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Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium
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We consider an analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite
uniform isotropic medium with an arbitrary phase function. We obtain~1! the exact distribution in angle,~2!
the exact first and second spatial cumulants at any angle, and~3! an approximate combined distribution in
position and angle and a spatial distribution whose central position and half-width of spread are always exact.
The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows
and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic,
through snakelike and into the final diffusive regime.

PACS number~s!: 42.25.Fx, 42.25.Dd, 78.90.1t, 0.5.20.-y
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I. INTRODUCTION

Scientists have tried for decades to develop exact or
curate analytical approximate solutions of the Boltzma
transport equation in various cases@1–3#. Any progress in
this direction is a contribution to fundamental research
non-equilibrium statistical dynamics. An accurate analyti
approximation may have applications in a broad range
fields, such as the atmosphere, medicine, and solid s
physics. Photon migration in a highly scattering turbid m
dium is a good example. The solution of inverse problems
optical tomography, such as the location of a tumor in
woman’s breast from the scattering of light pulses, requ
the inversion of a weight matrix@4# obtained by convoluting
two Green’s functions of the forward scattering proble
The analytical solution of the photon diffusive equation in
infinite uniform medium has been broadly used as a ba
ground Green’s function@4#. By introducing ‘‘image
sources,’’ the solution can be extended to semi-infin
slabs, and boxes geometry. The diffusion approximation f
at early times when the photon distribution is highly anis
tropic. Solutions of the diffusion equation or the telegr
pher’s equation do not produce the correct ballistic limit
light propagation@5#. The Monte Carlo method can be use
to simulate photon migration at early times; however, d
tailed solution of a five-dimensional Boltzmann transp
equation using a predominately numerical approach, with
resolution good enough to check the analytical soluti
leads to prohibitive CPU times.

Recently, Polishchuket al. @6# and Perelmanet al. @7#
suggested different models of photon migration. They u
the path integral approach and the time-dependent Gre
function method to treat the photon migration problem. Th
consider only multiple small-angle scattering, based on
fact that the phase function~angular distribution of the scat
tering cross section! in many media has a very sharp forwa
peak. A solution of the steady transport equation based
the small angle approximation was also presented by I
maru @8#. However, it can be shown that the transport me
free path obtained by an average of 12cosu over small
angles could be several times larger than that obtained b
average over all angles. Thus, the small angle scattering
PRE 611063-651X/2000/61~4!/3871~6!/$15.00
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proximation is not quantitatively correct. Therefore, a proc
dure permitting wide-angle scattering is essential.

In this paper, we present analytical expressions for
distribution function and the density distribution of the sol
tion of the elastic Boltzmann transport equation in an infin
uniform medium. The phase function is assumed to dep
only on the scattering angleP(s,s0)5P(s•s0). Under this
assumption, the small angle approximation is avoided,
an arbitrary phase function can be handled. Our solution
the distribution in angle is exact, as are all first and seco
spatial cumulants at any angle as functions of time. Af
many scattering events have taken place, the central l
theorem guarantees that the spatial Gaussian distribution
culated will become accurate in detail, all cumulants high
than the second approach small values relative to the
proximate power of the second cumulant. At early tim
when the errors would be worst, the spatial distribution fun
tion at any angle is quantitatively accurate in the sense th
has the exact mean position~the first cumulant! and the exact
and narrow half-width of spread~the second cumulant! as a
function of time. Since the inverse scattering problem
done with instruments of finite resolution, in the presence
noise, finer detail is lost, and the first two cumulants m
provide an adequate description of the scattered beam.

This paper is organized as follows. Section II describ
the derivation of the formula, which includes~1! obtaining
an exact solution of the distribution in angle,~2! obtaining an
exact formal solution in position and angle,~3! using the
cumulant approximation up to the second order that lead
a Gaussian spatial distribution,~4! obtaining exact first and
second spatial cumulants based on the exact angular d
bution. Section III provides the main results of the distrib
tion function in position and angle, and the density distrib
tion in position alone. Section IV makes a comparison of o
result for the special case of isotropic scattering with that
the exact solution provided by Hauge@9#. A discussion of the
effectiveness of the cumulant approximation is presented
Sec. V.

