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Velocity-fluctuation-induced anomalous kinetics of theA+A—J reaction
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The effect of a random velocity field on the kinetics of the single-species annihilation reActidn-J is
analyzed near two dimensions with the aid of the perturbative renormalization group. The previously found
asymptotic behavior induced by density fluctuations only in the diffusion-limited reaction is shown to be
unstable to any velocity fluctuatiorigcluding thermal fluctuations near equilibritiim spatial dimensions
d=<d.=2. Four different stable long-time asymptotic regimes induced by the combined effect of velocity and
density fluctuations are identified and the corresponding decay rates calculated in the leading order.

PACS numbgs): 05.70.Ln, 47.27.Qb, 82.20.Mj

[. INTRODUCTION — is 2 [4], therefore we have used the recently proposed
two-parameter expansidi20,21] for the calculation of the
Investigation of the effect of density fluctuations on reac-random velocity field generated by the stochastic Navier-
tion kinetics has gained considerable attention recentlyptokes equation. This gives rise to a two-parameter expan-
[1-3]. This analysis has shown that in low space dimensionsion of all physical quantities in the problem of advection of
the usual rate equation is not sufficient for a description of reactive scalar.
the reaction kinetics, and the fluctuations of the density of This paper is organized as follows. In Sec. Il a field-
the reactants must be taken i_mo account. Correspondingaoretic model for the general reactisﬂ\KéO
asymptotic expressions for densities have been calculated for K_o

processes likiA+A— [1,4] andA+B— [5]. The be-  structed on the basis of the second-quantization approach to

havior of the density and effective reaction rate may also béhe reaction, whereas the stochastic Navier-Stokes equation

affected by fluctuations of an advective velocity field. So faris used to generate the random velocity field. Renormaliza-

the analysis of this effect has been concentrated on the cag@n of the field-theoretic model corresponding to the annihi-

of time-independent random drif6—10. However, for a |ation reactionA+A— is carried out in Sec. Ill, where

more realistic analysis of the effects of the velocity fluctua-a|so the fixed points of the renormalization gro@®G) dif-

tions on the reaction kinetics a time-dependent random drifferential equations are classified, and it is shown that in and

field would be preferable. below two dimensions the velocity fluctuations always drive
In this paper we show that the previously found anomathe system in an asymptotic regime different from that in-

lous behavior at and below the critical dimensidy=2 in  duced by density fluctuations on[yL,4]. Section IV is de-

the reactionA+A— [1,4] is unstable to any drift field voted to the explicit calculation of the average number den-

fluctuations, including those generated by the ubiquitousity at the tree level. Anomalous decay rates corresponding

thermal noise. It is shown that anomalous behavior withto the four different fixed points of the RG are calculated at

faster decay rate of the reactant density is inducete2 by the leading approximation, as well as the logarithmic correc-

the combined effect of the density and drift fluctuations.  tions on the borderlines between the basins of attraction of
We study the problem of advection of a reactive scalathe fixed points. Conclusions are presented in Sec. V.

using a random velocity field generated by the stochastically

forced Navier-Stokes equation, which has been widely used

to produce a stochastic velocity field corresponding to both!l- FIELD-THEORETIC MODEL FOR THE NONLINEAR

thermal fluctuations near equilibriufd1-13 and a turbu- ADVECTION-DIFFUSION PROBLEM

lent velocity field with the Kolmogorov scaling behavior

h b q . ; h bl The second-quantized formulation of classical reaction
[14,19. Attempts have been made to investigate the problem,  osses is based on the use of the creation and annihilation
of a reactive scalar advected by a turbulent velocity field

torsy’ and d th tal®) [19 |
[16,17], in which a Langevin-equation approach was used t operatorsy” and ¢ and the vacuum staf) [19] (see also

. . . 3122])1
generate the concentration fluctuations. The Langevin equa-

tion works well in linear problems, but it may be problematic
in nonlinear onegsee, e.g., Ref18]). Therefore, we use the [(X), ¥ (X')]=8(x—X'),
master-equation approah8] to take into account the reac-
tant density fluctuations.

