectively. Figure 8
shows that the fornt2) provides a good fit of the fin shape
for n up to about 10, after which the rms deviation starts to
increase rather sharply. Figure 7, in turn, shows that the fitted
value ofA, depends on the fitting length. This means that the
polynomial form (2) does not exactly characterize the fin

£,=0.025, A=0.1
e 84:0,025, A=0.2
-——- £,=0.0125, A=0.2

0
X

FIG. 4. Superposition of dendrite contours taken along fins and FIG. 6. Three-dimensional view of the simulated tip morphol-
valleys for different parameters. ogy for A=0.1 ande,=0.025.
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FIG. 7. Plot ofA, vs n obtained from a fourth order polynomial

fit of the fin shape over the interval,<|z|<np,, . X

FIG. 9. Comparison of the computed fin shaj@en circles
The two are in good agreement up to {gp behind the tip, with the polynomial fit forn=10 (A,=0.004, solid ling¢ and the
although a small deviation due to higher azimuthal harmonpower law fit forn=20 and3=5/3 (a=0.685, dashed line
ics is noticeable. ] )

We have also fitted the fin shape to the power taw rate for|z|>10p,,, the power law closely fits the fin shape

—a|x|# by minimizing the rms deviation from the computed €ven far away from the tip.
shape as above. This minimization was carried out both with
aandg as free parameters and wiras free parameter and C. Localized tip distortion and tip radius
B ﬁxed to the theoretica”y eXpeCted Value 5/3 The ValueS Of Let us now return to examine more C|ose|y the Shape de-
aand resulting from these two fits are plotted vs the fitting parture from a paraboloid in the region very close to the tip.
range parameten in Fig. 11 with the corresponding rms For this purpose, we show in Fig. 12 a tip magnification of
deviations plotted in Fig. 8. In the two-parameter fit.is  the same curves as in Fig. 3, together with the axisymmetric
larger than 5/341.8) for smalln and tends to 1.7 for larger shape computed by the boundary integral method for an azi-
n, which is close to 5/3. Note that the valueais somewhat muthally averaged surface energy. The latter coincides well
smaller in the two-parameter fit than in the one parameter fijyith the fins and valleys in the tip neighborhood, but the
because of the largeg in the former, and that the two- superposition of these three curves departs from the para-
parameter fit has a smaller rms deviation as one would eXyolic fit of the ECSA shape, which represents the interface
pect. The two fits, however, become essentially equally goodhape if anisotropic capillary effects were absent. Note also
for large n. In this range, the one-parameter fit yields that the boundary integral result starts to deviate noticeably

~0.68 independent of anisotropy strength. A comparison ofrom the phase-field shape rather close to the tip, approxi-
the power law fit and the computed fin shape is shown in Figmately at|z|~0.5p,, .
9. In contrast to the polynomial fit, which becomes inaccu-

8 T T T T
0.03 ; . Y y . . : i i s‘1mulat10n
6 —-——- fit (A,=0.004) .
® polynomial
® power law (1 fit parameter) 4t |
& power law (2 fit parameters) Py
0.02 . 2+ ]
Q [ ]
N/\ - 0 1
N [ ]
0\9 ° 2 T 1
0.01 " ° 1
AR O $§ =
i ] u a s n n -4 } N -
$ @ o ¢ ¥ e o
(@] 8 g ‘ * * —6 B T
0.00 L ko3 1 1 1 1 L
o 2 4 6 8 10 12 14 16 18 20 _8 ) . A \ \ A A
n -8 -6 4 =2 0 2 4 6 8

