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Burgers’ turbulence with self-consistently evolved pressure
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The Burgers’ model of compressible fluid dynamics in one dimension is extended to include the effects of
pressure back-reaction. The system consists of two coupled equations: Burgers’ equation with a pressure
gradient(essentially the one-dimensional Navier-Stokes equatiod an advection-diffusion equation for the
pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydro-
dynamics. From the magnetic perspective, it isgimplestpossible system which allows for “Alfvenization,”

i.e., energy transfer between the fluid and magnetic field excitations. For the special case of equal fluid
viscosity and(magnetig¢ diffusivity, the system is completely integrable, reducing to two decoupled Burgers’
equations in the characteristic variables vsyyng (v = v anen). FOr arbitrary diffusivities, renormalized per-
turbation theory is used to calculate the effective transport coefficients for forced “Burgerlence.” It is shown
that energy equidissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation
are localized to shocklike structures, in which wave steepening is inhibited by small-scale forcing and by
pressure back reaction. The spectral forms predicted by theory are confirmed by numerical simulations.

PACS numbes): 47.27~i, 52.35.Ra, 41.20.Jb

[. INTRODUCTION model for high-resolution numerical simulations. Thus, in
spite of its oversimplicity and unphysical assumptions, Burg-
The challenge of understanding the puzzling phenomenarlence retains its prominent position in turbulence models
generically dubbed “intermittency” has secured the status oby virtue of its suitability as a “laboratory animal” for con-
turbulence as one of the premiere unsolved problem in clagrolled experimentation in the application of theoretical
sical physics. Intermittency phenomena complicate themethods to the description of turbulent flows.
simple and elegant picture of turbulence dynamics originally In traditional Burgers’ models, density or pressure
painted by Kol'mogorov. This model, which is a type of changes result solely from changes in the velocity, much like
mean-field theory, is based upon assumptions of homogend&ie advection of a passive scalar. However, the evolution of
ity, scale similarity, and unconstrained statistics governinghese pressure terms suggest that they may grow enough to
the interaction between different degrees of freedom. Interbecome dynamically significant. Indeed, the formation of
mittency phenomena, howeveemphasizethe nontrivial —shock waves and pancakelike density structures forces con-
structure of higher ordegthan quadraticcorrelations by dis-  sideration of pressure back reactions on the fluid. Alterna-
torting the shape of the fluctuation probability distribution tively, the inclusion of pressure forces may be necessary
function (PDF), modifying spectra and introducing complex from the very beginning, as in modeling pressure-induced
coherent effects into flow visualizations. Indeed, mountingflow or the basic magnetohydrodynami®$HD) equations.
evidence from numerous numerical and laboratory experi- These considerations motivated us to extend the simple
ments suggest that spatiotemporally coherent structures aBurgers’ model of turbulence to include the effects of an
the cause of intermittency phenomena in turbulent flowsactive pressure gradient. The pressure source, in turn, is
Such structures imposereciselythe sorts of constraint on coupled with the fluid through a convection-diffusion equa-
the phase dynamics of nonlinear interaction whicltaisbi-  tion (e.g., adiabatic gas pressure and the continuity equation
trarily) ignored in the Kol'mogorov paradigm. Thus the for density. For simplicity, we will consider the specifiget
problem of understanding the formation and dynamics ofiepresentatijecase of 1D compressible MHD, previously
structures in turbulence is a very popular research topic imeferred to as MHD Burgerlendd]. While references to the
nonlinear and statistical dynamics. A major obstacle toother model systems will be given, where appropriate, the
progress in this field is the resistance of the governing nonrelative lack of attention given to MHD turbulendeom-
linear PDE’s to revealing nonperturbative solutigagen for — pared with its neutral fluid counterparsuggests that the
simplied, limiting cases from which insight into coherent most insightful interpretations may be in this field.
structure properties and dynamics may be extracted. Hence, In this paper we present and analyze a 1D model of com-
the recent flurry of studies of the Burgers’ equation model ofpressible, resistive MHD turbulence. In parallel, we interpret
one-dimensionalcompressibleturbulence is not at all sur- the model as a gas-dynamical system, with the magnetic field
prising, since explicit, closed form solutionsesembling replaced by a gas density under the influence of an adiabatic
shock wavesto the unforced Burgers’ equation have long pressure. We give an exact, closed form solution to the un-
been available. The more complicated case of stochasticallprced system in the case of unityagneti¢ Prandtl number
forced “Burgerlence” is readily amenable to analysis by v= . The solution represents shock waves in the character-
scaling and renormalization group methods. Of course, ondstic variables of the dissipationless system. The scale invari-
dimensional(1D) forced Burgerlence is also an attractive ance of inertial range Burgerlence is exploited to derive
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coupled renormalization groufRG) recursion equations for YT 0 - T \
the turbulenct viscosityx!) and diffusivity (') in the infra- Ve i
red limit, to one-loop order. This task is dramatically simpli- , *°[/ : 1 %% // ‘ "
fied by the observation thagalilean invariance precludes g / \ Ve
renormalization of the interaction coupling coefficignés z o0 1%
well as the purely advective coupling. For white-noise forc- | o5 ‘ //
ing, there is no amplitudéwave function renormalization, 4
leading to RG recursion equations fof and »' which o ! ‘ A _ L ‘
0.0 20 4.0 6.0 0.0 2.0 4.0 6.0

closely resemble those for(aonlineaj dynamical system in

a 2D phase space. Of the three fixed points obtained, the one
physical solution corresponds to a state of equidissipation FiG. 1. Wave steepening in Burgers’ equation. The initial sine
(i.e., v'= 7" not equipartition, WheréjZ):(Ez)), indepen-  wave on the left evolves to the steady-state sawtooth shock on the

dent of the noise strengtter 7 and B!. (This conclusion  fght
still holds for spatially dependent noig&he basin of attrac- . . . .
tion of the equidissipation fixed point encompasses alll "€ dynamics described by EQ) are straightforward: con-

!, 7t>0. The RG exponents are determined by simple SCa|\_/e_cti0n steepens waves unti_l they are balanced by _viscosity
ing relations and Galilean invariance constraints in the infra{F19- - Thus Burgers’ equation captures the essential phys-

red limit. The scaling exponents and fixed point relations ard®S Of shock formation5] and frontogenesigs, 7). It has also
then used to calculate! and 7!, and thus(3(k)) and een used to model the 1D clumping of matter in an expand-

~ - . ) ing universe(through the equation of continuijty8,9].

(B(k)), expllc.|tly. As in the case of hydrodynamlc Burger- "\, traditional models of Burgers’ turbulence, density or
lence, the forcing on small s.calles'; present in thg wh|.te-n0|s ressure changes result solely from changes in the velocity,
spectra Is strong eno_ugh to |nh|p|t shock formation, i.e., th uch like the advection of a passive scalar. However, the
Kinetic a,n{j comprggsmnéﬂnagngnc) energy spectra s_cale a5 ayolution of the neglected pressure term suggests that it may
E(k)~k™*, not k™<. For spatially dependent noise, the

f on d q h lation | h ow enough to become dynamically significant. Indeed, the
ahmofunt_o suppression depends on the correlation length ¢4 a0n of shock waves and pancakelike density structures
t eﬂ?rcmg. inder of th _ ed as fol forces consideration of pressure back reactions on the fluid.

