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We study an invasion percolation model for drainage where the disorder comes partly from capillary
thresholds and partly from height differences in a rough self-affine landscape. As a function of the buoyancy,
the geometry of the invaded clusters changes dramatically. Long-range correlations from the fracture topog-
raphy induce a double cluster structure with strings and compact blobs. A characteristic length is introduced
comparing the width of the capillary threshold distribution and gravity effects at the pore scale. We study
electrical properties of percolating clusters. Current distributions along percolating clusters are shown to be
multifractal and sensitive to the buoyancy.

PACS numbgs): 47.55.Mh, 47.55.Kf, 64.60.Ak, 91.45.Vz

[. INTRODUCTION filled fracture joint. The gouge makes this system a porous
medium, and capillary effects occur during drainage. As the
Invasion percolatiofil] has proven to be an accurate de- fracture joint is rough, the buoyancy effect comes into play.
scription of slow drainage processes in porous media, wheréhe roughness is self-affine, and this introduces long-range
a nonwetting fluid deplaces a wetting fluid at such low ve-correlations into the disorder in the invasion percolation
locities that capillary forces dominate in comparison to vis-model that model the buoyancy forces. _
cous forces. There is good quantitative agreement between The relevance of such a model may be appreciated
experimental results and numerical investigations using thirough noting that generally oil transport in reservoirs oc-
invasion percolation modép]. curs in fracture§ rather' thap in the porous reservoir rocks
With small modifications, the invasion percolation modelt_hemselves. This is typlca_l_ln, eg. chak or granite forma_l-
takes into account effects of buoyancy on the drainage prot—'ons where the permeability of the rocks is measured in

. . ) : . millidarcy.
cess in addition to the capillary forcg3]. Also in this case Self-affinity is defined through scaling properties of the

I_here IS guanntgtwe r[%gr%ement between numerical InVesug%'onditional probability function. We assume that the fracture
lons and experimenb—/[l. . . g'oint is oriented such that it is described through the function
Another extension of the invasion percolation model hag—h(?) wheref—(x.y) is a point in the plane defined by

been in the direction of assuming that the disorder it contain . ) I -
has spatial self-affine correlatiop8—13. the average height of the joint. The conditional probability

In the present paper, we study invasion percolation witifunction is g(Ah,Ar), where Ah=h,—h; and Ar=r,
buoyancy forces containing self-affine correlations. The ex—r,, and gives the probability density that the height of the

Ar—X\Ar. The joint is self-affine if

*Permanent address: Institutt for Fysikk, Norges Teknisk- _ .
Naturvitenskapelige Universitet, N-7491 Trondheim, Norway Ag(NHAhNAr)=g(Ah,Ar), )
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whereH is the Hurst exponertl4]. Assuming that the frac-
ture joint has an area df XL, we define the width of the
joint roughness over this area as= \/<h2) (remembering
that(h)=0). Given that the joint is self-affine with a Hurst
exponentH, we find thatw~L". Thus, whenH<1, the
joint is asymptotically flat, asv/L—0 whenL—o. It has
since long been observed that fractures in brittle materials
are self-affind 15]. However, many more recent experimen-
tal studies of brittle fractures suggest that the Hurst exponent 2
for these systems takes a universal value, i.e., independent of
the material that is fracturing, which is close to 01&—20.
Thus, brittle fracture joints are asymptotically flat.

In earlier studies of invasion percolation with self-affine
correlations in the disord¢B—12], the physical system that
the authors had in mind was a drainage process in a self-
affine fully open fracture. In making a mapping from drain-
age in this system to a correlated invasion percolation prob-
lem, an assumption is made that the inverse of the length
scale set by the crack opening dominates with respect to the ©
local curvature of the fiuid-fluid 'inte'rface par.allel'to the fraq- FIG. 1. Four invasion percolation simulations done on the same
ture walls. As t_he fracture opening is self-afflne_, It may atta_|n256x 256 lattice, using injection along the lower edge. We have
large values with the result that the above_ crucial assuMptiopyq|,ged trapping effects, but there is no migration. The fluctuation
no Ionger holds. Thus, the abovg mapping cannot holc_j aSjumbers werda) 105, (b) 102, (c) 1, and(d) 100. The back-
ymptotically large systems, and is therefore only valid in aground shading shows the structure of the self-affine height distri-

crossover regimg21]. ' _ ) bution. Lighter color signifies a higher position. The Hurst exponent
In the system that we have in mind, and which has beepf the height distribution isH=0.8, corrersponding to natural

studied experimentally in Ref27], the drainage process oc- prittle fractures.

curs in a gouge-filled and self-affine fracture joint. A fracture

joint consists of two opposite fracture surfaces that havemerges: see Fig. 1. This is in contrast to the structure of

been pulled apart a given distance in the direction orthogonalercolation clusters with self-affine disorder. The difference

to the average fracture surface plane. Thus, the aperture jipqween the two is due to the physical instabilities intro-

constant all over the fracture. _ _duced through the gradients owing to the self-affinity. Figure
We study the shape of invasion percolation clusters withy should be compared to Fig. 2, which shows experimental

trapping. In terms of the equivalent experimental situationdramage clusters produced at different gravitigs3g, and

trapping means that to once an island of the origidafend- g4 see Ref[27]. (These values were obtained by running

ing) fluid has been trapped inside the ocean of the invading,, injection process in a centrifugéncreasing gravity cor-

fluid, its_volume does not change. However, iF may migrate,(esponds to the increasing importance of buoyancy. Clearly,
and we introduce and study such rules in the invasion percoy “plobs-and-strings” picture emerges as gravity is in-
lation algorithm. Other attempts at adding migration rules t0;re5sed. In Sec. IIA. we show how this “blobs-and-

the invasion percolation model may be found #2-26. strings” picture ensues from the hierarchical structure of the
_ Besides the geometrical shapes of the invasion percolase|t.affine fracture landscape in the limit when buoyancy
tion clusters which change profoundly with changing buoy-completely dominates the drainage process. In Sec. il B, we
ancy, we also study their electrical properties. This providegjiscss how the competition between buoyancy and capillary
information of interest that couples to resistivity measure-gffects may be measured through the introduction of a cross-
ments in an experimental or field situation for that matter., o, length scalé,. We predict that this length scale obeys

The current distribution in the clusters of the invading liquid certain scaling laws with respect to a dimensionless measure
also provides tools for studying their geometry. We demon-

strate this.

