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Spontaneous deformations of the uniform director ground state induced by the surfacelike elastic
terms in a thin planar nematic layer

V. M. Pergamenshchik*
Institute of Physics, Prospekt Nauki 46, Kiev 03039, Ukraine

~Received 9 June 1999; revised manuscript received 1 August 1999!

We study the effect of the divergence~surfacelike! K24 and K13 terms on stability of the uniform ground
state of a nematic phase. It is shown that theK13 term can effectively boost the action of theK24 term. As a
result, even if the two Ericksen stability conditions are satisfied, spontaneous deformations can occur in
geometries with a sufficiently small volume-to-surface ratio. For a specific example, we show that this mecha-
nism can destabilize the uniform planar director field in a thin nematic layer with planar anchoring and produce
spontaneous periodic director modulation. The critical thickness below which the predicted modulated phase
occurs is found to behc522La@12(122K24/K11)

21K13* /K11#, whereLa is the polar anchoring extrapola-
tion length,K11 and K24 are the standard Nehring-Saupe elastic constants, andK13* is the effective elastic
constant of the layer.

PACS number~s!: 61.30.Gd, 64.70.Md
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I. INTRODUCTION

The very definition of a liquid crystalline nematic pha
involves the idea that in the ground state its vector or
parametern, called director, is uniform, i.e.,n(x)5const@1#,
@2#. However, the derivation of the deformation free ener
~FE! only presupposes that the director deformations ass
ated with its derivatives]n are weak@2#. For this reason, the
fundamental stability condition of the uniform ground sta
must follow from the FE itself and can be nontrivial. Th
nematic deformation FE is of the form@2#

Fd5
1

2E dVH 1

2
K11~“•n!21

1

2
K22~n•“3n!2

1
1

2
K33~n3“3n!22K24“•@n~“•n!1n3“3n#

1K13“•@n~“•n!#J . ~1!

This expression was derived for a spatially unrestricted bo
Recently, it was shown that the FE of a spatially restric
nematic body has exactly the same form but with resca
of the constantsK24 andK13 @3# ~see Sec. II!.

In a nematic phase the elastic constantsK11,K22, andK33
are positive. Then the first three terms are positive defi
and thus describe elastic resistance to any director defo
tion ]n. To characterize these terms it is sufficient to d
scribe a specific deformation to which each of them resi
As the three positive terms show the FE cost of the sp
twist, and bend deformations, respectively, they are ca
the splay, twist, and bend terms, respectively. Clearly, i
nematic liquid crystal free of any external torque, the sum
these term that is minimized by a uniform director cannot
a source of spontaneous deformations.

*Electronic address: pergam@i.kiev.ua
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The last two terms in~1! are total divergencies. They ar
often called surfacelike as their FE can be converted t
surface integral. In contrast to the splay, twist, and be
terms, the divergenceK13 and K24 terms are not positive
definite for all values of the constantsK13 andK24, and, in
principle, the FE can be reduced at the expense of their fi
contributions. Therefore, theK13 and K24 terms can be a
source of spontaneous deformations. To characterize t
terms one has to describe possible patterns of the dire
field that can be spontaneously induced by this source
different geometries@4#. Ericksen@1# addressed this prob
lem. He pointed out that the uniform director ground sta
can be unstable if the magnitude of theK24 term exceeds the
elastic resistance of the positive definite terms. However
this analysis both anchoring and theK13 term were not in-
corporated in the stability condition. That theK24 term can
induce a spontaneous pattern formation has been recogn
@5,6#, and an essential role of theK13 term in this pattern
formation has been reported@7,8#. Under these conditions i
is natural to ask what is a joint effect of both divergen
terms and anchoring on the stability of the uniform direc
ground state in a finite-size body. Addressing this probl
one should realize that it cannot be considered in the gen
form of Ref. @1#. In @1# the analysis was not restricted to
specific geometry of the nematic sample because it redu
to the local condition that the FE density is non-negative
each spatial point. Incorporating anchoring and theK13 term
makes dealing with an arbitrary geometry practically impo
sible. Indeed, whereas the volume elasticity gives rise to
bulk torques, the anchoring produces a torque at the nem
surface. Therefore, locally these two torques cannot bala
one another, and the stability of the uniform director grou
state can be realized only as a global requirement that
sum of the bulk and surface FE of the sample cannot
reduced for finite]n. This requirement cannot be derived
general, and the problem reduces to investigating spont
ous pattern formation in different geometries with a spec
anchoring potential. Anchoring, which is a major mechani
of aligning the director, is a director-dependent part of t
3936 © 2000 The American Physical Society
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PRE 61 3937SPONTANEOUS DEFORMATIONS OF THE UNIFORM . . .
surface tension. The anchoring potential consists of
terms. The first one, called polar anchoring, gives the surf
energy as a function of the polar angleu between the directo
and surface normaln, while the second one, called azimuth
anchoring, gives the surface energy as a function of the
muthal anglef between the director and some preferred
rection on the surface.

