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The structure of the concentration field of a decaying substance produced by chemical sources and advected
by a smooth incompressible two-dimensional flow is investigated. We focus our attention on the nonunifor-
mities of the Héder exponent of the resulting filamental chemical field. They appear most evidently in the case
of open flows where irregularities of the field exhibit strong spatial intermittency as they are restricted to a
fractal manifold. Nonuniformities of the Hider exponent of the chemical field in closed flows appears as a
consequence of the nonuniform stretching of the fluid elements. We study how this affects the scaling expo-
nents of the structure functions, displaying anomalous scaling, and relate the scaling exponents to the distri-
bution of local Lyapunov exponents of the advection dynamics. Theoretical predictions are compared with
numerical experiments.

PACS numbes): 47.52:+j, 05.45~a, 47.70.Fw, 47.53n

I. INTRODUCTION negative Lyapunov exponent in the presencdrmfnhomo-
Mixing in fluids plays an important role in nature and geneouschemical sources. Under such chemical processes,
technology with implications in areas ranging from geophys-~eactant concentrations present a tendency to relax towards a
ics to chemical engineering]. The phenomenon of chaotic local-equilibrium concentratiofthe fixed point of the local
advection—intensively investigated during the last decade—chemical dynamids This tendency is disrupted by the ad-
provides a basic mechanism for mixing in laminar flq@&  vection process, which forces fluid elements to visit places
Briefly stated, chaotic advection refers to the situation inwith different local-equilibrium states. Depending on the
which fluid elements in a nonturbulent flow follow chaotic relative strength of chaotic advection and relaxation the re-
trajectories_ Advection by Simp|e time-dependent two-sulting concentration distribution can be smonirﬁeren—
dimensional flows falls generically into this category. Stir-tiable) or exhibits characteristic filamental patterns that are
ring by chaotic motion, with its characteristic Stretching ananWhere differentiable except in the direction of filaments
folding of material elements, is able to bring distant parts ofaligned with the unstable foliation induced in the fluid by the
the fluid into intimate contact and thus greatly enhances mixchaotic dynamics. The mechanism for the appearance of
ing by molecular diffusion acting at small scales. these singular filaments is similar to the one producing sin-
Mixing efficiency becomes especially important when thegular invariant measures in dynamical systg@is although
substances advected by the flow are not inert but have sonkere it is affected by the presence of the chemical dynamics:
kind of activity. By “activity” we mean that some time evo- Stretching by the flow homogenizes the pattern along un-
lution is occurring with the concentrations inside advectedstable directions, whereas small-scale variance, cascading
fluid elements(produced by chemical reactions, for ex- down from larger scales, accumulates along the stable direc-
ample. For definiteness we will use terms such as chemicalions, producing diverging gradients.
fields and chemical reactions, but biological processes, oc- The strength of the singularities of the concentration field
curring for example when the advected substance is living>(r) can be characterized by a lder exponentx
plankton, can be described formally in the same way. The
interaction between the stirring process and the chemical ac- |5C(rq; dr)|=|C(ro+ r)—C(ro)|~|dr|¢, |or|—0.
tivity can result in complex patterns for the spatial distribu-
tion of the chemical fields, which in turn greatly affect the
chemical processel8,4]. In addition to the impact on its If the field is smooth(differentiable atr,, a=1, while for
own chemical dynamics, the spatial inhomogeneities mayn irregular rouglie.g., filamentalstructure G<a<1. In[8]
have an important effect on other dynamical processes oave focused on the existence of a smooth-filamental transition
curring in the fluid(for example in the behavior of predators as time-scales of the system are varied, and also obtained the
seeking the advected planktfB]). An understanding of the most probable(bulk) value of the Htder exponent. Note,
structure of these spatial patterns is thus valuable. however, that the Hder exponent defined bil.1) is a local
Previous theoretical work concentrated on the temporatharacteristic of the field, whose value may depend on the
evolution of the total amount of chemical products in specificpositionr. In this paper we concentrate on such nonunifor-
reactions such a8+B—2B [6]. In [7] the same autocata- mities of the filamental chemical field and study how this
lytic reaction and the collisional rectioA+B—2C were  affects scaling properties of quantities involving spatial av-
studied in open flows. In a previous pafd®&] some of us erages, which are the more convenient quantities to be ob-
considered a class of chemical dynamics characterized by served in experiments.
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In Sec. Il we review the results presented &, namely  chemical sourcegnegative values representing sinkgve
the smooth-filamental transition and the dominant value ofestrict our study to the case in which the incompressible
the Hdder exponent in closed flows. Then we consider thevelocity field is two-dimensional, smooth, and nonturbulent.
same problem for the case of mixing by open flo@ec. Chaotic advection is obtained generically if a simple time
[l1). In this case the necessity of a multifractal descriptiondependence, for example periodic, is included(n,t). We
becomes manifest, and this motivates the development of assume that diffusion is weak and transport is dominated by
guantitative characterization of the filamental structures iradvection. Thus one expects that the distribution on scales
terms of structure functions. This is presented in Sec. IVlarger than a certain diffusive scale is not affected by diffu-
Scaling exponents appear to be related to the distribution cfion. Therefore we consider the limiting nondiffusive case
local Lyapunov exponents. We conclude the paper with a«=0. In this limit the above problem can be described in a
summary and discussion. Lagrangian picture by an ensemble of ordinary differential