e remainder of this paper Is organized as follows. Iy ieratively, the inclusion of pressure forces may be neces-
Sec. I, we present and Q|scuss the pressure-couplgd Burgerscary from the very beginning, as in modeling pressure-
gode:iIVarlog_s propedmes O.f tlhe model afreheluc'dgt‘?d'ﬂl]qnduced flow or the basic MHD equations. In the fluid case,

efc. awe ISCUSS Iyn(a;mlca ?S?ecf of the m(l?/l €l 1N%he reintroduction of a pressure gradient effectively recovers
un orcel system Is so Ve gxacty or the casen. MOr€  the 1D Navier-Stokes equation. For the magnetic case, the
general transport conditiorise., v+ ») are discussed, and j,1usion of magnetic pressure creates a simplified model of
the forced model is introduced as a paradigm for more comg, o \HD equations. We will concentrate on the MHD sys-
plicated turbulence systems. Next, the infrared statistical dyfem and refer to the other models at the end. To simplify the
namics of forced MHD Burgerlence are analyzed using the, jcs. the derivations will be given for the force-fige.,
direct-interaction approximation and RG methods for theyecay case. The addition of random forcing terms will be
case of uncorrelated white-noise sourctee extension t0 ., sidered in later sections.
spatially dependent noise is treated in appendix@ealing To begin, then, consider a fluid free to move in one direc-
arguments are used to determine the dynamical exponents, , (thex direction, saywith a perpendicular magnetic field

The pne—loop RG recursion equations are u_sed to obta|.n th& direction permeating it. The fluid behavior is described
physically relevant fixed point and its basin of attracuon.by the equations of continuity and momentum:
Section IV contains a summary and discussion of results. '

Particular emphasis is given to the turbulent transport coef- ap  (pv)

Position Position

ficients and the subsequent energy spectra. The implications — =0, 2
of these results for other paradigms of MHD turbulence are dt 2
discussed.
w w19 5 +BZ . P%v 3
Il. MODEL at  Uax  pox P Hlg) | Tvoe O

Burgers’ equation is the simplest nonlinear generalizatiomere, an equation of staR=P(p) has been implicitly as-

of the diffusion equation. As a result, it appears as a firsgymed. The magpnetic field evolves according to the diffusion
approximation in a variety of fields, including polymer mo- equation

tions [2], the growth of interfaceg3], and driven diffusion

[4]. Burgers originally formulated the equation as a model of JB
compressible fluid motion in one dimensifBy, writing E:ﬁx(ﬁx B)+ V2B, (4)
Dv v Jdu )
Dt Vol (1) which in one dimension reduces to
where v is the kinematic viscosity. It is the Navier-Stokes B _ JvB) N 7B 5)
equation in one dimension, without the pressure gradient. at X T ox2 -
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In these equationsy=c?/47o is the magnetic diffusivity, where. Recalling that the Burgers’ system is energetically

and o is the electrical conductivity of the fluid. dominated by the shock regions, one sees that magnetic field
While Egs.(2), (3), and(5) completely determine the sys- amplification(there is no dynamo effect in one dimensids

tem (with an appropriate equation of statéhey are still too intrinsically intermittent.

complicated for our purposes. To model the MHD behavior Another obvious gas-dynamic identity is the Galilean in-

explicitly, assume that the fluid density changes on a lengtivariance of Eqs(6) and (7). However, it is instructive to

scale which is much longer than that of the magnetic fieldexamine this symmetry in light of MHD and to review the

ie., B‘laXB>p‘1aXp. In a perturbation expansiop=p, transformation of the magnetic field from a fluid perspective.

+p1(X)+---, only the lowest-ordefconstant term would  |n our geometry, there is a magnetic fiek=BZ with an

contribute. Alternatively, pressure balance could link density\4.,ced electric fieldE = Ey. Following a frame moving

and magnetic fluctuations in a weakly compressible fluid, aSyith velocit %, the magnetic field may b
) | . e written as
in some parts of the solar wind plasrii0,11]. In this pic- yo=v g y

ture, Alfvenic properties are determined by magnetic varia- DB 4B JB
tions on a constant density background. With this simplifica- Dt +v— (9)
. ; t at X
tion, the model equations become
w v B % JB ( 1 55)
—+yv—+B—=v— =—tv| -~ (10
A Tt TBR TV ©® at c dt
B J°B J vE)
4 = =—|B—— (11
T (vB=n 7, (7 ot P

whereB has been normalized to represent the instantaneoushe partial derivative emphasizes that we are in a moving
Alfven velocity B/ \4mp,. Despite the approximations, Egs. frame, prompting the definition of the transformed fiéd

(6) and (7) still conserve energyup to dissipation effecis ~=B—vE/c. Two comments are in ordefl) taking JB’/dt
Indeed, some straightforward manipulations give =(aB'Iat")I(at'/at) gives the full relativistic transforma-
tion; and(2) vE/c~(v/c)?B, soB’'=B (i.e., Galilean in-
N I . v 9B\ 2 variance to first order inv/c. Since MHD neglects the dis-
5| W B )dx= _f Ylox + M ox dx, (8  placement current, both the magnetic and velocity fields are

explicitly nonrelativistic. It is easily seen that the transforma-
proving the assertion. The MHD Burgers model is thus theionsv'(x’,t) =v(x—ut,t)+u, B'(x’,t)=B(x—ut,t) leave
simplestpossible set of equations which allow “Alfveniza- Egs.(6) and(7) invariant.
tion,” i.e., the exchange of magnetic and fluid energies. The This symmetry is physically apparent in ideal MHD. Ne-
inclusion of compressional effects of the fluid density onlyglecting the viscous and forcing terms, the magnetic field is
complicates this basic picture, justifyirgposterioriits ne- ~ “frozen” into the fluid [12] [immediately evident by inter-
glect. The system representsn@aningful if limited, model. ~ preting Eq.(6) as the continuity equation fgs]. The Gal-
Equations(6) and (7) may also model the opposite limit ilean invariance of the fluid then implies the invariance of
of a fluid-dominated(i.e., unmagnetizédsystem. In this the B field. However, the invariance argument does not de-
case, we allow arbitrary density variations and assume apend on any spatial derivatives. Only the time derivative is
adiabatic equation of stat®=Ap?. Here A is a constant needed to cancel the extra nonlinear term. Indeed, this can-
and y=C,/C, is the ratio of specific heats. Note that the cellation highlights its relevance: Galilean invariance implies
Burgers’ gas is certainly not adiabatic in the shock regionsthat the nonlinear coupling strength is unaffected. un-
but it is a reasonable approximation for the interstitial presf€normalized by the following perturbative treatments3].
sure. Sincey is also given by (2 8)/6, where § is the It is useful to note that this symmetry applies in general to
number of dimensions, Ed7) now describes the gas mo- compressible, viscous MHDN any number of dimensions
mentum, wherd = \/3Ap is the local sound speed. Equation
(6) is the continuity equation for the rescaled density with [1l. DYNAMICS OF MHD BURGERLENCE
the addition of a diffusion terniconsistent with a density-
dependent gas pressuréience the MHD Burgers system
has a broader applicability, and the transformations between Since Egs.(6) and (7) are generalizations of Burgers’
these disparate models will prove useful in the analysiequation, it is reasonable to wonder if the Burgers’ shock
which follows. dynamics are contained in the new system. Intuitively, we
The gas-dynamic viewpoint often provides insightful in- expect wave steepening to occur until it is balanced by pres-
terpretations into the analogous MHD system. For examplesure back reaction. A visualization of this dynamical evolu-
the association between the gas density and the magnetion is shown in Fig. 2. Comparison with tidwave struc-
field highlights the latter’s role as a compressive restoratiortiure of the original Burger's modeékee Fig. 1 shows that
force for the propagation of Alfven waves. Similarly, the shock formation is inhibited.
global conservatiorfup to dissipatioh of fluid momentum As a first step in the analytical characterization, suppose
S (vB)dx corresponds to the conservation of magnetic flux.that the collisional transport rates of the two fields are equal;
In the limit of negligible pressure back reaction, this conser4.e., the(magneti¢ Prandtl number Pe »/D=1. In terms of
vation forcesB to grow at shocks {<0) and damp else- the characteristic, or Elsasser, variables=v =B the sys-

