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Velocity-fluctuation-induced anomalous kinetics of theA¿A\B reaction

M. Hnatich
Institute for Experimental Physics, SAS, Kosˇice, Slovakia

J. Honkonen
Theory Division, Department of Physics, University of Helsinki, Helsinki, Finland

~Received 22 November 1999!

The effect of a random velocity field on the kinetics of the single-species annihilation reactionA1A→B is
analyzed near two dimensions with the aid of the perturbative renormalization group. The previously found
asymptotic behavior induced by density fluctuations only in the diffusion-limited reaction is shown to be
unstable to any velocity fluctuations~including thermal fluctuations near equilibrium! in spatial dimensions
d<dc52. Four different stable long-time asymptotic regimes induced by the combined effect of velocity and
density fluctuations are identified and the corresponding decay rates calculated in the leading order.

PACS number~s!: 05.70.Ln, 47.27.Qb, 82.20.Mj
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I. INTRODUCTION

Investigation of the effect of density fluctuations on rea
tion kinetics has gained considerable attention rece
@1–3#. This analysis has shown that in low space dimensi
the usual rate equation is not sufficient for a description
the reaction kinetics, and the fluctuations of the density
the reactants must be taken into account. Correspon
asymptotic expressions for densities have been calculate
processes likeA1A→B @1,4# and A1B→B @5#. The be-
havior of the density and effective reaction rate may also
affected by fluctuations of an advective velocity field. So
the analysis of this effect has been concentrated on the
of time-independent random drift@6–10#. However, for a
more realistic analysis of the effects of the velocity fluctu
tions on the reaction kinetics a time-dependent random d
field would be preferable.

In this paper we show that the previously found anom
lous behavior at and below the critical dimensiondc52 in
the reactionA1A→B @1,4# is unstable to any drift field
fluctuations, including those generated by the ubiquito
thermal noise. It is shown that anomalous behavior w
faster decay rate of the reactant density is induced atd<2 by
the combined effect of the density and drift fluctuations.

We study the problem of advection of a reactive sca
using a random velocity field generated by the stochastic
forced Navier-Stokes equation, which has been widely u
to produce a stochastic velocity field corresponding to b
thermal fluctuations near equilibrium@11–13# and a turbu-
lent velocity field with the Kolmogorov scaling behavio
@14,15#. Attempts have been made to investigate the prob
of a reactive scalar advected by a turbulent velocity fi
@16,17#, in which a Langevin-equation approach was used
generate the concentration fluctuations. The Langevin eq
tion works well in linear problems, but it may be problema
in nonlinear ones~see, e.g., Ref.@18#!. Therefore, we use the
master-equation approach@18# to take into account the reac
tant density fluctuations.

We use the second-quantization formalism of Doi@19# to
cast the stochastic problem into a field-theoretic form. T
critical dimension of the pure annihilation problemA1A
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→B is 2 @4#, therefore we have used the recently propos
two-parameter expansion@20,21# for the calculation of the
random velocity field generated by the stochastic Nav
Stokes equation. This gives rise to a two-parameter exp
sion of all physical quantities in the problem of advection
a reactive scalar.

This paper is organized as follows. In Sec. II a fiel

theoretic model for the general reactionsA

K20

K10
rA is con-

structed on the basis of the second-quantization approac
the reaction, whereas the stochastic Navier-Stokes equa
is used to generate the random velocity field. Renormal
tion of the field-theoretic model corresponding to the anni
lation reactionA1A→B is carried out in Sec. III, where
also the fixed points of the renormalization group~RG! dif-
ferential equations are classified, and it is shown that in
below two dimensions the velocity fluctuations always dri
the system in an asymptotic regime different from that
duced by density fluctuations only@1,4#. Section IV is de-
voted to the explicit calculation of the average number d
sity at the tree level. Anomalous decay rates correspond
to the four different fixed points of the RG are calculated
the leading approximation, as well as the logarithmic corr
tions on the borderlines between the basins of attraction
the fixed points. Conclusions are presented in Sec. V.