In Sec. Il we start by defining the invasion percolation
model and its connection with the percolation problem anc
with slow drainage in porous media. We then describe how
buoyancy is added to the invasion percolation model. We
emphasize here that when there are gradients in the syste
due to buoyancy effects, the connection with the percolatior
problem is more complex, due to physical instabiliti@s
contrast to numericalin the invasion percolation algorithm.
We end this section by describing how we model migration
of clusters of liquid. Section Il is devoted to an analysis of ,
the cluster structure obtained with the extended invasion per-
colation algorithm. The most striking feature is that when the  FIG. 2. Experimental drainage clusters at an effective gravity of
buoyancy effects are strong, a “blobs-and-strings” structurga) 1g, (b) 3g and(c) 6g. (From Ref.[27].)

d)

b)
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of the importance of buoyancy and capillary effects, the fluc-=1, all bonds will be occupied; fop=0, they will all be
tuation number. We demonstrate the validity of this predic-unoccupied. For intermediate values pf the occupied
tion through numerical experiments. In Sec. IV, we study thebonds will be scattered about in the lattice. We define a
electrical transport properties of the drainage clusters. Weluster of occupied bonds as the set of bonds that are con-

end by some concluding remarks in Sec. V. nected through common nodes. Assume now that the lattice
is infinite in size. There is then a critical=p., the perco-
II. MODEL lation threshold. Fop<p., all clusters of occupied bonds

are finite in size. Fop>p., there is one infinite cluster.
When p=p,—which is 3 for the square lattice—the system
Before describing our modifications to the original inva- is critical, and the geometry of the clusters has scaling prop-
sion percolation algorithrfil], we explain the latter. We as- erties described through universal critical exponents.
sume a square lattice of sitexL. At each bondj in the We now return to invasion percolation. Imagine running
lattice—connecting neighboring nodeand j—we assign a  the invasion percolation algorithm to a point whétéonds
random number;; drawn from a uniform distribution on the have been invaded. Let us defin@N) as the largest random
unit interval. These numbers remain fixed throughout the calnumberr;; that has been picked so far. We now iterate the
culation. In addition to these fixed numbers, each bond ha#vasion percolation one more time, and a new random num-
two statesti) invaded or(ii) not invaded. Letp;; =0 signify berr{*) is chosen. Eithefi) r{*Y=r(N) or (i) r{* ¥
that bondij has not been invaded and lef;=1 signify it~ <r(N). In case(i), we have thar(N+1)=r{"" and in
has been invaded. We initialize the lattice by settingegll  caselii) r(N+1)=r(N). Suppose now we make an identical
=0. We choose a set of nodes as inlet points in the systenzopy of the lattice used for the invasion percolation process,
The set consists of all nodes along one of the borders of thcluding the same distribution of random numbefs We
lattice. This we call edge injection. We now search amongwill use this second copy for percolation. Let us now assume
the bonds that are directly attached to the inlet nodes anthat situation(i) above occurred at theN(+ 1)th iteration of
identify the bond having the smallest random numbgr  the invasion percolation. Adjusting the percolation control
We invade this by setting the correspondipg=1. Assume parametep to the valuep=r(N+ 1) will produce a perco-
now thati was one of the inlet nodes. After the invasion of lation cluster connected to the inlet nodes that are identical to
bondij, nodej has become an interface node. In order tothe invasion percolation cluster at iteratioN{1). (Note
proceed with the next injection step, we now search thouglhat we have not introduced aiwapping rulesso far) If, on
all bonds connected directly to the inlet nogeglthe inter-  the other hand, situatiofii) occurs, the invasion percolation
face nodes, identifying the one with the smallest randontluster will be a subset of the percolation cluster connected
numberr;; associated with it. This bond is invaded and thisto the inlet nodes whep=r(N+1). Inverting this argu-
algorithm is repeated. We stop the algorithm once any of anent, we see that for anythere is a corresponding stage in
given set of outlet nodes have been reached. The outlet nodése invasion percolation process wher[t}\‘“)z r(N+1)
are those defining the opposite edge of the lattice. =p, and where the cluster in the invasion percolation prob-
The physical situation that this algorithm models is slowlem is identical to the cluster in the percolation problem that
injection of a nonwetting fluid into a porous medium filled is connected to the inlet nodes. We also note that the largest
with a wetting fluid. This is drainage. The reason for havingvaluer(N) can attain is the percolation threshqlg, as the
the nonwettingfluid as the invading fluid is that otherwise ijteration is stopped once any of the outlet nodes are reached.
film flow may occur, making the use of a binary varialg It is, however, important for what follows to note that when
to describe the state of a bond is impossible. The bond cofthe invasion percolation algorithm is stopped at the point
responds to a pore in the porous medium. The reason whyhen one of the outlet nodes is reached, the system may not
emphasis is put oslowinjection is that viscous forces in this pe stable. That is to say, the last picked random numper
limit are negligible in comparison to other relevant forces,may not be the largest one that has been encountered during
which are the capillary and buoyancy forces. For the timehe iteration. Thus, there may be a difference between the
being, we assume the porous medium to be two-dimensionghvasion percolation cluster at this stage and the percolation
and oriented horizontally so that there are no effects of graveluster connected to the inlet nodes wijihadjusted to the
ity. We are then left with the capillary forces. When the |argest threshold that has been picked.
invading fluid is pushed through a pore, the pore shape will The physical idea behind the random numbeysintro-
determine what pressure is needed, and this value is cogtuced in the invasion percolation model is that they model
trolled by the pore neck. The random numbgysmodel the  the capillary pressure thresholB caused by pore necks in
pressures necessary to invade the pores, which are distrifhe porous medium. If is the surface tension, the relation
uted due to the distribution of pore necks. between capillary threshold—measured in units of