A. Unforced case
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e~ o o Now we can solve Eq17) for f, substitute into Eg(16), and
os| /N os - | write g(£)=h(¢) 2" to obtain the single equation
e 1/ \ s x
>-o.s - ‘\\ /| 08 L S Ah'+Ph4P=| 1+ 4 h. (18
. N / ! e
1.0 SRS RN o
0.0 2.0 40 6.0 0.0 20 4.0 8

Equations of this type were studied by Thonfd$] and

08 08 h Herbst[16], who showed that the solvability condition &
T o6 06 | I =1. The solution, first given by Pinnd\t7], corresponds to
% o4 L 04 | | ‘ the equal transport case discussed above.
§., P The more general case of~D is not integrable, suggest-
= 02 L 0z - AN ing a more interesting interplay between the fluid and the
0.0 .. 00 —— . — pressure field. In particular, it raises the following question:
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 . . . . .
Position Position how will arbitrary transport rates affect energy distribution

and structure development?
FIG. 2. Wave steepening in the MHD Burgers’ model. The sys-

tem evolves over the same period as for Fig. 1. ) )
B. Transport issues in steady-state Burgerlence

tem reduces to two decoupled Burgers’ equations: In contrast to the strictlylocal interactions of the
) KoI’'mogorov paradigm for neutral fluids, interactions be-
9z 97= _ 92s (12 Weendisparate scalesire fundamental to the dynamics of
at = ox ax? - even the simplest incarnations of MHD turbulence. For ex-

ample, the nonlocal interaction between a large-scale mag-
This reduction is not surprising, since in dissipationlessnetic field and small-scale fluid motiofisommonly referred
MHD Burgerlence, initial value data is propagated along theo as the Alfven effegtinhibits and reduces eddy-eddy inter-
characteristicsdx/dt=v =B at the constant characteristic action and cascading. Thus in MHD turbulence the familiar
velocity v = B. (In the gas-dynamic analogy, these variableskol’'mogorov inertial range spectrur(k) =%~ is re-
just represent the combination of fluid and thermal spgedsplaced by the Kraichnan-lroshnikowK() spectrumE(k)
All the familiar results from Burgers’ equation may be ap- = (¢ ,)¥% %2, wherev4=(B?)/4mp,. Indeed, the promi-
plied to this special case. In particular, the system can suphent footprint that large-scale magnetic patterns leave upon
port Alfvenized shock waves, with regions bf <O steep-  the inertial range physics of MHD turbulenceven in the
ening into fronts andz.>0 regions smoothing. This context of mean field (i.e., KI) theqryuggests thantermit-
characteristic behavior implies that the MHD dynamics areiency effects (induced by large-scale structures) will be at
controlled by the fluid velocity. Indeed, flux conservation least as strong in MHD as in neutral fluid turbulencEhis
requires magnetic concentration at the velocity shock frontssyspicion is reinforced by consideration of the well-known
while pressure back reaction acts to limit wave steepeningeciprocal mechanisms whereby small-scale turbulence can
However, the relatior(B,)~ —2(v4By) implies that both  induce and pump large-scale self-organization in MHD. The
negative andpositive magnetic shocks are possible. Sinceturbulent magnetic dynamo, which realizes the process of
these shocks dominate the energy spectrum of the systejiverse transfer of magnetic helicity, is the classic example
[14], magnetic intensity in MHD Burgerlence is intrinsically of such a mechanism. Asymmetries in the underlying turbu-

intermittent.. o ~lence are responsible for producing order on large scales. For
To examine the case+ D, it is useful to make the simi- example, a dynamo in 3D incompressible MHD occurs only
larity transformations if reflection symmetry of the turbulence is broken. Thus the

dual reciprocal processes, whereby large-scale structures
12 vz [ ox modulate MHD turbulence via the Alfven effect and
U(X,t)z(—) f(— ; B(X,t):(—> 9| —— whereby broken symmetry in the turbulence drives large-
t Jut t Jot >y NP
(13) scale self_—organlzatlon,' together suggest self—remforcmg
feedback in the dynamics of intermittency phenomena in
MHD turbulence. The above discussion naturally concen-
trates the theorist’'s mind on several questions about the fun-
_lf_1ggr R " damental dynamics of intermittent pressure-dominated turbu-
2f = 2{1"+ 117 =gg" +PT", (14) lence, which includébut are not limited tpthe following.
, , " (1) How much of the inertial range is affected by the
—29-3{9'+(fg)' =Pg’, (15 direct interaction of disparate scal@sg.,"Alfvenization” in
MHD)? Does equipartition occur between kinetic and com-

so that Eqs(6) and(7) become

whereP = Pr '=D/v and the prime refers to differentiation yressional energies, and where? How does the energy distri-
with respect toy=x/\/vt. Integrating once gives bution of the system vary with forcing? What roles do fluid
and field really play in energy transfer and cascading, and in
—(f+f2=—Pg?+2Pf/, (16)  self-organization processéise., dynamox?

(2) Can the numerous‘‘conceptual designs” for structures
—-{g+2fg=2Pg’'. (17) in fluid and MHD turbulence, which abound in the literature
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(e.g., flux tubes, fluid and magnetic vortices, etoe ex- fluctuations, which are necessary for initial matter clumping.

tracted from the governing nonlinear and dissipative PDE'§p the MHD interpretationfz models random seeding of a

Can useful closed form solutions which capture the physicgerpendicular magnetic field, or fluctuations of an ambient

of these concepts be found? How do these structures impagirce-free one.

Alfvenization? Superficially, the presence of random forcing controls the
To explore these issues, we will introduce random nOiSijnamics of the system. However, this extended Burgers’

sources to generate and sustain a turbulent steady-state. {ibdel is a coupled system of two nonlinearly interacting

the magnetic interpretation, the model equations become fie|ds, and the dynamical response to even simple sources is

v v B o nota priori obvious. Indeed, these nonlinear interactions can

—+v—+B—=v—+1,, (19)  induce non-Gaussian distributions, even for Gaussian noise.
gt dx ax X Physically, deviations from normalitgi.e., intermittency ef-
fects result from the development of shocks or other large-
= B)=D J°B ¥ 2 scale coherent structures. A flat initial spectrum allows these
5t T axWB=D gzt e (20 effects to be seen more clearly. To simplify the analysis,

o _ _ then, let us first assume thét and Ty are random white-
The presence of forcing highlights several dynamic regimesypjse forcing functions with no cross-correlations, i.e.,
depending on whether both fields, or just one, are randomly

driven. Fi(k,0)T (K, 0')=58,8k—K ) d(w—0"), (23

(1) f,#0, fg=0: the fluid is actively stirred whild is
advected. For low magnetic fields, pressure backreaction igherei,j < {v,B}. Note that the forcing is now distributed
negligible, and the system reduces to Burgers’ advection of aqually on all spatial scale§The extension to spatially-
passive scalar. dependent noise is treated in Appendi® Bn example of

(2) f,=0,Tg#0: the magnetic field has an active source,the forced dynamics is shown in Fig. 3.
and the fluid responds to the induced pressure. Obviously For convenience, we will call the range of dynamic re-
this is aB? (i.e., higher-ordereffect. sponse the inertial range. Technically, though, we are con-