II. FIELD-THEORETIC MODEL FOR THE NONLINEAR
ADVECTION-DIFFUSION PROBLEM

The second-quantized formulation of classical react
processes is based on the use of the creation and annihil
operatorsc† andc and the vacuum stateu0& @19# ~see also
@3,22#!,

@c~x!,c†~x8!#5d~x2x8!,

@c~x!,c~x8!#5@c†~x!,c†~x8!#50,

c~x!u0&50, ^0uc†~x!50, ^0u0&51. ~2.1!
3904 © 2000 The American Physical Society
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Let P($ni%,t) be the joint probability distribution function
~PDF! to observeni particles at positionsxi . The state vector
of the classical many-particle system is defined as the
over all occupation numbers,

uF~ t !&5(
$ni %

P~$ni%,t !u$ni%&,

where the basis vectors are defined as

u$ni%&5)
i

@c†~xi !#
niu0&.

Averages of observables may be calculated with the use
coherent-state vector,

^A~ t !&5(
$ni %

A@$ni%#P~$ni%,t !5^0ue*dx cA~c†c!uF~ t !&,

~2.2!

where n̂(x)5c†(x)c(x) is the number-density operato
@19#.

The set of coupled master equations for the PDFs may
cast in the form of a ‘‘master equation’’ for the state vec
@1,19,22#:

]

]t
uF~ t !&52ĤuF~ t !&, ~2.3!

with the initial condition uF(0)&5($ni %
P($ni%,0)u$ni%&. In

Eq. ~2.3! the kinetic operatorĤ is the sum of terms

Ĥ5ĤA1ĤD1ĤR ~2.4!

corresponding to advection, diffusion, and chemical react
respectively. For the generic reaction involving only o
type of particle,

sA

K10



K20

rA, ~2.5!

with the unrenormalized~mean field! rate constantsK10 and
K20, the operators in Eq.~2.4! in terms of the field operator
are @19,22#

ĤA5E dx c†~x!“@v~x,t !c~x!#,

ĤD52D0E dx c†~x!¹2c~x!,

ĤR5K10E dx@~c†!s2~c†!r #cs1K20

3E dx@~c†!r2~c†!s#c r . ~2.6!

In Eq. ~2.6! the subscript 0 refers to unrenormalized para
eters of the model, which are the physical ones in the sta
tical applications of the renormalization group. In the follow
m

f a

e
r

n,

-
s-

ing, we denote the corresponding renormalized parame
by the same symbols without the subscript.

With the use of the formal solution of the master equat
~2.3! the average~2.2! may be written as

^A~ t !&5^0ue*dx cA~c†c!e2ĤtuF~0!&. ~2.7!

However, we find it convenient to use the form in which t
coherent-state exponential is commuted to the right, wh
leads to the expression

^A~ t !&5^0uA@~c†11!c#e2Ĥ8te*dx,cuF~0!&, ~2.8!

corresponding to the use of the ‘‘inclusive’’ scalar product
Ref. @22#. The connection between the kinetic operators
Eqs.~2.7! and ~2.8! is @3,22#

Ĥ8~c†,c!5Ĥ~c†11,c!,

i.e., the field argumentc† is replaced byc†11 due to the
transfer of the coherent-state exponential from the left to
right. The average number density, for instance, in the fo
~2.8! is

n~x,t !5^0ue*dx cc†~x!c~x!uF~ t !&

5^0uc~x!e2Ĥ8te*dx cuF~0!&. ~2.9!

It is convenient to use the Poisson distribution as the ini
condition@3,19,22#, which in terms of the field operators an
vacuum state yields for the initial state the following expre
sion:

uF~0!&5e2n0V1n0*dx c†
u0&,

wheren0 is the initial number density andV the volume of
the system. With this choice of the initial state it is read
seen that

e*dx cuF~0!&5en0*dx c†
u0&.

To construct a perturbative expansion of the expecta
value ~2.8! we introduce the time-ordered exponential for
of the evolution operator,

U~ t,t0!5eĤ08te2Ĥ8(t2t0)e2Ĥ08t05Te2* t0

t ĤI8dt,

where the kinetic operator has been decomposed to a
field operatorĤ08 and an interaction operatorĤI85Ĥ82Ĥ08 .
In the interaction operator the field operators~2.1! are re-
placed by the time-dependent operators

c†~x,t !5eĤ08tc†~x!e2Ĥ08t, c~x,t !5eĤ08tc~x!e2Ĥ08t,

in which we have chosent050. With the same replacemen
in the operatorA@(c†11)c# we cast the expectation valu
~2.8! in the form

^A~ t !&5^0uT~A$@~c†~ t !11#c~ t !%

3e2*0
t ĤI8dt1n0*dx c†(x,0)!u0&, ~2.10!
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where the correct ordering of time arguments in the opera
A$@c†(t)11#c(t)% anden0*dx c†

5en0*dx c†(x,0) allows us to
introduce them into the time-ordered product together w
the evolution operator.