In this paper we consider stability of the uniform direct
ground state in a plane layer with planar polar anchoring
favors the surface director to be tangential to the surfa
and zero azimuthal anchoring on both substrates. On the
hand, this geometry is one of the most widely used in
physics of liquid crystals. On the other hand, in this partic
lar geometry theK24 term has the strongest effect@9# while
an azimuthal anchoring would severely suppress it. The
vious ground state of such a layer is a uniform planar dir
tor field u5p/2 with zero FE. The main result of this pap
is a prediction of instability of this ground state induced
joint action of theK24 and K13 terms. It is shown that in
sufficiently thin layers, a periodic director modulation c
lower the FE under certain condition between elastic c
stants. This condition can hold even if the two well-know
Ericksen inequalities@1# ~see Sec. II for details! are not vio-
lated. The critical thickness of the layer is proportional to t
polar anchoring extrapolation length and thus is larger
weaker anchoring. Estimates show that the predic
effect—spontaneous formation of periodic domains in a t
planar layer—can be observed in a polarizing microsc
since the period of the structure is larger than the layer th
ness, and is to be sought in the range of film thicknesse
order of a micrometer.

The paper is organized as follows. In Sec. II, gene
statements of the elastic theory@10#, incorporating theK13
term, are given in the form instructive to our task. In Sec.
the general theory is applied to a periodic instability of t
uniform director in a planar layer. In Sec. IV, the obtain
results are discussed and summarized.

II. GENERAL STATEMENTS OF THE ELASTIC THEORY

Let the layer of thicknessh be normal to thez axis and
parallel to the (x,y) plane. Measuring length in unitsh, the
bulk V occupied by the layer can be written as 0,x,y
,L/h,0,z,1, whereL@h is the size in thex andy direc-
tions. It is known that the sum of the first three terms in t
FE ~1! also contains certain total divergence. To study
intrinsic mechanisms of spontaneous deformations in a n
atic phase, it is relevant to rewrite its FE separating t
divergence term with the aid of the identity

~“•n!21~“3n!25~] inj !
21“•@n~“•n!1~n3“3n!#,

where] i5]/]xi and summation over repeating subscripts
implied. Converting the divergence terms to surface in
grals, the nematic FE per unit square of the layer can
represented as the sum of the irreducible bulk and sur
terms, i.e.,

F5
2h2

L2 S E dV fb1E dS( f SD , ~2!
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f b5~] inj !
21~ t21!~n•“3n!21~b21!~n3“3n!2,

~3!

f S5puu f uu1p' f'1d fa . ~4!

Here F is the FE in unitsK11/4h; ( f S5 f S(z51)1 f S(z
50) is the sum of the surface FE densities on the surf
z50 andz51;t5K22/K11 andb5K33/K11 are the reduced
twist and bend constants,d5h/La is the thickness normal
ized on the anchoring extrapolation lengthLa5K11/W, and
1
2 W fa(nz

2) is the anchoring potential. The surface densit
f uu and f' with the director derivatives, respectively, tange
tial and normal to the surfaceS @11# take the form

f uu5nz@nz~]xnx1]yny!2~nx]x1ny]y!nz#, ~5!

f'5nznz]znz , ~6!

where nz is the z component of the outer surface norma
nz(0)521, nz(1)51, and their coefficients arepuu51
2(2K24* 2K13* )/K11 and p'5K13* /K11. The constantsK13*
and K24* derived in @3# are the effective quantities that in
finite body replace elastic constantsK13 and K24 calculated
by Nehring and Saupe in@2# for the infinite nematic medium
The constantK13* is determined by the behavior of the scal
order parameterh at the surface@3#: for smooth changes
K13* ;(hb2hS)K13, wherehb andhS are the bulk and sur-
face values, respectively@12#. The constantK24* is the sum
K24* 5K241

1
2 K13* @14#. As a resultpuu takes the value

puu5122K24/K11, ~7!

where K24 is the material parameter of a nematic mediu
alone ~the infinite medium constant!. At the same time the
quantity p' is determined by both the nematic medium a
details of subsurface behavior.