FIG. 8. Plot of the root-mean-square shape deviation corre-
sponding to the polynomial and power law fits versus the fitting FIG. 10. Comparison of the computed tip cross-sections:for
length. Black symbols:e,=0.025, A=0.1; grey symbols:e, =0.025,A=0.1, and the shape given by E@) with A,=0.004.
=0.025,A=0.2; open symbolst,=0.0125,A=0.2. Cross sections are taken|a}/p,,=2, 4, 6,8, and 10.
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1.0 T T T T T T T T T 1.0 T T T
o—© o ©
® a (1 fit parameter) v\e\e
@ 09 F ma (2fit pz'lrameters) | 08 | ]
% # [ —1 (2 fit parameters)
g °
208 S ¢ o 1 L06 ¢ 1
= LR DR &
g o * o " =
« * | 4
g o97r o 8 8 & o o 3 0.4
E s S n u [ ] O—=© Boundary integral — £,=0.005
g = g = - 02 k B—H Boundary Integral — £,=0.016 |
08 B 5 5 = i ) | A—A Boundary Integral — £,=0.025
- [« J— ® Phase field — £,20.016
08 o 4 & & i 15 1 §E i %000 02 04 0.6 0.8
0o 2 4 6 8 10 12 14 16 18 20 . . N . .
n A
FIG. 11. Plot of the prefactoa and exponen vs the fitting FIG. 13. Ratiop/p,, versus dimensionless undercoolingfor

range parameten. Black symbols:e,=0.025,A=0.1; grey sym- different anisotropies. Lines are drawn as a guide to the eye.
bols: €,=0.025,A=0.2; open symbols¢,=0.0125,A=0.2.
cooling in the low undercooling range studied here as can be
A quantitative measure of this departure is the ratio>c€N from the flat_tenlng of the curves at smglin Fig. 1.3'
plp,, , wherep is the actual numerically computed tip radius Forﬁloi.l, .p./p'v IS Ialregdy qu;srmldeipenderr:t Maf.‘d Its
of the phase-field or boundary integral shape apd/recall sma Imiting value depends solely on the _amsotropy
that p,,=2DP,,/V where P,, is the Peclet number pre- _strength. Interesu_ngly, the variation ptp|v with anisotropy
dicted by Eq.(1) and V is the numerically computed tip 'S crudely approximated by the relation
velocity]. For the phase-field shape,is computed from the
¢=0° section using the interpolation scheme that is de-
scribed in Appendix B of Ref[13], and which has been _ _ .
tested against exact boundary integral benchmark results Pver an order of magnitude change in anisotropy strength,
two dimensions. where a=15¢, is the stiffness anisotropy. Since the Gibbs-
Figures 13 and 14 show the variatipfp,, as a function ~Thomson conditior(7) implies that the steady-state dendrite
of undercooling and anisotropy, respectively. The departurép temperature is given by
of p from the Ivantsov relation increases with anisotropy
strength. The same trend was previously found for a higher Ugip=— 2do(1— a)/p, (14)
undercooling A =0.45) in Ref.[13] and the results of these
earlier simulations are also shown in Fig. 14. A new finding

here is that this departure becomes independent of undeld: (13) is equivalent to stating that the dendrite tip tempera-
ture at a given undercooling is relatively independent of an-

isotropy strength. The straight line corresponding to &8)

plp,~1-a, (13

is superimposed as a dashed line in Fig. 14. The numerical
results lie slightly above and below this curve for small and
large anisotropy, respectively.
1.0 T . r
~ -
0\ O boundary integral (A = 0.1)
S m phase—field (A =0.1)
08 Ap L4 phase field (A= 045) 1
N
A \\
30‘6 3 Q\\\ E
g 2N
04 | RN :
A 0\\
~
N
N
02 AN 4
\\
A
N
\\
0‘0 ' 1 '
0.00 0.02 0.04 0.06
FIG. 12. Magnification of the tip region showing the same g,

curves as in Fig. 3, with the solid squares omitted for clarity. Also

superimposed is the axisymmetric shape computed by the boundary FIG. 14. Ratiop/p,, versus anisotropy foA=0.1, and forA
integral method for an azimuthally averaged surface enétggk =0.45 from Ref[13]. Superimposed is the constant tip temperature
dashed ling Parameters ar&A=0.1 ande,=0.025. relationp/p,,=1—15¢, (dashed ling
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IV. DISCUSSION 8
A. Comparison with analytical theories 6
Let us first compare our results with the analytical theo- 41
ries reviewed in the introduction. We have found that &4. .|
provides a good fit of the tip shape up to a distance of about &
eight to tenp,, behind the tip. Moreover, for low undercool- 8 0
ing, this shape is independent of anisotropy strerigtheast < Sl
over the range investigated herehich is in qualitative
agreement with the prediction of linear solvability theory -4 ]
[5,6]. The value ofA, found here, however, is about twice & % ]
smaller than the valua,= 1/96~0.104[6] predicted by this T
. L H . 3 e
thgory. One pqg&ble reason for this dlscre'pancy is that the 0 5 10 15 20 25 30 35 a0 a5
existing solvability calculation$5,6] are carried out in the Orientation ¢ (deg)