In order to use the standard Laplace~or Fourier, with the
choice t0→2`) transform with respect to time we use th
following trick to send the upper limit of the time integral i
the interaction operator to infinity. Using the identities

^0uĤ085^0uĤI850

valid for the operatorsĤ08 andĤI8 generated from the opera

tors ĤA , ĤD , and ĤR @Eq. ~2.6!# by the shiftc†→c†11
~note that, in general,̂0uĤRÞ0!; this is one reason why we
prefer to commute the coherent-state exponential to
right!, we obtain the identity

^0u5^0ueĤ08te2Ĥ8(t2t)e2Ĥ08tTe2* t
tĤI8dt5^0uTe2* t

tĤI8dt.
~2.11!

Choosingt.t in the identity~2.11!, introducing it into the
expectation value~2.10! and taking the limitt→`, we arrive
at the expression

^A~ t !&5^0uT~A$@c†~ t !11#c~ t !%

3e2*0
`ĤI8dt1n0*dx c†(x,0)!u0&, ~2.12!

where the integration limits in the interaction operator a
now independent of the current time argumentt. With the
choice of the lower limit in Eq.~2.12!, the use of the Laplace
transform with respect to time is implicitly assumed.

Using standard procedures~see, e.g., Ref.@23#! the expec-
tation value~2.12! may be cast into the form of a functiona
integral over complex-conjugate scalar fieldsc†(x,t) and
c(x,t):

^A~ t !&5E Dc†Dc A$@c†~ t !11#c~ t !%eS1, ~2.13!

where the unrenormalized dynamic actionS1 for the generic
single-species reaction~2.5! with an initial Poisson distribu-
tion is

S1~c†,c,v!52E dxE
0

`

dt H c†~x,t !] tc~x,t !

1c†~x,t !“@vc~x,t !#2D0c†~x,t !¹2c~x,t !

1K10F (
j 51

s S s
j D @c†~x,t !# j2(

j 51

r S r
j D

3@c†~x,t !# j Gc~x,t !s

1K20F (
j 51

r S r
j D @c†~x,t !# j2(

j 51

s S s
j D
rs

h

e

e

3@c†~x,t !# j Gc~x,t !rJ 1n0E dx c†~x,0!.

~2.14!

This form of the action implies that the time-ordered produ
at coinciding time arguments is defined as the norm
ordered product. Therefore, in the perturbative expansion
the expectation value~2.13! no contractions between fiel
arguments at the same time instant occur in the interac
vertices.

The stationarity conditions for the action~2.14! with re-
spect to variations of the fieldsc† andc are

05
dS1

dc† 52
]c

]t
2“~vc!1D0¹2c

2K10F (
j 51

s S s
j D j ~c†! j 212(

j 51

r S r
j D j ~c†! j 21Gcs

2K20F (
j 51

r S r
j D j ~c†! j 21

2(
j 51

s S s
j D j ~c†! j 21Gc r1n0d~ t !, ~2.15!

05
dS1

dc
5

]c†

]t
1v•“c†1D0¹2c†2sK10F (

j 51

s S s
j D ~c†! j

2(
j 51

r S r
j D ~c†! j Gcs212rK 20F (

j 51

r S r
j D ~c†! j

2(
j 51

s S s
j D ~c†! j Gc r 21. ~2.16!

Substituting the homogeneous solutionc†50 of the latter
equation~2.16! in the former equation~2.15! we arrive at the
usual mean-field rate equation@18#,

]c

]t
1“~vc!5D0¹2c1K10~r 2s!cs1K20~s2r !c r

1n0d~ t !

for c, which, according to Eq.~2.9!, at this level may be
identified with the average number densityn(x,t). Further,
we will study the annihilation processA1A→B, and there-
fore put r 50, s52, andK2050 in Eq. ~2.14!.

