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Spontaneous deformations of the uniform director ground state induced by the surfacelike elastic
terms in a thin planar nematic layer
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We study the effect of the divergen¢surfacelike K,, and K5 terms on stability of the uniform ground
state of a nematic phase. It is shown that khg term can effectively boost the action of thg, term. As a
result, even if the two Ericksen stability conditions are satisfied, spontaneous deformations can occur in
geometries with a sufficiently small volume-to-surface ratio. For a specific example, we show that this mecha-
nism can destabilize the uniform planar director field in a thin nematic layer with planar anchoring and produce
spontaneous periodic director modulation. The critical thickness below which the predicted modulated phase
occurs is found to béa,= —2L [ 1—(1—2K /K17 2+ K¥J/K,,], whereL, is the polar anchoring extrapola-
tion length,K;; and K, are the standard Nehring-Saupe elastic constantsKdnds the effective elastic
constant of the layer.

PACS numbgs): 61.30.Gd, 64.70.Md

I. INTRODUCTION The last two terms irfl) are total divergencies. They are
often called surfacelike as their FE can be converted to a
The very definition of a liquid crystalline nematic phase surface integral. In contrast to the splay, twist, and bend
involves the idea that in the ground state its vector ordeterms, the divergenc&,; and K,, terms are not positive
parameten, called director, is uniform, i.en(x) =const[1],  definite for all values of the constaris; andK,,, and, in
[2]. However, the derivation of the deformation free energyprinciple, the FE can be reduced at the expense of their finite
(FE) only presupposes that the director deformations associontributions. Therefore, thi,; and K, terms can be a
ated with its derivativegn are weal2]. For this reason, the  soyrce of spontaneous deformations. To characterize these
fundamental stability condition of the uniform ground state(ems one has to describe possible patterns of the director
must f_oIIow from _the FE itself and can be nontrivial. The a4 that can be spontaneously induced by this source in
nematic deformation FE is of the forfa] different geometrie§4]. Ericksen[1] addressed this prob-
lem. He pointed out that the uniform director ground state
can be unstable if the magnitude of tkg, term exceeds the
elastic resistance of the positive definite terms. However, in
this analysis both anchoring and tKg; term were not in-
+ }K33(n><V><n)2— KV -[N(V-n)+nXVxXn] corporated in the stability condition. That tie, term can
2 induce a spontaneous pattern formation has been recognized
[5,6], and an essential role of th€;5 term in this pattern
+K13V'[n(V.n)]]. (1)  formation has been reportéd,8]. Under these conditions it
is natural to ask what is a joint effect of both divergence
terms and anchoring on the stability of the uniform director
This expression was derived for a spatially unrestricted bodyground state in a finite-size body. Addressing this problem
Recently, it was shown that the FE of a spatially restrictecone should realize that it cannot be considered in the general
nematic body has exactly the same form but with rescalindorm of Ref.[1]. In [1] the analysis was not restricted to a
of the constant&,, andK 5 [3] (see Sec. )l specific geometry of the nematic sample because it reduced
In a nematic phase the elastic constafs,K,,, andKz;  to the local condition that the FE density is non-negative in
are positive. Then the first three terms are positive definiteach spatial point. Incorporating anchoring andkhgterm
and thus describe elastic resistance to any director deformaakes dealing with an arbitrary geometry practically impos-
tion dn. To characterize these terms it is sufficient to de-sible. Indeed, whereas the volume elasticity gives rise to the
scribe a specific deformation to which each of them resistshulk torques, the anchoring produces a torque at the nematic
As the three positive terms show the FE cost of the splaysurface. Therefore, locally these two torques cannot balance
twist, and bend deformations, respectively, they are calledne another, and the stability of the uniform director ground
the splay, twist, and bend terms, respectively. Clearly, in a&tate can be realized only as a global requirement that the
nematic liquid crystal free of any external torque, the sum ofsum of the bulk and surface FE of the sample cannot be
these term that is minimized by a uniform director cannot beeduced for finitegn. This requirement cannot be derived in
a source of spontaneous deformations. general, and the problem reduces to investigating spontane-
ous pattern formation in different geometries with a specific
anchoring potential. Anchoring, which is a major mechanism
*Electronic address: pergam@i.kiev.ua of aligning the director, is a director-dependent part of the
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surface tension. The anchoring potential consists of twavhere
terms. The first one, called polar anchoring, gives the surface ) ) )
energy as a function of the polar angldetween the director fp=(9in))“+ (t=1)(n-VXn)°+(b—=1)(nXVXn)*,

