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Desorption transition at charged interfaces: Theoretical approach and experimental evidence
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A field theory is used to describe an ionic solution in contact with a charged and adsorbing wall. The
Hamiltonian, a functional of the ionic density fields, contains the entropy, the electrostatic energy, a nonlocal
Van der Waals type contribution preventing sharp density variations, and an adsorption potential. The mean-
field equations are solved numerically. However, they can be recasted so as to put in evidence a one parameter
Lie group structure, which is a generalization of the charge-translation symmetry present in the Gouy-Chapman
theory. There is a region in the charge-adsorption parameter space where this symmetry is broken, which
corresponds to a desorption transition for the ionic species. The properties of this transition are investigated.
Finally, this desorption phenomenon provides a simple explanation for a general feature in the properties of
metal-electrolyte interfaces: the branching pattern observed in the experimental capacitance curves for a series
of electrolytes. The part of the capacitance curves which is independent of the nature of the ions is related to
the absence of interaction of the ionic species with the wall once the desorption takes place.

PACS numbes): 61.20.Qg, 73.30:y, 68.35.Rh

[. INTRODUCTION electrical state of the interface. This is the first goal of this
paper. After that we extend this model in order to investigate

The long range of the Coulombic potential is at the originthe experimental data observed at the mercury-solution inter-
of very special behaviors such as the nonanalytic dependené&ce. This is the second goal of this paper.
of thermodynamic functions on ionic concentration or the As we shall see, the differential equations describing the
existence of constraints on the correlation functions describmodel have a special structure. We can thus generalize one
ing the structure of conducting phases. Due to this, CoulompProperty of the nonlinear Gouy-Chapman theG{t.GCT).
bic systems such as plasma, fused salts, electrolyte solutior§, this theory there is only one generic profile for each quan-
and charged colloidal systems have attracted attention dfty characterizing the interfadelectric field, ionic densities,
many theoreticians and experimentalists. In this paper we atc). The profiles for a given charge on the surface is ob-
interested in the theoretical description of a quite generaf@ined by translating the origin of the coordinate system for
experimental fact found at the metal-ionic solution interface.
However, we believe that what is observed at this particular
interface, may reveal some general behaviors for large
classes of charged interfacial systems.

For a wide domain of applied potential the mercury-
electrolyte interface may be considered as a pure capacitol
Then, for a given thermodynamic equilibrium, we can inves-
tigate the properties of the interface when changing, for in-
stance, the nature of the solvent, the nature, and the concer‘g
tration of the electrolyte or the charge of the electrode. Form
some solvents, we observe a range of potential where thm
capacitance is independent of the nature of the ions. A sche>
matic representation of this behavior is given in Fig. 1. This
kind of behavior is clearly visible for 0.1 M electrolytes in
N-methylformamideg[1] and formamidg 2] but also distin-
guishable in N-methylacetamide [3], methanol [4],
N,N-dimethylformamide[5], and dimethylsulphoxidd6].
The curves form a branching pattern in which there is a base
curve from which branches are formed. From a mathematica
view point this pattern implies nonanalyticity at the branch-
ing points.

To explain this behavior it is assumed that no ion is in
contact with the electrode in this range of potential. In what FIG. 1. Schematic representation of double layer capacitance of
follows, we first elaborate a model which predicts the exis-one of the typical solvents quoted in the t¢&t-6]. The branches
tence of an ionic desorption transition when changing theorrespond to different electrolytes.

]
©
=]
o

o
=1

double

g

1063-651X/2000/6()/38777)/$15.00 PRE 61 3877 © 2000 The American Physical Society



3878 J. STAFIEJ, D. di CAPRIO, AND J. P. BADIALI PRE 61

the generic profiles. The third goal of this paper is to analyze d p4(1)
and extend this charge-position symmetry. We will see that8H' ea[m(r)-Pf(f)]:fﬂ) p+(r)|in o —1{+p_(r)
such a symmetry can be related to the existence of a one- “ ¢
dimensional Lie group. _(r)
p
This paper is organized as follows. In Sec. Il we describe X|ln o 1|dr, 2

the main ingredients of our theoretical approach. In Sec. llI

we find the differential equations describing the interface inwherep, is an arbitrary reference densit¢0].