equations

Il. LOCAL PROPERTIES OF THE CHEMICAL FIELD ~
AND THE SMOOTH-FILAMENTAL TRANSITION dr ol
d——v(r t) (2.2

We consider the flow as externally prescribed, thus ne-
glecting any back influence of the chemical dynamics into de
the hydrodynamicgthe advected substances are chemically — =9r(t)]-bC, (2.3
active but hydrodynamically passiveln this context, the dt
g?ggﬁ;ﬁ’g t}T(;JVL\J/;n Ige;(\)/ré%tl%r;/ Osfegsh eor?lfggéﬁsﬁtggjegl QX where the solution of the first equation gives the trajectory of
diffusion equations. They involve, in general, multiple com-a flid parcel,r(t), while the second one describes the La-
ponents and nonlinear reaction terms. Refereri&  grangian chemical dynamics in this fluid elemef(t)
considered the situation in which the chemical kinetics is=C[r=r(t),t].

stable, i.e., there is a local-equilibrium state at each spatial Tg obtain the value of the chemical field at a selected

position, determlned by the sources and the reaction termﬁomtr at timet one needs to know the prewous history of
so that concentrations of fluid particles visiting that |005|t|0nth fluid el ¢ th tis the t toNt) (0=<t<D) with
tend to relax to the local-equilibrium value. Mathematically IS fluid €lemen atis the trajec ory ) ( ) wi

this corresponds to the negativity of the Lyapunov exponentie propertyr (t)=r. This can be obtained by the integration
associated with the chemical dynamical subsystem. It wasf Eq.(2.2) backwards in time. Once(t) has been obtained,
shown in[8] that arbitrary chemical dynamics in this class the solution of Eq(2.3) is

can be substituted by linear relaxation towards local equilib- B

rium at a rate given by the largedeast negativechemical — bty [tars Cb(t—t

Lyapunov exponent. Within this restriction, the multiplicity C(r,t)=CLr(0),0le" "+ IOS[r(t)]e hdt 24

of components is not essential since, except for special types

of coupling, linearization leads to simple relations between one can obtain the difference at timeof the values of

the different fields.
Because of the above remarks, and with the aim of keept—he chemical field at two different p0|nrsandr+ Sr sepa-

ing the mathematics as simple as possible, we will restricfatéd by a small distancer in terms of the difference
our considerations in this paper to the simplest chemical evoC[f(t)+5f(t) t]—C[r(t),t]=5C[r(t),t;5r(t)] for O<t
lution: linear decay, at a rath, of a single advected sub- <t, namely,

stance. A space-dependent source of the substance will also

be included, to maintain a nontrivial concentration field at 5C(r,t;6r)=8C[r(0),0;5r(0)Je"t

long times. This chemical dynamics can be considered either _

as an approximation to more complex chemical or biological n ftES[F(t)'3r(t)]e‘b(t_“)dt (2.5
evolutions, with maximum chemical Lyapunov exponent ' ' '

—b, or as a description of simple specific processes such as

spontaneous decomposition of unstable radicals, decay of\ghere 5r(t) (O<t<t) is the time- -dependent distance be-
radioactive substance, or relaxation of sea-surface temperﬂ/veen the two trajectories that endraandr + or at t|met

ture towards atmospheric valug0]. The validity of our and 8S, in analogy withsC, is the difference of the source
ideas for nonlinear multicomponent situations has been
term at pointsr(t) andr(t)+ dr(t).

checked for a plankton model |11 . :
The concenFtJration field:(r,t)[, v?/hen advected by a in-  1hus we_have expressed the behavior of an Eulerian
compressible velocity field(r,t) is governed by the equa- quantity 5C(r,t;ér) in terms of Lagrangian quantities, in
tion particular of or(t). Further analysis of Eq(2.5 requires
specification of the behavior afr. The signature of chaotic
advection is the exponentially growing behavior of this
quantity at long times. More precise statements need addi-
tional assumptions on the character of the flow. The simplest

where  is the diffusion coefficientb is the decay rate in- framework is obtained if we restrict our attention to initial
troduced above, an@(r) is the concentration input from conditionsr(0) in an invarianhyperbolicset[9]. In this case

aC
E+v(r t)-VC=S(r)—bC+ «V?3C, (2.1
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one can identify at each point two directions, the one in  For smallsr, Eq. (2.5 can be written as
which the flow iscontractingc(r) and theexpandingdirec-
tion e(r). They depend continuously on positidgfor time

dependent flows there is an additional explicit time- oC(r,t; 5r)~6C[F(O),O;?Sr(O)]e*bt
dependence that we do not write down to simplify the nota- .

tion). Sincec ande form at each point a vector basis which +f Séqf(t);gr(t)]e—b(t—t)dt
is not orthonormal, it is convenient to introduce also the dual 0

basis €',e") at each point. Chaotic advection manifests itself _

in the fact that for any initial separatioﬁﬁs(O) the long-time + ftgr(t) ) VS[F(t)]e‘b(t_‘t)dt 2.7
behavior of r is | 3r(t)|~|e[r(0)]T- dr(0)|e (for t>0), ts

where\ is the positive Lyapunov exponent along the trajec-

tory ande[f(O)]T~ 3r(0) gives the component of the initial (if ts>0). We will not need to specify the dependence’sf

separation along the expanding direction. At long times, theyn r for times previous tot,, as long aséS remains
direction of 6r(t) tends to become aligned with the expand-bounded. Substitution of Eq2.6) in the second integral