In order to analyze the effect of velocity fluctuations o
the reaction we average the expectation value~2.13! over the
random velocity fieldv. Due to the incompressibility condi
tions“•v50, “•f v50 imposed on the velocity fieldv and
the random-force fieldf v it is sufficient to consider the trans
verse components

] tv1P~v•“ !v2n0¹2v5f v ~2.17!

of the stochastic Navier-Stokes equation. In Eq.~2.17! n0 is
the unrenormalized kinematic viscosity andP is the trans-
verse projection operator.
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In the approach based on the assumption of maximal
domness@24# the random force is assumed to have Gauss
distribution with zero mean and the correlation function

^ f m
v ~x1 ,t1! f n

v~x2 ,t2! &5d~ t12t2!

3E dk

~2p!d
Pmn~k!df~k!eik•(x12x2),

~2.18!

where Pmn(k)5dmn2kmkn /k2 is the transverse projectio
operator in the wave-vector space, anddf(k) is a function of
the wave numberk and the parameters of energy pumpin

The critical dimension of the pure annihilation proble
A1A→B is 2 @4#; therefore for the calculation of the ran
dom velocity field we have used the recently proposed tw
parameter expansion, in which the kernel function is@20#

df~k!5g10n0
3k42d22e1g20n0

3k2. ~2.19!

The nonlocal term is often used to generate the turbu
velocity field with Kolmogorov’s scaling@14,15# ~which is
achieved by choosinge52). The local term is produced in
the course of renormalization near two dimensions@20#, but
it also has an important physical meaning: such a term in
force correlation function, with a suitable choice of the p
rameterg20, is believed to generate thermal fluctuations
the velocity field near equilibrium@11–13#. The choice
~2.19! of the correlation kernel fixes the critical dimension
the model at the valuedc52, which is also the critical di-
mension of the reactionA1A→B in the master-equation
approach. This is drastically different from the Langev
equation approach, in which the critical dimension for th
reactiondc56 @16,17#.

Expectation values of functionals of the velocity fie
generated by the stochastic differential equations~2.17! and
~2.18! may be calculated with the use of the ‘‘weight’’ func
tional @14,15# W25eS2, where the actionS2 is a functional
of divergenceless vector fieldsv(x,t) and ṽ(x,t) of the form

S25
1

2E dt dx dx8 ṽ~x,t !• ṽ~x8,t !df~ ux2x8u!

1E dt dx ṽ•@2] tv2~v•“ !v1n0¹2v#. ~2.20!

Here, df(ux2x8u) is the coordinate-space representation
the correlation kernel~2.19!.

Thus we see that the expectation value of any observ
with respect to the concentration and velocity fluctuatio
may be calculated using the weight functionalW5eS11S2,
where the unrenormalized dynamic actionS1 is

S152E
0

`

dtE dx $c†] tc1c†
“~vc!2D0c†¹2c

1l0D0@2c†1~c†!2#c2%1n0E dx c†~x,0!.

~2.21!
n-
n

-

nt

e
-
f

-

f

le
s

This action corresponds to the reactionA1A→B, and we
have extracted the diffusion coefficientD0 in the rate con-
stantK105l0D0 for dimensional reasons.

III. FIXED POINTS OF THE RENORMALIZATION
GROUP

For power counting in the action~2.20! and~2.21! we use
the scheme@15#, in which to any quantityQ separate canoni
cal dimensions with respect to the wave numberdQ

k and fre-
quencydQ

v are assigned with the normalizationdv
v52dt

v

51, dk
k52dx

k51, anddk
v5dv

k 50. These canonical dimen
sions for fields and parameters are determined from the
quirement that the action~2.20! and ~2.21! is dimensionless
with respect to temporal and spatial variables separately.
total canonical dimensiondQ52dQ

v1dQ
k is determined from

the condition that the parabolic differential operators of t
diffusion and Navier-Stokes equations scale uniformly un
the transformationk→mk, v→m2v.

The quadratic part of the action~2.21! determines only the
canonical dimensions of the product of fieldsc†c. However,
in order to keep both terms in the nonlinear pa
l0D0*dt dx@2c†1(c†)2#c2 of the action, the fieldc† must
be dimensionless. If the fieldc† has positive canonical di
mension, then the quartic term should be discarded as i
evant by power counting. The action with the cubic te
only, however, does not generate any loop integrals co
sponding to density fluctuations and thus is uninteresting
the analysis of fluctuation effects.