There is a close relationship between the invasion percqyressure—and the threshold radius of curvaaypeor inva-
lation algorithm and the standard percolation probl@8l.  sjon of poreij is

To best demonstrate this relationship, we define the percola-
tion problem in an operational way. Imagine for simplicity a y

. ) 7. pt =_* (2)
square lattice. Assign to each boijda random number;; i a
drawn from a uniform distribution between zero and one. '
Introduce a control parameter For a given value op, set  In order to perform the slow drainage process, a presBure
all bonds whose random numbeyp<p to “occupied” must be applied to the injected fluid which is equal to the
(¢ij=1). The other bonds are unoccupiegl;=0. For p capillary pressure necessary at a given pore neck in order for

A. Invasion percolation, percolation, and slow drainage
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the fluid to invade this pore? = Pitj . Suppose now that we less number that determines the relative importance of cap-
control the pressure during the injection process. For a giveillary and buoyancy effects in this problem, and E8). be-
pressureP, we will inject fluid until we reach a situation comes
where all pore necks that are susceptible to injection are so - _
narrow that the pressure necessary to continue is larger than Pij= pﬂ- —Fhj;. )
P. The injection process then stops, and only wheiis ) ) , , ) i
adjusted to a new and sufficiently high value will invasion of ~ 1huS, the invasion percolation algorithm with self-affine
further pores occur. buoyancy effects procee_ds by assigning ran_do_m n_umbers
Comparing the invasion percolation model, the perco|a_randomly t? the bonds in the Iattlcg. T.he.dlstnbuyon of
tion model, and the physical drainage problem, we see thapresholds;; reflects the pore throat Q|strlbytlon and is gen-
the control parametep in the percolation problem and the €rally complex. For our present simulations, we simply
is the same as between the capillary thresh@lsand the W€ were to simulate a given cumulative threshold distribu-
random numbers;; . tion I1(p;), giving the probability to find a threshold value
Trapping is built into the invasion percolation algorithm €SS thamp, Eq. (5) would become
through identifying the clusters of uninvaded bonds sur- ~ 1 ~
rounded by invaded ones. These are not susceptible to inva- Pij=T1""(rij) —Fh, ©
sion. There is no counterpart to this mechanism in percola- . . L
. . o . ' - “Wwherer;; is a random number drawn from a uniform distri-
tion, and with trapping invasion percolation clusters d|fferbution gn the unit interva[27]. For the self-affine height
from percolation clusters. However, their external perimeters,.” - =~ ) . .
remain identical. distribution, we use the Voss algorithis] and assign am,
to all nodes i Thus, we need to calculatg;, which is as-
sociated to the bong from h; andh;. A natural choice is
B. Buoyancy effects an averagé;; = (h;+h;)/2. However, as we will see in Sec.

In order to introduce buoyancy effects in the invasion!l C, this creates problems when migration is taken into ac-
percolation model6], we need to be more precise in defin- count. We therefore defer further discussion of this point to
ing pressure. There is the threshold capillary pressure nece1at section. .
sary at a given interface when situated at some pore ijeck ~ Imagine for a moment a flat model oriented at an artgle
|:>itj . Let us choose a reference heigit 0 and consider the Vi avisthe horizontal. Injection occurs with the lighter fluid
corresponding capillary pressure measured at this heigh@it the top edge5,6l. WhenF=0, the injection process is
The reference capillary pressuPg at the height=0 when stable—i.e., does not produce ramified fractal struct(egs
the pore neckj is invaded is different from the capillary fhept :” "’t‘ narfrctJ;/]v zone ':Nzc;?e'dWIdth 's contrf)llef:j@y:ﬁnd

t i g e cluster of the injected fluid may be analyzed in the same
th-re-ShOIdP” qt a heighth;; . The SUbSCI’Ipi'] deno.t.es that way as gradient e]rcolatic[QQ] HO\B//vever wgen the lighter
this is the capillary pressure necessary to invade gjoréhe yasg p : ' 9

invading liquid has a density; while the defending liquid fluid is injected from the bottom, the injection process is

has a densitypy. The gravitational constant ig, and we unstablg 7] and elongated stringy structures ensue. The tilt-
have that ' ing of the flat model corresponds in terms of the invasion

percolation algorithm to setting;; =y; sin(e), wherey; is

Pij= pitj —Apghy; , (3) the d_lsyance of nodgfrom the Iowgr edge, in Eq3).. .
It is interesting to note the relation with percolation at this

point. When injection is from the top and the process is
stable, situatiorii), described in Sec. Il A, occurs frequently,
and when this happens the percolation cluster connected with
ethe inlet nodes that is found by settipgequal tor(N) is
3qual to the invasion percolation cluster.