ing direction of the flow at(t), €r(t)]. However, if the leadsto
initial separation is aligned with the contracting direction at
the initial point,\ should be substituted hy’, the contrac-
tive Lyapunov exponent, and’ by c'. For incompressible
flows one has\’=—\. The Lyapunov exponent of the ts . . —
trajectory depends in principle both on the initial position +f 89 (t);or(t)Je Pt-Ndt
and on the duration of the trajectoiy= A (r(0),t). For clar- 0
ity of the formulas, we suppress in our notation these depen- = =it N (A —b)(T-1)
dencies. In the limit of infinitely long times, an asymptotic +or-c(r) jt r(]-ver(t)]e dt.
valueX(r(0),0)=\(r(0)) is attained. In the rest of this sec- )
tion we assume that this limit is reached fast enough so that
we can neglect the time dependencehomhe spacdinitial
condition dependence of the infinite-time Lyapunov expo-
nent\ (for hyperbolic systems's such that almost all initial Thus the first integral disappears and the first term can be
conditions lead to the same valug, the most probable

Lyapunov exponent, whereas deviations may possibly OCCL“near.lzed. By vyr|t|n'g5r=n|5.r| S_O thatn is a un.lt Ve_CtCE’

in sets of zero measufa7]. one finds the directional derivative along the directiomof
In order to analyze Ed2.5) one has to consider the back- &S

wards evolution. In this case typical solutions behavetfor

<0 and large, as

SC(r,t;6r)~ 8C[1(0),0:3r(0)]e "t

(2.9

Taking the limit sr—0 (for a finite t) leads tots<O.

n.VC(r,t)~n-c(r)'[r(0)]- VC[F(0),0]e D)t
|8r(t)|~|c[r(0)]T- 8r(0)|e* t=|c[r(0)]"- &r(0)|e ™

+RCTTJ‘ F()]- VSIT(1)]e® (0,
so that, also in this backwards dynamics, close initial condi- ol Oc[r(t)] valrtle at
tions diverge, and the difference will tend to become aligned 2.9
with the most expanding direction of the backwards flow

(the contracting of the forward flove[r (t)]). Again, there is .

a particular direction for the orientation of the initial condi-  If N<b this derivative remains finite in the—oo limit
tion (the contracting one in the backwards flow which is theand the asymptotic fiel@..(r)=C(r,t—) is smooth(dif-
expanding one in the forward dynamicfor which =\ ferentiabl¢. Otherwise the derivatives of diverge as

should be replaced by. In Eq. (2.5), or is obtained back- ~g(-b)t |eading to a nowhere-differentiable irregular
wards starting fromdr att=t. In this case asymptotic field. The exception again is the expanding direc-
R Y P — tion of the forward flow: wherdr points along that direction
or(t)=~c(r)'-ore dr(t)], tsstst. (260  one should substitute in E42.9) N\ andc by —\ ande,
. . . . respectively. This directional derivative is always finite.
The eAxponentlaI separatid2.6) holds only while the dis- Thus, there is at each point a direction along wh@h is
tancedr (t) is not too large, and saturates when approachingmooth. It should be noted that, because of the explicit time
the size of the system or some characteristic coherenC@ependence of the vectotsand e referred to before, the
length of the velocity field. The time at which this happensiimiting distribution C,, will not be a steady field, but one
definests, a saturation time. We assume that both the velocfoliowing the time dependence of the stable and unstable
ity field and the sourc&(r) have only large scale structures directions. For time-periodic flows(r,t), C., will also be
such that their corresponding coherence lengths are comp@me periodic. Its singular characteristics, however, do not
rable to the system sizé¢hat we take as the unit of length change in time.
scales Thus, the saturation time is given by.=t In order to characterize the singular asymptotic field we

+X"tn || take the limitt—o for fixed finite or in Eq. (2.9),
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e * A _ 1.0
5Cw(r:5r)~f_| 1AéS[r(x);5r(x)]x‘b‘1dx+|5r|n-c(r)’r
o
SN R
* f R 001V SO0 X, (2.10 0¥
1
where we used the change of variab#s!—x. If b>\ one 0.6
finds for the dominant term in thigsr|—0 limit the simple
scaling 8C..~ | r|, but whenb<\ 2
_ o 0.4
8C..(r;6r)~|6r [P, (2.12)
According to Eq.(1.1) the value of the Hioler exponent is i3
b
a=min X’l . (2.12
0.0
. . 0.0 0.2 0.4 0.6 0.8 1.0
This general relation expresses the lotsdace-dependent
Holder exponent in terms of the local infinite-time Lyapunov X
exponent and the chemical decay rate. For hyperbolic sys-
tems this Lyapunov exponent has the valygeverywhere 02080 ' ' ' :
but in a set of zero measure. 0.020

The smooth-filamental transition can best be understood ¢.010 |
by neglecting the fluctuations in the Lyapunov spectrum. ¢ 4 g0 |
Hence we study firsfin the remainder of this sectiprihe
consequences of Eq2.12) for A=\q. In Sec. Il we will
consider open flows. For such systems, it becomes evident -0-020 |
that the resulting chemical field cannot be characterized by a -0.030 : : : :

-0.010

; 3 k 0.0 0.2 0.4 0.6 0.8 1.0
single Hdder exponent. In Sec. IV a structure-function for- X

malism will be presented as a convenient way to characterize )

this dispersion in the values of the local lder exponent. FIG. 1. Top: a snapshot of the chemical concentra@nob-