the mean-field approximatiotMFA) and we perform a In order to avoid the large ionic density variations pre-
group analysis of these equations. In Sec. IV we describe thdicted by the NLGCT at the wall we introduce a nonlocal
desorption transition. Sections II-IV describe a generaHamiltonian defined according to

model and its predictions for ionic solutions in contact with a
charged hard wall. In Sec. V we discuss how to relate this
model with the experimental data observed at the mercury-
electrolyte interface. Finally in Sec. VI we present some con-
cluding remarks. X[Vpj(r)Idr. 3

1 ~
ﬁHnonlO([P+(r):P—(r)]:§. E J bi;[Vpi(r)]
i,j=+,— Jz=0

Since at a charged hard wai * leads to the NLGCT, at
Il. THEORETICAL APPROACH the same level of description we can assume thatoeffi-

) ) o o cients do not contain ion specificity and then we have.
We describe the properties of an ionic solution in contact_ 3 =B, _=b. This kind of term appears in the Van der

with a charggd hayd wall us!ng a field theoretic approacl‘\;/a‘;ls theory[12] and is commonly used in the Landau-
already dgscnbed n Reﬁ7]_. Slnce we chus ona phef‘om' Ginzburg Hamiltoniarf13]. With this term each slice of the
enon which depends explicitly on the ions we describe thl:fnterface is correlated to its neigbhors

system with the ionic density distributions only and we re- In order to introduce a coupling between the two sides of

d?g ee:{:gssolv;rr;t to d?atglrilwei}r?g:jc cobntmmtjrr]r; ’ Thﬁa';t”etgﬁgﬁlthe interface we assume the existence of two external fields
brop y located at the dividing surface=0. To compensate the

Hip-(r),p-(N] wh|c_h IS a fu_nct!ona_ll of two flgldgm(r) charge distribution on the solution side we introduce a sur-
andp_(r), representing the distributions of cations and an-

ions, respectively. We use fét[p . (r),p_(r)] the form in- face chargeo,5(z), whereo, is the surface charge density
vestigated in Refs[8—10. For bulk ionic solutions with ©" the wall. In order to work with an overall neutral system
H[p.(r),p_(r)] truncated to a bilinear form in terms of the We redefinex ' with q(r)=008(2)+p.(r)—p_(r). In
fields, the functional integration leads to the exact Debyeaddition, we consider a second external field which intro-
limiting law but also to more general result$0,11]. For ~ duces a non-Coulombic coupling between the two sides of
charged interfaces, #[p. (r),p_(r)] is reduced to the sum the interface. We assume that this potential has a very short
of the ideal entropy and the coulombic part, the NLGCT isfange compared to the variation range of the ionic distribu-
recovered in the MFAS]. tion and we represent its variation in space by a delta func-
We consider a planar interfad®z is the direction normal tion localized inz=0. This leads to the following contribu-
to the interface. We introduce a dividing surface located ation " to the Hamiltonian
z=0 where we assume the existence of a hard wall. In what

follows we investigate the regiom=0. In the other half ¢ Sur r r :f T N+o_ (1)18(2)dr
spacez<<0 we can have a bulk phase or the existence of A To(1)p—(1] =0 olp+(r)+p-(n]oZ)dr.

another interface but till Sec. V the explicit properties of this (4)
region are not needed. 3
In order to describe the regiar>0 we, first consider the If hy is positive(negative anions and cations are repelled

same HamiltonianH PWk=H CoUul+ 1y deal a5 for the bulk (attracted from (to) the wall. In what follows we investigate
phase[10]. The Coulombic energy functional °“' corre-  the total Hamiltonian defined bt = PUlk+ 3 nonloc ¢ surf
sponds to