(3) T,#0, Tg#0: dual-drive turbulence. sidering a regime of driven turbulence, rather than a proper

The “typical” turbulence approach is casd), where inertial” range (i.e., a momentum-dominated response to
fluid forcing at large scales produces a Kol'mogorov-typePUrely large-scale forcing The only difference is the band-
energy cascade. In Burgers’ turbulence, small-scale distudidth of the noise sources, but the corresponding interpreta-
bances directly affect large-scale structutésough shocks ~ tons differ significantly. A reconciliation between these two
so forcing at all scales is the standard statistical tool. Henc¥l€wpoints will follow the analysis, where the results will
we will treat the more general case of dual forcing first,allow @ basis for comparison.
discussing the other cases when appropriate. _

1. Scaling arguments
C. Forced case We are interested in fully developed MHD Burgerlence

While the decav problem aives insiaht into the ener for long times and large distances. For homogeneous turbu-
! yp gives insignt | Ylence in the inertial range, there are no intrinsic scale lengths.

transfer between the fluid e}nd the pressure f|eld., It Cannq{")ynamical terms will dominate beyond the dissipative
model the transport properties of sustair(ed., stationary |

homoaen turbulence. To treat thi we introd ngths, and correlation functions will asymptotically ap-
omogeneous turbuience. 1o treat this case, we , 0 ucepgroach simple algebraic fornj48,19. For example, the ve-
random forcing functions into the coupled Burgers’ system

. : . . locity autocorrelation({ sv2(x,t)) will have the homoge-
With these noise sources, tlimagneti¢ model is governed neous form 6x) “(su2(t/5x%). Alternatively, wock®

by provides a nonlinear dispersion relation for the sysfa6i.
v v 0B 0% To see the dependence of the various parameters on the
E'F)\UU &H‘BB(;_X: vaLfv, (21)  scale size, suppose that we change the length scalex.

Under this similarity transformation, the other variables will

/B 3 2B scale, in general, as—b?, v—b®, and B—b’B. After
-+ 7\55 (vB)=D —Z +Ts. (22)  this rescaling, Eqs21) and(22) become
: ; ; dv atc—1 o a—c+2d-1 JB
Here, A, and \g are bookkeeping parameters which will —+A\,b v—+N\gb B—
. b N ot ax ax
eventually be set to unity. Their labeling is the most general
one consistent with the conservation of energy. 9% ~
- - - - =vb? 2— +b2 (24)
While the random fluid forcind,, is introduced mainly as IX2 v
a turbulent energy sourcés has a variety of possible physi-
cal meanings. From a fluid perspectivig, represents seed B arc_19B) &%v e
pressure or temperature variatio@s functions of the den- E”L)‘Bb =Db Wﬂ) fe, (29

sity), or the random ionization and dissociation and recom-
bination of particles in a concentrated solution. From a cosconsistent scaling of 3 implies thatc=d. Thereforep and
mological perspective,fg models spontaneous density B scale the same wayecessary for the local conservation of
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energy. The assumption of white noise implies th<§t2> Note the implicit assumption that convection is dominated
= [T2dk dw is invariant to a change in scale. Henge, by forcing. The nonlinear effects appear as first-order correc-

=2c+1; there is only one independent exponent to find. tions:
Choosinga as the necessary exponent, the parameters

(i.e., coefficients of Egs.(24) and (25) now scale as o) =—ikGh(k,w) X [Nl 0 o
k' o' ' '

Ny 3 A v v 0) R(0)

(a-1)2) Mo a-2 +N\gB.,’ B ], 30
[)\B]_)b [)\B], [D}Hb [D] (26) BPk’ 0’ Pk—k', 0 w] ( )
Finding a is equivalent to finding the transport behavior of B\, = —ik\gGg(k,®) > [v(k(??w,Bﬂo_)k,,w_w,
the system. This is immediately apparent from the relation k' o'
x&~t. For examplea=2 signifies diffusion, as in the simi- g® O 31

+ k’,w’kak’,wfw’]' ( )

larity transformation used in Eq$13). That diffusive as-
sumption was motivated by the Hopf-Cole solution to thethese terms appear recursively in the second-order perturba-
unforcedBurgers’ system. In the case here, the presence Gy

forcing dynamically altersthe system response, modifying

the transport relationship.

It is critically important to note that random Galilean in-  (—ie+ vk?)vi2) = —ik E [)\vv(f)&',w'v(ki)k',wm'
variance implies that the coupling coefficients unaffected ko
by the the nonlinear interactiorise., no vertex corrections +)\BB(_0|)<' - ,B<k1+)k/ a1 (32)
[13]. This is seen most easily from Burgers’ equatid®), e ere
with z. acting as velocity. In a moving reference frame,
z.(X,t)—z-(X—\,z.t,t). Note that the coupling coeffi- (“ilw+ Dkz)B(k?z,=—ik)\BE [v(f)ﬂ,’,w,Bf(lfk,ywm,
cient is necessary in the velocity boost, since the first-order Ko
correction(i.e., symmetry generatpis nonlinear. Galilean +B@ e ] (33

—k',—w'"k+k' 0o+ w'1"

invariance and scale invariance can be preserved onlyig

anenormalized. By the arguments i_n Sec. III.B, Fhis copdi- Equations(32) and (33) define renormalized propagators,
tion also holds for boti, andg. This constraint immedi-  or (equivalently effective transport coefficients. In the hy-

ately gives the scaling exponeréis=1 andc=0. That is,x  grodynamic limit ,w—0), these coefficients become
~t, so transport is ballistic rather than diffusive. Tégeed

of propagation, though, can only be determined through ap- 1 L . (0
proximation methods. Vt:mj dk’de'[A2GY(k' 0"}, |?
2. Direct-interaction approximation +)\§Gg(k’,w’)|8ﬁ9?w,|2], (39

The direct-interaction approximation treats the nonlin- 5

earites of Eqs(21) and (22) as perturbations. The scaling t_i v rmBiLr  nl.(0) 12
behavior is then determined by spatially averaging over the D 872 dk’de’[Go(k',@ )|Uk’,w’|
interacting modes. To this end, we Fourier transform the © 12
system in space and time, giving +Gy(k',@") B, |71, (35
e JB _ using the continuum approximation X,/
(—ilw+ vkz)vk,wz—)\v<v 5> _7\B<35> +f,, — [[dk'dw’/(27)?]. Integrating over' gives
k,w K,
27 vt:i NS, | AeSe fm aK’ (36)
4a| VP D? K k4"
J ~
i 2 = o —
( iw+Dk )Bk,w )\B<(9X(UB)>I( +fB, (28) )\é SU SB = dk!
" Dl=———— | —+ — f —. (37)
2a(D+v)[ v D|Jk,, k'

where the angular brackets -), ,, represent a convolution.
These equations may be solved perturbatively by an exparHereS, andSg are the(white) noise strengths of the forcing

sion in the nonlinear interaction strengthg~\g: functions[see EQ.(23)]. Note that the interaction of slow
modes causes the transport coefficients to diverge. Finally,
Uk,w:U(k(,)w+)\UU(k,1w+ )\50<k"22)+.-- , performing the spatial average gives
(29)
1 NS, AgS
By w=B) + \gB) + A2BE + . t= v 2P
K, @ K, BPk,w BPk,w v 127Tkﬁq|n V2 D2 ’ (38)

The linear behavior is a simple diffusive response to the 1
forcing, where the bar@unrenormalizedpropagators are de- Dt= .
fined by G'=(-iw+vk?) ! and Gi=(-iw+Dk?) 1 6 7Kmin

RN
v+D

V + D (39

3
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Since we are in the inertial range, these turbulent diffu-successively over small ranges of momenta. This allows dif-
sivities will dominate the original bare ones. Lettimg-1!  ferential recursion relations to be derived for the response of
andD— D!, Eqgs.(38) and(39) become self-consistent recur- the transport coefficients under a scale transformation. The
sion relations for the effective viscosity and diffusivity. Car- resulting equations give detailed phase flow information on

rying out the algebra, one finds that the turbulent diffusivities.
5 3 The RNG technique is applied in three steps. First, the
o MSSsaSg(v) (40) series is averaged over an incremental range in momenta.