The constantpuu is the total coefficient of the FE term
functionally similar to theK24 term, which likep' can be of
any sign. If the anchoring andK13 term are neglected, i.e.
p'5d50, the uniform state is stable under the condition

upuuu,1, ~8!

22t,12puu22t,0, ~9!

derived by Ericksen in@1#. These inequalities imply that bot
the K24 and K22 mechanisms should be restricted~not too
large puu and not too smallt). In contrast, for any finitep'

the director is known to be distorted very close to the surf
@15#. Nonetheless, since this subsurface mode cannot be
rectly observed, the assumption of a homogeneous gro
state remains valid for theobservable bulkdirector. For a
finite p' , the bulk director is determined by the standa
Euler-Lagrange equations forF and the effective boundary
conditions derived in@10#. These equations determine th
anglesu andf the director makes with thez andx axes. In
terms of these angles the director takes the formn
5(sinu cosf sinu sinf,cosu), and the boundary condition
@10# can be written as
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nzS ] f b

]u8
1p'

] f'

]u D 1puuS ] f uu

]u
2]x

] f uu

]~]xu!
2]y

] f uu

]~]yu! D
1d

] f a

]u
50, ~10!

nz

] f b

]f8
1puuS ] f uu

]f
2]x

] f uu

]~]xf!
2]y

] f uu

]~]yf! D50, ~11!

where the prime stands for thez derivative. Note that the
divergence terms do not alter the Euler-Lagrange equat
and affect the director configuration only through bound
conditions.

In terms of the angleu one hasf'52 1
2 u8sin 2u, and the

contribution of theK13 term to the boundary condition~10!
is 2nzp'u8cos 2u. Theu equation~10! can be formally ob-
tained fromF if a variation of the termf'52 1

2 u8sin 2u is
taken in the form

d̃ f'52u8cos 2udu ~12!

as if u8 would be constant. This reflects the fact that f
p'Þ0, the standard FE~1! or ~2! has no minimum@16,11#,
and the boundary condition~10! gives the extremum of the
true FE functional introduced in@10#. This true FE takes into
account that the nematic density vanishes at the surf
which provides the minimum forp'Þ0 @10#. Of course,d̃ is
not a real variation, and Eq.~12! only expresses a convenie
rule showing how to write the extremum conditions for t
true FE functional dealing with the expression forF alone.

In spite of a formal status of the standard functionalF in
obtaining the extremum bulk director field forp'Þ0, the
equilibrium value of the FE can be calculated by substitut
this field in the functionalF @10#. This enables one to selec
the director field with the lowest FE among different so
tions of the system of the Euler-Lagrange equations
boundary conditions~10!, ~11!. Thus, the closed procedur
of finding the observable bulk director can be formulat
solely in terms ofF without resorting to the true FE func
tional @10#.

In order to anticipate possible effects of theK13 term, let
us consider a simplified situation whenK115K225K33. In
this case, dividing by 12p'cos 2u, the u equation~10! can
be rewritten as

nzK11u81
puu

12p'cos 2u S ] f uu

]u
2]x

] f uu

]~]xu!
2]y

] f uu

]~]yu! D
1

d

12p'cos 2u

] f a

]u
50. ~13!

We see that compared to the casep'50, the coefficientpuu is
replaced bypuu/(12p'cos 2u). Since the magnitude of thi
last quantity can be larger than that ofpuu , Eq. ~13! suggests
that theK13 term can boost the action of the surface elas
FE densityf uu associated with theK24 term. We are to note
here another possible and apparently more straight inter
tation of the role a nonzerop' plays in strengthening the
pure K24 mechanism of spontaneous deformations. In
original form of the one constant version of Eq.~10! @which
ns
y