Ill. MEAN FIELD EQUATIONS AND LIE GROUP

5 DESCRIPTION
K racr’ , , , ,
BHCM q(r)]==— alrad )drdr’, (1) Instead of performing the functional integration we con-
8mppJz=0 |r—r’| sider the MFA treatment df.. It yields an integrodifferential

system of equations for the ionic profil€8]. To deal with

these equations which have no analytic solution we can use
where ¢ is the dielectric constant of the pure solvept,  any numerical method and discuss the solution for a given
=2p and p is the electrolyte concentrationKp set of parameters. However, to have a better understanding
=(p,e®Ble)Y? the inverse Debye lengtl®= (kgT) ‘isthe of the physics behind these equations, it is possible to trans-
inverse temperature aras the elementary charge. We con- form them in a form from which we can learn something
sider a -1 electrolyte and define the charge density asabout the system without having to solve them explicitly.
a(r)=p+(r)—p_(r). The ideal entropy functionat'®is  Hereafter we follow this route. To find a useful transforma-
given by tion of the initial equations we take advantage of a very
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specific property of the NLGCT which corresponds to a spe- d

cial case of our Hamiltonian. For the NLGCT each interfa- h(z) =b2d—z[g+(2)+gf(2)] =hg. (12

cial property is described by a unique profile. Changing the z=0 z=0

charge on the wall is equivalent to translating the origin of

coordinates. In order to analyze and to extend this chargeFhe two other boundary conditions state that we recover the
position symmetry it is very tempting to perform a group bulk whenz—cc:

analysis of our equations. In what follows we transform the

MFA equations into a system of differential equations where g.(z—1 andg_(2)—1. (13)

the existence of the Lie group is manifest.

Taking advantage of the symmetries of the Hamiltonian . _
due to the existence of a common value of the paranteter 1€ above conditions imply that—0 andh—0 whenz
and using the Poisson equation the integrodifferential system” *: ) ) .
is transformed into two second order ordinary differential 1 he right hand sides of Eq¢7)—(10) are differentiable
equations and then into four first order equations. In order tdunctions ofo, h, g, , andg_, for g, >0 andg_>0 and

give a simple form to the equations we introduce the dimendo not containz explicitly. This implies the existence of a

. Lo~ A ,  four-variable one-parameter Lie gro[f4] which transforms
S'Onle§§ quantities z=Kpz, g:(2)=2p-(2)/ps, b 0 iniial values, forz=0: 00, o, 9o » Jo_ into the solu-
=poKpb,  ho=2Kpho, v(z)=2BeV(z), and oo  tion of Egs.(7)—(10) at the pointz o(z), h(z), g.(2),
=(2BeleKp)oo=(2BelKp)Eq, whereV(z) is the electric g_(z).
potential andE, is the electric field at the wall. Since no  If we change the wall parameters and contact values of
confusion is possible later we omit the hat on the reduced the profiles according to the above transformation taking the

variable. The interfacial free energyis calculated in re- Vvalues given for a new positioa’, we can see that this
duced units according to= (4K p8/pp)F. We define addi- transformation amounts to a shift in space. The contact val-

tional variables ues are now given byo,=0(z"), ho=h(z'), go,
=g.(z'),andgy_=g_(z'). The profiles[c’(2), h'(z),
dv(2) 9 (2), g”(2)] for the wall with the new contact values are
o(2)==—4, (5)  simply related to the old ones by

d o' (2)=0(z+2'), h'(z)=h(z+27'),
h(z)=b*1[9+(2)+g-(2)], (6)

| - o 0L (2)=0.(z+2), andg’ (2)=g-(z+2). (14)
wherea(z) is the electric field expressed in the dimension-
less form anch(z) is the rescaled gradient of ionic density. Al the points[o(2), h(2), 9. (2), g_(2)] transformed from

Then the system of four first order differential equations is L - . : ! . :
. . one initial point define a trajectory in the four-dimensional
written as follows:

space.
A four-variable one-parameter Lie group has three invari-
59.9 +£ g ants[14]. We have found these invariants explicitly when all
d I 29t Egs. (7)—(10) are linearized around their bulk values. The
=0 EF— (7)  values of only two invariantsg; and c,, are fixed by the
dz g,+g_ : o . X
bulk properties of the ionic solution. Usirtg andc, we can
expresyy, andg_ in terms ofo andh. The third invariant,
. +£ C3, establishes a relation betweenandh and selects a tra-
d 9+9- b29’ jectory in the @, h) plane. In general only one of the two
d—297= 9.+9_ , (8) first invariants is found explicitly:
d C[g+(2),g_(Z),0'(Z),h(Z)]
—o0=0g.—g_, 9
dz * h?(z)
=[2-Ing.(2)9-(D1[9+(D) +9-(D) ]+ —;
az"=n(g+9-). (10 oA(2)