II. DERIVATION

Without loss of generality, we discuss the photon scat
ing problem with a given light speed in the mediumc. Ap-
3871 © 2000 The American Physical Society
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plying our result to an another particle elastic scatter
problem, with the constant particle speed in the mediumy is
straightforward. The photon distribution functionI (r ,s,t) as
a function of timet, positionr and directions, in an infinite
uniform medium, from a point pulse light sourced(r
2r0)d(s2s0)d(t20) obeys the Boltzmann equation@3#

]I ~r ,s,t !/]t1cs•“ rI ~r ,s,t !1maI ~r ,s,t !

5msE P~s,s8!@ I ~r ,s8,t !2I ~r ,s,t !#ds8

1d~r2r0!d~s2s0!d~ t20!, ~1!

wherems is the scattering rate,ma is the absorption rate, an
P(s8,s) is the phase function, normalized to*ds8P(s8,s)
51. When the phase function depends only on the scatte
angle in an isotropic medium, we can expand the latte
Legendre polynomials

P~s,s8!5
1

4p (
l

al Pl~s•s8!, ~2!

and regardal as known, either from Mie theory@10#, or a
preliminary experiment.

We first study the dynamics of the photon distribution
the light direction spaceF(s,s0 ,t), on a spherical surface fo
s of radius 1, which is equivalent to the velocity space in t
elastic scattering case. The kinetic equation forF(s,s0 ,t) can
be obtained by integrating Eq.~1! over the whole spacer .
The spatial independence ofms , ma , and P(s,s8) retains
translation invariance. Thus the integral of Eq.~1! obeys

]F~s,s0 ,t !/]t1maF~s,s0 ,t !

1msFF~s,s0 ,t !2E P~s,s8!F~s8,s0 ,t !ds8G
5d~s2s0!d~ t20!. ~3!

Since the integral of the gradient term over all-space v
ishes, in contrast to Eq.~1!, if we expandF(s,s0 ,t) in spheri-
cal harmonics, its components do not couple with each ot
Therefore, it is easy to obtain the exact solution of Eq.~3!
@11#:

F~s,s0 ,t !5(
l

2l 11

4p
exp~2glt !Pl~s•s0!exp~2mat !,

~4!

wheregl5ms@12al /(2l 11)#. Two special values ofgl are
g050, which follows from the normalization ofP(s,s8) and
g15c/ l t , wherel t is the transport mean free path, defined
l t5c/@ms(12cosu)#, wherecosu is the average ofs•s8 with
P(s,s8) as weight. Equation~4! serves as the exact Green
function of light propagation in the velocity~or angular!
space. Since in an infinite uniform medium this function
independent of the source positionr0, requirements for a
Green’s function are satisfied, especially, a Chapm
Kolmogorov condition is obeyed: *ds8F(s9,s8,t
2t8)F(s8,s,t82t0)5F(s9,s,t2t0). In fact, in an infinite
uniform medium, this propagator determines all behavior
light migration, including its spatial distribution, because d
g

ng
n

e

-

r.

-

f
-

placement is an integration of velocity over time. The phot
distribution functionI (r ,s,t), for the initial source direction
s0 and the source positionr050, is given by

I ~r ,s,t !5K dF r2cE
0

t

s~ t8!dt8Gd @s~ t !2s#L , ~5!

where the angle brackets denote the ensemble average i
velocity space. The firstd function insures that the displace
ment,r20, is given by the path integral. The secondd func-
tion assures the correct final value of direction. Equation~5!
is a formally exact solution, but can not be evaluated
rectly. We, hence, make a Fourier transform for the firsd
function in Eq. ~5! and make a cumulant expansion to t
second order@12#. For an arbitrary random variable,

^eA&'exp~^A&!exp~^A2&c/2!, ~6!

where indexc denotes cumulant:̂A2&c5^A2&2^A&^A&. An
exact result is valid only ifA is Gaussian. In the following
^B&c is called the cumulant ofB, while ^B& is called the
moment ofB. Substituting this approximation into the Fou
rier transform of Eq.~5!, we have

I ~r ,s,t !5F~s,s0 ,t !
1

~2p!3 E dk

3expS ikaS r a2cK E
0

t

dt8sa~ t8!L D
2

1

2
kakbc2H K E

0

t

dt8E
0

t

dt9T@sa~ t8!sb~ t9!#L
2K E

0

t

dt8sa~ t8!L K E
0

t

dt8sb~ t8!L J D , ~7!

where T denotes time-ordered multiplication@13#. Integra-
tion over k in Eq. ~7! directly leads to a Gaussian spati
distribution displayed in Eq.~10! below. Using a standard
time-dependent Green’s function approach, the ensemble
erage of the cumulants in Eq.~7! can be calculated. The
components of the first cumulant, which is the average ce
position of the distribution, conditioned ons5s0 at t50 are
given by

K E
0

t

dt8sa~ t8!L 5
1

F~s,s0 ,t ! E0

t

dt8E ds8F~s,s8,t2t8!