Using this choice we arrive at the following canonic
dimensions for fields and parameters ind-dimensional space

dc
k 5d, dc

v50, dc5d;

dc†
k

50, dc†
v

50, dc†50;

dv
k521, dv

v51, dv51;

dṽ
k
5d11, dṽ

v
521, dṽ5d21;

dn0

k 522, dn0

v 51, dn0
50;

dD0

k 522, dD0

v 51, dD0
50;

dl0

k 522d, dl0

v 50, dl0
522d;

dg01

k 52e, dg01

v 50, dg01
52e;

dg02

k 522d, dg02

v 50, dg02
522d.

For one-particle irreducible~1PI! graphs withnv , nṽ , nc ,
and nc† external arguments of the fieldsv, ṽ, c, and c†,
respectively, in the logarithmic theory~i.e., when the canoni-
cal dimensions of the coupling constants vanish:dg01

5dg02

5dl0
50) the superficial degree of divergence isd542nv

2nṽ22nc . Due to the vanishing of the canonical dimensi
of the fieldc†, it might seem that there is an infinite numb
of superficially divergent graphs with an arbitrary number
externalc† legs. However, the number ofc† fields at the
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3908 PRE 61M. HNATICH AND J. HONKONEN
interaction vertices is less than or equal to the number oc
fields, and only lines connecting ac† argument with ac
argument are present in the graphs. By inspection of gra
it is readily seen that because of thisnc†<nc and thus no
proliferation of superficially divergent graphs occurs@1#.

Contrary to the pure reaction case@1,4#, the 1PI Green
function Gc†c is renormalized here, which gives rise to th
renormalization of the diffusion coefficientD. Because of the
Galilei invariance of the action the superficially diverge
1PI Green functionsGc†cv andGvvṽ are actually convergen
@12,14,15#. Graphs corresponding toGc†cc andGc†c†cc dif-
fer only by one external vertex and thus give rise to eq
renormalization of the rate constantl0D0, preserving the
symmetry of coupling constants in the reactive part of
action.

Thus, the renormalized action for theA1A→B reaction
in a turbulent velocity field is

S52E dx dt H c†] tc1c†
“~vc!2unZ2c†¹2c

1lunm22dZ4@2c†1~c†!2#c2

2
1

2
ṽ@g1n3m2e~2¹2!12d2e2g2n3m22dZ3¹2# ṽ

1 ṽ•@] tv1~v•¹!v2nZ1¹2v#J 1n0E dx c†~x,0!,

~3.1!

where we have introduced the inverse Prandtl numbeu
5D/n and the deviation of the space dimension from
2d5d22, as dimensionless parameters. The parametem
sets the wave-number scale of the renormalized model.

As in the case of the diffusion-limited reaction@1,4#, it is
readily seen that essentially the same renormalized ac
describes also the coagulation reactionA1A→A. Indeed,
starting from the corresponding dynamic action we arrive
the renormalized action~3.1! with the only difference that in
the coefficient of the termc†c2 the number 2 is replaced b
unity. This changes the scaling functions slightly~see Ref.
@25# for details! but not the scaling dimensions, and thus bo
reactions are in the same universality class.

We use a combination of dimensional and analytic re
larization with the minimal subtraction scheme@26#, in
which a one-loop calculation yields the following renorma
ization constants:

Z1512
1

64p S g1

e
2

g2

d D ,

Z2512
1

16pu~11u! S g1

e
2

g2

d D ,

Z3512
1

64p S g1
2

g2

1

2e1d
1

2g1

e
2

g2

d D , ~3.2!

Z4512
l

4pd
.

hs

t

l

e

,

on

t

-

Note that in contrast to the pure reaction case@1,4# the renor-
malization constantZ4 cannot be calculated exactly due
the presence of the velocity field.

The bare~unrenormalized! and renormalized paramete
are related as

g15g10m22e Z1
3 , g25g20m2d Z1

3Z3
21 ,

l5l0m2dZ2Z4
21 , ~3.3!

n5n0 Z1
21 , u5u0 Z1Z2

21 .

