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Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium
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We consider an analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite
uniform isotropic medium with an arbitrary phase function. We obtajrthe exact distribution in angl€2)
the exact first and second spatial cumulants at any angle(3reh approximate combined distribution in
position and angle and a spatial distribution whose central position and half-width of spread are always exact.
The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows
and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic,
through snakelike and into the final diffusive regime.

PACS numbgs): 42.25.Fx, 42.25.Dd, 78.96t, 0.5.20.-y

[. INTRODUCTION proximation is not quantitatively correct. Therefore, a proce-
dure permitting wide-angle scattering is essential.

Scientists have tried for decades to develop exact or ac- In this paper, we present analytical expressions for the
curate analytical approximate solutions of the Boltzmanrdistribution function and the density distribution of the solu-
transport equation in various casgis-3]. Any progress in tion of the elastic Boltzmann transport equation in an infinite
this direction is a contribution to fundamental research inun:form n;]edlum. The phasle funcugnpls assugeg to ﬂgpend
non-equilibrium statistical dynamics. An accurate analytical®"y On the scattering ang E(S’SO)_. (S'.SO)'. nder this
approximation may have applications in a broad range of\SSUMPtion, the small angle approximation is avoided, and
fields, such as the atmosphere, medicine, and solid sta arbitrary phase function can be handled. Our solution for
physics. Photon migration in a highly scattering turbid me-the distribution in angle is exact, as are all first and second

dium is a good example. The solution of inverse problems jpPatial cumulants at any angle as functions of time. After
many scattering events have taken place, the central limit

optical tomography, such as the location of a tumor in a _ i o
woman’s breast from the scattering of light pulses, requireéheorem guarantees that the spatial Gaussian distribution cal-

the inversion of a weight matrijé] obtained by convoluting culated will become accurate in detail, all cumulants higher
two Green’s functions of the forward scattering problem.than_ the second approach small values relative to the ap-
The analytical solution of the photon diffusive equation in anProXimate power of the second cumulant. At early times,
infinite uniform medium has been broadly used as a backwhen the errors would be worst, the spatial distribution func-

ground Green's function[4]. By introducing “image tion at any angle is quantitatively accurate in the sense that it
| has the exact mean positi¢ime first cumulantand the exact

sources,” the solution can be extended to semi-infinite, q half-width of " q |
slabs, and boxes geometry. The diffusion approximation fail@nd narrow half-width of spreadhe second cumulanas a

at early times when the photon distribution is highly aniso- unctioq OT time. Since thg inverse _scat.tering problem s
tropic. Solutions of the diffusion equation or the telegra—do_ne W'_th Instruments of finite resolt_mon, in the presence of
pher's equation do not produce the correct ballistic limit of "0iS€, finer detail is lost, and the first two cumulants may
light propagatior{5]. The Monte Carlo method can be used PVOV"?'e an ade_quate dgscrlptlon of the scatt_ered beam..
to simulate photon migration at early times; however, de- Th'S.PaF_’er is organized as foI.Iow.s. Section |l qe_scnbes
tailed solution of a five-dimensional Boltzmann transportthe denvaﬂ?n'of tr;ehfordmulgt; vyhph |ncludé$)t)opt§|n|ng
equation using a predominately numerical approach, with th&" €xact solution of the distribution in ang(@) obtaining an

resolution good enough to check the analytical solution€*@ct formal solution in position and angle) using the

leads to prohibitive CPU times cumulant approximation up to the second order that leads to
Recently, Polishchulet al. [é] and Perelmaretal. [7] @ Gaussian spatial distributiof¥) obtaining exact first and

suggested different models of photon migration. They use ec_ond spatjal cumulants based on the exact angul_ar Qistri-
the path integral approach and the time-dependent Green tion. Section Il provides the main results of the distribu-
function method to treat the photon migration problem. They!ion function in position and angle, and the density distribu-
consider only multiple small-angle scattering, based on thdon In position alone. Sectlon_ IV mal_<es a comparison of our
fact that the phase functigiangular distribution of the scat- result for the spemal case of isotropic scqttermg_ with that of
tering cross sectiorin many media has a very sharp forward the exact solution provided by Hauf@. A discussion of the

peak. A solution of the steady transport equation based 0ﬁffectiveness of the cumulant approximation is presented in

the small angle approximation was also presented by Ishi>€C- V-

maru[8]. However, it can be shown that the transport mean
free path obtained by an average of @osf over small
angles could be several times larger than that obtained by an Without loss of generality, we discuss the photon scatter-
average over all angles. Thus, the small angle scattering ajnrg problem with a given light speed in the mediwnAp-