limit of vanishing anisotropy, whereas in the present compu-

tations the anisotropy is finite. We have seen, however, that FIG. 15. FunctionQ(¢) from the experimental measurements
even for a short fitting distance behind the #y, increases of LaCombeet al.in SCN [9] (circles and error bars; some points
from about 0.004 to 0.005 when the anisotropy is loweredtlose to¢)=0° have been omittedThe functionQ(¢) computed
from 2.5 to 1.25 %, which does not appear consistent with afiere from the projections of the shape defined by @ywith A,
extrapolation ofA, to its theoretically predicted value in the =0-004 is shown as a dashed line. This curve differs from a pure
limit that e,—0. It seems also difficult to explain this dis- C0Sine function, which is also shown for comparison.

crepancy by the fact that existing calculations are based ofhere lengths are in units of the tip radius. The values for the
linearizing the steady-state growth equations around a pgunction Q(¢) reported by these authors and the associated
raboloid of revolution. We find indeed a localized tip distor- grror bars are reproduced here in Fig. 15. It can be seen that
tion that depends strongly on anisotropy strength, and whicly( ) differs from a cosine function, and they concluded that
is not accounted for in these theories. The rest of the tighe tip morphology cannot be described by a pure gos4
shape, however, departs only weakly from a paraboloid anghode, in apparent disagreement with solvability theory and
is well fitted by the form(2) independently of anisotropy. the present results. This function, however, was constructed
Therefore, the origin of this discrepancy remains to be unggm projected shapesbtained by taking photographs of the
derstood. _ _ dendrite tip from different azimuthal angle’s We point out

In contrast, the predicted power lgq. (4)] for the fin  here that Eq(15) with Q(¢) obtained from projected shapes
shape away from the tip is in relatively good quantitativegoes not correctly represent the actual nonaxisymmetric tip
agreement with the present simulations. We find a good fit 0fyorphology from which these projections are obtained. The
the fin shape with a fixed exponefit=5/3 and a prefactor reason is that the projected shape observed from a given
a~0.68 that is independent of anisotropy strength and only,zimythal angles differs from the cross-sectional shape at
about 15% larger than theoretically predicted, or with agjs angle. To illustrate this point, we have drawn in Fig. 16
slightly higher exponen=1.7 and a lower~0.65. Itis 3 cross section of the tip shape normal to the growth direc-
interesting to note thgt the mapping with two-dmepsmnaltion and rotated it by an angl¢ with respect to the viewing
growth shapes7] implies that Eq.(4) should only strictly  gjrection chosen parallel to thé axis. The projected shape
hold in a region far behind the tip where the cross-sectionahppears wider than the “true” contour of the dendrite at that
shape contains four well-developed arms. It is thereforgyientation. Therefore, the dendrite cross secti@ig. 11 in
rather remarkable, and perhaps coincidental, that it alsgef. [9]) reconstructed by LaComlet al. using Eq.(15) are

holds closer to the tip in a region where the fins are not yehq representative of the true cross sections.
well developed. Finally, we note that our results indicate a

smooth crossover from a polynomial form to a power law y Y
form for the fin shape with increasir|g|. This is indicated

by the excellent overlap of these two forms in an intermedi-
ate distance range behind the tfig. 9.