where Ap=p;—p4. Introducing this effect in the invasion
percolation model, the random numbers represent the

threshold pressureBh , but the algorithm choosing which
bond to invade next should compare the capillary pressur
P;; at the reference heiglfit=0, not the threshold pressures However, when injection is from the bottom and the pro-

t . .
themselvzsPij 'hThuf' thedbond ert]h t.he sfmaIIeBtjdthat IS" cess is unstable, situatigin) will typically not occur. That
connected to the Inlet nodes or the interface nodes gets Iyq4n5 there will be little resemblance between the invasion

vac_irehd ne?éit.h f the distributi f i hresholds | percolation cluster and what would have been the corre-
giveneb;vl th of the distribution of capillary thresholds IS ¢,4nqing percolation cluster. The stringy structures found in

invasion percolation have no correspondent in the percola-
tion problem.
w,=[(P;%) = (Pi;)*]*"2 @)
C. Migration effects
It is the width of the capillary pressure distribution which is

. P . Migration occurs when a cluster moves without changing
the important characteristic pressure for the drainage Process, me. Thus, for each pore invaded by one of the fluids,

Let us assume that the average critical radius of curvature B . i .
. . - ere is another pore belonging to the perimeter of the same
a. We may then express the pressure involved in the injec-

) ; ; ] ~ cluster that is invaded by the opposite fluid. The net effect of
tion process in dimensionless numbers;=Pi;j /Wi, Pij  this is that the cluster moves—and perhaps also changes
=P},—/Wt, and Apghjj=Fh;;, where hjj=h;;/a and F shape. This is a troublesome effect. Assume that it is the
=Apgal/w, is the fluctuation numberlt is this dimension- invading, nonwetting fluid that is migrating inside a back-
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ground of the defending, wetting fluid. Where it is the mi- @ -
grating cluster that invades bonds, locally one is dealing with
a drainage process. However, those bonds that are being in-
vaded by the wetting fluid are experiencimgbibition. The
trouble with imbibition is the possibility of film flow. Thus,

we may encounter a situation where pores are capable of
transporting both fluids at the same time. This leadsdn-

local effects when attempting to construct a model based on
invasion percolation. By nonlocality we mean that a given
bond may be occupied by the wetting liquid without sharing
any nodes with bonds already occupied with this liquid. o ) _
Rather than attempting to model these nonlocal effects, we, F'C- 3: Effect of migration. In(@), the capillary threshold dis-
simply ignore them. tribution is uniform on the intervdls,s+ 1], wheres=10, while in

When a cluster migrates, for those bonds that are filled ofb) s=10°. The system size wals=128.
emptied by drainagéa nonwetting fluid replaces a wetting  The migration algorithm as it has been described so far
fluid), the mechanism for choosing which bond to invade iscontains a dangerous instability. The following situation
identical to the one used in the standard invasion percolatioaoes occur: Once a migration step has been performed, the
algorithm. However, for those bonds undergoing imbibitiontwo bonds that were invaded by the wetting and nonwetting
(a wetting fluid replaces a nonwetting fliiduring migra-  fluids swap roles. That is, the bond that just underwent drain-
tion, the capillary pressure is close to zero. In the generalizeglge now becomes the bond that will undergo imbibition next
invasion percolation model, we simply set all capillary time and vice versa for the other bond. This happens when
thresholds related to imbibition to zero. Thus, the criticalthe bubble is so close to being stable thataatial invasion
pressure that is used in determining which bond to updatef the two bonds would have sufficed. However, this option

among those susceptible to imbibition, is is not possible with the present discrete model, and the com-
~ ~ plete invasion of the two bonds overshoots, so that the
Pij=—Fhj. (7) bubble is still unstable, but now in the opposite direction.
—4 The result is that the algorithm goes into an infinite loop.
At this point let us use the notatioRjj for the drainage This instability is avoided if more care is taken in hyy
critical pressure defined in E). is defined. As was mentioned in Sec. Il B, the heights are

In order to perform an injection or migration step, we first y g a1 the nodes, afg is some function of; andh. .
classify all interfaces in the system. One interface separates ! !

the inlet nodes from the outlet nodes. The other interface€ttinghi; = (h;+h;)/2 leads to the above instability. How-
defines bubbles, or closed-off clusters. For each cluster ever, settingh;; =min(h;,h;) in the drainage critical pressure
inpluding the one separating thg inlet from the outlet, dete_rTDﬁ. , andﬁij =max{ ,ﬁj) in the critical imbibition pressure
mine among the bonds susceptible to drainage the one W"b:j , ensures that both the drainage and the imbibition are
the SmaIIeSPﬂ , which we callPg . Then, determine among maximally stable, and the overshoot is prevented. The insta-
the bonds susceptible to imbibition the one with thegest  bility is cured.
5}1- , largest since the imbibition process invades a bond in We show in Fig. 3 two drainage clusters. The difference
the opposite direction from that of drainage due to the direcbetween them is the capillary threshold distributions that
tion of the capillary forces. We call this threshdRy . We  Were used. In both cases, a uniform distribution was used,
then calculate the pressure difference but one was shifted compared to the other. That is, the dis-
tribution for the left figure was uniform on the intervd,s
A'IsK:E,ﬂ_f,iK (8) +1], where s=10, while for the figure on the rights
=10°. In the figure on the left, there is no migratidie.,

of clusterK. When one of the pore necks is drain@é., isat ~ continuous clustey while in the figure on the right, there is
the threshold valug’ﬂ), the pressure differencszDK corre- migration(i.e., split in discontinuous clustgrsie note that