II. DERIVATION
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plying our result to an another particle elastic scatteringplacement is an integration of velocity over time. The photon
problem, with the constant particle speed in the medium  distribution functionl (r,s,t), for the initial source direction
straightforward. The photon distribution functid(r,s,t) as s, and the source position,=0, is given by

a function of timet, positionr and directions, in an infinite

uniform medium, from a point pulse light sourcé(r

—Trg) 8(s— ) 8(t—0) obeys the Boltzmann equatid8] I(r,s,t)=< P r—cfts(t')dt/}é [s(t)—s]>, (5)
0
al(r,s;t)/ot+cs -V, I(r,st)+ wal(r,st)
:Msf P(s,s)[I(r,s',t)—1(r,st)]ds where the angle brackets denote the ensemble average in the
velocity space. The firsé function insures that the displace-
+8(r —rg) 8(s— ) 8(t—0) (1) ment,r — 0, is given by the path integral. The secoftuinc-

tion assures the correct final value of direction. Equat®n
whereu, is the scattering ratey, is the absorption rate, and is a formally exact solution, but can not be evaluated di-
P(s',s) is the phase function, normalized fas' P(s',s) rectly. We, hence, make a Fourier transform for the fitst
=1. When the phase function depends only on the scatterinfgnction in Eq.(5) and make a cumulant expansion to the
angle in an isotropic medium, we can expand the latter iffecond ordef12]. For an arbitrary random variable,
Legendre polynomials

1 (M ~exp((A))exp((A?)/2), (6)
P(ss)= EZ aPi(ss), (2)

where indexc denotes cumulantA?).=(A?)—(A){A). An
exact result is valid only ifA is Gaussian. In the following
(B). is called the cumulant oB, while (B) is called the
moment ofB. Substituting this approximation into the Fou-
rier transform of Eq(5), we have

and regarda; as known, either from Mie theor}l0], or a
preliminary experiment.

We first study the dynamics of the photon distribution in
the light direction spacE(s,s,,t), on a spherical surface for
s of radius 1, which is equivalent to the velocity space in the
elastic scattering case. The kinetic equationd¢s,s,,t) can

be obtained by integrating Eq41l) over the whole space. 1
The spatial independence @fs, u,, and P(s,s') retains |(r,St)=F(S,So,t)Wf dk
translation invariance. Thus the integral of Efj) obeys
t
IF(S,5,t)/ dt+ uaF(S,5,t) xexp(ika(ra—c<fdt’sa(t’)>>
0
+ug F(s, ,t—fPs,s’Fs’, ,t)yds' 1 t t
#y F(s%.0)= | P(sSHF(S'%0.1) — kokyc? J dt’f At T[s,(t)S4(t")]
2 0 0
=0(s—5)o(t—0). 3
t t
Since the integral of the gradient term over all-space van- —< fodt'sa(t’)> < fodt'sﬁ(t')>]), (7)

ishes, in contrast to Eq1), if we expandF(s,s,t) in spheri-
cal harmonics, its components do not couple with each other.