and surface normal, while the second one, called azimuthal 3
anchoring, gives the surface energy as a function of the azi-
muthal angleg between the director and some preferred di- fs=pyf+p.f +df,. 4

rection on the surface. ) ) .

In this paper we consider stability of the uniform director Heré F is the FE in unitsKy,/ah; 2fs=fg(z=1)+fq(z
ground state in a plane layer with planar polar anchoring that- 0) is the sum of the surface FE densities on the surface
favors the surface director to be tangential to the surfaced=0 andz=1;t=K,/Ky; andb=K;3/K, are the reduced
and zero azimuthal anchoring on both substrates. On the orf#ist and bend constantd=h/L, is the thickness normal-
hand, this geometry is one of the most widely used in thdzed on the anchoring extrapolation lendth=K,/W, and
physics of liquid crystals. On the other hand, in this particu-zWfa(n3) is the anchoring potential. The surface densities
lar geometry thek ,, term has the strongest effd@] while ~ fjj andf, with the director derivatives, respectively, tangen-
an azimuthal anchoring would severely suppress it. The obfidl and normal to the surfac@[11] take the form
vious ground state of such a layer is a uniform planar direc-

tor field = /2 with zero FE. The main result of this paper fi1= v na(dxny+ dyny) = (Nydx+nydy)n,], ®)
is a prediction of instability of this ground state induced by
joint action of theK,, and K5 terms. It is shown that in fL=vn,9.n;, (6)

sufficiently thin layers, a periodic director modulation can )

lower the FE under certain condition between elastic conWhere v, is the z component of the outer surface normal,
stants. This condition can hold even if the two well-known ¥(0)=—1, v,(1)=1, and their coefficients arep =1
Ericksen inequalitie§l] (see Sec. Il for detailsare not vio-  —(2K3,—K13/Ky; and p, =KiyKy;. The constantsKi;
lated. The critical thickness of the layer is proportional to theand K3, derived in[3] are the effective quantities that in a
polar anchoring extrapolation length and thus is larger foifinite body replace elastic constarks; and K4 calculated
weaker anchoring. Estimates show that the predicteddy Nehring and Saupe [12] for the infinite nematic medium.
effect—spontaneous formation of periodic domains in a thinThe constanK?; is determined by the behavior of the scalar
planar layer—can be observed in a polarizing microscop@rder parameter; at the surfacd3]: for smooth changes,
since the period of the structure is larger than the layer thickK¥,~ (77,— 75) K13, Where 5, and 5g are the bulk and sur-
ness, and is to be sought in the range of film thicknesses ghce values, respectivefi2]. The constank3, is the sum

order of a micrometer. K3,=Kas+ 3K33[14]. As a resulp takes the value
The paper is organized as follows. In Sec. Il, general
statements of the elastic thedr§0], incorporating theK 3 p||=1—2K24/K1y, 7

term, are given in the form instructive to our task. In Sec. lll,

the general theory is applied to a periodic instability of thewhere K, is the material parameter of a nematic medium
uniform director in a planar layer. In Sec. 1V, the obtainedalone (the infinite medium constantAt the same time the

results are discussed and summarized. quantityp, is determined by both the nematic medium and
details of subsurface behavior.
Il. GENERAL STATEMENTS OF THE ELASTIC THEORY The constanp is the total coefficient of the FE term,

_ _ functionally similar to theK,, term, which likep, can be of
Let the layer of thicknes& be normal to thez axis and  any sign. If the anchoring anid,; term are neglected, i.e.,

parallel to the X,y) plane. Measuring length in units the  p =d=0, the uniform state is stable under the conditions
bulk V occupied by the layer can be written as<f,y