. L the shift s is proportional to the average of the capillary
sponds to the capillary pressure at the imbibition pore. Thenthreshold distribution. This is the essential quantity that
we search among all clusteiksthe one that has the smallest X

buoyancy is compared to in defining the Bond numBer

APy . If this APy is positive, all bubbles are stable, and no _ ;3 pgly. Thus, the Bond number is the proper parameter
migration is possible. The bond with the smallest drainaggnt controls migration.

threshold along the interface separating the inlet from the
outlet is then invaded. This is an injection step. However, if 1l. GEOMETRY OF CLUSTERS

the minimumAPy is negative, the capillary pressure of one , _ _ ) )
of the pore necks becomes negative and migration occurs. !N this section we discuss the geometry of the invasion
The bond on the interface of the corresponding cluster that iBercolation clusters at various fluctuation numbers, with
most susceptible to drainage is invaded by the nonwetting@PPing and with and without migration effects.

fluid, whereas the bond that is most susceptible to imbibition
is invaded by the wetting fluid. Migration may occur for any
interface, whether it belongs to a bubble or to the interface In this limit (F—o<), gravitational forces dominate com-
separating the inlet from the outlet. pletely. We show in Fig. M), a 256x 256 lattice with injec-

A. Infinite fluctuation number
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tion along the lower edge at a fluctuation numler 100. OB TomoT T e e
As we will demonstrate in Sec. Ill B, this is sufficiently high
for gravity to completely dominate capillary disorder, and
the system acts asi were infinite. In Fig. 1a), on the other
hand, we show the same system, but now at
F=10 ®—which is sufficiently low for any buoyancy ef- o
fects to be irrelevant. Thus, comparing these two figures, one
sees the difference between “standard” uncorrelated inva-
sion percolatior(a) and correlated invasion percolation with
self-affine disorder(d). The striking feature in the infinite-
fluctuation number case is the stringy appearance of the B
cluster—somewhat like beads on a string. This is typical. It 5 — ° 5000 10000
is caused by the structure of the self-affine surface.
Self-affine surfaces are hierarchical. They contain valleys
within valleys and mountains on mountains. Making a cut
through a self-affine surface produces a one-dimensional
self-affine profile. The hierarchical structure of the cut may 10
be quantified through the valley size distributidf{A,h).
This is the probability density to find a valley of width a
heighth above a point on the self-affine profile. That is, draw
a horizontal line a heighh above the chosen point on the M

0.6 |-

-5 T =1 T S

A 15 |

self-affine profile. The horizontal line will cut the self-affine
profile at an infinite number of points. The distance between
the two cuts that are closest and next closest to where the {

heighth was measured iA. In Ref.[30] it was shown that 25 Lom e e e ™ Te0s6 | iob00
b) n
h# h . ~ .
N(A h)= >nCl =/ (9) FIG. 4. Injection pressur®;; as a function of the number of
A A invaded bonds for fluctuation numb& F=10 2 and(b) F=1.

whereg=1/H—1 andG(2) is a function that tends towards maximum. This cycle is repeated over and over, resulting in
a constant for small arguments and falls off faster than anyhe “blobs-and-strings” structure.

power law for large arguments, as, e.g., exp{) does. Such
a power law signifies that the underlying valley structure is
hierarchical.

When slow drainage is performed in such a hierarchica

i X . orces dominate, the pressure develops in a noisy way. The
landscape for infinité=, the drainage front will constantly
change between stable and unstable situations as defined

We record in Fig. 4, the reference capillary pressTarJe
as a function of the number of invaded bonds for fluctuation
umberF =102 andF=1. In Fig. 4a), where the capillary

H’;\ble regions are those when qu(Ja at the last invaded bond

Sec. Il A, where percolation and invasion percolation werd$ larger than allP;; that have occurred before, while the
Compared: The process iS Stab'e if the pressure at the imél[]Stable regionS are those where this is not true. We see that
must be increased to further advance the invasion fronﬁhese I’egions are intermixed in this case. HOWeVer, when the
while it is unstable when the maximum pressure has beefluctuation numbeF =1 [Fig. 4b)], there is a clear separa-
reached at some earlier Stage of the injection process. tion between the stable and unstable regions of the Signal. It
As was described in Sec. Il B, when a lighter nonwettingis also clear that the signal is hierarchical in this case. There
fluid is injected into a heavier, wetting fluid from above in a are local regions where the signal drops within regions that
tilted flat model, the injection is stable and a compact strucare already unstable. This means that the blobs-and-strings
ture ensues, while if the injection is from below, the injection Picture is a hierarchical one. As a blob is developing due to
is unstable and the injection structure becomes stringlike. @ local maximum, the process by which this happens is one
Thus, in the self-affine landscape, the invasion percolatiothat creates blobs and strings at a smaller scale inside the
cluster will consist of a series of “blobs” connected by area eventually to be flooded by the developing blob.
“Strings” as shown in F|g ld) The blobs occur in the In F|g 5, we show the invaded cluster that gave rise to the
regions where the invasion process is stable. This is wherressure curve of Fig.(8). The invaded cluster is shown in
the landscape has a local maximum. As the invasion frongray. The black areas consists of those bonds that h&e a
reaches a saddle point leading to a region where there is @maller than or equal to the maximum pressure encountered
local maximum, the process will be unstable and it will seekduring the injection process, i.e., the percolation clusters.
out the most convenient path leading to the local maximumThe blob connected to the lower edge of the figure overlaps
The result is a stringlike structure. Once the invasion procesalmost completely with the percolation cluster in the same
has reached the maximum, it becomes stable and a compaeigion. This indicates that the invasion percolation process
blob develops around this maximum. This goes on until avas stable long enough to completely fill out this region.
new saddle point is reached that leads to another local maxHowever, further up in the figure, we see a blobs-and-strings
mum. The process is from then on unstable until a new maxistructure entirely inside the percolation cluster. This is
mum has been reached. A new blob then forms around thisaused by the hierarchical structure of the system: This re-
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£ la=(w,F/a)~ M. (13

On length scaleg larger thané;, the buoyancy dominates
and one sees invasion percolation with self-affine disorder,
and with ¢ smaller thané; one sees essentially standard in-
vasion percolation.