Coming back to Eq(2.12 with A=\, for b>X\, the tained in the flowm2.13 for b=4.0 and\y=2.67, so that a smooth

asymptotic chemical field is smoothrg=min{b/xg, Li=1). cf%trizk;ution is obtained. Bottom: a horizontal cut along the lne
But if b<<\,, the asymptotic chemical field becomes an ir- =
regular fractal object. Since there is always an orientation of

— . . . where O (x) is the Heaviside step function. In our simula-
or along whichay=1, the object has flamentalstructure, (x) P

that is. | lar in all directi but here it | th tionsU=1.2, which produces a flow with a single connected
atis, irreguiar In all directions but oneé where 1t 1S SMootN. o, 5 oic region in the advection dynamics. The value of the

tTrhﬁ gr?phr f[)r]: thenIIeI(: aI]E)ngnat %?e-d;lme:tsrlc;?eﬂ CrUt Olrnumerically obtained Lyapunov exponentNg~2.67T.
ansect, or e contours of constant concentration aré aiso g .y \yarg trajectories with initial coordinates on a rectan-

féactals, aE tg:y da_re twg}-dimzpsionql se::tions of 't?e WhOI%ular grid were calculated and used to obtain the chemical
.°°(r) embedded In a three-dimensional space. Moreé prégeq ot each point by using E¢R.4) forward in time with the
cisely, the one-dimensional transéetong the directiorx) source terns(x,y) = 1+ sin(2mx)sin(2y). The values of the
of the field is a self-affine function with its graph embeddedparameters uséd in Fig. 1 afe=1.0 andb=4.0, for which

in an inhe_rently anisotr_opic spac_@_,(x) with the axis repre- he Lyapunov exponent isg=2.67<b. A smooth pattern is
senting different physical quantities. Contours of constan een, in agreement with our theoretical arguments. In Fig. 2
concentrations, however, are self-similar fractal sets of th% '

. X ) . : he parameters aré=1.0 andb=0.1, so thai\;>b and a
two-dimensional physical space,f). The fractal dimension filamental pattern is obtained.

of both the graph of the transects and of the isolines is given The smooth-fractal transition also appears in the time-
.dependence of the concentration measured at a fixed point in
gpace. This can be shown by a similar analysis for the dif-

field C,, evolving according tg2.2) and(2.3). For the flow ference

we take a simple time-periodic velocity field defined in the

unit square with periodic boundary conditions by SC(rt: 80 =C(r .t+ 8t)— C(r.1) (2.14

2Uu (T
vy(X,y,t)=— 7@(54 modT)cos{Zwy), instead of the spatial difference discussed abovéa<ifx,
the signalC(r,t) becomes nondifferentiable in time and can
be characterized by the saméltier exponenb/\ . The fact

2U T that scaling properties of the temporal signal and that of the
vy(xy, )= 7®(t modT E) cos2m), (2.13 spatial structure are the same—analogously to the so-called
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will not be positive but zero. Another effect of the KAM tori
will be to partition space into ergodic regions. Each region
will be characterized by a different value ®f, and there is
the possibility of observing different morphologies in the
different regions. For the values of parameters used in Figs.
1 and 2, KAM tori occupy a very small and practically un-
observable portion of space, so that the filamental pattern
appears to be well described by the samédeo exponent
nearly everywhere. However, an example is givedhin
which filamental and smooth regions coexist separated by
KAM tori.

IIl. OPEN FLOWS

Let us now consider again the problef2.2) and (2.3
with a velocity field corresponding to an open flow whose
time dependence is restricted to a finite regiamxing re-
gion), with asymptotically steady inflow and outflow regions.
A prototype of this flow structure is a stream passing around
a cylindrical body. If the inflow velocity is high enough vor-
tices formed in the wake of the cylinder make the flow time
dependent in this region, while the flow remains steady in
0.10 - - - ' front of the cylinder or in the far downstream region. We

i assume again that the flow is nonturbulent, so that the veloc-

005 ity field is spatially smooth.
8 .60 Passive advection in such open flows was found to be a
nice example of chaotic scatterind3,14]. Advected par-
0.05 ticles (or fluid elements enter the unsteady region, undergo
» transient chaotic motiofil5], and finally escape and move
-0.10 52 BE o8 68 T away downstream on simple orbits. The time spent in the
X mixing region, however, depends strongly on the initial co-

_ ordinates, with singularities on a fractal set corresponding to
FIG. 2. Top: a snapshot of the chemical concentranfor  particles trapped forever in the mixing region. This is due to
b=0.1 and\y=2.67, so that a filamental structgre is obtained. Thetha existence of a nonattracting chaotic sadaléhough of

Iqwer panel shows a horizontal cut _along the line0.25, clearly 4 measubeformed by an infinite number of bounded hy-
displaying the fractal nature of the field. perbolic orbits in the mixing region. The stable manifold of
this chaotic saddle contains orbits coming from the inflow