3sa8F~s8,s0 ,t8!. ~8!

The denominator appears because this is a conditional a
age. The components of the second moment, which is rel
to the second cumulant~average half-width of spread! of the
distribution, conditioned ons5s0 at t50 are given by
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K E
0

t

dt8E
0

t

dt9T@sa~ t8!sb~ t9!#L
5

1

F~s,s0 ,t ! H E0

t

dt8E
0

t8
dt9E ds8

3E ds9F~s,s8,t2t8!sa8F~s8,s9,t82t9!

3sb9F~s9,s0 ,t9!1~t.c.!J , ~9!

where~t.c.! means the second term is obtained by excha
ing the indexa and b in the first term. Equation~7! is the
only approximate formula used in our derivation. Formu
for calculating the first two moments, Eqs.~8! and ~9!, are
exact. In Eqs.~8! and ~9!, F(s2 ,s1 ,t) is given by Eq.~4!.
Since Eq.~4! is exact, Eqs.~8! and~9! provide the exact first
and second moments. Integrations in Eqs.~8! and ~9! are
tedious, but straightforward.

III. RESULTS

In the following, we sets0 along thez direction and de-
notes as ~u, f!. Our cumulant approximation to the photo
distribution function is given by

I ~r ,s,t !5
F~s,s0 ,t !

~4p!3/2

1

~detB!1/2expF2
1

4
~B21!ab

3~r 2r c!a~r 2r c!bG , ~10!

with the center of the packet~the first cumulant!, denoted by
r c, located at

r z
c5G(

l
Al Pl~cosu!@~ l 11! f ~gl2gl 11!1 l f ~gl2gl 21!#,

~11a!

r x
c5G(

l
Al Pl

~1!~cosu!~cosf!

3@ f ~gl2gl 21!2 f ~gl2gl 11!#, ~11b!

where G5c exp(2mat)/F(s,s0 ,t),Al5(1/4p)exp(2glt),gl is
defined after Eq.~4!, and

f ~g!5@exp~gt!21#/g. ~12!

r y
c is obtained by replacing cosf in Eq. ~11b! by sinf.

As an example, we derive Eq.~11a! as follows:

r z
c5

c

F~s,s0 ,t ! E0

t

dt8E ds8F~s,s8,t2t8!sz8F~s8,s0 ,t8!,

where F(s2 ,s1 ,t) is given by Eq. ~4!. We denote s
5@sx ,sy ,sz#5@sinu cosf,sinu sinf,cosu#. The spherical
harmonics addition theorem is given by@14#
-

Pl~s1•s2!5(
m

hm~ l 2m!!

~ l 1m!!
Pl

~m!~cosu1!Pl
~m!

3~cosu2!cos@m~f12f2!#, ~13!

whereh051 andhm52(m.0), Pl
(m)(cosu) is the associ-

ated Legendre function. The recurrence relations of
spherical harmonics is given by

cosu8Pl
~m!~cosu8!5

1

2l 11
@~ l 2m11!Pl 11

~m! ~cosu8!

1~ l 1m!Pl 21
~m! ~cosu8!#. ~14a!

sinu8Pl
~m!~cosu8!5

1

2l 11
@Pl 11

~m11!~cosu8!

2Pl 21
~m11!~cosu8!#. ~14b!

The orthogonality relation of the spherical harmonics is

E
21

1

d cosu8Pl
~m!~cosu8!Pl 8

~m!
~cosu8!

5
2

2l 11

~ l 1m!!

~ l 2m!!
d l l 8 . ~15!

Using Eqs.~13!–~15! and making integrations, first overf8,
then overu8, and last overt8, Eq. ~11a! is obtained. Using a
similar procedure, all results in this section were obtaine

The square of the average spread width~the second cu-
mulant! is determined by

Bab5cGDab2r a
c r b

c /2, ~16!

with

Dzz5(
l

Al Pl~cosu!F l ~ l 21!

2l 21
El

~1!1
~ l 11!~ l 12!

2l 13
El

~2!

1
l 2

2l 21
El

~3!1
~ l 11!2

2l 13
El

~4!G . ~17a!

Dxx,yy5(
l

1

2
Al Pl~cosu!F2

l ~ l 21!