r

e,

g

d

c

e-

e

is obtained from Eq.~13! by multiplying by 12p'cos 2u],
the constantK11 is replaced byK112K13* cos 2u, whereaspuu
remains unchanged. Then, instead of attributing the effec
K13* to the increase ofpuu , one may say that theK24 mecha-
nism becomes more effective because the constantK11,
which resists the spontaneous deformations, is effectively
duced. However, this interpretation is not consistent with
fact that it isK11 that enters the Euler-Lagrange equation
for these are not altered by the divergence terms, and
attribute the role of a nonzerop' to the rescaling ofpuu .
Calculations performed in Sec. III confirm the qualitativ
consideration given above. It will be found that the direc
in the ground state of a planar layer can be periodica
modulated even if inequalities~8! and~9! hold, but the factor
12p'cos 2u,1, and the ratiod is sufficiently small.

III. JOINT K13- AND K24-TERM-INDUCED INSTABILITY
OF THE UNIFORM DIRECTOR FIELD

Analysis of patterns in thin nematic films with hybri
boundary conditions~the polar anchoring favors director or
entation normal on one and planar on the other surface! @5#
shows that in the thinnest films only stripe domains oc
@17,9,7,8#. The period L of these surfacelike elasticity
induced periodic patterns is much larger than the film thi
nessh so that the dimensionless wave numberx52ph/L
!1. Although a hybrid film differs from a pure planar one,
the last case a periodic modulation with smallx can be ex-
pected to appear at least at the instability point. To desc
such an instability in a planar layer we can use the theory@9#
developed for hybrid films forp'50.

The uniform ground state of a planar layer with zero FE
described by the anglesu05p/2 andf050. Consider peri-
odic perturbations thereof in the form

u5p/21 f ~z!sin~xy/h!, ~14!

f5g~z!cos~xy/h!. ~15!

After thex,y integration, the layer FE~2! of the two leading
orders in the smallx, f, andg takes the form

F5E
0

1

dz f̄b1( f̄ S , ~16!

where

f̄ b5 f 821x2t f 21x2g21tg8222x~12t !g8 f , ~17!

f̄ S5nz2~xpuug f1p' f f 8!1d f22
1

4
nzxpuu f g3. ~18!

The Euler-Lagrange equations for the functional~16! can
be readily written. However, since theK13 term does not
alter them, the solution thereof is obtained from that of R
@9# by setting the unperturbed value ofu to p/2. Following
Ref. @9#, the small perturbationsf andg are represented in th
form of a power series inx. Then, in the leading orders, th
solution of the Euler-Lagrange equations has the form

f 5x2~j2zz!, ~19!
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g5xg1x3F1

2
gz1~12t !S j2

1

2
zzD1dG z

t
,

wherej,z,g,d are constants to be found from the bounda
conditions.

To obtain the boundary conditions for the functional~16!
from Eqs.~10! and ~11!, it is sufficient to note that nowf'

5 f f 8 and in the surface density~18! f andg play the role of
u and f, respectively. To the leading order, this yields t
following boundary conditions forf andg:

nz~11p'! f 81nzx
2puug1d f50, ~20!

tg82~12t2puu! f 50.

In the context of~19! these equations written forz50 and
z51 constitute the system

2~11p'!z1puug1d~j2z!50,

~11p'!z2puug1dj50, ~21!

g1d1puu~j2z!50,

2d2puuj50.

A nontrivial solution of system~21! exists if its determi-
nant vanishes. This condition reduces to the equality

d522~12puu
21p'!, ~22!

and the solution of~21! is obtained in the form

z5
g

puu
, j5

g

2puu
, ~23!

d52
g

4
.

It now remains to findg andx. This can be done from the
condition that the variation of thetrue FE @10# calculated for
the above solution is equal to zero. As described abovein-
steadof dealing with the complicated true FE functional, o
can apply the rule~12! to the termp' f f 8 in the functionalF
~16!. To this end we substitute~19! and~23! in all the terms
in F exceptp' f f 8. As for this last term, in order to set th
variation of f 8 to zero, we may explicitly separate this d
rivative f 8 as an individual variable substituting solution
~19!,~23! only in f. Such a form ofF is obtained as

F@x,g, f 8~0!, f 8~1!#5x4
d12~12puu

2!

2puu
2

g2

2x2
p'g

2puu
@ f 8~1!1 f 8~0!#

1x6S Pg21
1

4
g4D , ~24!

where
P5
~12puu!~puu12t21!