We use the second-quantization formalism of Dif)] to
cast the stochastic problem into a field-theoretic form. The
critical dimension of the pure annihilation probleAr A #(x)]0)=0, (0|¢'(x)=0, (0|0)=1. (2.1

rA is con-

[o(x), ¢(x)]=[¢"(x), 47 (x")]=0,
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Let P({n;},t) be the joint probability distribution function ing, we denote the corresponding renormalized parameters
(PDF) to observen; particles at positions; . The state vector by the same symbols without the subscript.

of the classical many-particle system is defined as the sum With the use of the formal solution of the master equation
over all occupation numbers, (2.3 the averagd2.2) may be written as

A(1))=(0e/ ™ VA(yTy)e | D(0)). 2.
|q)(t)>:% PO, (A(D))=(0| (e @ (0)) 2.7)

' However, we find it convenient to use the form in which the
where the basis vectors are defined as coherent-state exponential is commuted to the right, which
leads to the expression

A\ = Ty )TN -,
|{n|}> H [lp (XI)] |0> <A(t)>:<O|A[(¢'T+ l)w]e*H tefdx,t/l|q)(o)>, (28)
Averages of observables may be calculated with the use of @orresponding to the use of the “inclusive” scalar product of
coherent-state vector, Ref.[22]. The connection between the kinetic operators in
Egs.(2.7) and(2.8) is [3,22]
= ) ) = Jdx ¢ t ~ N
(A(1)) {zn;} A[{n}1P({n;i},t)=(0|e Ay )| D(1)), Ayt ) =Ryt +1,9),
(2.2

i.e., the field argumeng' is replaced byy'+ 1 due to the
where n(x)= ¢ (X)¥(x) is the number-density operator transfer of the coherent-state exponential from the left to the
[19]. right. The average number density, for instance, in the form

The set of coupled master equations for the PDFs may b&-8) is

cast in the form of a “master equation” for the state vector [
[1,19,22: n(x,t) =(0]e’ ™y (x) (x)| D (1))

3 X — (0] p(x)e” "t/ D (0)). (2.9
Slem)=—Alow), @3 | B

It is convenient to use the Poisson distribution as the initial
. . . _ _ _ condition[3,19,23, which in terms of the field operators and
with the initial condltlon|¢(9)> E{ni}P({nl},O)Hn.})- n vacuum state yields for the initial state the following expres-
Eq. (2.3 the kinetic operatoH is the sum of terms sion:

= Flot Fio i (2.4 [©(0))= eV ofex ),

corresponding to advection, diffusion, and chemical reaction\,\,hereno is the initial number density and the volume of
respectively. For the generic reaction involving only oneihe system. With this choice of the initial state it is readily

type of particle, seen that
Ko Tdx t
e/ XD (0))=e/ V| 0),
SA=TA, (2.5 [®(0)) |0)
K-o To construct a perturbative expansion of the expectation

value (2.8) we introduce the time-ordered exponential form

with the unrenormalize@imean field rate constant ., ; and of the evolution operator,

K _yq, the operators in Eq2.4) in terms of the field operators
are[19,27 U(t,to)=e':'(r)tef':"(t7t0)87ﬁ6t0=Teif{o':'(dt,
HA:J' dx ¢ (x) V[V(x,t) ()], where the kinetic operator has been decomposed to a free-
field operatorH and an interaction operatét; =H' —H.
- + 5 In the interaction operator the field operatdgsl) are re-
Hp= _Dof dx ¢ (X) V=(x), placed by the time-dependent operators

- W (x,t)=eMotyT(x)e e, yix,t) =efoty(xehe,
HR=K+of dx{ ("= (") TP+ K o
in which we have chosety=0. With the same replacement

in th ALy +1 h i |
Xj dx[ () = (H)] . 2.6 l(r;.g)?not[aeer?(t)?m[(zp +1)y] we cast the expectation value
In Eq. (2.6) the subscript 0 refers to unrenormalized param- (A1) =(OT(A{L(¢'(t) +1T(1)}

eters of the model, which are the physical ones in the statis- - R
tical applications of the renormalization group. In the follow- x @~ JoHidttnofdx ¢ (x.0))| oy, (2.10
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where the correct ordering of time arguments in the operators _