2l 21
El

~1!

2
~ l 11!~ l 12!

2l 13
El

~2!1
l ~ l 21!

2l 21
El

~3!

1
~ l 11!~ l 12!

2l 13
El

~4!G6(
l

1

2
Al Pl

~2!~cosu!

3cos~2f!F 1

2l 21
El

~1!1
1

2l 13
El

~2!

2
1

2l 21
El

~3!2
1

2l 13
El

~4!G , ~17b!

where~1! corresponds toDxx and ~2! corresponds toDyy ,
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Dxy5Dyx5(
l

1

2
Al Pl

~2!~cosu!sin~2f!F 1

2l 21
El

~1!

1
1

2l 13
El

~2!2
1

2l 21
El

~3!2
1

2l 13
El

~4!G , ~17c!

Dxz5Dzx5(
l

1

2
Al Pl

~1!~cosu!~cosf!F2~ l 21!

2l 21
El

~1!

2
2~ l 12!

2l 13
El

~2!1
1

2l 21
El

~3!1
1

2l 13
El

~4!G . ~17d!

Dyz is obtained by replacing cosf in Eq. ~17d! by sinf. In
Eqs.~17a!–~17d!

El
~1!5@ f ~gl2gl 22!2 f ~gl2gl 21!#/~gl 212gl 22!,

~18a!

El
~2!5@ f ~gl2gl 12!2 f ~gl2gl 11!#/~gl 112gl 12!,

~18b!

El
~3!5@ f ~gl2gl 21!2t#/~gl2gl 21!, ~18c!

El
~4!5@ f ~gl2gl 11!2t#/~gl2gl 11!. ~18d!

A cumulant approximate expression for the ph
ton density distribution is obtained fromN(r ,t)
5^d@r2c*0

t s(t8)dt8#&, where an average over the angu
distribution is required. Using*dsF(s,s8,t)5exp(2mat), we
have a Gaussian shape

N~r ,t !5
1

~4pDzzct!1/2

1

4pDxxct
expF2

~z2Rz!
2

4Dzzct G
3expF2

~x21y2!

4Dxxct Gexp~2mat !, ~19!

with a moving center located at

Rz5c@12exp~2g1t !#/g1 ~20!

and the corresponding diffusion coefficients are given by

Dzz5
c

3t H t

g1
2

3g12g2

g1
2~g12g2!

@12exp~2g1t !#

1
2

g2~g12g2!
@12exp~2g2t !#

2
3

2g1
2 @12exp~2g1t !#2J , ~21a!

Dxx5Dyy5
c

3t H t

g1
1

g2

g1
2~g12g2!

@12exp~2g1t !#

2
1

g2~g12g2!
@12exp~2g2t !#J . ~21b!

In contrast to Eqs.~11! and ~17!, these results are inde
pendent ofgl for l .2. Figure 1 shows the moving center
photons,Rz @Eq. ~20!#, and the diffusion coefficients,Dzz
andDxx @Eqs.~21!#, as function of time, wheregl are calcu-
-

r

lated by Mie theory@10# assuming~for this figure! water
droplets withr /l51 are uniformly distributed in air, withr
the radius of the droplet,l the wavelength of light, and the
index of refractionm51.33.

Each distribution in Eq.~10! and Eq. ~19! describes a
photon ‘‘cloud’’ anisotropically spreading from a movin
center, with time-dependent diffusion coefficients. At ea
time t→0, f (g)'t1O(t2) in Eq. ~12!, and El

( j )5t2/2
1O(t3) for j 51,2,3,4 in Eqs.~18!. From Eqs.~11!, Eqs.
~17!, and Eqs.~20! and ~21!, we see that for the densit
distribution,N(r ,t), and the dominant distribution function
that isI (r ,s,t) alongs5s0 , the center moves asct s0 and the
Bab in Eq. ~16! are proportional tot3 at t→0. A distribution
function I (r ,s,t) along sÞs0 is small sinceF(s,s0 ,t);t
when t→0. Its center moves at a certain direction with d
placement proportional toct, and theBab in Eq. ~16! are
proportional tot2 at t→0. These results present a clear p
ture of nearly ballistic motion att→0. Roughly speaking,
this near ballistic motion maintains its speed up toRz
'0.6l t @see Eq.~20!#. This closely agrees with experiment
results of optical coherent tomography~OCT! @15# that the
range of good resolution extends to about 600mm, in a tissue
of l t;1 mm. With increase of time, the motion of the cent
slows down, and the diffusion coefficients increase fro
zero. This stage of photon migration is often called
‘‘snakelike mode.’’