The coefficient functions of the RG differential operator

DRG5m
]

]m U
0

5m
]

]m
1(

g
bg

]

]g
2g1n

]

]n
,

where the subscript ‘‘0’’ refers to partial derivatives taken
fixed values of the bare~unrenormalized! parameters, are
defined as

g15m
] ln Z1

]m U
0

, bg5m
]g

]m U
0

, ~3.4!

with g5$g1 ,g2 ,u,l%.
From the definitions~3.3! and ~3.4! it follows that

bg15g1 ~22e13 g1!, bg25g2 ~2d13g12g3!,

bl5l~2d2g41g2!, bu5u ~g12g2!, ~3.5!

where all g functions are defined according to Eq.~3.4!.
Explicit expressions calculated from Eq.~3.2! are

g15
g11g2

32p
, g25

g11g2

8pu~u11!
,

g35
~g11g2!2

32pg2
, g452

l

2p
.

There are one infrared-unstable and four stable fix
points of the RG@zeros of theb functions~3.5!# in the physi-
cal region of the parameter space~i.e., with non-negative
values of the coupling constants!, which we have listed in
Table I. It is important to note that the unstable fixed po
corresponds to anomalous decay brought about by den
fluctuations only@1,4#. Since it is not stable, the system do
not exhibit long-time asymptotic behavior corresponding
it, whenever the reaction takes place in an environment w
a physical drift field~i.e., at least in real liquid and gaseou
media!, but rather shows asymptotic behavior governed
one of the stable fixed points, at which the anomalous beh
ior is produced by the combined effect of density and d
fluctuations and leads to faster decay of the reactant den
than the density fluctuations only.

IV. LONG-TIME ASYMPTOTICS OF NUMBER DENSITY

The simplest way to find the average number density is
calculate it from the stationarity condition of the function
Legendre transform@23# ~which is often called the effective
action! of the generating functional of renormalized Gre
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TABLE I. Physical fixed points of the RG, their regions of stability in the («,d5d/221) plane, and the scaling dimensiona of the
density decay rate@n(t);t2a#.

Fixed point g1* g2* u* l* a Region of stability

Gaussian 0 0 not fixed 0 1 e,0, d.0

Thermal 0 232pd (A1721)/2 22pd 11
d
2

d,0, 2e13d,0

Anomalous kinetic 64p

9
e (2e13d)

e1d
64p

9
e2

d1e
(A1721)/2 2

4p

3
(e13d)

11d
12e/3

e.0, 2
2e

3
,d,2

e

3

Normal kinetic 64p

9
e (2e13d)

e1d
64p

9
e2

d1e
(A1721)/2 0 1 e.0, d.2

e

3

Driftless 0 0 not fixed 24pd 11d unstable
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functions obtained by replacing the unrenormalized action
the renormalized one in the weight functional. This is a co
venient way to avoid any summing procedures used@1,27# to
take into account the higher-order terms in the initial num
densityn0. Since the renormalization and calculation of t
fixed points of the RG are carried out at one-loop level,
can find only the leading term of thee,d expansion of the
average number density, which corresponds to solving
stationarity equations at the tree level. For a spatially hom
enous solution this leads to the rate equation

dn~ t !

dt
522lunm22dn2~ t ! ~4.1!

with the initial conditionn(0)5n0 for the average numbe
densityn(t)5^c(t)&.

Solving the Callan-Symanzik equation for the numb
density,

S ~22g1!t
]

]t
1(

g
bg

]

]g
2dn0

]

]n0
1dD n~ t !50,

by the method of characteristics, we arrive at the solution
the tree-level rate equation~4.1! in the form

n~ t !5
n̄e2d*t

t [(22g1)s] 21ds

112l̄ūnm22dn̄t
, ~4.2!

wheret is the time scale, which here has been left indep
dent of the wave-number scalem. In Eq. ~4.2!, l̄, ū, and n̄
are the first integrals of the system of differential equatio

t
d

dt
ḡ52

bg~ ḡ!

22g1~ ḡ!
, t

d

dt
n̄5d

n̄

22g1~ ḡ!
,

where ḡ5$ḡ1 ,ḡ2 ,ū,l̄%, with the initial conditions ḡu t5t

5g, n̄u t5t5n0.
In the basin of attraction of the Gaussian~trivial! fixed

point the tree-level expression for the number density is
of the unrenormalized mean-field theory,

n~ t !5
n0

112l0D0n0t
;

t→`

1

2K10t
, ~4.3!
y
-

r

e

e
g-

r

f

-

at

which physically corresponds to the case when fluctuat
effects are negligible.