AL[4T(t) + 1]4(t)} andemofex ¥’ = gnofax #'(x0) gliows us to X[y ()] lﬁ(X,t)r] " nOJ dx ¢'(x,0).
introduce them into the time-ordered product together with

the evolution operator. (2.19

In order to use the standard Lapla@e Fourier, with the . o ]
following trick to send the upper limit of the time integral in at coinciding time arguments is defined as the normal-

the interaction operator to infinity. Using the identities ordered product. Therefore, in the perturbative expansion of
the expectation valu€2.13 no contractions between field

arguments at the same time instant occur in the interaction
vertices.
The stationarity conditions for the actid@.14) with re-
valid for the operator$i andH, generated from the opera- spect to variations of the fields" and  are
torsH,, Hp, andHg [Eq. (2.6)] by the shifty’— ¢ +1 55 ”
(note that, in genera{,0||3|R¢0!; this is one reason why we 0= w#z - E—V(v¢)+ DoV2y
prefer to commute the coherent-state exponential to the
right), we obtain the identity

(0lfi5=(0]F{ =0

r

S
S| . o r. o
o A A A ~Kio _=l(j)1<zﬂ)1 -2 <J->J(¢T)' 1}1#5
(0] =(0|e"ote R (t-De~ForT e~ SRt (0| Te~ I dt )
(2.1 Tl -
—K_p <\ 1)
Choosing7>t in the identity(2.11), introducing it into the :
expectation valu€2.10 and taking the limit— o0, we arrive ° s\ -
at the expression _2’1 (j)J(ebT)J Y +ngd(t), (2.15
(A)=(OIT(A{[¥' (1) +1]u(1)} 55, ayt s
. =—=—-+Vv-Vy'+DVZy'—sK () T
Ko fa{an 0Oy 0) (212 5y~ ot TV VYDV —s +0L21 i@
r
where the integration limits in the interaction operator are —2 (r)(lp’f)i}/ﬁl—rKo 2 (T)W
now independent of the current time arguméenwith the =1l =1l

choice of the lower limit in Eq(2.12), the use of the Laplace s
transform with respect to time is implicitly assumed. -> (_S)(w*r)i} iy (2.16
Using standard procedurésee, e.g., Ref23]) the expec- =1\l
tation value(2.12 may be cast into the form of a functional
integral over complex-conjugate scalar fiel¢§(x,t) and  Substituting the homogeneous SO|Uti¢ﬁ=0 of the latter
VCHE equation(2.16) in the former equatio2.15 we arrive at the
usual mean-field rate equatipb8],

— i i S
(A) = [ DUDUAILS O+ 1Ip}e™, (219 T ()= DaT K ol — S ofs 1)

where the unrenormalized dynamic acti®nfor the generic +ngd(t)
single-species reactiof2.5 with an initial Poisson distribu-
tion is for ¢, which, according to Eq(2.9), at this level may be

identified with the average number densitgx,t). Further,
o we will study the annihilation procegs+ A—(J, and there-
Sl(sz,w,v):—f dxf dt{ YT (x,0) dpp(X,1) fore putr=0, s=2, andK_,=0 in Eq.(2.14).
0 In order to analyze the effect of velocity fluctuations on
+ (X, D) VVi(x, 1) ]— Dot (x,1) V2i(x, 1) the reaction we average the expec'tatlon vzﬁmé.s‘).qver the.
random velocity fieldv. Due to the incompressibility condi-

° s : Uy tionsV-v=0, V-f=0 imposed on the velocity field and
Ko '21 (J-)[l// (xH] - '21 (]) the random-force field" it is sufficient to consider the trans-
= = verse components
X[t (x0T | (x,1)S N+ P(V-V)v—poV2y=Ff? (2.17
s of the stochastic Navier-Stokes equation. In EQj17) vq is
+K_o > (f)[l/;(x e (5) the unrenormalized kinematic viscosity aRdis the trans-
i=1\J ’ i=1\J verse projection operator.
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In the approach based on the assumption of maximal rariFhis action corresponds to the reactidr- A—J, and we
domnesg24] the random force is assumed to have Gaussiamave extracted the diffusion coefficiebt, in the rate con-
distribution with zero mean and the correlation function  stantK_ =D, for dimensional reasons.