4puu
2t

. ~25!

Varying ~24! in g andx2 and then substituting solution
~19!,~23! in f 8 gives, respectively,

x4
d12~12puu

21p'!

2puu
2

g1x6S Pg1
1

2
g3D50, ~26!

x2
d12~12puu

21p'!

2puu
2

g21x4S 3

2
Pg21

3

8
g4D50. ~27!

Solutionx andg of system~26! and~27! along with Eqs.
~19!, ~23! and ~14!, ~15! determines the periodic directo
field extremizing the true FE functional. However, as w
described above, the FE of this extremum field can be
culated by substituting this field in the standard functionalF.
Substituting~19!, ~23! in F ~16! reduces to substituting thes
formulas in f 8 in the expression forF@x,g, f 8(0),f 8(1)#
~24!. This gives

F~x,g!5x4
d12~12puu

212p'!

2puu
2

g21x6S Pg21
1

4
g4D .

~28!

For x and g satisfying system~26!,~27! this F(x,g) gives
the equilibrium FE of the periodic state.

Note that Eqs.~26! and ~27! can be formally obtained a
extrema of the following generating function:

F* ~x,g!5x4
d12~12puu

21p'!

2puu
2

g21x6S Pg21
1

4
g4D .

~29!

The functionF* coincides with the equilibrium FEF ~28!
only for p'50, which reflects the formal status of the ru
~12! described in the Introduction. We stress that introdu
tion of F* is not necessary as the equilibrium equations~26!
and~27! are known anyway. However, having it can be us
ful, e.g., for finding the sign of the FEF ~28! without actu-
ally calculating its value forx andg satisfying system~26!,
~27!. This will be demonstrated below.

Let us assume that Ericksen inequalities~8! and ~9! are
satisfied and henceP.0 ~the opposite case will be discusse
in Sec. IV!. Then a nonzero solution of system~26!,~27!,
which has the form

x5S 2
d12~12puu

21p'!

6Ppuu
2 D 1/2

, ~30!

g52P1/2, ~31!

exists only if

d12~12puu
21p'!,0, ~32!

when minF*,0.
Now we can compare the FEF(x50,g50)50 of the

uniform state with the FE~28! of the periodic solution forx
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andg ~30!, ~31!. Instead of calculating this FE, we obser
that if inequalities~8! and~9! are satisfied, and, in particula
12puu

2.0, then the condition~32! can take place only at th
expense of negativep' . Then the first term inF ~28! is
smaller than the first term inF* . Therefore, as soon as th
nonzero solution~30!,~31! appears andF* ,0, one hasF
,F* ,0. Thus, if the condition~32! is satisfied, the periodic
solution has a lower FE than that of the naive uniform dir
tor field.

The obtained periodic director field has all three deform
tions similar to the case when theK24 mechanism of chiral
symmetry breaking produces periodic domains in a hyb
layer considered for 12puu

2.0 andp'50 in @9#. The term
p' f' amplifies this mechanism so that the condition~32! is
satisfied. This is possible only for negativep' when the fac-
tor 12p'cos 2u0511p',1 and

upuuu
12p'cos 2u0

.upuuu

in accordance with the qualitative prediction derived fro
the form of Eq.~13!. In addition, the termp' f' also breaks
parity of the director field. Indeed, it is easy to verify that t
perturbations ofu on both surfaces are not equal,f (0)
52 f (1), and thesolution f (z) is antisymmetric with re-
spect to the middle plane in the symmetric geometry. So
divergence mechanisms of parity violation has already b
reported@18#.

IV. DISCUSSION

Thus, even if the inequalities~8! and ~9! are not violated
but the condition~32! is satisfied, the periodic state has F
lower than that of the simple uniform state. This means t
a nematic liquid crystal in a planary anchored layer is sp
taneously modulated if

12puu
21p',0 ~33!

and the layer thickness is smaller than

hc522La~12puu
21p'!. ~34!

This can happen only ifp',0 ~note that a negative valu
of p' is reported in@7,8#!. We see thathc is proportional to
the anchoring extrapolation length and thus is larger fo
weaker anchoring. In the absence ofp' the factor 12puu

2 can
be negative only if the coefficientpuu of the surface elastic
term f uu is sufficiently large and the fundamental inequaliti
~8! and ~9! are violated. Hence the termp' f' with the
normal-to-surface derivative can effectively renormalizepuu,
thus amplifying the ability of the surface elastic terms w
the tangential-to-surface derivatives to spontaneously
duce director deformations. This was suggested by the f
of boundary condition~13!.