At the thermal fixed point local correlations of the rando
force dominate over the long-range correlations. Physica
velocity fluctuations generated by a locally correlated ra
dom force correspond to thermal fluctuations near equi
rium @11–13#. The tree-level expression for the number de
sity is

n~ t !5
n0

122pd~A1721!n0n0m22dt2d/2t11d/2

;
t→`

2
m2dtd/2

2pd~A1721!n0t11d/2
, ~4.4!

where the exponents of temporal variablest andt have been
written to the orderO(d). Since the thermal fixed point is
stable below two dimensions (d,0), the asymptotic decay
rate n;t212d/2 predicted by Eq.~4.4! is faster than thatn
;t2d/2 brought about by the density fluctuations only@1,4#.
This reflects the enhancement of the effective reaction
due to the local random stirring, which increases the opp
tunities for a particle to come into contact with another. W
emphasize that this change in the asymptotic reaction ra
brought about not only by a suitable stirring, but also
thermal fluctuations of the velocity field. Therefore, ev
when there is no external stirring, the actual asymptotic
cay rate of the number density is given by Eq.~4.4! at least
in a liquid or gaseous environment, where thermal fluct
tions of the velocity are inevitable.

In the regime governed by the kinetic fixed point@21#
with an anomalous reaction rate the fixed-point value ofg1*
52e/3 exactly @14,15#. Therefore, in the long-time
asymptotic expression

n~ t ! ;
t→`

2
3m2dt (3d1e)/(32e)

4p~A1721!~e13d!n0t (11d)/(12e/3)
~4.5!

for the tree-level average number density, the exponent
the temporal variables are also exact. The power-law beh
ior n;t2(11d)/(12e/3) corresponds to faster decay than in t
absence of stirring, becausee.0. The decay is also faste
than that induced by locally correlated components of
random force, but still slower than the mean-field decay ra
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Note that this is different from the case of a tim
independent divergenceless random velocity field, in wh
there is no fixed point withl* Þ0 @9#.

The kinetic fixed point with normal reaction rate is stab
when the long-range correlations of the random force
dominant and corresponds to reaction kinetics with the n
mal ~mean-field-like! decay rate:

n~ t ! ;
t→`

1

~A1721!n0l0t
, ~4.6!

but with an amplitude different from that in the Gaussi
case~4.3!. The effect of random stirring with long-range co
relations is drastic in the sense that it completely wipes
the effect of density fluctuations below two dimensions,
storing the mean-field decay of the number density w
renormalized amplitude. Above two dimensions the effec
the random stirring reduces to the renormalization of the
cay amplitude.

The exponent of time in Eqs.~4.5! and~4.6! is a continu-
ous function ofe andd on the borderline of their respectiv
basins of attraction. The continuity of the exponents on
borderlines between the basins of attraction of the fix
points is, however, present up to logarithmic correctio
only. We have calculated these logarithmic corrections a
with the following results.

On the borderline between the basins of attraction of
Gaussian and thermal fixed points (d50, e,0),

n~ t !;
ln1/2~ t/t!

2A2p~A1721!n0t
.

This is slower than the mean-field decay rate (n;t21), but
faster than the density-fluctuation-induced decay raten
;t21ln t).

The following anomalous decay rate:

n~ t !;2
m2dtd/2

2p3(11d/2)/3~A1721!dn0t11d/2 ln(11d/2)/3~ t/t!

is found on the borderline (2e13d50, d,0) between the
regions of stability of the thermal fixed point and the anom
lous kinetic fixed point.

The transition from the regime governed by the anom
lous kinetic fixed point to that governed by the normal
17
et
h

e
r-

ff
-
h
f
-

e
d
s
o,

e

-

-

netic fixed point on the raye13d50, d,0, is characterized
by the logarithmic correction

n~ t !;
m2d ln~ t/t!

4p~A1721!~11d!n0t
.

On the borderline (e50, d.0) between the basins of th
normal kinetic fixed point and the Gaussian fixed point th
are no logarithmic corrections to the mean-field-like dec
rate.