<L/h,0<z<1, whereL>h is the size in thex andy direc- lp <1, (8)
tions. It is known that the sum of the first three terms in the
FE (1) also contains certain total divergence. To study the —2t<1-p—2t<0, 9)

intrinsic mechanisms of spontaneous deformations in a nem-
atic phase, it is relevant to rewrite its FE separating thisderived by Ericksen ifil]. These inequalities imply that both

divergence term with the aid of the identity the K, and K,, mechanisms should be restrictéubt too
large p;; and not too smalt). In contrast, for any finitep,
(V-n)2+(VXn)2=(g;n))2+V-[n(V-n)+(nXVXn)], the director is known to be distorted very close to the surface

[15]. Nonetheless, since this subsurface mode cannot be di-
whered, = 9/ dx; and summation over repeating subscripts isréctly observed, the assumption of a homogeneous ground
implied. Converting the divergence terms to surface inteState remains valid for thebservable bulkdirector. For a
grals, the nematic FE per unit square of the layer can bénite p, , the bulk director is determined by the standard

represented as the sum of the irreducible bulk and surfaceuler-Lagrange equations fé and the effective boundary
terms, i.e., conditions derived if10]. These equations determine the

angleséd and ¢ the director makes with theandx axes. In
oh2 terms of these angles the director takes the fonm
F= _(f dvfb+f das> fs), (20  =(sinfcosg¢sindsin,cose), and the boundary conditions
L? [10] can be written as
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ofy, of af), Jf)| af), is obtained from Eq(13) by multiplyh;lg by 1-p, cos ¥,
v, a—0,+ pL 6 +p) %_&x 9(3,0) —dy a(&ye)) the cpnstanKll is replaced py<11— K13cos_29, .WhereaspH
remains unchanged. Then, instead of attributing the effect of
af 4 K¥s to the increase op), one may say that thi€,, mecha-
+d% =0, (10 nism becomes more effective because the constgnt
which resists the spontaneous deformations, is effectively re-

) duced. However, this interpretation is not consistent with the

=0, (11 factthat it isKy, that enters the Euler-Lagrange equations,
for these are not altered by the divergence terms, and we

_ o attribute the role of a nonzerp, to the rescaling of;.

where the prime stands for trederivative. Note that the Calculations performed in Sec. Ill confirm the qualitative

divergence terms do not alter the Euler-Lagrange equationsonsideration given above. It will be found that the director

and affect the director configuration only through boundaryin the ground state of a planar layer can be periodically

conditions. modulated even if inequalitig8) and(9) hold, but the factor

In terms of the angle one hasf, =—36'sin2, and the  1—p, cos ¥<1, and the ratial is sufficiently small.

contribution of theK 5 term to the boundary conditiof10)

is —v,p, 6'cos 2. The ¢ equation(10) can be formally ob- |, 35|NT K, AND K,,-TERM-INDUCED INSTABILITY

tained fromF if a variation of the termf, = —36’sin 26 is OF THE UNIFORM DIRECTOR FIELD

taken in the form

afy, (ﬂfH ﬁfH 07fH

Y2og P ap ~ Xatad)  Vala,)

Analysis of patterns in thin nematic films with hybrid
5f, =—6"cos 2056 (12 boundary conditiongthe polar anchoring favors director ori-
entation normal on one and planar on the other su)fegle
as if " would be constant. This reflects the fact that forshows that in the thinnest films only stripe domains occur
p, #0, the standard FEL) or (2) has no minimunj16,11], [17,9,7,8. The periodL of these surfacelike elasticity-
and the boundary conditiof10) gives the extremum of the induced periodic patterns is much larger than the film thick-
true FE functional introduced if0]. This true FE takes into nessh so that the dimensionless wave numbhet 27h/L
account that the nematic density vanishes at the surfaces1. Although a hybrid film differs from a pure planar one, in
which provides the minimum fop, #0 [10]. Of coursedis  the last case a periodic modulation with smaltan be ex-
not a real variation, and E@L2) only expresses a convenient pected to appear at least at the instability point. To describe
rule showing how to write the extremum conditions for the such an instability in a planar layer we can use the thga}y
true FE functional dealing with the expression fomlone.  developed for hybrid films fop, =0.