5 =P, (19

There are four boundary conditions. A0 we have one

boundary condition related to electrostatics . . .
y wherep is the bulk pressure in reduced units. The last equa-

tion yields the pressure as a function of interfacial properties
=0y. (11 at any pointz across the interface. In particular, at the wall, it
7=0 resembles the so called contact theorem for charged particles
near a charged hard wdll5]. It recovers the form of the
The second boundary condition is set By contact theorem in the NLGCTbE O andhg=0).

dv(2)

0(2)|z=0=~ g,
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responding to those in Fig. 2. The pattern of lines is symmet-

I i ric with respect to thg . =g_ axis because of the symmetry
between ions and shows the existence of two focal points.
| i All the trajectories diverge from the point corresponding to
L i the bulk @, =1, g_=1) and converge towards the point
2 (g, =0, g_=0) corresponding to a desorption of the ions
L _ and also to the terminal curve in the ) plane. The right
hand sides of Eq47), (8), and (10) diverge wheng,—0
andg_—0. Forg,=0 andg_=0 we lose the Lie group
< 0 . condition for the equations. The invariafit5) taken in this

N
1

limit yields
-2 — h2 — ot 0'2 16
: - ﬁ_p > (16)
-4 |- - The limiting curve in the §,h) plane corresponds to the

- . upper branch of the above hyperbola. The physical meaning
of this result is the following. When the ionic densities van-
o ish the pressure in the fluid is equal [t8(g.+g_)]?. The
] o ) ) value of this quantity is fixed, at the wall, by the desorbing
FIG. 2. Trajectories in theq, h) plane obtained by a numerical ,qiantialh. Hence we see that the repulsion from the wall
solution of Eqs(7)—(10). b=1 in reduced units which corresponds qiven by h has to counterbalance both the electrostatic and
to the Debye length in a given electrolyte. bulk pressure which both have a tendency to bring ions close
to the wall.
IV. DESORPTION TRANSITION In contrast to the NLGCT, there is a continuous set of
Using the numerical method described in our previoudrajectories. Each of them corresponds, for each of the inter-
paperd8,9] we can solve the system of differential equationsfac,'al propert|e§, t'q a different profile. Sln.ce every trajectory
for a given boundary condition. We find it useful to present2/ves at the limiting hyperbola at a point uniquely deter-
the results first in the form of trajectories in the,b) plane. Mined by its charge density it is convenient to parametrize
The trajectories form a pattern symmetric with respect tdh€ trajectories with this charge density; . The existence
the o =0 axis reflecting the symmetry between idaee Fig. of this limiting point constitutes another dlfference_wnh the
2). They do not intercept with each other as expected fronNLGCT. At this point the Lie group symmetry, i.e., the
the Lie group analysis but they diverge from the origin angcharge-translation symmetry in the NLGCT, breaks down.

terminate on a smooth curve in the upper halfplane. In Fig. 370M the Lie group parametrization with this point in the
we present the set of trajectories in thg, (g_) plane cor- (o,h) parameter space also pprresponds to a position in re_al
space. We can take this position as the origin of the coordi-

nate system—a wall placed in this position is such that there
is a complete desorption of the ions, the characteristic con-
i tact values are then completely determined gy, . The
L generic profiles for this wall are writteg* (o ;2) and

1 9% (ojimit ;2) With g% (oimit ;2=0)=0. In Fig. 4 we give an
1.5 7 example of such generic profiles for various values of the
. charge densityr;i: - If we take an arbitrary wall character-
i ized by (og,hy) we have to consider two cases. Hf
1 ;b\/002+2 , we are above the limiting curve, then the pro-
o 1 . m file is identical to the generic profile fow,;=0o, as we
N 3 shall see below. Ih0<b\/002+ 2p we have to find the tra-
: jectory passing through this point and determine in terms of
] the Lie group parametrization the distarngefrom the lim-
] iting point to this point. Then the profiles are simply obtained
0.5 u from the generic profiles by a translatiory, (2)
', ) = 9% (Timit 7.ZjLZ.0) andg-(2) = 9% (ojmit ,z+zo).for z>0.
I i In the vicinity of the completely desorbing wallhg
] =b\/002+ 2p and oy= Gjinmi1), z=~0, from Eqgs.(7)—(10) we

0 ME— can see that the profiles show a nonanalytic dependenze on

2 T T LA T LI L T T

0 0.5 1 1.5 2
g,

FIG. 3. Trajectories in theq, ,g_) plane corresponding to
those in Fig. 2.

h
b—gz+zzln z). (17
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4 L T . . T L crossing point. The peculiarity of this transition is that the
r 1 free energy is continuously differentiable up to an arbitrary
order but nonanalytic at this point.