V. CONCLUSION

In conclusion, we have analyzed the effects of density a
velocity fluctuations on the reaction kinetics of the sing
species decayA1A→B universality class and found tha
the anomalous behavior predicted by the analysis base
the density fluctuations only@1,4# is unstable to any drift
field fluctuations and thus is not realized in the long-tim
limit. Instead, the asymptotic behavior of the system is g
erned by four stable fixed points, at which the anomalo
behavior is due to both drift and density fluctuations.

We have carried out the renormalization of the model
one-loop level and calculated the long-time asymptotic
havior of the number density of the reacting particles in th
regimes. The results of our analysis show that the velo
fluctuations affect the asymptotic decay of the number d
sity significantly at and below two dimensions, enhanci
the effective decay rate in comparison with the anomal
decay rate due to density fluctuations only. Since this eff
is brought about already by the ubiquitous thermal fluct
tions, we conjecture that the velocity-fluctuation-drive
asymptotic behavior is the true asymptotic behavior wh
ever a physical velocity field may be present, i.e., at leas
gaseous or liquid media. This effect of increasing t
asymptotic reaction rate is more pronounced for the lo
range correlated force components, so that when the cor
tions of random forcing fall off slowly enough, the rando
stirring destroys the effect of density fluctuations complet
and restores a mean-field-like decay of the number dens

ACKNOWLEDGMENT

This work was supported in part by Slovak Academy
Sciences, Grant No. 2/7232.
r.

.

@1# B. P. Lee, J. Phys. A27, 2633~1994!.
@2# J. L. Cardy and U. C. Ta¨uber, Phys. Rev. Lett.77, 4780

~1996!.
@3# J. L. Cardy and U. C. Ta¨uber, J. Stat. Phys.90, 1 ~1998!.
@4# L. Peliti, J. Phys. A19, L365 ~1986!.
@5# B. P. Lee and J. L. Cardy, J. Stat. Phys.80, 971 ~1995!.
@6# K. Oerding, J. Phys. A29, 7051~1996!.
@7# M. W. Deem and J.-M. Park, Phys. Rev. E57, 2681~1998!.
@8# J.-M. Park and M. W. Deem, Phys. Rev. E57, 3618~1998!.
@9# M. W. Deem and J.-M. Park, Phys. Rev. E58, 3223~1998!.

@10# M. J. E. Richardson and J. Cardy, e-print cond-mat/99012
@11# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. L
.
t.

36, 867 ~1976!.
@12# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A16,

732 ~1977!.
@13# E. M. Lifshits and L. P. Pitaevskii,Statistical Physics. Part 2

~Pergamon Press, Oxford, 1980!.
@14# C. De Dominicis and P. C. Martin, Phys. Rev. A19, 419

~1979!.
@15# L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis’mak, Teo

Mat. Fiz. 57, 268 ~1983!.
@16# M. Hnatich, Teor. Mat. Fiz.83, 374 ~1990!.
@17# N. Antonov, M. Hnatich, D. Horvath, and M. Nalimov, Int. J

Mod. Phys. B12, 1937~1998!.



nd

at

ys

y

,

a

. A

PRE 61 3911VELOCITY-FLUCTUATION-INDUCED ANOMALOUS . . .
@18# N. G. van Kampen,Stochastic Processes in Physics a
Chemistry~North-Holland, Amsterdam, 1984!.

@19# M. Doi, J. Phys. A9, 1465~1976!; 9, 1479~1976!.
@20# J. Honkonen and M. Yu. Nalimov, Z. Phys. B: Condens. M

ter 99, 297 ~1996!.
@21# M. Hnatich, J. Honkonen, D. Horvath, and R. Semancik, Ph

Rev. E59, 4112~1999!.
@22# P. Grassberger and M. Scheunert, Fortschr. Phys.28, 547

~1980!.
@23# A. N. Vasiliev, Functional Methods in Quantum Field Theor
-

.

and Statistical Physics~Gordon and Breach, Amsterdam
1998!.

@24# H. W. Wyld, Ann. Phys.~N.Y.! 14, 143 ~1961!.
@25# M. Henkel, E. Orlandini, and J. Santos, Ann. Phys.~N.Y.! 259,

163 ~1997!.
@26# J. Zinn-Justin,Quantum Field Theory and Critical Phenomen

~Oxford University Press, Oxford, 1989!.
@27# B. Friedman, G. Levine, and B. O’Shaughnessy, Phys. Rev

46, R7343~1992!.