With further increase in time, thel th Legendre componen
in Eqs. ~4!, ~11!, and ~17!, exponentially decay with a rate
related togl . The detailed decay rate,gl , is determined by
the shape of the phase function. Generally speaking, the
high l th components decays in a rate of order ofms , as long
as its Legendre coefficiental distinctly smaller than 2l 11.
Even in the case that the phase function has a very s
forward peak, in which there are nonzeroal for very highl th
rank, theal are, usually, much smaller than 2l 11. There-
fore, for the distribution function at timet after the ballistic
stage is over, a truncation in the summation overl is avail-
able.

At large times, the distribution function tends to becom
isotropic. From Eqs.~19!–~21!, the photon density, att
@ l t /c and r @ l t , tends towards the conventional diffusio
solution with the diffusive coefficientl t/3. Therefore, our
solution quantitatively describes how the photon migra
from nearly ballistic motion to diffusive motion.

FIG. 1. The moving center of photon density functionRz @Eq.
~20!# and the diffusion coefficientsDzz and Dxx @Eqs. ~21!#, as a
function of timet.
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IV. COMPARISON WITH AN EXACT SOLUTION
IN THE ISOTROPIC SCATTERING CASE

A check of our angular distribution, Eq.~4!, the first mo-
ments, Eq.~11!, and the second moments, Eq.~17!, for a
special case of isotropic scattering is performed by comp
ing with the exact solution given by Hauge@9# and agree-
ment is verified. Hauge has provided an exact solution
isotropic scattering in the form of a Fourier transform
space and Laplace transform in time, which is given by

I kz~s![E
0

`

dte2ztE dre2 ik•rI ~r ,s,t !, ~22!

with

I kz~s!5
m

z1m1 ik•csF12
m

ukuc
tan21

ukuc
z1mG21

3
1

4p

1

z1m1 ik•cs0
1

d~s2s0!

z1m1 ik•cs0
. ~23!

In order to compare, we setma50 andms[m in this paper.
In the case of isotropic scattering,g050, and gl5m, l
51,2, . . . .

Equation~4! in the isotropic scattering case, reduces to

F~s,s0 ,t !5
1

4p
@12e2mt#1e2mtd~s2s0!. ~24!

Its Laplace transform in time is given by

L@F~s,s0 ,z!#5
1

4p

m

z~z1m!
1

d~s2s0!

z1m
. ~25!

If Eq. ~23! is evaluated atk50, that means integration o
I (r ,s,t) over r , the result is the same as Eq.~25!. Thus the
exactness ofF(s,s0 ,t) is verified for the isotropic scatterin
case.

The first moments, Eqs.~11!, without normalization,
@without divided byF(s,s0 ,t)#, for the isotropic scattering
case, reduce by our procedure to

r̄ z
c5cF11cosu

4p S 12e2mt

m
2te2mtD1te2mtd~s2s0!G .

~26a!

r̄ x
c5c sinu cosf

1

4p F12e2mt

m
2te2mtG . ~26b!

These coordinates of the center have the Laplace transfo
given by

L@ r̄ z
c#5cF11cosu

4p

m

z~z1m!2 1
d~s2s0!

~z1m!2G , ~27a!

L@ r̄ x
c#5c~sinu!~cosf!

1

4p

m

z~z1m!2 . ~27b!

Since moments can be obtained by differentiation of cha
teristic functions, we evaluate]/](2 ika)$Eq.(23)%uk50,
that means integration over space ofr a with I (r ,s,t) as
r-

r

s,

c-

weight. The results are same as Eqs.~27!. Thus, by a slight
extension of Hauge’s results we verify the exactness of
first moment in the isotropic scattering case.

For a check of the second moment, we notice that E
~18! are obtained from

E
0

t

dt8exp~at8!E
0

t8
dt9 exp~bt9!

5 H ~1/b!@~e~a1b!t21!/~a1b!2~eat21!/a#,
~1/a!@~eat21!/a2t#, a52b.

~28!

In the isotropic scattering case, the limit asa→0, orb→0, or
both is needed.

Equation ~17a!, without normalization, in the isotropic
scattering case reduce to

D̄zz
c 5c2

cos2 u1cosu

4p F 1

m22e2mt
1

m22e2mt
t

m
2e2mt

t2

2 G
1

c2

12p F t

m
2e2mt

t

m
2e2mtt2G1c2

t2

2
e2mtd~s2s0!.