Therefore, it is easy to obtain the exact solution of B).  \yhere T denotes time-ordered multiplicatidi3]. Integra-

[11]: tion overk in Eq. (7) directly leads to a Gaussian spatial
o141 distribution displayed in Eq(10) below. Using a standard
F(s5.t)= z 2 exp(—gt)Py(s Sp)exp( — uat), time-dependent Green'’s function approach, the ensemble av-
| T

erage of the cumulants in Eq47) can be calculated. The
(4 components of the first cumulant, which is the average center
position of the distribution, conditioned ¥ s, att=0 are

whereg,= u 1—a,;/(21+1)]. Two special values af, are given by

do= 0, which follows from the normalization d®(s,s’) and
g;=c/l, wherel, is the transport mean free path, defined by
li=c/[ us(1—cosb)], wherecosd is the average o s" with t 1 t

P(s,s') as weight. Equatioti4) serves as the exact Green's <f dt'Sa(t')> :F(s,—sot)f dt'f ds'F(sss',t—t")

function of light propagation in the velocityor angulay 0 0

space. Since in an infinite uniform medium this function is X! F(s,5,t). (8)
independent of the source positiog, requirements for a

Green’s function are satisfied, especially, a Chapman-

Kolmogorov  condition is obeyed: [ds'F(s’,s,t The denominator appears because this is a conditional aver-
—t")F(s',st' —tg)=F(s',st—1g). In fact, in an infinite age. The components of the second moment, which is related
uniform medium, this propagator determines all behavior oto the second cumulataverage half-width of spreadf the

light migration, including its spatial distribution, because dis-distribution, conditioned os=s, att=0 are given by
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! ’ ! " ’ " — ﬂm(l_m)' (m) (m)
<f0dt Jodt T[s,(t")spa(t )]> PI(Sl'SZ)_% WP' (cos6,)P,
X (c0s6)co§ M( by — 7)1, (13
:ﬁlfdt,,[ dt”f ds
(85.1) [ Jo 0 where 7o=1 and 5,=2(m>0), P{™(cosé) is the associ-
ated Legendre function. The recurrence relations of the

xf ds’'F(s,s',t—t')s,F(s',s",t"'—t") spherical harmonics is given by

X SEF(s',S t”)+(t.c.)], (9) cosd’' P{™(cosf’ )= Sgl(—m+ 1)P{"™ (cos#")

(m) ’
where(t.c) means the second term is obtained by exchang- +(I+m)P 53 (coso")]. (149

ing the indexa and B in the first term. Equatiori7) is the
only approximate formula used in our derivation. Formula
for calculating the first two moments, Eq®8) and (9), are
exact. In Egs(8) and (9), F(s;,s;,t) is given by Eq.(4).

55— [P{T1"(cos¢")

1
H rp(m) " —
sing'P,"(cose’) = o1

Since Eq.(4) is exact, Eqs(8) and(9) provide the exact first —P{™ M (cosb')]. (14b)
and second moments. Integrations in E(®. and (9) are
tedious, but straightforward. The orthogonality relation of the spherical harmonics is
1
ll. RESULTS f d cos6’ P{™(cos6’)P'” (cosf’)
-1
In the following, we sets, along thez direction and de-
notes as (6, ¢). Our cumulant approximation to the photon 2 (I+m)!
distribution function is given by T2+1 (I-m)! S (15
(r.st) = F(ss.t) 1 extd — ~(B~Y) Using Eqs.(13)—(15) and making integrations, first ove,
™ (4)%? (detB)? 4 ap then over¢’, and last ovet’, Eq. (113 is obtained. Using a
similar procedure, all results in this section were obtained.
X(F=r%) (r—r°) (10) The square of the average spread wite second cu-
“ B muland is determined by

with the center of the packethe first cumulant denoted by Bas=CGA 53— 1r%/2, (16)
r¢, located at
with
ré=GQ, AP/ (cosO[(l+1)f(g,— +I1f(g,—9,_1)1,
z Z 1Pi( A+ (9= 91+2) +1f(91—9-1)] (_1) L (1)(1+2)
(119 AZZ—E AP (cos6) I TR i
12 (1+1)2
=G 1) (3) (4)
re Z (cos6)(cose) + o= B+ g B (179
X9 =01-0) = (91— 91+ 1], (11b) _
1 D _m
Awxyy= 2 5 AP(cosh)| — =
where G=c exp(— ut)/F(s.S,t),A = (1/4m)exp(-gt).g is T2 2l-1
defined after Eq(4), and ) (1+1)(1+2) " 1(1—1) o
f(g)=[exp(gt ~11/g. (12 21+3 7 " 2-1 7
) _ ) ) ) (I+1)(I+2) p(2
rf, is obtained by replacing casin Eq. (11b) by sin¢. W E A, (cosh)
As an example, we derive E¢L19 as follows:
1 1
(1) (2)
.. C Jt 'f / e ) ><cos(2¢){2|_1E, +2|+3E|
rz_—F(s,so,t) odt ds'F(s;s',t—t')s,F(s',5,t'), 1 1
- E®- E(“)}, 17b)
where F(s,,s;,t) is given by Eq. (4. We denotes 21—1"" 21+3 ! (170