“Taylor hypothesis” in turbulence—can be exploited in ex- region but never escaping from the mixing zone. These

periments or in analysis of geophysical data. points correspond to the singularities of the residence time. If
We conclude with some comments on the range of valida droplet of dye is injected into the mixing region so that it
ity of Eq. (2.9). The Lagrangian descriptidi2.2) and(2.3) in overlaps with the stable manifold, most of it will be advected
which our approach is based is valid only for scales at whiciflownstream in a short time. But part of the dye will remain

diffusion is negligible. Thus there is a minimum admissibleclose to the chaotic saddle for very long times, and continu-

valuel i (k) ~ Vx of or and our calculation should be un- Ously ejected along its unstable manifold. In this way the dye
derstood as giving the gradients only up to this scale fractalraces out the unstable manifold of the chaotic saddle, result-

lity being washed out at smaller scales by the presence ¢fd in fractal pattemns characteristic to open fldi8,14,16.
diffusion. Nevertheless we think that, if diffusion is weak, Permanent chaotic advection is restricted to a fractal set of

the fractal-filamental transition will be seen at scales large?€"© Lebesgue measure, the chaotic saddle. Points close to
than this diffusive scale. For fixedr larger than the diffu- the unstable me}mfold C.)f the chaotic saddle_ have spent a Ipng
} T ) - = time in the mixing region of the flow moving near chaotic
sion length, Eq/(2.8) remains valid until a ime&=<ty(6r)  orhits with a positive Lyapunov exponent. For points pre-
that means that the divergence of the gradients will also satyssely at this unstable manifold, the backwards trajectories
rate at a finite value- (Iq¢r)*™0" ", _ _ [the ones from which the Lyapunov exponent in E2,12
Another limitation to the validity of our equations arises ghoyld be computddemain in the chaotic saddle, thus lead-
from the fact that, for most chaotic flows of physical rel- ing to \,>0. The other trajectories escape from the chaotic
evance, not all the points visited by the fluid particle will be gaqdle in a short time, thus being characterized by a
hyperbolic. The stable and unstable directions in the previougyapunov exponent equal to zero.
discussion become tangent at some points and equation$ Thys open flows provide a rather clear example of strong
such as Eq(2.8) become undefined there. More importantly, space dependence of Lyapunov exponents. According to Eq.
Kor'mogorov-Arnol'd-Moser (KAM) tori will be presentin (212 the Hdder exponent may be different from 1 only on
the system, so that for values ofying on KAM trajectories  the unstable manifold of the chaotic saddle, thus implying
the value of the Lyapunov exponent appearing in €96)  that the transition from smooth to filamental structure now
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FIG. 3. Top: a snapshot of the chemical patt&n formed in
the wake of a cylindefthe black semicircle at the left is half of its
sectior). Mean flow is from left to right. We have used the stream
function given in Ref[15]. b=0.96, and all the stream function
parameter values are the same agli] except the boundary-layer
thickness of the cylinder which here takes the vahe20.0, and
the vorticity strength which is»=35.06 in our calculations. Bot-
tom: a horizontal cut taken along the lige=1.0.

FIG. 4. Top: The absolute value of the gradient of the chemical
field in Fig. 3 along the linex=7.3. The lower figure shows the
escape time for particles along this lime<7.3). This is calculated
by computing the time that every single particle takes to arrive to
the line x=-2.0 (far from the chaotic wake regidonin the
backwards-in-time dynamics.

Since the irregularities now appear only on a set of mea-

S sure zero, one could ask if they can have any significant
only takes place in this fractal set of zero measure. The backe y y S

. C ! ffect on measurable quantities. In order to clarify this, in-
grclaund;:Semlcal field is always smooth, independently of the'stead of the previous characterization of the pointwise
value ofb.

. . . . strength of the singularities by the lder exponent, let us
i To theﬁk theslef_ldle(zjas, (\;ve Otbtg'g numerlcall)fll the (Cj)'smbuinvestigate the scaling of the spatial average of the differ-
lons of chemical Tields advected by an open How. OUr Ve-o,.aqsc  with distancesdr=|dr|. For simplicity, let us as-
locity field is taken from a kinematic model of a time-

7 ) . ) . sume that, on the saddle, there is no distribution in the local
periodic flow behind a cy_llnder,.de_scrlbed[m3]. Th_|s flow infinite-time Lyapunov exponents, i.e., that the advection on
was found to be qualitatively similar to the solution of the

Navier-Stokes equation in the range of the Reynolds numb the chaotic saddle is characterized by a single Lyapunov ex-

) . - . eﬁonent)\o. In this case the partial fractal dimensi@re., the
corresponding to time-periodic vortex seeding. The coNcengiension of intersections of the set with a lirwg the mani-

tration pattern shows irregularities separated by smooth re- :

gions (Fig. 3, obtained withb=0.96). This is more clearly olds of the chaotic saddle 3,17
observed in the longitudinal transect. The relation between _ K
the singular regions and the location of the chaotic saddle D=1- o
can be made patent by comparing the gradient of the field 0

with the spatial dependence of the escape times from thgere « is the escape rate, which is the rate of the exponential
scattering region. In particular, Fig. 4 sh_ows the absolutqjecay (~e ') of the number of fluid elements spending
value of the gradient of the concentration fi¢¥C..(r)| that  ime longer thart in the wake of the cylinder. On a one-

is highly intermittent. It also displays the timi@ the time-  gimensjonal transect of unit length the total number of seg-
reversed dynamigghat fluid particles initially in a line per- - ants of lengthsr is (5r) 1 while the number of segments

pendicular to the mean flow take to escape the region of,niaining parts of the unstable manifdisith partial fractal
chaotic motion. Most of the particles leave the region in &jimension B) is N(Sr) ~sr—2. Thus. according to E
short time, but longer times appear for initial locations close ) (or) ' ' 9 g

to the stable manifoldin the time-reversed dynamicsf the (2.12 .the spatial average oféC., along this line,

chaotic saddle. Clearly, these diverging times are associatédx:“(r’ér)> , €an be written as