The integrations in Eq$36) and(37) are performed over the
range Kpine @ ~Knin(1— d)<k<k,, where 8l is infinitesi-
wherea=6mk3,,.. Using this relationship, the turbulent dif- mal. To first orderfone loop in the perturbation expansion,
fusivity is determined by the equation the effective transport coefficients are given by

~ a(2S,—Sg) (V) -NZS )’

b 1 )\ S )\BSB kmin dk,
3_ - _ A\2702 _ <_ Mo ABSOB ar
X3~ 5[5dc— (2c- 1)2]x3+abd 2(c+d) ~ 1]x vim vt | 2 T fkmm(l_&”k,‘l v
2 2 2
— 2 (c+d)=0, (41) LA Aesslf o
2 4ar| VP - D? [\k3..) 43
where x=a(1')%, a=\2S,, b=\3Sz, c=S,/Sg, andd \2 s, Sl (ke dK
=\?/\3. This equation is the stationarity condition for D<=D+-—° _”+_“' "=
MHD Burgerlence. 2a(v+D)[ v D ko K
In terms of the dimensionless interaction parameters . )‘ZB i+ % S| »
\Zs, A3Sg 27(v+D)| v D J\kT |’
Ui=c—3 53 and Upy=——3 3,
6 mKmin(v") 6 7mKmin(D")

where the superscripthas been replaced by to emphasize
the fixed points of Eqs(40) and (41) are (for d~1) the averaging over the shell of momenta. 4
These equations now have an effective cutgff.e “.
2 The second step returns the system to its original spacing by
{U1,Uz}a= [ 1-v1-rl=-—(1+V1- r)] ; rescaling the momenta &s-ke~?. This is the same scaling
done in Sec. IlIC 1, witth=e?. Using the previous results,

2 the renormalized coefficients are relatedvfo andD = by
{U1,Us}p= 1+\/1—r,1—F(1—\/1—r)J, (42 .
) ) Vienom™= V+a5|=v<[1+ sl(a—2)], (45)
r
Vs Vale=\ 157 157 |-

dD
Drenom=D+ =1

g o=D[1+4l(a-2)], (46

The ratio of noise strengths=Sg /S, is the only indepen-
dent parameter. Note thatsQr<cc. In particular,r may be . . . .
greater than 1, implying that the first two solutions may give© first order inél, these equations give
complex diffusivities. Imaginary components to the transport

2 2
coefficients suggest the propagation of Alfven waves. The @:V a—2+ 1 ()‘vsv T )‘BSB) (47)
third of Egs.(42) gives strictly dissipative behavior. Since all dl 47Tvk§1in v D? /|’
three solutions are theoretically possible, the question be-
comes one of physical accessibility. In other words, given a dD 1 )\é S, Sg
set of meaningful initial conditions, which asymptotic fixed ar —Pbla-2+ 27D, | v+ D -~ To/l 48

point will the system approach?

As described above, the hydrodynamic behavior is domi-  There are also similar recursion relations for the coupling
nated by the nonh_near terms. The;e interacting modes Welgefficients{\, ,\g} and the noise strengths, ,Sg}. Since
treated mathematically by averaging over spatial scales. fite noise is invariant to a change of scale, these strengths
detailed analysis of the scaling behavior, then, will give in-remain unrenormalizetthe more general case is treated in
sight into the asymptotic transport properties of the MHDAppendix B. It is shown in Appendix A that there are no
system. This analysis is provided by the dynamical renormalgorrections to the coupling coefficiertigertices. This is due
Ization group. to the intrinsic Galilean invariance of the original system. As
discussed above, this immediately implies the exporzent
=1.

An alternative method for calculating the scaling expo- The final step of the renormalization group requires that
nents is the dynamical renormalization gro(RNG). This  the relevant paramete(se., v andD) remain fixed under the
approach uses the same perturbation series as done preséale transformation. This ensures that the rescaled equations
ously, but treats the interacting modes differently. Instead ohave the same form as the original ones. Setting E&8.
integrating Egs(36) and(37) directly, the series is summed and (48) equal to zero, one sees that the nontrivial fixed

3. Renormalization group theory
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0.030 ‘ ‘ ‘ /) IV. RESULTS AND DISCUSSION
- ﬂw M‘"W‘ W /'WW ‘ ‘J‘ o Using the third of Eqs(42) as the only acceptable solu-
E oo | M”%M MM o f| fw‘m ‘ }‘;,,W“W‘ M ﬁu ,’M\ MM‘l tion for the dimensionless interaction parameters, the turbu-
= A i N'M Ny lent transport coefficients are
W ﬁ‘J |W VN p
-0.030 ! L —— SU+S 1/3
0.0 1.0 2.0 3.0 Vt — 1277 B kr;ii, (51)
0.030 T
= +S 1/3
z vlw T T pi=| 222 e (52
2 Lo ﬁ M L T I I 127
g 0.000 ! UMJ ’rwﬁm M \ W‘W HT',LM W lww i QM M\/J %M ,‘M
s I{ H J 1 The presence of an infrared divergence suggests an implicit
-0.030001 g o b scale dependence ds '~./(6x)2. Assuming that 6x)32
‘ ' ~Dt, this spatial dependence implies that the turbulent mo-
Position tions of the system create ballistiather than diffusivemo-
FIG. 3. Velocity and magnetic field of forced MHD Burgerlence 102, /szlth 1/t3he speed of propagation given bi(S,
as functions of position. The data are plotted on the half-period for s)/127] ; -
clarity. The equality of the transport coefficients reflects a balance

between an enhanced fluid transport rate and an increased
(and thus more resistgrpressure. From the MHD perspec-
tive, the faster magnetic field convection is countered by an
enhanced magnetic diffusivity and stronger backreactions.
Bfom the gas-dynamic viewpoint, the same nonlinear en-
hancement of the fluid transpdgtiscosity) increases the in-
qgrparticle pressure. In cosmological models, the turbulent

are given by Eqs(42). ressure(diffusivity) i i
X : . . y) is countered by an enhanced particle
While the RNG methods give the same scaling behaV'Opstickiness.” The asymptotic state selected is the one that

as the DIA, as they should, they give more information. Inbalances th
particular, the renormalization group gives the explicit evo-
lution of the transport coefficients under scale transforma

tions. It therefore describes tlagproachto the fixed points ing and to enhance dissipation. Due to tevave structure

n t;]e V-DI phatshe_ sgaﬁe._ losel ider th of the velocity shocksee Fig. 2, the dissipation is concen-
0 analyze this behavior more closely, consider tN€ réCUry a.q g within the shock front. Since the only nonlinearity in

ion relations(47) and (48) in terms of the interacti '
sion re r;tdorls( ?;nks( )3|n ZrlTS—OS /ezlnktsaralg;o.n P& the induction equation is theB Lorentz force, magnetic
rametersU; =S, /(2mkni, °) and U, = Sg/ (27K D): concentrations are triggered by the velocity and localize at