B. Comparison with experiments

On the experimental side, the most detailed shape mea-
surements to date have been carried out by LaCoetlz.
who analyzed the full three-dimensional tip morphology in
succinonitrile (SCN) [9] and by Bisang and Bilgram who
studied the fin shape in xendi0]. On the basis of their
measurements on SCN dendrites, Laconebal. reported
that the tip shape can be fitted by the form

2 FIG. 16. Sketch illustrating the difference between the contour
7~ — r_ —Q(¢) ré, (15) of a dendrite as seen under an an@lqith respect to 4010 plane
2 and the “true” dendrite contour at this angle.
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It is nonetheless possible to relate our results to the extrom its projections has a unique solution. It can indeed be
perimental measurements of these authors by calculating nshown that this solution is uniquel7], such that this as-
merically the functiomQ(¢) that corresponds to the tip mor- sumption is valid. That is if we were to calculate the true
phology characterized by a single casthode[Eq. (2)]. As  shape from the projections defined by E#9), we would
mentioned earlier, Eq2) with A,=0.004 provides a good fit recover a tip shape that is well fitted by E). Moreover,
to our simulated tip morphology up to AQ behind the tip an explicit solution to this inverse problem can be obtained
and is therefore adequate for the purpose of this comparisaanalytically by cleverly noting17] that it is exactly analo-
(neglecting small corrections due to higher azimuthal hargous to the one of constructing a two-dimensional equilib-
monic9. To obtainQ(¢), we must first calculate numeri- rium crystal shape, with the role of the anisotropic surface
cally the projected shape, and thus relategpparentwidth ~ energy being played here lwy(¢,z) at fixedz This is the
w(¢,z) of the dendrite at a given distanzdédehind the tip to  well-known Wulff construction[18] and the application of
the true widthr(— ¢,z), which is the intersection of the the¢-vector formalism of Cahn and Hoffmd@9] yields that
fixed X axis with the interface. Using the definitions of Fig. the distanceAB in Fig. 16 is equal tdd w(¢,z)|, and thus
16 and purely geometrical considerations, it is simple to obthat the solution to this inverse problem is given by

tain the relation
r(—,2)=V[W(¢,2)°+[w(¢,2)]° (20

w(p,z)=r(p— ¢p,z)cosy, (16
. L . dgW(b,2)
where ¥(¢,z) is defined implicitly by the relation = —arcta WD) | (22
Ayr (Y—b,2) T .
y=arcta W . (17) In principle, it should therefore be possible to reconstruct the

higher azimuthal harmonics from the experimental data. At

Equation (17) follows directly from the condition that the present, however, such an analysis is precluded by thg mag-
itude of the error bars in the measurements, especially in

oint on the true contour that corresponds to the apparerit | . )
E)perceived edge of the solid tigipoint Apin Fig. 16 be t%pe view of the small amplitude of such harmonics predicted by

one of maximum width as a function gf For a fixed, the our simulations. Lastly, we note that in the present example
corresponding/ can be simply obtained by setting equal to the_exact(numerlcally compute)dprOJected_ shapes(¢,w)
zero the derivative of the right-hand side of EG6) with defined by Eqs(16)—(18) are only approximately fitted by

- T - fourth order polynomials irw, even though the underlying
respect toy. The angley defined implicitly by Eq.(17) is :
then the polar coordinate of this point measured from theIrue shapes defined by E@) are exact fourth order polyno-

. - mials inr. It is simple to see why this is so by using Egs.
fixed X axis in Fig. 16, and$— ¢y measures the angle be- ; . ) .
tween the line O?A and th%lo;/lplane. Note that gt this (16)_(1.8) to derive an anglytmal expression for the pro!ected
point, Egs.(16) and (17) can be used to construct the pro- shape N powers oh, (valid close to thg tip andzby hoting
jected shape that corresponds to an arbitrary true shaﬁgat this expansion generates _termsv at O(A;). None-
whose transverse sections are convex. To proceed further, v&eless, the forniEq. (19)] provides a reasonably accurate

now restrict our attention to the case where the true shape obal fit of the projected shape over the range|@[<10
given by Eq.(2), or equivalently and is therefore quantitatively adequate to interpret experi-

mental results.
1—/1—16zA, cos 4p|*? In xenon, Bisang and Bilgram have reported that they
r(¢,z)= 47, cos 4 (18)  cannot accurately fit the fin shape with a low order polyno-
4 mial. They find, instead, a good fit with a power lgw