Consider the conditions when the predicted effect
spontaneous director modulation can be observed. A str
anchoring can make the effect practically inaccessible
observations. For instance, forW;102321024 erg cm22,
the critical thickness can be in the rangehc;1 –10 mm.
Modern technology allows for making such thin plan
samples with no azimuthal anchoring@19#. However, forW
-

-

d

e
n

t
-

a

o-
m

f
ng
r

;1022 erg cm22, the maximum thickness becomes as sm
as hc;0.1 mm, which is hardly accessible. The releva
data can be taken from works~Refs.@7,8#! on stripe domains
in hybrid films of a nematic liquid crystal 5CB between a
and glycerin. The anchoring extrapolation length on bo
surfaces was found to be of order of 1mm, p',0, and the
factor 12puu

21p''20.4. For these data one obtainshc

'0.8 mm.
The periodic structure is of long wavelength if the thic

nessh,hc is sufficiently close tohc so that formula~30!
givesx!1. In contrast, the instability that could occur if on
of the inequalities~8! and~9! was violated would be of shor
wavelength. Indeed, thenP,0, Eq. ~25!, and the function
F* ~29! is minimized by a largex. Of course, in this case
our approach cannot give a quantitative result since the
striction of the FE tox6 is not justified. Nonetheless, tw
important qualitative points can be made.

The first point is concerned with the role the anchori
plays for the pureK24 and jointK24-K13 mechanisms of in-
stability of the uniform ground state. In the last case,
extrapolation lengthLa enters the leadingx4 terms in F*
and F and crucially influences the critical condition of th
instability. The situation is different in the case of the pu
K24 mechanism when one of the inequalities~8! and ~9! is
violated,x is large, and the leading negative term inF and
F* is x6P. SinceLa does not enter this term, the role o
anchoring is much weaker. Of course, for a very largeW, La
is very small, thex4 term dominates, and the instability i
suppressed, too.

The second point is about the very possibility of adopti
spontaneous deformations of the ground state within the c
ventional idea of a nematic phase. For vanishingW this
would be impossible since the nematic would have be
spontaneously distorted even in very thick samples, wh
contradicts the experiment. For a finiteW, however, it is
possible. The critical condition~32! suggests that the quan
tity d5~smallest system size!/La , which is in fact the natural
dimensionless parameter characterizing the ratio volu
surface, plays an important role both in the case of a la
and in more general geometries. In thick samples w
d@1, the jointK24-K13 mechanism produces no instability
This practically means that in samples thicker than a f
microns, the uniform ground state is intact. Thus, the po
bility can be adopted that in geometries withd,1 the nem-
atic director can be spontaneously distorted due to the
dicted joint mechanism.

It is much more difficult to answer the question if in
equalities~8! and ~9! can be violated in a nematic materia
The problem is not just that the deformation would th
appear in samples much thicker thanLa . An additional prob-
lem is that because of a largex, the FE of such a state can b
much lower than for a long wavelength instability. In th
case the result of a linear analysis that may be perform
also for largex cannot be conclusive because it is not able
take into account a possible spontaneous defect creation~as
in the model of a blue phase@20#!.

To conclude we emphasize that the intrinsic ability of
nematic material to produce deformations without exter
sources is much less exotic than it might look at first sig
Indeed, the same intermolecular forces that give rise to
K13 term also produce an intrinsic anchoring. But if the su
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face is curved, the intrinsic anchoring favors director def
mations that are totally due to the interaction between n
atic molecules. We showed that divergence terms can vio
the chiral symmetry and parity of the uniform director fie
even in a sample with plane surfaces without contradiction
the basic idea of a nematic phase. The above estimates
that the predicted effect of spontaneous periodic structur
a thin planar layer can be observed in experiments with s
dard nematics, e.g., 5CB. This would give an important
th
de
f
th
las

tiv
on

d

ev

h,
-
-

te

o
ow
in
n-
-

sight into the intermolecular interaction in nematogens,
role of surfacelike elasticity, and intrinsic mechanisms
pattern formation in liquid crystals.
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