the front as well. In this configuration, dissipation occurs

points are given by Eqs(38) and (39), except{S,,Sg}
—3{S,,Sg}. (This discrepancy arises from the different mo-
mentum ranges in the two approaches, and would disappe
after a full integration of the recursion relationgVith simi-
larly adjusted interaction parameters, the possible branch

e two effects.
Physically, equidissipation results from the twofold action
of the nonlinearities: to create shocks through wave steepen-

du, 1 almost exclusively within the shock, while the interstitial re-
W=3U1[1_ E(Ul’L RUZ)}' (49 gions are essentially ideal. The resulting separation provides
two mechanical viewpoints for equidissipation:
(1) Using the shock height as a measure of its strength,
%:SU {1_ 1(Us+ RUZ” (50)  energy dissipation corresponds to a decrease in height. Heu-
dl 2 Rl 1+R ' ristically, the “end points” must approach each other. How-

ever, these end points are shared by the ideal region, where
where R=(rU,)/U, and r=Sg/S, is the ratio of noise the field is “frozen in” to the fluid. Hence, the transport
strengths. The fixed points of these equations are given b{At€S must be equal. o _
solutions(42). There are two ranges to considét) r>1, (2) A more satisfying view is derived from the equal
giving one real conjugate solution and two complex Conju_traqsport_rates of magnetic and_ fqu energies in lthe ideal
gate solutions: and2) r<1, giving three real solutions. redion. Since plasma elfem_ents in this region flow mmd_
Since the recursion relatiorid9) and (50) are both real, no °Out of the shock, continuity of energy transport requires
real initial parameters,,U,) can evolve to a complex equal transport coefficients across the shock boundaries.
fixed point. In the first regime, then, the third of E¢42) is Wlth_ln the shock, energy transfer may oceur, but the receiv-
physically accessible. For<1, there is one positive solution N9 field mustaccept energy at the donation rate of the other
and two negative ones faf,. Figure 4 shows the first quad- field. e .
rant of a phase flow diagram for the representative value Thu_s the eC]UIdISSIpatI.OI’]. state _results from a dynamlc.c_on-
= 2. The arrows indicate the flow under the renormalization>€"vation of energy. This is a distinctly separate condition
transformations(49) and (50). Note in particular that the from thg equipartition of energy. Indeed, a straightforward
axes are repellors. Thus, for any physical starting poinfalculation shows that
(v,D)>0, only the positive fixed point is accessible. Once
again, the third of Eqs(42) is the infrared limit of the Ev(k):|0&0)|2:{
system.

1/3
S,k L, (53)

2(S,+Sg)
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37 1/3 3
—pRO2_|_-" -1
While the vanishing of the magnetic energy with its o ol

m"

source is an acceptable limit, the corresponding velocity =
limit presents an unphysical result for the fluid kinetic en- "
ergy. Even asS,—0, the presence of a mean-square mag-

min

onk

Uy =

netic pressure will cause a transfer of energy to the fluid. The
problem is an artifact of expansid@9), where the random
forcing was the source of the zero-order velocity field. Since
the magnetic pressure is a nonlinear first-order effect, its im-
pact on the fluid energy is not included in EG3). The 000 05 10 15
relevant energy correction is a simple extension of the above ' ' v, = _% '
calculations, and is given by 67k, )
FIG. 4. Renormalization phase flow diagram for the representa-
Ei(k)z |U(kl)|2:(1277)1/3 ;(1—In 2)+ l‘:’/__;" Sé/kal, tiv<(aj (\/Szi)l)uerESB/Sv=%. The trajectories are defined by Ed@49)
an .

with a similar, but always subdominant, correction to theformation, changing the energy spectrum fr&m? to k2.
magnetic energy. Equipartition of energy only occur§jf  Spatially dependent noise provides an extra parameter, the
=Sz, i.e. the forcing strengths must be equ@lhis distinc- decay exponenp, for greater modeling freedom. For ex-
tion between equal dissipation and energy equipartition hasmple, the noise profil§(k)~k ! recovers a Kolmogorov
been observed in 3D simulations of incompressible MHD asspectrum(as found by Chekhlov and Yakhot for the forced
well [21].) Irrespective of this special case, both energy specBurgers’ equatior{22]), while S(k)~k ™38 generates a Ki

tra have the same spatial dependence, a direct result of tisgectrum. This latter reproduction is particularly interesting,
conservation of energy. In the more general case of coloregince the Kl theory emphasizes the effects of a large-scale
noise, this scaling result will hold if the forcing functions field on small-scale energy transféhe opposite limit con-
themselves have the same spatial dependence. Since the csitiered here Specifically, a large-scale magnetic field inhib-
culations are somewhat more ardudtise noise must now its the cross-field transport of small fluid eddies. In our sys-
be renormalized as we/lwe relegate them to Appendix B. tem, fluid transport is inhibited by small-scale noise and by
The main result is that in an algebraic expansion of the forcpressure backreaction. It is the presence of long-range corre-
ing, only spatial powers of the forrs(k)~k~2# will be lations in the applied forcing which allows the model to dis-
relevant in the hydrodynamick(w—0) limit. For long- play the more traditional, inertial-range theories.

range correlations, these singularities give corresponding en-
ergy spectra which scale &{k)~k~174#3,

These results suggest that the noise sources determine the
energy distribution between the fields, while tkedepen- We have presented an extension of the Burgers’ model of
dence of the equidissipation rate controls the turbulent powetD fluid dynamics to include the effects of pressure. When
spectra. The spatial dependence of the effective diffusivitieshe pressure effects are magnetic, the system represents the
results from the scale similarity of the imposed forcing. simplest possible model of compressible MHD which in-
Thus, the model of the turbulent steady state is selfcludes the effects of Alfvenizatiofthe interchange of mag-
consistent and intuitively appealing. Numerical confirmationnetic and fluid energi@sIn this case, turbulence is repre-
of this picture is shown in Figs. 5 and 6. Saturation levels forsented by an ensemble of Alfvenic shock waves on a
steady-state MHD Burgerlence are shown in Fig. 5. For thénomogeneous density background. Alternatively, the system
ordinary (collisional) transport rateg= 217, the energy lev-

V. CONCLUSIONS

els determined bys,=Sg and S,=2Sg are compared. It is 40

clear that equal forcing gives energy equipartition. In addi- -

tion, the large gap between the saturated energy and bare “L O

dissipation indicates the dominance of the turbulent diffu- # |/ /ff e

sivities. These effective transport rates modify the spectral % | /

decay imposed by the forcing. This is shown in Fig. 6 for the & '//fﬂ

casesS,~Sg~k® andS,~Sg~k 1. Linear fits on the log- =

log plots give the respective turbulent energy spectra as =

~k~ 1 ande,~k 53 in agreement with the analytical pre- , . , ]

dlCtIOﬂS 0.0 10.0 20.0 0.0 10.0 20.0
Time / Ty rmover Time / Tyymover

The explicit form of the energy spectrum represents a
competition between the spatial dependence of the forcing FiG. 5. Saturation levels for steady-state Burgerlence. From the
and the system’s natural tendency to form shocks. This isop down, the levels represent the fluid energy, the magnetic en-
most clearly apparent for a white-noise sour@~k"), ergy, viscous damping, and diffusive damping as function@of-
where the presence of forcing at small scales inhibits shockalized time. (a) Levels forS,=Sg. (b) Levels forS,=2S;.
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6.0

Log,(E,)
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Log,((Ep)
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FIG. 6. Representative energy spectea.En-
@ Log,,(k) Log, (k) ergies forS,~Sg~k°. The solid line indicates a
slope of—1. (b) Energies forS,~Sg~k 1. The
solid line has a slope 0%%’,. Both of these slopes
agree with analytical predictionsee text

60 6.0 \\N‘m
-10.0F -10.0

Log,,(E,)
Log,((Ey)

! 1

05 15 25 05 15 25
(b) Log, (k) Log,,(k)

may describe particle gas dynamics, with arbitrary density‘bubbling” dynamics of our model to effectively mimic an
variations reacting to an adiabatic pressure. intertial range.