Combining Eqs.(16)—(18), we obtain numerically the pro- —ax’ with a=0.58+0.04 and5=1.67+0.05, that extends
jected shape(¢,w) that is the inverse ofi(¢,z) at fixed . rather close to the tip. Our present results differ from theirs

We finally obtainQ(¢) by following the same procedure as N that both for the polynomial and the power law fit, the
LaCombeet al. that consists of fitting these shapes to afitting parameters vary with the fitting length, including the

fourth order polynomial of the form exponents which increases when the fit is restricted to a
region close to the tip. On the other hand, in agreement with
z~—W?2—Q(¢p)W* (19)  their findings, the polynomial fit becomes inaccurate for

larger fitting lengths, whereas the power law fits the fin shape

for different values of¢. This procedure yields a function even far behind the tip. While the exponents obtained from
Q(¢) that differs from cosé and is superimposed as a our simulations and their measurements are very close, we
dashed line in Fig. 15. This function fits well through the find here a slightly larger prefact@a~0.68, independently
data points foIQ(¢) reported by LaCombet al. We there-  of anisotropy. Note, however, that this discrepancy might be
fore conclude that, within experimental error bars, our simu-simply due to the choice of the rescaling length. Bilgram and
lated universal tip morphology dominated by a single aps 4 Bisang use the actual tip radius as a scaling length, whereas
mode with an amplitudeA,~0.004 agrees quantitatively we use the Ivantsov tip radius. Taking this into account, their
well with the true underlying tip morphology of SCN den- prefactora’ and our prefactoa should be related by’
drites. =a(plp;,)? L. As p is smaller thanp,,, our prefactor

A few additional remarks should be made. First, in draw-should indeed be larger than theirs. It would be interesting to
ing the above conclusion we have implicitly assumed that theeexamine the experimental data usipg as the scaling
inverse problem that consists of reconstructing the true shagdength.
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It is clear, however, from the present results that an accurate
measurement of the “true” tip radius is most likely not ex-
perimentally feasible. Such a measurement would require a
very high resolution of the localized shape distortion near the
tip that is already barely noticeable on the scale of Fig. 3 for
a 2.5% anisotropy, and with the interface and the reference
parabola represented by thin lines that are finer than the ex-
perimental resolution.

The present results show that, outside the small region
very close to the tip where this distortion is noticeable, the
entire tip shape is well fitted by a paraboloid with a small
nonaxisymmetric fourfold deviation, and that the rest of the
dendrite shape further away from the tip scales with the tip
radiusp,, of this paraboloid. Therefore, a better definition of
the tip operating state is to ugg instead ofp and to define
accordingly the dimensionless parameters

09t o :

0.8_.' N N N
0 2 4 6 8

10 12 14 16 18 20
n

FIG. 17. Plot of the parabolic tip radiys, versus the fitting
rangen (|z|<np,,) in a fit using Eq.(26) with both p, andA, as
fit parameters. For comparison, the results obtained from a fit of the

equal cross-sectional area shape according tdHgare shown as p _M o
open symbols. P 2D (24
C. Tip distortion
The tip distortion analyzed in Sec. Ill C can be interpreted o :ZDdO (25)
to result from capillary effects at the tip that persist even in P pgv '