=[sx,Sy,S;]=[sinfcosg¢,sinfsing,cosd]. The spherical
harmonics addition theorem is given [i4] where(+) corresponds td,, and(—) corresponds ta,,,
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1 (2) ; 1 (1)
Ay=A,=2> > AIP{?(cost)sin(2¢)| 5— Ei
|
1 1 1
(2) _ (3) _ (4)
T e s M o LS B S L
1 2(1-1)
A=A, 2 5 APY(cost)(cose)| 5 — EfY
|
2(1+2) 1
_ (2) By~ @
2i+3 B To—1 B Togh| (17d

Ay, is obtained by replacing cesin Eq. (17d) by sing. In
Eqgs.(179—(17d)

EV=[f(9—9-2—f(9—9-01/(9-1—0i-2),

(189
Ei?=[f(g1=91+2)~F(9 =91+ 1/(d1+1- 91+ 2),
(18b)
E¥=[f(gi~91-1)—t1/(g—9-1), (189
EY=[f(gi=01+1)— /(91— 9+ 1) (180

A cumulant approximate expression for the pho-

ton density distribution is obtained fromN(r,t)
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FIG. 1. The moving center of photon density functigp [Eq.
(20)] and the diffusion coefficient®,, and D, [Egs.(21)], as a
function of timet.

lated by Mie theory[10] assuming(for this figure water
droplets withr/x=1 are uniformly distributed in air, with
the radius of the droplet, the wavelength of light, and the
index of refractionm=1.33.

Each distribution in Eq(10) and Eq.(19) describes a
photon “cloud” anisotropically spreading from a moving
center, with time-dependent diffusion coefficients. At early
time t—0, f(g)~t+0O(t?) in Eq. (12, and E{’=t?/2
+0(t3) for j=1,2,3,4 in Eqs(18). From Egs.(11), Egs.
(17), and Egs.(20) and (21), we see that for the density

=(d[r—c[os(t’)dt’]), where an average over the angular distribution, N(r,t), and the dominant distribution function,

distribution is required. UsingidsF(s,s’,t) =exp(—u,t), we
have a Gaussian shape

\ B 1 1 (z—R,)?
("= 27D, c0™ 2D et &0 ™ 4D, .t
(x*+y?) 19
X ex —W expl— uat), (19
with a moving center located at
R,=c[1-exp(—0:t)]/g; (20)

and the corresponding diffusion coefficients are given by

301— 92

0gr—go) RG]

b _c t
zz_§ a_

2
T Oa(gi—gy 1R G2U)]

3
——z[l—exp(—glt)]z}, (21a

291

g2

c |t
D, .=Dyym e | — 4 ——2
=y 3t[gl 95(91—92)

[1—exp(—git)]

[1—6Xp(—gzt)]]- (21b)

- 92(91—92)

In contrast to Eqs(11) and (17), these results are inde-

pendent ofg, for |>2. Figure 1 shows the moving center of
photons,R, [Eq. (20)], and the diffusion coefficientd),,
andD,, [Egs.(21)], as function of time, wherg, are calcu-

that isl(r,s,t) alongs=g, the center moves a3 s, and the
B.g in Eq.(16) are proportional ta® att—0. A distribution
function 1(r,st) along s#s is small sinceF(s,s,t)~t
whent— 0. Its center moves at a certain direction with dis-
placement proportional tet, and theB,, in Eq. (16) are
proportional tot? att—0. These results present a clear pic-
ture of nearly ballistic motion at—0. Roughly speaking,
this near ballistic motion maintains its speed up Rg
~0.6, [see Eq(20)]. This closely agrees with experimental
results of optical coherent tomograpb@CT) [15] that the
range of good resolution extends to about 600, in a tissue

of [;,~1 mm. With increase of time, the motion of the center
slows down, and the diffusion coefficients increase from
zero. This stage of photon migration is often called a
“snakelike mode.”