We see from Eq(13) that the relevant variable that gov-
erns the relative importance of the buoyancy to capillary
forces is the fluctuation number.

Returning for a moment to Sec. Il C, we may pose a simi-
lar question for what determines migration versus injection.

The crucial quantity here is the pressure differeadd, de-
fined in Eq.(8): Is it larger than zerdinjection) or smaller
than zero(migration? As the imbibition pressuré€’) only

depends on the heigﬁl;j of the bond susceptible for imbi-
bition while the drainage pressureee Eq(5)] depends both
. . . on the height and the threshold distribuﬁﬁp, the question

FIG. 5. The invaded clustéin gray) that gave rise to the pres- \yhether migration or injection dominates is answered
sure curve of Fig. db). The~black areas consist of those bonds thatthrough comparing th@veragethreshold distribution with
have an injection pressufé; smaller than or equal to the maxi- the averageheight difference across clusters. Thus, it is not
mum pressure encountered during the injection process, i.e., e fluctuationnumberF that is relevant here, but rather the
percolation clusters. bond numbeB, as has already been pointed out at the end of

) . Sec. Il C.
gion would eventually have been completely filled as the |, oy simulations, the prefactav, in relating horizontal
lower one was, but the invasion process reached the UPPRIngth to vertical height is 0.078, and the Hurst exponent is
edge before it was complete. This filling out process proy g The capillary thresholds are drawn from a flat distribu-
ceeds through a blobs-and-strings process at a smaller scalg,, on the unit interval. and henee?= 4. We set the lat-
) 12+

— as described in connection with the pressure curve Figrice constant to unity. Inserted into EG13), we get &
. ’ C

A(b). =1.12F?° Buoyancy dominates completely whép=1.
o ) This gives us a critical fluctuation numberfeg=1.10. Cap-
B. Finite fluctuation numbers: A crossover length illary disorder dominates, on the other hand, completely in a
There is a crossover length between standard invasiofinite lattice of sizeL when §.=L. This leads to a second
percolation and invasion percolation controlled by buoyancyeritical fluctuation numbeif c=1.10L". For L=256, this
only. The reason for this is as follows. The distribution of givesFc=1.3x10"2. In Fig. 1 we show a series of invasion
injection pressure®;; consists of two independent distribu- percolation simulations done on the same 2266 lattice,
tions [see Eq.(3)]: The capillary thresho|d5pitj and the using edge injection. We have included trapping effects, but
heightsh;; . As h;; is self-affine, the width of the distribution there is no migration. The fluctuation numbers were %0
is 1072, 1, and 100. In Fig. (8 we are dealing with standard
invasion percolation, as there is no effect from the height
wh(€)/a=[(h5)1"%=(w,/a)(éla)™, (10)  distribution. In Fig. 1d), where the fluctuation number is
100, buoyancy dominates completely. Figurd)lis at a
whereé is the linear size of the area over which we measurductuation number very close .= 1.3x10 2, while Fig.
the width andw, is the width of the distribution at the pore 1(c) is at a fluctuation number very close Fg=1.10.
scale:w,=w(a). The width of the distribution of capillary In order to measure directl¢., we use the following
thresholds is numerical procedure. Generate a network by distributing
ot 2 t\291/2 heightsh;; and thresholdp}; . Now, make an exact copy of
w=[(P; 5 — (P 1™~ (1D this netwlork. One of the tho identical networks runs the

The quantityFw; /a then reflects the ratio between the width invasion percolation algorithm with the fluctuation number

of the hydrostatic pressure distribution and the capillary>€t ©© ze[)o, while thﬁ OthTr n(fetworrli rﬁns It V‘."tE the flluctlua—
pressure threshold distribution. Whenv, /a<1, the capil- 10N number set to the value for which we wish to calculate

lary disorder dominates and the modified invasion percola§0' Record the relative difference between the two clusters

tion algorithm produces standard invasion percolation cluséh?t develgp,hdelfined agl t.r&edngmbher of bgnds tgat ddo r?Ot
ters. In the other limit, whenFw,/a>1, buoyancy Pe€long to both clusters divided by the number of bonds that

dominates and the system behaves as described in Sec. lll as been invaded in either O.f the two lattices. When this
When ifference has reached a prefixed value, say 10%, stop. We
then start from the edge where the invading fluid was in-
1=Fw,(&)/a, (12)  Jected and compare clusters line for line in the direction per-
pendicular to this edge. When a difference of 10% has been
the two disorders balance each other. This equation definesraached, the distance from the injection edgé.isin Fig. 6
length scalet, when combined with Eq(10), we showé,. as a function of fluctuation numbé&rusing 5%,
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FIG. 6. Evolution of the crossover length as a function of FIG. 8. Evolution of the relative mass fluctuations as a function

fluctuation numbeiF for 5%, 10%, 20%, and 30% difference be- of the fluctuation numbefF. Each data point is based on 100
tween invasion clusters at finite and zero fluctuation number. Th@56x 256 networks.
straight line has a slope of U~ 1/0.8=1.25. The system size was