(Tn(x0 ) Fa(xe,tz) ) = 8t~ t) IIl. FIXED POINTS OF THE RENORMALIZATION
dk GROUP
X f (270 Pmn(K)dj(k)e' ¢ax2), For power counting in the actiaf2.20 and(2.21) we use
n

the schem¢§15], in which to any quantityQ separate canoni-
(2.18  cal dimensions with respect to the wave numﬂgrand fre-
quencydg are assigned with the normalizatiatf = —dy’
where P, (K) = 6mn—kmk,/K? is the transverse projection =1, d¥= —d>'§= 1, andd“’zdﬁzo. These canonical dimen-
operator in the wave-vector space, ah(k) is a function of  sjons for fields and parameters are determined from the re-
the wave numbek and the parameters of energy pumping. quirement that the actio(2.20 and(2.21) is dimensionless
The critical dimension of the pure annihilation problem with respect to temporal and spatial variables separately. The
A+A—D is 2 [4]; therefore for the calculation of the ran- total canonical dimensiodg=2dg+ dg, is determined from
dom velocity field we have used the recently proposed twothe condition that the parabolic differential operators of the

parameter expansion, in which the kernel functiofi2g] diffusion and Navier-Stokes equations scale uniformly under
, , the transformatiok— uk, o— u’w.
ds(K) = g1ovok* 42+ goorpk®. (219 The quadratic part of the actid@.21) determines only the

canonical dimensions of the product of fieldsy. However,
The nonlocal term is often used to generate the turbulenth order to keep both terms in the nonlinear part
velocity field with Kolmogorov's scaling14,15 (which is ~ \oDofdt dx[ 24"+ (41)2]4? of the action, the fields" must
achieved by choosing=2). The local term is produced in be dimensionless. If the field™ has positive canonical di-
the course of renormalization near two dimensif2@], but  mension, then the quartic term should be discarded as irrel-
it also has an important physical meaning: such a term in thevant by power counting. The action with the cubic term
force correlation function, with a suitable choice of the pa-only, however, does not generate any loop integrals corre-
rameterg,, is believed to generate thermal fluctuations ofsponding to density fluctuations and thus is uninteresting for
the velocity field near equilibrium{11-13. The choice the analysis of fluctuation effects.
(2.19 of the correlation kernel fixes the critical dimension of ~ Using this choice we arrive at the following canonical
the model at the valud.=2, which is also the critical di- dimensions for fields and parameterslidimensional space:
mension of the reactiod+A—CJ in the master-equation

approach. This is drastically different from the Langevin- dk¢=d, d;=0, d,=d;

equation approach, in which the critical dimension for this .

reactiond,=6 [16,17. d,+=0, dj+=0, d,+=0;
Expectation values of functionals of the velocity field

generated by the stochastic differential equati¢hd? and d‘v‘= -1, dy=1, d,=1;

(2.18 may be calculated with the use of the “weight” func-

tional [14,15 W,=e%, where the actiorS, is a functional d§:d+1, dfz -1, d;=d-1;

of divergenceless vector fieldgx,t) andv(x,t) of the form
df,=-2, dy =1, d, =0;

1 ~ ~
SZ:EJ dtdx dx’ v(x,t)-v(x',t)d¢(|x—x'|) d‘50=—2, d‘[‘,’O:l, do, =0;

+J'dtde/-[—atv—(v~V)v+vOVZV]. (2.20 df =2—d, dy =0, d, =2—d;

dk

Yo1

=2¢, d? =0, d, =2e€;

Here, d;(|x—x’]|) is the coordinate-space representation of 901 901
the correlation kerng(2.19.

Thus we see that the expectation value of any observable d502=2—d, dg,=0. d
with respect to the concentration and velocity fluctuations

may be calculated using the weight functional=eS* %2, For one-particle irreducibl€lPl) graphs withn,, n;, n,,
where the unrenormalized dynamic acti®pis andn,+ external arguments of the fields v, , and ',
respectively, in the logarithmic theofie., when the canoni-
cal dimensions of the coupling constants vanisglo:lz dgo2
=dko=0) the superficial degree of divergencedis 4—n,
—n;—2n,. Due to the vanishing of the canonical dimension
+NoDol 24+ (yN) 2] + nof dx ¢"(x,0). of the field ", it might seem that there is an infinite number
of superficially divergent graphs with an arbitrary number of
(2.21)  externaly' legs. However, the number af' fields at the

=2—d.