With further increase in time, theh Legendre component
in Egs. (4), (11), and(17), exponentially decay with a rate
related tog,. The detailed decay ratg; , is determined by
the shape of the phase function. Generally speaking, the very
high Ith components decays in a rate of ordewgf as long
as its Legendre coefficiers; distinctly smaller than P+ 1.
Even in the case that the phase function has a very sharp
forward peak, in which there are nonzexdfor very highlth
rank, thea, are, usually, much smaller tharli 21. There-
fore, for the distribution function at timeafter the ballistic
stage is over, a truncation in the summation over avail-
able.

At large times, the distribution function tends to become
isotropic. From Egs.(19)—(21), the photon density, at
>|;/c andr>1;, tends towards the conventional diffusion
solution with the diffusive coefficient,/3. Therefore, our
solution quantitatively describes how the photon migrates
from nearly ballistic motion to diffusive motion.



PRE 61 CUMULANT SOLUTION OF THE ELASTIC BOLTZMANN . .. 3875

IV. COMPARISON WITH AN EXACT SOLUTION weight. The results are same as E@). Thus, by a slight
IN THE ISOTROPIC SCATTERING CASE extension of Hauge’s results we verify the exactness of our
first moment in the isotropic scattering case.

A check of our angular distribution, E¢4), the first mo- .
ments, Eq.(11), and the second moments, Ed.7), for a (18|):c;r:octngicr!(egff:2ren second moment, we notice that Egs.

special case of isotropic scattering is performed by compar-

ing with the exact solution given by Haud®] and agree- t v
ment is verified. Hauge has provided an exact solution for J dt’exp(at’)J’ dt” exp(bt")
isotropic scattering in the form of a Fourier transform in 0 0
space and Laplace transform in time, which is given by (1b)[(e@*Dt—1)/(a+b)—(e?'—1)/a],
. :{(1/a)[(ea‘—1)/a—t], a=—b.
= —t —ik-r
I (9) fo dte f dre I(r,st), (22 (28)
with In the isotropic scattering case, the limitas> 0, orb—0, or
both is needed.
m m . lklc] ™t Equation (17a, without normalization, in the isotropic
I (s)= Trputik-cs 1- Wtan Tt scattering case reduce to
2
xi 1 S(s— %) 23 AC -2 cog #+cosé 12 ewtiz_ewtl_ewtt_
4 [T ptik-csy  {tptik-csy “ 4 Iz Iz Iz 2

2 2

In order to compare, we sgt,=0 andu = in this paper. + L e—uti_ e Mt2 +C2t_ e M(s—5).
In the case of isotropic scatteringo=0, and g,=pu, | 127 | 2
=1,2,.... (29

Equation(4) in the isotropic scattering case, reduces to
This moment based on our method has a Laplace transform,

1 .
F(s,,t)= E[l—e‘“‘]Jre‘”t&(s— S)- (24) given by
— . ,c086+cost  u c? w?+3iu
Its Laplace transform in time is given by LlAz]=c A L+ )’ + 127 2({+p)d
1 5(s— ) c?
F =— 2 ———= (s~

If Eq. (23) is evaluated ak=0, that means integration of The corresponding result from Hauge's solution are obtained
I(r,st) overr, the result is the same as BEQ5). Thus the by (1/2)9%/d(—ik,)d(—ik,){Eq.(23)}|x~o, Which implies
exactness oF (s,5,t) is verified for the isotropic scattering integration of ¢,r,)/2 with I(r,s,t) as weight over space.
case. The same result as E¢30) is obtained. The similar proofs

The first moments, Eqs(11), without normalization, have been performed fok®,, K;yr AS, K;Z, and Kgy,
[without divided byF(s,sy,t)], for the isotropic scattering yerifying the exactness of our second moments. In evaluation

case, reduce by our procedure to of the value and the derivatves ofB={1
_ —(wl|k|c)tan Y |k|c/(Z+p)]}~* at k=0, we haveB= (¢
1+cosf(1—e # (n ’ .
e ( - +te_’“5(s—so)}. F )T, B,=0, Byu=2ucll[3L(¢+ )], andB,,—0 i
4 M a# B.