In spite of a formal status of the standard functioRiah The uniform ground state of a planar layer with zero FE is
obtaining the extremum bulk director field fgr, #0, the  described by the angle& = 7/2 and ¢,=0. Consider peri-
equilibrium value of the FE can be calculated by substitutingodic perturbations thereof in the form
this field in the functionaF [10]. This enables one to select

the director field with the lowest FE among different solu- 0= ml2+f(z)sin(xy/h), (14)
tions of the system of the Euler-Lagrange equations and
boundary conditiong10), (11). Thus, the closed procedure $=9g(z)cog xy/h). (15

of finding the observable bulk director can be formulated

solely in terms ofF without resorting to the true FE func- After thex,y integration, the layer FE2) of the two leading

tional [10]. orders in the smalk, f, andg takes the form
In order to anticipate possible effects of the; term, let 1
us consider a simplified situation whégy;=K,,=Kz3. In F:f dzf,+ >, fs, (16)
this case, dividing by * p, cos 2, the # equation(10) can 0
be rewritten as
where
v,K 0’+¢ ﬂ— 7 -4 il T §'2y 2i£2 2.2 ) ,
T T 1-picos2W| 90 TXa(a0) Y (dy0) fo=f “+ x4+ x“g°+tg ~=2x(1-t)g'f, (17)
g4 13 T N L 3
1-p,cos2d 90 (13 fs=v2(xp g f+p. f1)+df?— Zwxp fg®.  (18)
We see that compared to the case=0, the coefficienp| is The Euler-Lagrange equations for the functioft#) can

replaced byp)/(1—p, cos &). Since the magnitude of this be readily written. However, since th€;; term does not
last quantity can be larger than thatmf, Eq.(13) suggests alter them, the solution thereof is obtained from that of Ref.
that theK 3 term can boost the action of the surface elastiq9] by setting the unperturbed value 6éfto 7/2. Following

FE densityf|| associated with th&,, term. We are to note Ref.[9], the small perturbatiorfsandg are represented in the
here another possible and apparently more straight interpréorm of a power series ity. Then, in the leading orders, the
tation of the role a nonzerp, plays in strengthening the solution of the Euler-Lagrange equations has the form
pure K,, mechanism of spontaneous deformations. In the

original form of the one constant version of E§O) [which f=x%(é-(2), (19
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_(A=pp(py+2t—1)

P
4pﬁt

(25

where{,{,y,6 are constants to be found from the boundary  varying (24) in y and x? and then substituting solutions

conditions.

To obtain the boundary conditions for the functiobb)
from Eqgs.(10) and (11), it is sufficient to note that now,
=ff’ and in the surface densiti8) f andg play the role of

0 and ¢, respectively. To the leading order, this yields the

following boundary conditions fof and g:
Vz(l-l-pl)f'-i-VZ)(szy-i-df:O, (20
tg/—(l—t—pu)f:O.

In the context 0f19) these equations written fa=0 and
z=1 constitute the system

—(1+p)f+py+d(E-9 =0,
(1+p)¢—p)y+dé=0, (21)
y+6+p)(§=¢)=0,
— 58— py£=0.

A nontrivial solution of systent21) exists if its determi-
nant vanishes. This condition reduces to the equality

d=-2(1-pf+p,), (22)
and the solution of21) is obtained in the form
Y Y
{=—, é=5— (23
P 2p)|
Y
o=-7.

It now remains to findy andy. This can be done from the
condition that the variation of thieue FE [10] calculated for
the above solution is equal to zero. As described abiove,

(19),(23) in f' gives, respectively,

,d+2(1-pf+p.)

y+x°
Zpﬁ

1
Py+ > y3) =0, (26)

,d+2(1-pfi+p.)
2pf

X ?’2+X4(;P72+g’}’4):0- (27)

Solutiony andy of system(26) and(27) along with Eqs.
(19), (23) and (14), (15 determines the periodic director
field extremizing the true FE functional. However, as was
described above, the FE of this extremum field can be cal-
culated by substituting this field in the standard functidnal
Substituting(19), (23) in F (16) reduces to substituting these
formulas inf’ in the expression folF[ y,y,f'(0),f'(1)]
(24). This gives

d+2(1-pf+2p,)
2pf

Fx,y)=x"

For x and y satisfying system26),(27) this F(x,vy) gives
the equilibrium FE of the periodic state.