256x 2 h inti 1 les. . . . A
56x256 and each data point is averaged over 100 samples is that the invading fluid itself has to be transported through

10%, 20%, and 30% difference between the two clusters as?e invaded parts of the porous medium in order to expand
basis' The,length scale becomes less sensitive to the value urther the interface between itself and the invaded fluid.

chosen for the relative difference between the two clusters al;ven though one of the conditions for the invasion percola-

this value is decreased: There is hardly any difference belon algorithm to describe_ a given physical situation is_that
tween the 5% and the 10% data. We also see tha flas a viscous forces are negligible compared to the capillary

function of F follows Eq. (13) for these two data sets. Our forces, it is not given that the viscous forces may be ne-

theoretical arguments are therefore supported by our simulag-IeCt?d in studying other_ phenomena cc_)nne_cted to the same
tion results. invasion process. The viscous forces give rise to the distri-

Figure 7 shows the invasion clusters for fluctuation num-Pution of flow velocities through the different pores. One

bers F=100 for two different landscapes. There is a hugeexample \_/vhere _th|s d|st_r|but|on might be of_mterest IS \_/vher_l
he invading fluid contains suspended particles. The time it

difference in the size of the two clusters, even though aIFS ends in a aiven oore will determine how much will sedi-
parameters are the same. We defMg as the number of pent in thatg ore pThus knowing the flow velocities will
invaded bonds at the point when the cluster reaches acro etermine thepsedimenta:[ion attegrns in the porous medium
the network averaged over different sampled\; is the There might also be uanﬁities other tharr)1 the invadin .
sample-to-sample fluctuatioiigms) of the same quantity. In L gnt a d X . 9

X . . fluid itself, which is transported through the invading cluster.
Fig. 8, we show the relative mass fluctuatioAd;/M;, as . . g . .

. . X . . If, for example, the invading fluid is electrically conducting,

a function of fluctuation numbef. As is evident from this

. . . . o . _electrical current will flow through the invaded pores if a
figure, the fluctuations increase dramatically with 'ncreasm%otential difference is set up Tﬁe current distribpution wil
fluctuation number. . ’

however, be different from the velocity distribution of the
invading fluid since the effective electrical conductance dis-
IV. ELECTRICAL TRANSPORT PROPERTIES tribution of the pores will be different from their permeabil-

We now turn to studying transport properties of the in-1ty distribution.

jected clusters. There are several reasons for doing this. One !N this section, we will neglect complications due to per-
meability and conductance distributions in the transport

properties of the invaded cluster. Rather, we will assume that
the transport properties of the individual pores are identical.
The reason we can do this is that the invasion process we are
studying produces fractal clusters. This fractal structure will
dominate the transport properties compared to the effect of
the disorder that local permeability or conductance variations
introduce. As we will see in this section, the current or ve-
locity distribution in clusters with constant pore permeability
and conductance is characterizable with power laws. On the
other hand, permeability and conductance distributions will
induce current distributions that fall off at least as fast as
FIG. 7. Two different self-affine landscapes invaded from theexponentials.
lower edge for a fluctuation numbé&r=100. It is the aim of this section to use the current distribution
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FIG. 10. Histogram of current distribution in percolating inva-
sion clusters with fluctuation numbefs=10"6, F=10"2, F=1,
and F=100. The lattice sizes were 258&56, and 100 samples
FIG. 9. Current distribution in a percolating invasion cluster were generated for each lattice size and fluctuation number. The
with a fluctuation numbeF =100. The lattice size is 256256. total current entering each cluster was set to unity.
The gray scale reflects the current distribution. Light gray corre-
sponds to very small currents, and darker gray means larger cufight gray. Note, in particular, the black bonds. These carry a
rents until black, which signals that the corresponding bond carriegyrrent equal td =1. In the standard terminology of perco-
the entire current flowing in the cluster. lation theory, these are theed or cutting bonds—the first
term, because these are the “hottest” bonds in the system

in the invaded clusters as a measuring tool to further Chara‘(Trom ohmian heating and the second term because if one
terize their geometrical structure. The underlying reason fops these bonds is cut, the conductivity of the network will

this suggestion is the rich, multifractal structure of the CUlgrop to zero[28]. As is visible in Fig. 1, the bonds that

rent distribution in the random resistor network at the percoxqnstitute the invasion cluster falls into two types of struc-
lation threshold that was uncovered

in the mid-1980sre5 for high fluctuation numbers: bonds belonging to the

[31,32. It is conceivable that the_current distribqtion on the piobs and bonds belonging to the strings. The blobs are com-
invasion clusters generated at different fluctuation numbers, structures, while the strings are not. Clearly, the strings
will be as rich in structure as the random resistor network a

: ; _ ill carry a current equal to or close to the entire current

the percolation threshold. The numerical evidence W&qying in the cluster, while the bonds belonging to the blobs

present in this section shows that this is indeed so. We alsgj| carry much lower current as it will be distributed among

demonstrate how the current distribution depends on thg o ponds in each blob.

fluctuation number of the invasion process. _In Fig. 10 we show a series of histograms for networks of
The invasion process is run from an injecting border untilg;, o 256¢256 for different Fluctuation numbers ranging

the invading cluster has reached the opposite border of t om F=10"° to F=100. This figure shows how a “string

network. B'oth opposite bqrders are used as electrodes a”dpﬁak” for bond currents close to ondIn(i)=0] appears and
potential differenc\V=1 is set up between them. The CUr grows in importance as the fluctuation numberis in-

rent carried by each bond belonging to the invaded cluster i§ a55ed. The other, very broad peak on the left stems from

then calculated using a conjugate gradient algorif88]. the bonds belonging to blobs. In Fig. 11, we show the num-
The conductance measured between the two electrodeSe, of red bonds as a function of lattice sizeWe find that