This desorption transition is an exact consequence of the
MFA treatment of our Hamiltonian. However, there are two
points to consider. First, is MFA sufficient to describe the
above transition and second, is the Hamiltonian sufficient to

i 3 describe a real system? From the literature it is known that
L i MFA is generally qualitatively correct as a first approxima-
2 i _ tion to describe a phase transitithe famous exception is
i the one-dimensional Ising modégll6]. Concerning the sec-

i . ond point we see from Eq17) that the second derivative of
b 1 the profiles diverges as imatz=0. It might suggest that the
i 1 square gradient term is not enough to describe this transition.
"' Strictly speaking this is right. However, the region where the
second derivative becomes large is extremely localized near
z=0 and the divergence is integrable. If we exclude the im-
mediate vicinity ofz=0 we are already in the region where
the two profiles tend to vanish. A more refined Hamiltonian
8 10 would change the scaling laws but not the existence of this
transition which indeed has a very clear meaning. At a point

(0g,hg) above the hyperbola the wall repels ions from its

FIG. 4. Generic profiles of ions for the values of charge densityvi ‘o ; :
S cinity. If we increase the absolute value @f keepingh
at the limiting curves ;= 0.014, 0.05, and 0.1 C/hirom lower to y b pingfo

) . gonstant we may expect a critical value®f for which the
uppermost dotted line for anions and from the upper to lowermos . - .
solid line for cations. electrostatic attraction compensates the repulsion dimg.to

For higher values ofry, counterions will be forced back in
contact with the wall. This is the simple physics that our
model describes.

If z=0 the trajectory in the,h) plane is given by a scaling
law of the form

|h—ho|=|o— oo/ YAn|o— 07| (18
V. COMPARISON WITH EXPERIMENTS

It is seen that the trajectory approaches the terminal curve

. L e . . In order to compare the predictions of our model with
with an infinite slope. Similar scaling relations can be found D P

for other pairs of variablesg. | — o2 and [h—hy| _experimental results observed at th_e mercury elect_rolyte-
= 0 0 interface we have to calculate the differential capacitance.
*g=Ing.. i , i Since we assume thdi, is independent ofry the capaci-
When the wall characterized tyy=b+/o3+2p is put in tance is defined according to
contact with the solution the effect of the wall is the same as

for hozb\/aoz-l— 2p. The ions are already pushed out of the

range of the repulsive potential and do not feel any further £:<‘3_U) (20)
increase. Thus all the regicm)zb\/aoznL 2p corresponds to C \do ho

the conditiong, =g_=0. The natural prolongations of the

trajectories above the limiting curve are vertical lines . )
— const consistent with the liméith/do— % when approach- where the potential drop across the interfacand the ca-

ing the terminal curve from below. pacitanceC are calculated numerically. Ihy<by2p we
The interfacial free energy depends on the wall parambave a nonvanishing contact value for the density profiles
eterSf:f(Uo,ho). From Ref[g] we know: Whateveroo. If ho>b\/2_p then the Iineho=conSt Ccrosses

the hyperbola. In this case we pass from the region below the
of hyperbola to the region above it when changingalong the
90 "V and h) ~9+19-. (19 h,=const line. In the upper region the value of the potential
Mo 70 for a given charge density corresponds to the value of the
potential at the limiting point on the hyperbola for the same

wherev andg +g_ refer to the electric potential and total charge density and the capacitance is calculated movin
density contact values, in reduced units, for the wall charac: 9 Y P 9