Note that Eqs(26) and (27) can be formally obtained as
extrema of the following generating function:

d+2(1-pfi+p,)
2pf

F*(x,7)=x* Y2+ x°

1
2, - .4
Py +47).
(29

The functionF* coincides with the equilibrium FE (28)
only for p, =0, which reflects the formal status of the rule
(12) described in the Introduction. We stress that introduc-
tion of F* is not necessary as the equilibrium equati@®)
and(27) are known anyway. However, having it can be use-
ful, e.g., for finding the sign of the FE (28) without actu-
ally calculating its value foly andy satisfying systent26),

steadof dealing with the complicated true FE functional, one (27). This will be demonstrated below.

can apply the rulé12) to the termp, ff’ in the functionalF
(16). To this end we substitutel9) and(23) in all the terms

Let us assume that Ericksen inequaliti® and (9) are
satisfied and hende>0 (the opposite case will be discussed

in F exceptp, ff’. As for this last term, in order to set the jn sec. IV). Then a nonzero solution of syste(®6),(27),
variation of f’ to zero, we may explicitly separate this de- \yhich has the form

rivative f' as an individual variable substituting solutions

(19),(23) only in f. Such a form ofF is obtained as
d+2(1-pf)

2
2 Y

Flx,y.f'(0),f'(1)]=x*
2pj|

5o (1) +1(0)]

: (24)

where

d+2(1—pﬁ+pl) vz
X=|- > : (30)
y=2P'2, (3D
exists only if
d+2(1-pfj+p,)<0, (32)

when mirF* <0.
Now we can compare the FE(xy=0,y=0)=0 of the
uniform state with the FE28) of the periodic solution foj
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and y (30), (31). Instead of calculating this FE, we observe
that if inequalitieq8) and(9) are satisfied, and, in particular,
1- pﬁ>0, then the conditioni32) can take place only at the
expense of negative, . Then the first term inF (28) is
smaller than the first term iR*. Therefore, as soon as the
nonzero solution(30),(31) appears and-* <0, one hasF
<F*<0. Thus, if the conditior{32) is satisfied, the periodic
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~10"2 ergcm 2, the maximum thickness becomes as small
as h,~0.1 um, which is hardly accessible. The relevant
data can be taken from workRefs.[7,8]) on stripe domains

in hybrid films of a nematic liquid crystal 5CB between air
and glycerin. The anchoring extrapolation length on both
surfaces was found to be of order ofydm, p, <0, and the
factor 1— pﬁ+ p,~—0.4. For these data one obtaihs

solution has a lower FE than that of the naive uniform direc-~0.8 wm.

tor field.

The periodic structure is of long wavelength if the thick-

The obtained periodic director field has all three deformanessh<h, is sufficiently close toh, so that formula(30)

tions similar to the case when tli&,, mechanism of chiral

givesy<<1. In contrast, the instability that could occur if one

symmetry breaking produces periodic domains in a hybricof the inequalitieg8) and(9) was violated would be of short

layer considered for 1pﬁ>0 andp, =0 in [9]. The term
p, f, amplifies this mechanism so that the conditi@R) is

satisfied. This is possible only for negatipe when the fac-
tor 1—p, cos Yp=1+p, <1 and

[py

1—pL003200>|p”|

in accordance with the qualitative prediction derived from
the form of Eq.(13). In addition, the ternp, f, also breaks
parity of the director field. Indeed, it is easy to verify that the
perturbations of6 on both surfaces are not equdl,0)
=—1f(1), and thesolution f(z) is antisymmetric with re-

wavelength. Indeed, theR<0, Eq. (25), and the function

F* (29 is minimized by a largey. Of course, in this case
our approach cannot give a quantitative result since the re-
striction of the FE toy® is not justified. Nonetheless, two
important qualitative points can be made.