G, fluctuates_ from sample to sample. This results in the totak pehaves as a power law,
current flowing through the network=GAV fluctuating
likewise from sample to sample. Since we seek to connect M o L Pred. (14)

the current flow in the bonds with the structure of the clusters

to which they belong, it is advisable to move from tt@en-  Thus, the red bonds form a fractal set with dimensibgy
stant voltage ensemblehere the voltage difference across equal to 0.08 folF=10"° to 0.67 forF=100. (For perco-
each sample is kept constant to thenstant current en- lation, D= 1/v=3/4[28].) We see that there is no differ-
semblewhere the total current flowing in each sample is keptence in slope between the=10 6 and F=10 2 data sets
constant. In practice, this is done by calculati@drom the  and theF=1 andF=100 data sets. This seems to suggest
current distribution found wheAV=1, and then normaliz- that there are only two classes of behavidds,;=0.08 for

ing this by dividing each of these currents 8y capillary-dominated drainage aml.~=0.67 for buoyancy-
We illustrate in Fig. 9 the current distribution for an in- dominated drainage.
vading cluster generated with a fluctuation number100. In Fig. 12, we show the distribution of blob sizé$é(m),

Bonds carrying large currents have been denoted with dar&s a function of the number of bonds belonging to a binb,
gray, while bonds carrying smaller currents are drawn withThe blobs have been defined as clusters of bonds that are not
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FIG. 11. Total number of red bonds as a function of network  F|G. 13. Evolution of the scaling exponeytn) as a function of

sizeL for different fluctuation numberk. The data points are av-
erages over 200 samples.

red bonds. In the limit of high fluctuation numbé:; the

the current moment order in the constant-current ensemble for
two fluctuation numbersF=10"® and F=100. Lattice sizes
ranged fromL =32 to L=256. 200 samples were generated lfor
=32, and 100 for the lattice sizes greater than32.

blobs are a subset of the islands obtained from a cut of the

fracture surface at a given heigfgee Fig. 5. Distributions

which is very consistent with the numerical estimate of the

of the blob size and of the cut island size have the samg)job size distribution for high fluctuation numbEr(see Fig.
behavior. Blobs are shown to be compact with a fractal di-2),

mension close t®,=2. Their spatial extensioA is related
to their dimension ad ~mPs. Using Eq.(9), we obtain the
following law for the blob distribution:

N(m)wmflJrDbe/Db. (15)
The roughness exponentlis=0.8, which leads to the fit

N(m)~m~ 1%, (16)

o ——er-10"°
o0—0oF=10"
&>—&F=10°
~—AP=10
——- N(m)am™
=2

log, [N(m)]

4t

-6

log,(m)

The current distribution in the random resistor network at
the percolation threshold was shown to baultifractal
[31,32. Multifractality is most easily detected through the
scaling properties of the moments of the current distribution.
They are defined as

M= NG, L)~LY™, (17)

whereN(i,L) is the current distribution for lattices of site
The current distribution is multifractal if the scaling expo-
nentsy(n) do not depend om asy(n)=an+b. Multifrac-
tality implies that the proper scale-independent variables to
describe the currents and their distribution are
=In(i)/In(L) and f(a)=In(N(L%,L))/In(L). (We note that
the implication does not go the other way; a power-law de-
pendency olN oni would imply the same scale-independent
description)

We show in Fig. 13 the scaling exponeg{s) as a func-
tion of n as calculated from the constant-current ensemble
for fluctuation numbersF=10"% and F=100. In the
constant-current ensemblg(n) must approach the fractal
dimension of the red bondg) 4 as n—oe. If the current
distribution is not multifractal, this convergence combined
with the functional formy(n)=an+b implies thaty(n)
=D,q independently ofn. However, as can be seen from
Fig. 13, this is not so. The current distribution is multifractal.
It is remarkable that the scaling exponey(s) for smallern

FIG. 12. Distribution of blob sizes. The distribution is computed &ré so close to each other for the two different fluctuation

with logarithmic binning and divided witim to get the distribution
corresponding to a linear binninh(m). The system size was
256X 256 and 100 samples.

numbers that we have used. The geometry of the clusters on
which the current flows is very different, as can be seen in
Fig. 1.
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V. CONCLUSIONS behavior—and dominance of buoyancy, giving rise to the

We have studied a generalization of the invasion perColaplobs-and—strlngs structures. The crossover length scale de-

. X . ) : . pends on the control parametErwhich is thefluctuation
tion algpnthm to study drainage In a horizontally que_nted number The blob size distribution is analyzed and shown to
gouge-filled fracture. The fracture is rough, and this intro-

; ) . . tal. We also find that the bonds belonging to the strings form
the invading clusters are those of standard invasion perco'%{fractal set with fractal dimension either equal to 0.08 when

tion. However, as the.importance of b_uoyancy increases,' thgapillary forces dominate or equal to 0.67 when buoyancy
structure of the invasion clusters attains a bIobs-and-strlng&omina,[es '

structure, see Fig. 1. The blobs-and-strings structure is

hierarchical—and therefore fractal—and is caused by the hi-

erarchical structure of the. ;elf—afﬁne fracture Iandscape, ACKNOWLEDGMENTS

where valleys are found within valleys and mountains are

superimposed on mountains. We demonstrate that there is a A.H. thanks the Ecole Normale Supsure for financial
length scalet. that signals the crossover between capillarysupport. We also thank the CNRS and the NFR for support
dominance—and therefore standard invasion-percolationf an exchange program between France and Norway.
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