terized by o and hy. We can verify that ¢f/gh). and along the limiting hyperbola. The results are given in Fig. 5
i o : ) 0 for several values ofiy. In our case we associalg to the
higher order derivatives continuously vanish when approachyagre of the electrolyte. Immediately we see that the stron-
ing complete desorptionol— imt) . However, the free en-  ger repulsion from the wall, i.e., larghp, corresponds to the
ergy is nonanalytic on the terminal curve becauseyiger region of desorption.
(dfloh), =0 for h=by2p+ojy,, and @f/oh), >0 This result is reminiscent of Fig. 1. The main difference
otherwise. The crossing of the limiting curve can be considbetween Fig. 1 and Fig. 5 is that the “experimental desorp-
ered as a kind of phase transition. We have nonanalyticitytion” takes place in a region shifted with respect to the point
scaling relations and Lie group symmetry breaking at theof zero charge. This is not surprising taking into account the
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—o (C/m?) —o (C/m?)

FIG. 5. Capacitance curves calculated from our model using FIG. 6. Capacitance curves as in Fig. 5 calculated for several
parameters for 0.1 M solutions iN-methylformamide[1]. In re- ho(og) taken in a linear formhy=a,0,+ay, wherea;=0.4 and
duced unitsb=1 andh=2, 4, 6, 8, 10, and 12. The capacitance a,=3, 4, 5, and 6. The higher value af corresponds to the wider
curve forh=2 displays no desorption region. For higher values ofdesorption region.

h the desorption region gradually increases. The apparent nondif-
ferentiability at the branching point results from numerical inaccu-

racy and the scale of the figure. model in a complicated way but as far as the dependence is

continuous it will not change the topological character of the

. . branching pattern observed.
crudeness of our model. For mathematical convenience anJ gp

to show the existence of the desorption transition we de-
scribe the solution side with only one paramebelAll the
interfacial specificities are representedtyyso far assumed V1. CONCLUSIONS

independent ofry. As mentioned in Sec. Il next to the wall In this paper we consider a simple model for an electro-

we may expect a specific interfacial region. Electrochemist§yte sojution in contact with a charged and adsorbing wall.
often assume that this region<0, is formed by a mono-  The model differs from the NLGCT in the following aspects.
layer of solvent molecules covering the mercury. THBN  First, we take into account a nonlocal interaction which pre-
introduced in Eq.(4) represents the coupling between thisents a too steep variation of the ionic density at the inter-
monolayer and the remaining part of the solution. This coUface, Second, there is a nonelectrostatic external potential
pling is short ranged and only the contact values of the ionigocated at the walh,. Its effect is to attract or repel ions
profiles may have an influence on it. Of course, the value ofrom the immediate vicinity of the wall. The perturbation
ho depends on the structure of the solvent monoldgem-  jnqyced in the solution side bly, and the external charge
ber of solvent molecules, their orientation, ¢which must densityo, propagates via two modes—electric field and the

be charge dependent. In other words charging the electroqg,dient of density. With just one paramekecharacterizing
will affect hy. To describe experiments we have to introduceihe solution side we obtain a sort of phase diagram in the

an extra relation betweem, ando,. When we calculate the (a,h) plane. The plane is divided into two regions by a
capacitance, we integrate equations along the trajectories Uniting curve. In the upper region the contact values of ionic
to a point on thigip(o7o) curve. Now the capacitance is given profiles vanish. On the limiting curve the free energy is regu-

by lar but not analytic. Thus we have found a peculiar ionic
desorption transition with nonanalytic behavior of the free
1 dv [dv dv\ dh energy, scaling laws, and symmetry breaking.
C do \do ) 120 do (22) This desorption transition leads to a branching pattern in
0 70 the capacitance curves and can provide a simple explanation

for the non-ion-specific feature observed in the experimental

On Fig. 6 we have plotted the capacitance for a given choiceurves for a series of electrolytes. However, to describe a
of ho(og) relations. The asymmetry between positive andreal electrode surface we need an extra relatiga h(o).
negative charge densities observed in the experimental datarepresents a coupling between electrostatic and nonelectro-
is now recovered. static properties of the wall expected in a real interface. Then

Note that the monolayer gives its own contribution to thethe asymmetry of the experimental data can be reproduced.
experimental capacitance. The resulting capacitance is eXote that in the usual description of the electrochemical in-
pected to depend on the contribution we calculate from outerface the inner layer and the diffuse layer are coupled only
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