902

1=~ f:dt f dx {y s+ ¢V (vih) — Doy V2
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interaction vertices is less than or equal to the numbag of Note that in contrast to the pure reaction cglkd] the renor-
fields, and only lines connecting &' argument with ay ~ malization constanZ, cannot be calculated exactly due to
argument are present in the graphs. By inspection of graphbe presence of the velocity field.

it is readily seen that because of thigr<n, and thus no The bare(unrenormalizefand renormalized parameters
proliferation of superficially divergent graphs occiitg. are related as

Contrary to the pure reaction cagg4], the 1PI Green o3 5 o3o1
functionI";+,, is renormalized here, which gives rise to the 91=0104 21, 92=020u" L1435,
renormalization of the diffusion coefficieBt. Because of the
Galilei invariance of the action the superficially divergent N=Nou?°Z,Z, ", 3.3
1PI Green function§’,+,,, andI',; are actually convergent . L
[12,14,15. Graphs corresponding 10,1,,, andT 1, dif- v=voZ;, U=UgZyZ,

fer only by one external vertex and thus give rise to equal
renormalization of the rate constangD,, preserving the The coefficient functions of the RG differential operator
symmetry of coupling constants in the reactive part of the
action.

Thus, the renormalized action for the+ A—(J reaction
in a turbulent velocity field is

J
M(M %Bgé,g 1L drm

J
DRG:MJ

where the subscript “0” refers to partial derivatives taken at

fixed values of the baréunrenormalizefl parameters, are
—f dxdt{gﬂ&tw YTV (V) —uvZy V2 defined as
v 27207+ (2] 9Inz,
M 4 NTR— \ ’“(9 (3.9
L 7 Mg
T 3, 2¢/ _v2\1-6—€__ 3 -2 279
2V[91V m=(=V9) Qov i “°Z3Ve]v with g=1{g;,02,U,\}.
From the definitiong3.3) and(3.4) it follows that
V. . — 2 T
T T 2T o[ gl 00), Bgr=01(—2e+371), Byp=02(26+3y1-73),
3.1 Br=N(26—=y4+v2), Bu=Uu(y1—72), (3.9

where we have introduced the inverse Prandtl number where all y functions are defined according to E@.4).

=D/v and the deviation of the space dimension from 2,Explicit expressions calculated from E@.2) are
26=d—-2, as dimensionless parameters. The parameter

sets the wave-number scale of the renormalized model. 9:1t0z 9:1t0>
As in the case of the diffusion-limited reactiph,4], it is 7307 0 V2T 8au(u+ 1)’

readily seen that essentially the same renormalized action

describes also the coagulation reactiarr A—A. Indeed, (91+02)° A

starting from the corresponding dynamic action we arrive at 73=T7ng, YaT T o

the renormalized actio(8.1) with the only difference that in

the coefficient of the terng"y/” the number 2 is replaced by There are one infrared-unstable and four stable fixed
unity. This changes the scaling functions slightee Ref.  points of the RGzeros of thes functions(3.5)] in the physi-
[25] for detailg but not the scallng dimensions, and thus bOthca| reg|on of the parameter Spa(]& with non- negatwe

reactions are in the same universality class. values of the coupling constaintsvhich we have listed in
We use a combination of dimensional and analyt|c regUTabIe . It is important to note that the unstable fixed point
larization with the minimal subtraction schenj&é], corresponds to anomalous decay brought about by density
which a one-loop calculation yields the following renormal- fluctuations only[1,4]. Since it is not stable, the system does
Ization constants: not exhibit long-time asymptotic behavior corresponding to
it, whenever the reaction takes place in an environment with
_ 1 (91 0 a physical drift field(i.e., at least in real liquid and gaseous
2= e ) media, but rather shows asymptotic behavior governed by
one of the stable fixed points, at which the anomalous behav-
1 9 O ior is produced by the combined effect of density and drif§
Z,=1-————|—— —), fluctuations and leads to faster decay of the reactant density
16mu(1+u) J than the density fluctuations only.
LS 1 (gf 1 29: %) (3 V- LONG-TIME ASYMPTOTICS OF NUMBER DENSITY
3 64w\ g, 2¢+6 € b5’ '

The simplest way to find the average number density is to
calculate it from the stationarity condition of the functional
7. =1- A Legendre transformi23] (which is often called the effective

4 Ams action) of the generating functional of renormalized Green
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TABLE |. Physical fixed points of the RG, their regions of stability in the {=d/2—1) plane, and the scaling dimensianof the
density decay raten(t)~t~“].