Several dynamical regimes of the system were analyzed. This correspondence suggests that equidissipation is more
In the limit of unity Prandtl number = 7), the system fundamental to the turbulent state than energy equipartition.
decouples into two Burgers’ equations in the characteristi®Vhile the equality of transport coefficients is certainly robust
variablesv =B. Indeed, since the Hopf-Cole transformation with regard to random forcing, it would be interesting to see
effectively “matches” diffusion with ballistic propagation, if this equal transport extended beyond the inertial range. In
an exact solution is possible only for the case of equal difparticular, will the system dynamically self-adjust to main-
fusivities. In the more general case of arbitrary transport cotain v+ v'= 5+ 7', regardless of the initial conditions? This
efficients, we applied direct-interaction and renormalizatiorwould place a fundamental constraint on the onset of inter-
group methods to calculate the turbulent viscosity and diffumittency as well. A related concern is the general probability
sivity (i.e, the dynamical decorrelation timesf the ran-  distribution for v and B. The equidissipation state, inter-
domly forced system. Galilean invariance, obvious in thepreted as an ensemble of ballistic structures, gives an asym-
gas-dynamic interpretation but greatly underappreciated imetric PDF for the characteristic variables B. The distri-
MHD, simplified the calculations tremendously by preclud- bution before this asymptotic state, and its decoupling into
ing vertex (coupling coefficient renormalizations. It was the individual fields, remains an open problem.
found that the equidissipation state is the only hydrodynamic
(k,w—0) fixed point. Energy equipartition, however, de-
pended on the equality of the forcing functions.

From the viewpoint of self-organization phenomeea., In order to see how the nonlinear interactions behave un-
magnetic dynamos, shear-induced mean flow) eficis po-  der a scale transformation, the perturbation series must be
tential disparity in energy levels is rather fortunate. Indeed, itexpanded to third-order in the coupling coefficiefusrtices
seems unlikely that the energy buildup of one field at they and\g. Equation(27) becomes
expense of another could happen under the constraint of en-
ergy equipartition. A more reasonable scenario is field am-, . 3
plification by equidissipative turbulence, followed by the (—i0+ ko= =K\, (20 V0 @)y ,+ (v Do)y )

APPENDIX A: VERTEX RENORMALIZATION

nonlinear saturation of growth. The system may then relax +Ng(2(BOB@),  +(BUBD), ]
toward energy equipartition over time. ’ ’
While this scenario appears to resolve an intrinsic paradox (A1)

in the Kraichnan-lroshnikov theory, it relies on a different

spectral foundation. In the spirit of Kolmogorov, the KI where the convolutions

theory assumes a cascading inertial range free from the

large-scale forcing which triggered it. Moreover, the pres-

ence of a magnetic field can cause large-scale inhibition of XY)k.0= 2 Xk’ w2 Y2+ K o2+’ (A2)
small-scale motion. In contrast, our model assumes a spa- ko

tially extended noise, with the forcing at small scales creat-

ing large-distance effect®.g., the spreading of wave fronts are symmetrized for convenience. The factors of 2 arise from
to prevent shock formation However, the spatial depen- the equivalence af(®v® andv®v(® (and similarly forB)
dence of the forcing acts an extra parameter, allowing th@&pon integration. Substituting for lower-order terms, such as
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(1) (0) (0) ¢ Ae(Ag—X,) [Sg S,
Uk/2+k’,w/2+w’~k”2” [Nk wi2+ @Ok K07 — o )\B—m D 3/ (A12)
min

+ABB " o) wlIB((I))i U wlfw/’] (A3)
k/2+k /2t Wk =K Setting\, =\ [as done for solution&2)], this equation

gives a Fourier coupling ifik,k"}, whose effective strength determines thar=0. Since Eq.(A8) must give the same

is given by value for\, we haver=D. This is the lower-order result
given by straight perturbation theory. Self-consistently iter-
¢ 12\ 2 K o’ (0) 2 ating this equality in Eq(A8) would have automatically
A= k2 w)vg | . A
Ko v given\g=0 as well.
B 3 )
' (0 2
+ 7\_”) ap(k’,0")[By | } (A4) APPENDIX B: SPATIALLY DEPENDENT NOISE

To extend the previous results, suppose that the forcing
AL= K'2\ K. o v(O) 24 8.k, 0")|B? 121, functions are spatially-dependent, so tBat S(ky) and Sg
B 20, l Bul Ol 7 Ba By ol =S5(k). Under a change of scal&—e~ %'k, the noise
(A5) strengths will rescale aS(k) — S(k) — (61)kd,S. This extra
scaling modifies the turbulent transport coefficients and cre-
ates nonzero corrections to the forcifige., wave function
., (0,8}, ,r 2_ oGl (K 2 renormalizatiopn Galilean invariance still ensures that the
g (K@) =[Gy (K',99")|*~2[Gy” @)%, coupling coefficients remain unchanged.
(A6) To examine these changes, we extend the analysis done in
Sec. Il C 3. In symmetrized form, Eg&32) and(33) become

where

Bloe (K0 =\, |G (K 0|2

—NgGY(k', 0 )GE(K',@").

. _ (—iw+vk?)v2)
As before, the bare propagato®) and G are the linear '
diffusive Green’s functions. Using the continuum approxi- _ ik 2 I, (0 EY

mation 3 ,,— [dk'de’/(2m)? and performing the inte- ~, K2— K w/2- o' UKi2+ K wl2+ o’
grations(with infrared cutoffk,,,) gives

(0) (1)
A Bk/2 k" 02— ' Bk/2+k’ wl2,w' ] (Bl)

A =0, (A7)

\s N Ns|(Ss S, (—iw+DK})BZ),
No= 6wk3mm(D+V)(__3)(E_7)' (A8)

. . . . ‘ =—ikhg 2 [0 K’ wl2— o’ Bf<:/L2)+k’ w2+ o'
Equation(28) gives an alternative definition forg. Ex-

panding to third order, we have

+Bk/z K’ wl/2— w’v(k}2)+k’ w2t o) (B2)
(—iw+Dk?)BZ) = —ikng[(v'VB@), ,+(vVBD)Y, ,
+(v@BOY, 1, (Ag)  Where Gg(kw)=(—io+ vk?)"1 and GS(k,w)=(—iw
’ +Dk?) ! are the bare propagators.
where the convolutioné --), ,, are given by Eq(A2). This These equations may also be used to define effective
equation gives an effective coupling coefficient propagators. As before, we can absorb the effects of the new

propagators into effective transport coefficients. Consider

_ 2 K2\ o[ M (K’ ,)|Uk’ 2Nk, ’)|B(°) 2) Eqg. (B1) first. For long times ¢—0), we have
k' o'

(A10) K
kKl k'+ =
where ) % C ( 2)
vk :(ZT)Z dk'dw 2
M(k',0")=\g[GE(K",0")]?+\,G4(k", 0 )GE(K @) —iw' + v k'+ =
—?\UGS(—k’,—w’)Gg(k’,w’), "
2 B (AL1) Sy k,_i v—B
N(K' ') = A [ G5(K', ') P+ N, GY(K ) GE(K o) “ — +[V_)DJ_ B3
—)\BGS(—k',—w')Gg(k’,w’). w/2+V2 k"z)