The first point is concerned with the role the anchoring
plays for the pureK,, and jointK,,K;3 mechanisms of in-
stability of the uniform ground state. In the last case, the
extrapolation length_, enters the leading®* terms in F*
and F and crucially influences the critical condition of the
instability. The situation is different in the case of the pure
K,, mechanism when one of the inequalitié® and (9) is
violated, y is large, and the leading negative termArand

spect to the middle plane in the symmetric geometry. Some* s y5p. Sincel, does not enter this term, the role of
divergence mechanisms of parity violation has already beegnchoring is much weaker. Of course, for a very lange. ,

reported[18].

IV. DISCUSSION

Thus, even if the inequalitie®) and (9) are not violated
but the condition(32) is satisfied, the periodic state has FE

lower than that of the simple uniform state. This means tha

a nematic liquid crystal in a planary anchored layer is spon
taneously modulated if

1-pf+p, <0 (33
and the layer thickness is smaller than
he=—2L,(1-pf+p,). (34)

This can happen only i, <0 (note that a negative value
of p, is reported in7,8]). We see thah, is proportional to

is very small, they* term dominates, and the instability is
suppressed, too.

The second point is about the very possibility of adopting
spontaneous deformations of the ground state within the con-
ventional idea of a nematic phase. For vanishifgthis

ould be impossible since the nematic would have been

pontaneously distorted even in very thick samples, which
contradicts the experiment. For a finit¢, however, it is
possible. The critical conditiof32) suggests that the quan-
tity d=(smallest system sizi ,, which is in fact the natural
dimensionless parameter characterizing the ratio volume/
surface, plays an important role both in the case of a layer
and in more general geometries. In thick samples with
d>1, the jointK,,-K;3 mechanism produces no instability.
This practically means that in samples thicker than a few
microns, the uniform ground state is intact. Thus, the possi-
bility can be adopted that in geometries witkc1 the nem-

the anchoring extrapolation length and thus is larger for atic director can be spontaneously distorted due to the pre-

weaker anchoring. In the absencepofthe factor 1- pﬁ can
be negative only if the coefficierg of the surface elastic

dicted joint mechanism.
It is much more difficult to answer the question if in-

term f|| is sufficiently large and the fundamental inequalitiesequalities(8) and (9) can be violated in a nematic material.

(8) and (9) are violated. Hence the term, f, with the
normal-to-surface derivative can effectively renormalize
thus amplifying the ability of the surface elastic terms with

The problem is not just that the deformation would then
appear in samples much thicker tHap. An additional prob-
lem is that because of a large the FE of such a state can be

the tangential-to-surface derivatives to spontaneously promuch lower than for a long wavelength instability. In this
duce director deformations. This was suggested by the forraase the result of a linear analysis that may be performed

of boundary condition(13).

also for largey cannot be conclusive because it is not able to

Consider the conditions when the predicted effect oftake into account a possible spontaneous defect cre@®n
spontaneous director modulation can be observed. A stronig the model of a blue phage0]).

anchoring can make the effect practically inaccessible for

observations. For instance, faW~10 3—10"*% ergcm 2,
the critical thickness can be in the rang~1-10 pm.
Modern technology allows for making such thin planar
samples with no azimuthal anchorifig9]. However, forw

To conclude we emphasize that the intrinsic ability of a
nematic material to produce deformations without external
sources is much less exotic than it might look at first sight.
Indeed, the same intermolecular forces that give rise to the
K3 term also produce an intrinsic anchoring. But if the sur-



PRE 61 SPONTANEOUS DEFORMATIONS OF THE UNIFORM . .. 3941

face is curved, the intrinsic anchoring favors director defor-sight into the intermolecular interaction in nematogens, the
mations that are totally due to the interaction between nemrole of surfacelike elasticity, and intrinsic mechanisms of
atic molecules. We showed that divergence terms can violatgattern formation in liquid crystals.

the chiral symmetry and parity of the uniform director field

even in a sample with plane surfaces without contradiction to

the basic idea of a nematic phase. The above estimates show ACKNOWLEDGMENTS

that the predicted effect of spontaneous periodic structure in

a thin planar layer can be observed in experiments with stan- This work was supported by CRDF Grant No. UE1-310
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