the limit of low undercooling. It may appear at first counter-
intuitive that such effects remain important in this limit since
the magnitude of capillary corrections to the tip temperaturevhich are actually the ones that have been traditionally mea-
vanishes due to the increase of the tip radius, dglp—0  sured in experiments. In addition, the definition«f used
asA—0. One must recall, however, that the tip velocity andin solvability theories(see Sec.)l coincides with the latter
thus the temperature gradient at the tip also vanishes in thigefinition with the further assumption that,=p,. For a
limit. Thus the correct measure of the relative importance ofveakly anisotropic material such as S@Ns not too differ-
capillary effects is the ratio of the magnitudes of the normalent fromp, such that the two definition sef&gs.(22),(23)
gradient ofuin the tip region induced by capillary variations, and(24),(25)] are roughly equivalent. In contrast, for a more
(du)e~do/p?, and by heat diffusion, d,u)q~V/D, or  strongly anisotropic material such as pivalic adRVA), Pp
(95u)/(9qu)g~Ddo/(p?V)~o*. The constancy of* im-  can be about two to five times larger thanand concomi-
plies that capillary effects can produce a non-negligible tiptantly a; four to twenty-five times smaller thaa* if we
distortion that persists in the low undercooling limit. assume thate, is somewhere in the range 0.028.05,
With regard to the tip radius, Eq13) can be crudely where the lower limit has been measured by Musehall.
interpreted to be the simplest linear interpolation between th§20] and the upper one by Glicksman and Sirgh].
isotropic limit where the tip radius approaches its isothermal If we adopt Eqs(22),(23) as a definition of the tip oper-
value, and the limiw—1 (e4— 1/15) which marks the ap- ating state, three questions remain to be addressed. First,
pearance of cusps at th&00] orientations of the equilibrium  what is the best way to measysg? Second, how accurately
shape where vanishes. There is, of course, no obvious rea-does linear solvability predict the tip operating state as com-
son why this linear interpolation should exactly hold in be-pared to the present simulations? Lastly, dogsiecessarily
tween these two limits and Fig. 14 shows that our numericakqualp,,, as found here and assumed in solvability theory?
results do not lie exactly on it. Equati¢h3) should only be In our simulations, we have obtaingg in Sec. Ill A from
considered a reasonable first estimate of the actual tip radius. plot of the cross-sectional area of the dendrite versus dis-
tance from the tip, exploiting the fact that, away from the tip,
pp is simply the slope of this curve divided byn2 This

Traditionally, the operating state of the dendrite tip hasprovides a very accurate procedure, as can be demonstrated

been characterized in terms of two independently measurablg’. plotting the resulting value fgs, versus the fitting range

parameters, the tip radiysand velocityV, from which one ig. 17): for n betW(_aen 4 and 1% varies by Ies; than one
defines the scaling parameters percent. The dendrite cross section, however, is not easy to

measure as the true dendrite shape is difficult to reconstruct
pV from longitudinal projections for the reasons emphasized in

D. Operating state

P= 2D (220 Sec. IVB. The best data are obtained for the fin sHapkQ].
One way to extracp, is therefore to fit the unrescaled fin
shape with a fourth order polynomial

2Ddg
ot =——. (23 ) 4
pV z=—(rlpp)I12+A4(r/pp)*, (26)
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TABLE |. Comparison of the selection constant$ obtained  the Ivantsov relatiofiEq. (1)] that can become significant in
from the present phase-field simulations, from linear solvabilitythe limit of very low undercoolings. For the lowest under-

theory, and from boundary integral calculations. cooling studied hereX=0.1), this correction is of the order
A N . of a percent and thus comparable to the accuracy at whjch
€4 7 Tp was determined numerically. Our results are therefore not in
Phase-field 0.2 0.025 0.171 0.0565 contradiction with their predictions. We note, however, that
Linear solvability 0.067 the universal nonisothermal shape found here starts to devi-
Boundary integral 0.150 0.055 ate from the isothermal one they consider only a short dis-
Phase-field 0.1 0.025 0.181 0.0611 tance away from the tip where the fins develop under the
Linear solvability 0.069 action of anisotropic surface tension. Simulations at substan-
Boundary integral 0.155 0.059 tially lower undercooling would be necessary to test if this
Phase-field 0.2 0.0125 0.0447 0.0282 difference between the isothermal and nonisothermal shapes
Linear solvability 0.0294 affects their predictions.
Boundary integral 0.0394 0.0265