Finally, using the continuum approximation to convert the
sum and performing the integrations gives Performing the frequency integral gives
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2
v

vk?=—

&

ki k' k k' i
A fdk’ +§ S, 2 v—B
8mv? *

v—D|’

)\582( mln) )\BS (kmln)

Sh(k)= T

} (B10)

dl )
4 kﬁﬂn
Similarly, the noise correction t8g(k) is obtained from the

magnetic autocorrelatiofB{")* B{')). Using the same pro-
cedure, the renormalized noise is

The new propagator contains higher-order terms than the 5
original k? of the bare one. Since the hydrodynamic behavior S (k)= ( al )[)\st(kmin)SB(kmin)} (B11)

is dominated by the smakimit, Eq. (B4) may be expanded

in powers ofk. To lowest order, then, we have

2

N 9S,(k)][ 1
2__ v ’ AN
k== gy fdk[asu(k) K= (—k,4)

v—B
+ v—DI"

To implement the renormalization group, we integrate
over the rang&mine @ ~knin(1— 8)<k' <k, Where 8l is
an infinitesimal change in length. To first order &h, the

turbulent viscosity becomes

ol [n] SU( Kmin)

8k,

min

BSB( mln) }

+—D2—[3 9s(Kmin) 1 |»

Vt

[3—9y(Kmin)]

whereg; (Kmin) =[ KIS (K) [ 9S (k)/ K] Kin -

Equation(B2) is evaluated in exactly the same manner,

giving an effective diffusivity

V2

. 5”\2 {SH(kmm)[(g v—D gv(kmin)
2

J’_
2m(v+ D)k, v+D 2

3
km|n

vD(v+D)

Using the scalings from Sec. Ill, we can now write the
differential recursion relations of the renormalization group:

d A2S, (Kin) N5 Ss(Kmin)
G- a2 (—Sken.m)[s—gv<kmin>] (Lﬁ)
X[3_gB(kmin)]}a (B12)
dD A3
a1 P12 2 (DG,
% Su(kmin)<§ V_D_gv(kmin)>
v 2 v+D 2
SB(kmin) v—D gB(kmm)
7o (2 1D 2 )” (B13
d,
WZ)\U[&'FC—].]:O, (B14)
d\g
WZ)\B[Q‘FC—].]:O, (B15)

Sg(Kmin) %_ rv= D_ 9s(Kmin) dSU(k)
D 2 v+D 2 ' —ar ~S(kla=2c—1-g,(k)]
Since the noise is now spatially dependent, it is no longer 1 [A22(kyi)  A2S2(Kei)
invariant to a change in scale. The corrections appear explic- + 3 [ 3 L 88 3 m }
itly in the autocorrelation functions. For example, first-order 4 KGin v D
velocity perturbations give (B16)
(L)% (1) 2[R 2 dSs(k)
(VKo Viw) = 2, (k+k")?Gy(k, 0)] i = Sg(K)[a—2c—1—gg(K)]
X[)\2| (0) | | (kO)k' o-o' | 1 )\ésv(kmin)SB(kmin)
3 ., (B17)
+)\B|B(0) |2|Bf<07)k’,w7w’|2]' TKmin vD(v+D)

For long times —0), this reduces to
1 2
weroin=( 5] [ dwoo

A2S,(K")S,(k—k')
o'’ +1°(k—k')?

—
'+ 7k’

(k+k")? }

Performing these integrals, with,,(1—d)<k' <k,,, we

have

v—B
+ IR

Note that for any spatially dependent noise, a cutoff-
dependent white noise component is generated. This white-
noise correctiondoes not appearfor uncolored forcing,
where scale invariance results in an exact exponent identity.
Rather, the extra component is a result of coupled interac-
tions, suggesting that the system responds to spatially corre-
lated forcing by trying to “balance out” the discrepancy in
scales.

The vertex corrections vanish due to Galilean invariance
(see Appendix A giving the exponent identity=1—a. As
before, there is only one independent exponent to find. Set-
ting dv/dI=dD/dI=0 to obtain the fixed points, EqE812)
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and (B13) give two equations for the exponeat Consis- where
tency then demands that=D. Once again, the dissipation

rates are equal, even in the case of colored noise. 38’5+(3+2,8)Sgk;1iff
The exponent a is now expressed in terms of the noise HAS 1= 2

strengths. Plugging this form into Eq#B16) and (B17)

gives and

ds, (k) NZS, (Kmin) 385+ (3+2B)SEkn2?

T_‘?’( 1- 87TkminV3 [3_gv(kmin)] f[SB]: D2 .

N&Se(Kmin) For small values of3, the long-range part of the noise is
B gwkﬁqinDZ,,B_gB(kmin)] S, (k) =9, (k) S, (k) irrelevant. The (cutoff-dependent white-noise part domi-
nates, and the above recursion relations reduce to

1 [N2S2(Kmi)  NESE(Knin)
! 4wk§zm[ 7w o | B9 09 _ 9% S ©24
dl 8k v° 4wk
dSs(k \2S, (Kmin)
Sg: ) =3< 1- %[3—gv(kmm)] whereSO=S‘5+S§. Here we have lev=D for simplicity.
T min¥ The fixed point now gives the effective transport coefficients
N&Sg(Kmin) )
— a3 2 [3- 9K k 7(S5+sp |
87Tk?ninD2V[ gB( mm)] SB( ) t=DT= (52047TSO) kr;i%- (325)
a0k NS, (Kmin) Sa(Kmin) o | , .
o]} B wkﬁm JD(v+D) (l:Jilgg this result, we obtain the scaling exponeatss and
(B19) From the scaling arguments, the noise transformss as

o _ — b3 2¢71*+283 Hence the long-range part &(k) takes
If the original noise spectrum had a power-law decaykas qyer if

— 0, then this behavior would be preserved under rescaling.

Moreover, a white-noise component would be generated. As- 1-a 3

suming, then, thas(k)~k 2%, the noise spectrum would B>pB.=c+ — =7 (B26)
evolve toS(k) — Sy+ Sﬁkfzﬂ. For convenience, we consider

only the case where the forcing functions have the s&me o, ing to new exponents. In this case, the recursion relations
dependence. The recursion relations become

become
d% [ 1 ds 35S
— =35 1- (NFLS, 1+ NBFAS ])} 6 _ >
TR R B/ 1e ar - (3T28)Se 1m g sl B27)
-2B72
n 13 2 [S‘()+S§,3k ] ) where SB=S%+82. The turbulent diffusivities are now
4mKinl ° v given by
[S5+Spk~2F]2 v L aBy 28713
210 =pr 1 3(S;+ Sk
g D3 ’ (820 W=D'= % kL (B28)
o
d§ 1 For long-range order, then, the scaling exponentsaard
_ Bl 1 _ 2 2 ) ’
W_sso[l 877Vk§“n()\vf[sv]+)\5f[s‘3])} —2p/3 and c=2p/3. Higher-order nonlinearities become
) . R, important(i.e., our system needs more general equalifors
)\B [Sg+szkminﬁ][so+sﬁkminﬁ] ,BZ,BmaX:g-
wkfmn vD(v+D) ' With these effective transport coefficients, the energy
spectra now become
(B21)
1/3
ds; | 3 ' E (K =| s o | Sk %% (B29)
= SH (3+28)— g a (NIAIS, 1A ASeD) |, 355+ Sp)
L min i
(B22 - 113
Eg(K)=|o=——p-| Spk 148 B30)
—P2=38(3+2B8)— =———5—(\2 +23 , . N
dl B_( A 87-rvkmm( oS A1 Se)) Even for colored noise, energy equipartition does not occur

(B23)  unless the forcing functions are equal.
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