(263 In the above equations the term relatecetd 5(s— ),

1 [1—e#t has cumulants;=ct and ZAZZ—(rZ)_ZZO. This spike repre-

TS=csinfd cos¢— —te M| (26b) sents the unscattered part of the light, which reduces its in-
4m H tensity as expfut). The scattered part of light along the

directions of s#5 has the correct mean positions and

These coordinates of the center have the Laplace transform§preads as has been proved

given by
l+cosé u o(s—s) V. DISCUSSION

A (Lrp? w2

L[rS]=c

} . (278

The decoupling of harmonics is valid only for the angular
distribution, F(s,5,t), because in Eq(3) the term such as
i 2 27b) cs-V,I(r,st) in Eq. (1) disappears. This result is available
A4 [({+p)? only for an infinite uniform medium, otherwise E() can-

not be derived from Eql). When the spatial related distri-
Since moments can be obtained by differentiation of charachbution, I(r,s,t), is calculated, the coupling of the different
teristic functions, we evaluate/d(—ik,){Eq.(23)}|x=0, harmonics remains, and is presented in E@.and (9),
that means integration over space rof with I(r,sit) as through the recurrence relation of harmonics, Edl), and

L[r]=c(sinf)(cose)
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explicitly shown in Eqs(11) and(17), the results of the first ton spread is narrow, hence, in many applications the de-
two moments. Contrasting with the usual approach using arntailed shape is less important than the correct position and
gular moment expansion of E¢L), our cumulant approach correct narrow width of the beam.

has two remarkable featurgs) since the formula for calcu- In case a more accurate distribution at early time is
lating cumulants, Eq¥8) and(9) (and possible extension to needed, the exact highéhan secontorder cumulants can
higher order cumulantsuse the standard Green’s function pe analytically calculated, and E@7) can be extended to
approach without making approximation and the Green'syigher order. Analytical expressions for exact spatial cumu-
function, Eq.(4), is exact, the obtained cumulants, as far aants up to an arbitrargth high order have been derived, and
the nth order concern, are exa¢h) The cumulants obtained || be presented elsewhef&6]. However, a closed analyti-
appear as the arguments of the exponential functions in Ega| form in space is unlikely to result, and a numerical Fou-
(7), that implies that an infinite series in the usual angularier transform ovek would be required. We have therefore

moment expansion has been included. Therefore, everminated the current calculation at second order in this pa-
though only derived by terminating at the second order Cuper.

mulant, the distribution function obtained has the exact cen- In summary, we have derived an ana]ytica| solution of the

tral pOSition and the exact half-width as functions of time,distribution function, Eq.(lo)’ and the density distribution’
and thus leads to the correct ballistic limittat:0 and cor- Eq (19), for the elastic Boltzmann transport equation in an
rect diffusive limit at |argd. This result is not achieved for a infinite uniform medium. This solution is quantitative|y ac-
general phase function in any known publication. curate up to the second order cumulant approximation and
The cumulant expansion terminating at the second ordeshows a clear picture of time evolution of particle migration
is a standard method in statistif$2], which neglects all ~ from ballistic to snakelike, then to the diffusion regime. The
cumulants higher than second order, and leads to a Gaussigfst two position cumulants at any angle and the angular

distribution. If we examine the Spatial diSplacement afterdistribution are Comp|ete|y exact as functions of time.
each collision event as an independent random varialle,

the total displacement i&Ar;(i=1,...N). The central

limit theprem cla_lms thatiNis a Iarge number,_ then_ th_e sum ACKNOWLEDGMENTS

of N variables will have an essentially Gaussian distribution.
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