Fixed point g7 g5 u* A* a Region of stability
Gaussian 0 0 not fixed 0 1 €<0, 6>0
Thermal 0 —3278 ((/17-1)/2 -2 1+§ 6<0, 2e+36<0

oAt 647 €(2e+396) 647 € — A 1+6 2e €
Anomalous kinetic (,/17-1)/2 _ 7 _ == _Z
9 e+ 9 sre V 3 (€430) o5 €20, - Fz=i<—3
A 647 €(2e+36) 647 € — €
Normal kinetic (/17-1)/2 0 1 _Z
9 eto 9 o+te €0, 0>~3
Driftless 0 0 not fixed —47d 1+6 unstable

functions obtained by replacing the unrenormalized action byvhich physically corresponds to the case when fluctuation
the renormalized one in the weight functional. This is a con-effects are negligible.

venient way to avoid any summing procedures Uded7] to At the thermal fixed point local correlations of the random

take into account the higher-order terms in the initial numberforce dominate over the long-range correlations. Physically,
densityng. Since the renormalization and calculation of thevelocity fluctuations generated by a locally correlated ran-
fixed points of the RG are carried out at one-loop level, wedom force correspond to thermal fluctuations near equilib-
can find only the leading term of the § expansion of the rium[11-13. The tree-level expression for the number den-

average number density, which corresponds to solving theity is

stationarity equations at the tree level. For a spatially homog-

enous solution this leads to the rate equation Ng

n(t)=
1— 277_5( \/1_7_ 1) VOnOM—Zz?T— 5/2tl+ 812

dn(t
d(t ) _ — 2 uvu?%n?(t) (4.2
20702
with the initial conditionn(0)=n, for the average number ~ (4.9

densityn(t) = (i(t)). o 2mO(N1T— 1) gttt o2

Solving the Callan-Symanzik equation for the number

: where the exponents of temporal variablesd - have been
density,

written to the orderO(d). Since the thermal fixed point is
J J J stable below two dimensions5€0), the asymptotic decay
2=y t—+ > By=-—dng——+d|n(t)=0, raten~t 1~ 92 predicted by Eq(4.4) is faster than than
at 99 Ny ~t~92 prought about by the density fluctuations ofily4].
This reflects the enhancement of the effective reaction rate
by the method of characteristics, we arrive at the solution Oaue to the local random Stirring’ which increases the oppor-

the tree-level rate equatiq@.1) in the form tunities for a particle to come into contact with another. We
emphasize that this change in the asymptotic reaction rate is

Fefdfil(%ms]’lds brought about not only by a suitable stirring, but also by

n(t)= : (4.2 thermal fluctuations of the velocity field. Therefore, even

o Ny
1+2huvp *'n7 when there is no external stirring, the actual asymptotic de-

. . . ) cay rate of the number density is given by E4.4) at least
wherer is the time scale, which here has been left indepen;y, liquid or gaseous environment, where thermal fluctua-

dent of the wave-number scale In Eq. (4.2, X, u, andn tions of the velocity are inevitable.
are the first integrals of the system of differential equations |n the regime governed by the kinetic fixed pofr1]
with an anomalous reaction rate the fixed-point value/pf

d— By(9) d— n =2¢€/3 exactly [14,15. Therefore, in the long-time
dtg_ 2_ 71(5) ' dtn— 2_ 71(5) ' asymptotic expression
o o 329730 9/(3-9)
where g={g1,0,,u,\}, with the initial conditionsg|,—, net) ~ — 4
=g, Nl :nlo_ ’ t ()Hw An(J17—1)(e+38) ptd+A(1=e3) 43

In the basin of aftraction of the Gaussigrivial) fixed for the tree-level average number density, the exponents of

g?It?ETJ?]:é?]%}lr?q\;?ilzi)épsgzﬁggg ttrr]]gor:umber density is thatthe temporal variables are also exact. The power-law behav-
Y ior n~t~ (1 9/(1=€3) corresponds to faster decay than in the

n 1 absence of stirring, becauge>0. The decay is also faster
= 0 ~ , 4.3 than that induced by locally correlated components of the
1+2AoDonot ... 2K ot random force, but still slower than the mean-field decay rate.

n(t)
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Note that this is different from the case of a time- netic fixed point on the ray+36=0, §<0, is characterized
independent divergenceless random velocity field, in whichby the logarithmic correction
there is no fixed point withh* #0 [9].