V. CONCLUSIONS
over a varying distance from the tip where bethandA,
are allowed to vary, which is the method used by LaCombe \ve have studied the three-dimensional morphology of the
etal.in SCN[9]. We have carried out this same proceduregengrite tip using recent improvements of the phase-field
on our computed fin shapes and the results are shown in Figaethod[11-13 that make it possible to carry out quantita-
17 for two different anisotropiegNote that this fit differs ey accurate simulations are relatively low undercoolings.
from the one carried outin Sec. Il B where we fixggto its 5, ‘main finding is that the experimentally measurable low
value (mp,v).extracted from the cross—s'ecuon meas.urememundercooling tip morphology is independent of anisotropy
a.m.d only variedA,.] One can see thaip INCreases with the strength and thus universal under the assumption that kinetic
fitting distance €np;,) behind the tip, which renders a pre- effects are negligible, in qualitative agreement with solvabil-

cise determination op,, difficult. This trend was observed . . ) - ; i

by Bisang and Bilgram in xenon dendritgk0]; on the other 'ti/] tr|1eoryf[5,6]. The nl())nlagésymm?rr;itdgvgatlon .Of tlhls moé;

hand, for SCN, where:, is about twice smaller than the phology from a paraboloid IS well itted by a single cas
mode with an amplitude that is about twice smaller than

lowest anisotropy studied here, LaComégeal. find thatp,, ) . . :
is almost constant when varies between 4 and 10. It is Predicted by solvability theory and in good agreement with

therefore possible that this fitting procedure improves for€Xisting shape measurements in SN. Moreover, these
lower anisotropies. Figure 17 also shows that the departur@€asurements were reanalyzed here and found to be consis-
of the fitted radius fronp,, is of the order of a few percent t€nt with a nonaxisymmetric tip shape dominated by a single
for fitting ranges arounch=10, such that this method can COS4p mode as in our simulations.

provide a reasonable estimate. The fins are well described away from the tip by the

We compare in Table | the values of, predicted by the Power law derived by Brener on the basis of the analay
linear solvability theory of Barbieri and Langg23] with the ~ between three-dimensional steady-state shapes and two-
values corresponding to the nonaxisymmetric shapes of th@imensional time-dependent growth shaffés albeit with a
phase-field model and the axisymmetric shapes computed Igfightly larger prefactor than predicted. Interestingly, the va-
the boundary integral method for an azimuthally averagedidity of this power law extends remarkably close to the tip.
surface energy. We list as well the values corresponding Our findings are also in good agreement with experimental
to these shapes. Note that=p,, both for the paraboloid data on xenon dendrit¢40].
assumed in solvability theory and for the computed nonaxi- Finally, we conclude that the “true” tip radius is not an
symmetric and axisymmetric shapes, such that comparingxperimentally adequate parameter to characterize the tip op-
o, values is equivalent here to comparing scaled velocityerating state since the anisotropy-dependent shape distortion
valuesVdy/D=20 PZ . One remarkable fact is that the near the tip that fixes this radius is most likely not measur-
linear solvability theory predicts relatively accuratedy able. In contrast, the tip radius of the paraboloid which un-
even though it does not describe the localized tip distortiorderlies the rest of the tip morpholodgxcluding this distor-
that causep to depart fronp,,. Thus, we can conclude from tion) is both measurable and a good scaling parameter for the
this comparison that this distortion does not strongly affecientire dendrite shape. The latter tip radius is indistinguish-
the selection of the velocity. A reexamination of the phaseable from the Ivantsov prediction over the range of under-
field results of Ref[13] in terms ofo; show, however, that  cooling studied here, which does not exclude differences be-
the linear solvability theory becomes increasingly inaccurateween these two radii to be present at even lower
for larger anisotropy valuesef>0.03). undercoolingg22].

Finally, McFadderet al. [22] have recently carried out a It would be interesting in the future to extend the present
perturbative analysis of the diffusion field around a nonaxi-study to investigate how the anisotropic kinetics of molecu-
symmetric isothermal shape defined at leading ordéyiby  lar attachment at the interface alters the tip morphology. The
Eq.(2), whereA, is treated as an expansion parameter. Sinceletailed study of the tip morphology, and in particular its
their analysis neglects capillary effects, their tip radjus departure from the universal shape characterized here, may
should be compared t@, here. They derived a correction to actually provide a sensitive probe of interface kinetic effects.
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