with the singularities in the gradient distribution. By increas-

ing the value ob the flow characteristic&rajectories, mani-

folds, escape times, efaemain unchanged, but the singu-

larities in the advected field decrease and finally a smooth

distribution is obtained. where the first term pertains to the singular, while the second
.A ch.em|cal field with the same structure can also be 0by e to the smooth component. In the limit— 0 the domi-

tameo_l in open flow§ w_hose time _dependel(m_ec_i thus th_e nating behavior is

chaoticity of advectionis not restricted to a finite domain,

by restricting the spatial dependence of the chemical sources (8C..(r;6r))~ore, (3.3

to a finite region. This case was investigated in the context of

plankton dynamics ifl11]. with

(3.9

(8C..(1;8r))=(8r)(8r)~O(a8r)PMo

+(60)[(8r) L= (sr)PY(8r), (3.2
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. ~ i b+« b
{=min{1,1+b/N\g— D}=m|n| 1’)\_ (3.9 §q=qao=q)\— (4.9
0 0

showing that ifB < (b/\g) (or b+ x>)\) the average will (We have assumebi<o). In general, the singular spatial
be dominated by the smooth component, but if the fractal"Nomogeneities of the Lyapunov exponent could be under-
dimension of the singular set is large enough they contribut&§t00d by realizing that the finite-time stretching rates, or lo-
to the scaling of 5C..(r;8r)). Note that we are analyzing cal Lyapunov exponent§l2], have.a certain distribution
the smallsr behavior of this last quantitpfter performing arou_nd the most p'robable value. This distribution approaches
the average, and this could give anomalous values to thif'® time-asymptotic fornp12,17:

exponent{. Before taking the average, the scaling is de- P(\, 1) ~ M2~ GOVt 4.5
scribed by the exponent 1 at almost all the points so that this ’ ' :
;sgglsr? atsheb:(\a/ﬁr%%?fc\)/ranlqueedo;l?r?glld:r oixee?j?megtr.\s@:ala\lliire a/}/her_eG()\)_ is a function characteristic to t,he advection dy-
transect of the two-dimensional pattern. For common veloch2Mcs: with the property thaG(Ag) =G'(ro)=0 and

ity fields and transects this will be equivalent to the complet G(;‘);]?){/ \elzvxhegr?e)\n% f\t }:ﬁmgfs_foﬁrot?nizlse aﬁlr:f moe]:aglljere
average over the whole fluid, except in the particular case i yap P : y-long

which the transect is chosen to be completely aligned wit ecomes concentratgd at.thls single valiye as'stated be-
the filaments. ore. The form(4.5) is valid only for hyperbolic systems.

Nonhyperbolicity (i.e., the presence of KAM torican
strongly affect the distribution at small values af but
IV. STRUCTURE FUNCTIONS around\, and for larger values it remains a good approxi-

The strongly intermittent structure of singularities in open™ation. As we shall see later only this region contributes to

flows is an extreme example. There are additional inhomo!heAStrLt‘.Cture. functions ?hf pc()js_lttl\{(te) (i.rder.b q
geneities affecting both the open and the closed flows: al- S 'mi ljncreas%s Tﬁ 'Erg ution ecorr]:et?] morte ?n
though, in the long-time limit the Lyapunov exponent is the MOré peaked arounti,. e (Lebesgug area o € seto
same for almost all trajectories in an ergodic region, devia!mt"':lI conditions with local Lyapunov exponents in a ;mall
tions can persist on fractal sets of measure zero, and as vUétehrV""LIO‘'),‘Jr d)) that exc'luldssr\f d.ec.reases atlong times
saw above such sets can contribute significantly to the globd't @ dominant exponential behavior:

scaling. The origin of these inhomogeneities can be traced —G(\)t

back by analyzing the finite-time distribution of Lyapunov oA\(t)~e o\, 4.6

exponents. This will be done in the following. For a robust howing that onl s of h L
guantitative characterization of the filamental structure, acShowing that only Sets of measure z€ero can have Lyapunov
xponent different from\y in the t—o limit. Such sets,

cessible to measurements, we consider now the scaling pro ; . . )
owever, can still have nonzero fractal dimensions. At finite

erties of the structure functions associated with the chemic . .
field. times, the are#4.6) encloses the final anomalous set, with a

transverse thickness that, due to stretching by the chaotic
advection, decreases likg(t)~e . The number of boxes
S4(r)= (| 8C..(r;61)|, @.1) needed to cover the set of aréa,(t) using boxes of size

(1) is

The gth order structure function is defined as

where( ) represents averaging over different locationand SA, (1)
g is a parametewe will only consider structure functions of N, (1)~ 2*
positive order ¢>0)]. In the absence of any characteristic I5(t)
length over a certain range of scales the structure functions

converges in the infinite-time limit;

~ A =G| (H[GINI=2 (4.7

Sy(8r)~ oré 4.2

()~ ora (4.2) GOV
) ) D(\)=2———. (4.8
characterized by the set of scaling exponefyts A