The kinetic fixed point with normal reaction rate is stable w22 In(t/7)
when the long-range correlations of the random force are n(t)~ \/_ .
dominant and corresponds to reaction kinetics with the nor- 4m(V17=1)(1+ ) vot

mal (mean-field-like decay rate: ) )
On the borderline =0, 6>0) between the basins of the

1 normal kinetic fixed point and the Gaussian fixed point there

~—_——, (4.6) are no logarithmic corrections to the mean-field-like decay
t-;oc( \/1—7_ 1) Vo)\ot rate.

but with an amplitude different from that in the Gaussian
case(4.3). The effect of random stirring with long-range cor- V. CONCLUSION
relations is drastic in the sense that it completely wipes off

the effect of density fluctuati below two di . In conclusion, we have analyzed the effects of density and
€ etiect of density Tiuctuations below two dimensions, re'velocity fluctuations on the reaction kinetics of the single-

storing tlhe dmean]fzeljd dAetc):ay ?f thg. numper (:ﬁnsitf)f/ V¥ith pecies decay+A—J universality class and found that
renormalized ampiitude. Above two dimensions the ellect Ok, 5 h45m310us behavior predicted by the analysis based on

the rando_m stirring reduces to the renormalization of the det'he density fluctuations onljl,4] is unstable to any drift
cay amplitude.

T t of time in E d(4.6 i i field fluctuations and thus is not realized in the long-time
€ exponent of ime In q¢4.5 an (4.6) is acontinu- it Instead, the asymptotic behavior of the system is gov-
ous function ofe and § on the borderline of their respective

. | o erned by four stable fixed points, at which the anomalous
basins of attraction. The continuity of the exponents on th

borderli bet the basi f attract f the fi ehavior is due to both drift and density fluctuations.
oraeriines between the basins of attraction of the 1IXed \ya have carried out the renormalization of the model at
points is, however, present up to logarithmic corrections

e : one-loop level and calculated the long-time asymptotic be-

0r_1|y. We have_ calculated these logarithmic corrections alsohavior of the number density of the reacting particles in these

with the foIIowmg_resuIts. . . regimes. The results of our analysis show that the velocity

On fche barderline bej[ween the basins of attraction of thefluctuations affect the asymptotic decay of the number den-
Gaussian and thermal fixed point8<0, €<0), sity significantly at and below two dimensions, enhancing

InY2(t/7) the effective decay rate in compgrison with t_he anqmalous

_ decay rate due to density fluctuations only. Since this effect

2\27(J17-1) vyt is brought about already by the ubiquitous thermal fluctua-
tions, we conjecture that the velocity-fluctuation-driven

This is slower than the mean-field decay rate-t %), but  asymptotic behavior is the true asymptotic behavior when-

faster than the density-fluctuation-induced decay rate ( ever a physical velocity field may be present, i.e., at least in

n(t)

n(t)~

~t~tint). . gaseous or liquid media. This effect of increasing the
The following anomalous decay rate: asymptotic reaction rate is more pronounced for the long-
range correlated force components, so that when the correla-
268,612 . .
n(t)~— Mmoo tions of random forcing fall off slowly enough, the random
23 IDB[17 1) Syttt 92 |n(1+ 9Dt/ 1) stirring destroys the effect of density fluctuations completely

and restores a mean-field-like decay of the number density.
is found on the borderline &+36=0, §<0) between the
regions of stability of the thermal fixed point and the anoma-
lous kinetic fixed point.
The transition from the regime governed by the anoma- This work was supported in part by Slovak Academy of
lous kinetic fixed point to that governed by the normal ki- Sciences, Grant No. 2/7232.
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