~29!

This moment based on our method has a Laplace transfo
given by

L@D̄zz
c #5c2

cos2 u1cosu

4p

m

z~z1m!3 1
c2

12p

m213zm

z2~z1m!3

1
c2

~z1m!3 d~s2s0!. ~30!

The corresponding result from Hauge’s solution are obtai
by (1/2)]2/](2 ikz)](2 ikz)$Eq.(23)%uk50 , which implies
integration of (r zr z)/2 with I (r ,s,t) as weight over space
The same result as Eq.~30! is obtained. The similar proofs
have been performed forD̄xx

c , D̄yy
c , D̄xz

c , D̄yz
c , and D̄xy

c ,
verifying the exactness of our second moments. In evalua
of the value and the derivatives of B[$1
2(m/ukuc)tan21@ukuc/(z1m)#%21 at k50, we haveB5(z
1m)/z, Ba50, Baa52mc2/@3z2(z1m)#, and Bab50 if
aÞb.

In the above equations the term related toe2mtd(s2s0),
has cumulantsr z

c5ct and 2Dzz2(r z
c)250. This spike repre-

sents the unscattered part of the light, which reduces its
tensity as exp(2mt). The scattered part of light along th
directions of sÞs0 has the correct mean positions an
spreads, as has been proved.

V. DISCUSSION

The decoupling of harmonics is valid only for the angu
distribution,F(s,s0 ,t), because in Eq.~3! the term such as
cs•“ rI (r ,s,t) in Eq. ~1! disappears. This result is availab
only for an infinite uniform medium, otherwise Eq.~3! can-
not be derived from Eq.~1!. When the spatial related distri
bution, I (r ,s,t), is calculated, the coupling of the differen
harmonics remains, and is presented in Eqs.~8! and ~9!,
through the recurrence relation of harmonics, Eq.~14!, and
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explicitly shown in Eqs.~11! and~17!, the results of the first
two moments. Contrasting with the usual approach using
gular moment expansion of Eq.~1!, our cumulant approach
has two remarkable features:~a! since the formula for calcu
lating cumulants, Eqs.~8! and~9! ~and possible extension t
higher order cumulants!, use the standard Green’s functio
approach without making approximation and the Gree
function, Eq.~4!, is exact, the obtained cumulants, as far
thenth order concern, are exact.~b! The cumulants obtained
appear as the arguments of the exponential functions in
~7!, that implies that an infinite series in the usual angu
moment expansion has been included. Therefore, e
though only derived by terminating at the second order
mulant, the distribution function obtained has the exact c
tral position and the exact half-width as functions of tim
and thus leads to the correct ballistic limit att→0 and cor-
rect diffusive limit at larget. This result is not achieved for
general phase function in any known publication.

The cumulant expansion terminating at the second o
is a standard method in statistics@12#, which neglects all
cumulants higher than second order, and leads to a Gau
distribution. If we examine the spatial displacement af
each collision event as an independent random variable,Dr i ,
the total displacement isSDr i( i 51, . . . ,N). The central
limit theorem claims that ifN is a large number, then the su
of N variables will have an essentially Gaussian distributi
Therefore, after enough collision events happened, the di
butions we calculated become accurate in detail, not
having the correct center and spread. At early time, the p
ev

m

n-

s
s

q.
r
en
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er

ian
r

.
ri-
st
o-

ton spread is narrow, hence, in many applications the
tailed shape is less important than the correct position
correct narrow width of the beam.

In case a more accurate distribution at early time
needed, the exact higher~than second! order cumulants can
be analytically calculated, and Eq.~7! can be extended to
higher order. Analytical expressions for exact spatial cum
lants up to an arbitrarynth high order have been derived, an
will be presented elsewhere@16#. However, a closed analyti
cal form in space is unlikely to result, and a numerical Fo
rier transform overk would be required. We have therefor
terminated the current calculation at second order in this
per.

In summary, we have derived an analytical solution of t
distribution function, Eq.~10!, and the density distribution
Eq. ~19!, for the elastic Boltzmann transport equation in
infinite uniform medium. This solution is quantitatively ac
curate up to the second order cumulant approximation
shows a clear picture of time evolution of particle migrati
from ballistic to snakelike, then to the diffusion regime. T
first two position cumulants at any angle and the angu
distribution are completely exact as functions of time.
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