We also note that some of the scaling exponents are di- ) ) )
rectly related to other characteristic exponents, such as thEhUS, an arbitrary line across the system will be found com-
one characterizing the decay of the Fourier power spectrurposed by subsets of dimensi@(\)=D(\)—1, each one
I'(k)~k™ 7, or the box-counting fractal dimensid; of the  characterized by different values of the Lyapunov expo-
graph of the functiorC.,(x,y) as a function of by simple  nents and in consequence of theltty exponentsa()\)
relations[17]: =min{b/\, 1}.
Now, the scaling exponents in E®.2) can be readily
v={,+1 and Dg=2—{;. (4.3  obtained. The number of segments of séirebelonging to a
subset characterized by Lyapunov exponantscales as
If the Holder exponent of the field has the same value everyN(\)~ &r “°™while the total number of such nonoverlap-
where, given by Eq(2.12 with X=X\, the scaling expo- ping segments scales asdr ~*. Thus, the structure function
nents of the resultingnono-affindield are simply can be written as
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Nmax 5
sq(ar)~f “or2-PM| 5C..(r (M), 8r)| %N 45
min
4
b Amax 35
~f §r2*D(”5rqd)\+f 8r2=PM) srabingy | =

Nmin b < 3

& 25

4.9 5

In the limit 6r —0 the integrals are dominated by a saddle 1.5

point and, after some manipulations, the scaling exponents in 1

Eq. (4.2) are obtained as 05
0 besensniilas

b b+G(\ 22
ngmin[q,q—+2—D()\)] =min[q,q—()].
A A A A

(4.10 FIG. 5. The distribution of local Lyapunov exponents at three
different times, obtained for the closed fld&.13 with T=1.0 and
The right-hand side can be seen as a family of lines in thej=1.2. The long-time mean Lyapunov exponenh js=2.67.
(d,{q) plane labeled by the parameterso that the value of
{q is given by the lower envelope of these lines. Note thaiG(\) functions obtained from histograms corresponding to
the shape oG (\) for A small enough becomes irrelevant for different times coalesce except in the smaltegion, thus
determining , because of the minimum condition. Thus confirming that Eq.(4.5 correctly describes the observed
multifractality, characterized by nonlinearity in tiggdepen-  distribution.
dence of{,, is affected only by the largest stretching rates in  Numerically calculated scaling exponerie., obtained
the flow. Equatior(3.4) is a particular case of E¢4.10 for by direct application of Eq(4.1)], and the family of lines
g=1 and in the approximation of considering a single valuecorresponding to Eq(4.10 based on the histogram of the
of X on the chaotic saddle. local Lyapunov exponents of Fig. 5 are shown in Fig. 7,
According to Eq(4.10 theqth order structure function is where the prediction of the monofractal approximatidg (
dominated by a subset characterized by a Lyapunov expo=qb/\,) is also shown. The monofractal approximation ap-
nent\. Applying the extremum condition to E.10 we  pears to be accurate for smgllThe graph-fractal dimension
obtain an equation fox or the widely used Fourier power spectrum exponent are re-
lated toZ; and ¢, by Egs.(4.3 so that their estimate based

iG()\)| ~ gb+G(Ng) 4.1 on the monofractal description that considers just the bulk
d\ A=hg \q ' value of the Htder exponent can deviate from the actual
values.
which can be substituted into E¢4.10 to obtain theqth In a recent work by Naret al.[18] the power spectrum of
order scaling exponent. a decaying scalar fiel@vith space-dependent decay patas

The existence of a distribution of local Lyapunov expo-been investigated and related to the distribution of local
nents also affects the smooth-filamental transition. As thé.yapunov exponents of the advecting flow. The result for the
Holder exponent is space dependent, the transition does nepectral exponent obtained 18] using an eikonal-type
take place at a uniquely defined valuebofSingularities exist wave packet mod€l19], and taking into account finite dif-
even in a overall smooth regime for points corresponding tdusion, is consistent with our formul@.10 [that forq=2,
backwards trajectories with Lyapunov exponents larger than

b. These points occupy fractal sets of dimendibf\) given 0.1 T T T T T
by EQ. (4.8) with b<A <\« Thus, the fractal dimension f E:}gg:g;
of the singular set is max,D(\)=D(b), indicating that the 008 F 4+ t=200.0% /|
set becomes space-fillifgee Eq.4.8)] asb approache®. + +
=\o. Therefore, the bulk transition, a macroscopic effect ~ 006} : F
that affects the overall appearance of the chemical field, o
takes place in a closed flow at the same critical vabye
=\, as in a flow without any spreading in the Lyapunov 0.04 I i
spectrum.

We note that Eq(4.10 could also be obtained more di- 0.02 |- .
rectly from the averaging of Eq2.11) over different values
of N\ using the probability distributior(4.5) of the local 0

2 22 24 26 28 3 32

Lyapunov exponent. In that case we would not have the geo- N

metrical interpretation in terms of fractal dimensiddé\).

We have analyzed numerically the chemical decay under G, 6. The functionG(\), obtained from the distributions in
advection by the closed flo2.13 to check the theoretical Fig. 5 and Eq(4.5). Collapse of data for the three times into the
predictions above. Numerically computed histograms of the&ame curve confirms the validity of E¢.5). The dotted line is a
local Lyapunov exponents are shown in Fig. 5 and the corparabolic fit[0.4(\ —2.67)] that provides a good approximation
respondingG(\) functions are represented in Fig. 6. The near the minimum.
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T T T T T
12 L _ gb+G(Amay
‘ q - (4.15
1+ -~
08 ’/"' that differs from theq'/? behavior of Eq(4.14) for largeq.
F 06 | o - V. SUMMARY AND DISCUSSION
04 F - Multifractality of advected fields generated by chaotic ad-
vection has been observed previously in the case of passive
02 . advection with no chemical activityb&0) [21]. It was
o shown that the measure defined by the gradients of the ad-
0 0 05 1 15 2 25 3 35 vected scalar field has multifractal properties and its spectra

of dimensiond, has been related to the distribution of local
Lyapunov exponent§21]. This multifractality, however,
FIG. 7. The scaling exponenis for the situation of Figs. 5 and does not affect the slope of the power spectf@2,23 [the
6 and withb=1.0. Thick line: the monofractal approximatiaf so-called Batchelor spectruri(k)~k 1] or scaling expo-
=qb/\,. Thin lines: the curveg,=q and;=[gb+G(\)]/\, for nents of the structure functiong,=0 for all g, as can be
different values of\; the numerical values o&(\) are obtained seen from Eq(4.10 by settingb=0]. The effect of multi-
from Fig. 6. According to Eq(4.10, the actual values of the scal- fractality on the power spectrum has a character transient in
ing exponents are given by the lower envelope of this set of curvesime, moving towards smaller and smaller scales and finally
This is confirmed by the numerically determined values {gf disappearing when reaching the diffusive end of the spec-
(crossep Dashed line: the approximatid#.14). trum. In the stationary state only the diffusive cutoff of the
] ] power spectrum is affectd@4] that can still be important for
and with Eq.(4.3) gives the value of the spectral sldmeb-  the interpretation of some experimental results. By compar-
tained in the nondiffusive limit. ing these results for the conserved case with the ones pre-
The functionG(\) is characteristic to the advecting flow. sented here for the decaying scalar we can conclude that,
Let us now consider a special case where we approximatgithough the origin of the multifractality is the same in both
G(\) by a parabola situations—the nonuniformity of the local Lyapunov
exponents—in the presence of chemical activity this has
stronger consequencegon-Batchelor power spectra and
2A (4.12 anomalous scaling
We have presented a simple mechanism that can generate

This can be thought of as the first term in a Taylor expansionultifractal (or more precisely, multiaffinedistributions of
around \o, Which is a good approximation to obtain the advected chemical fields. The main ingredients are chaotic

smallq scaling exponents. In this case Ed.11) can be advection and linear decay of the advected quantity in the

q

_ 2
S0 AN

solved explicitly: presence of nonhomoge_neous sources. E;sentially thg same
mechanisms were considered [ig0], but with stochastic
Ng= (No)2+2qDbA. (4.13 time dependencies both in the flow as in the chemical

sources, considering advection by the spatially smooth limit
of a Kraichnan-like model generally intended to represent
turbulent flows. Our results stress that anomalous scaling
> may appear in simple regulde.g., time periodic laminar
(7‘0) 29b_ o flows where stochasticit just f
La=\ [[20) 242 To (4.14) _ _ y appears just as a conseguence o
d A A A the low-dimensional deterministic chaos generated by the
Lagrangian advection dynamics. In addition we have pro-
The above relation has been obtained recently by Chertrided numerical evidence for the theoretical predictions. It is
kov in [20], where the problem of advection of decaying interesting to mention that the extension of Chertkov’s work
substances was considered in a probabilistic setup, using stts nonlinear chemistry25] finds results very similar to the
chastic chemical sources and a random velocity field that iinear decay, simply substituting the decay rate by an aver-
spatially smooth but uncorrelated in time. The distribution ofage rate. This is also the result we find within our determin-
stretching rates was assumed to be Gaussian as i@H®&.  istic modelg[8,11], being the rate of the chemical Lyapunov
This assumption could be realistic for deterministic dynami-exponent.
cal systems in many cases, and could give good estimates for Chaotic advection is characteristic of most time-
the scaling exponents for small For higher-order moments, dependent flows. The linear decay of the advected substance
however, higher-order terms in the expansionGi{fx) can is in fact just the simplest prototype of a family of chemical
become important. Moreover, the possible values @buld  reaction schemes, where the local dynamics converges to-
be limited by a finite maximum valug .., €.9., in time-  wards a fixed point of the chemical rate equations. The local
periodic flows, where the finite time-Lyapunov exponentsdynamics can also be generated by nonchemical processes,
cannot have arbitrarily large values. This implies that thee.g., by biological population dynamics in the case of plank-
scaling exponents fay>q*, where\ g« =\ a4, Should dis-  ton advectior{11,29, or by the relaxation of the sea-surface
play a simple linear dependence temperature towards the local atmospheric vglL@. Inho-

This gives the scaling exponents
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mogeneities of the chemical sources or of other parametetbe interpretation of geophysical data in order to gain quan-
of the local dynamics arise naturally in these contexts so thditative information about the processes involved. Laboratory
we expect our results to be of relevance in biological andexperiments seem also to be feasible.

geophysical settings. In fact, fractality and multifractality
have been already observed in these contexts, for example in
the distribution of stratospheric chemicale.g., ozong
[26,27], and in sea-surface temperature and phytoplankton
populations[28]. The structure of these fields has been Helpful discussions with Peter Haynes and Oreste Piro are
sometimes associated with turbulence of the advecting flongratefully acknowledged. This work was supported by
We think that the simple mechanism, able to generate comcICYT (Spain, Project No. MAR98-0840and DGICYT
plex multifractal distributions, investigated in this paper can(Spain, Project No. PB94-11%7Z.N. was supported by a
be at the origin of some of the structures observed in geoEuropean Science Foundation/TA®ransport Processes in
physical flows. Further work in this direction could help on the Atmosphere and the Oceafsxchange Grant.
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