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Multifractal structure of chaotically advected chemical fields
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The structure of the concentration field of a decaying substance produced by chemical sources and advected
by a smooth incompressible two-dimensional flow is investigated. We focus our attention on the nonunifor-
mities of the Ho¨lder exponent of the resulting filamental chemical field. They appear most evidently in the case
of open flows where irregularities of the field exhibit strong spatial intermittency as they are restricted to a
fractal manifold. Nonuniformities of the Ho¨lder exponent of the chemical field in closed flows appears as a
consequence of the nonuniform stretching of the fluid elements. We study how this affects the scaling expo-
nents of the structure functions, displaying anomalous scaling, and relate the scaling exponents to the distri-
bution of local Lyapunov exponents of the advection dynamics. Theoretical predictions are compared with
numerical experiments.

PACS number~s!: 47.52.1j, 05.45.2a, 47.70.Fw, 47.53.1n
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I. INTRODUCTION

Mixing in fluids plays an important role in nature an
technology with implications in areas ranging from geoph
ics to chemical engineering@1#. The phenomenon of chaoti
advection—intensively investigated during the last decad
provides a basic mechanism for mixing in laminar flows@2#.
Briefly stated, chaotic advection refers to the situation
which fluid elements in a nonturbulent flow follow chaot
trajectories. Advection by simple time-dependent tw
dimensional flows falls generically into this category. St
ring by chaotic motion, with its characteristic stretching a
folding of material elements, is able to bring distant parts
the fluid into intimate contact and thus greatly enhances m
ing by molecular diffusion acting at small scales.

Mixing efficiency becomes especially important when t
substances advected by the flow are not inert but have s
kind of activity. By ‘‘activity’’ we mean that some time evo
lution is occurring with the concentrations inside advec
fluid elements ~produced by chemical reactions, for e
ample!. For definiteness we will use terms such as chem
fields and chemical reactions, but biological processes,
curring for example when the advected substance is liv
plankton, can be described formally in the same way. T
interaction between the stirring process and the chemica
tivity can result in complex patterns for the spatial distrib
tion of the chemical fields, which in turn greatly affect th
chemical processes@3,4#. In addition to the impact on its
own chemical dynamics, the spatial inhomogeneities m
have an important effect on other dynamical processes
curring in the fluid~for example in the behavior of predato
seeking the advected plankton@5#!. An understanding of the
structure of these spatial patterns is thus valuable.

Previous theoretical work concentrated on the tempo
evolution of the total amount of chemical products in spec
reactions such asA1B→2B @6#. In @7# the same autocata
lytic reaction and the collisional rectionA1B→2C were
studied in open flows. In a previous paper@8# some of us
considered a class of chemical dynamics characterized
PRE 611063-651X/2000/61~4!/3857~10!/$15.00
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negative Lyapunov exponent in the presence of~nonhomo-
geneous! chemical sources. Under such chemical proces
reactant concentrations present a tendency to relax towa
local-equilibrium concentration~the fixed point of the local
chemical dynamics!. This tendency is disrupted by the ad
vection process, which forces fluid elements to visit plac
with different local-equilibrium states. Depending on th
relative strength of chaotic advection and relaxation the
sulting concentration distribution can be smooth~differen-
tiable! or exhibits characteristic filamental patterns that a
nowhere differentiable except in the direction of filamen
aligned with the unstable foliation induced in the fluid by t
chaotic dynamics. The mechanism for the appearance
these singular filaments is similar to the one producing s
gular invariant measures in dynamical systems@9#, although
here it is affected by the presence of the chemical dynam
stretching by the flow homogenizes the pattern along
stable directions, whereas small-scale variance, casca
down from larger scales, accumulates along the stable di
tions, producing diverging gradients.

The strength of the singularities of the concentration fi
C(r ) can be characterized by a Ho¨lder exponenta

udC~r0 ;dr !u[uC~r01dr !2C~r0!u;udr ua, udr u→0.
~1.1!

If the field is smooth~differentiable! at r0 , a51, while for
an irregular rough~e.g., filamental! structure 0,a,1. In @8#
we focused on the existence of a smooth-filamental transi
as time-scales of the system are varied, and also obtaine
most probable~bulk! value of the Ho¨lder exponent. Note,
however, that the Ho¨lder exponent defined by~1.1! is a local
characteristic of the field, whose value may depend on
positionr0. In this paper we concentrate on such nonunif
mities of the filamental chemical field and study how th
affects scaling properties of quantities involving spatial a
erages, which are the more convenient quantities to be
served in experiments.
3857 © 2000 The American Physical Society
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In Sec. II we review the results presented in@8#, namely
the smooth-filamental transition and the dominant value
the Hölder exponent in closed flows. Then we consider
same problem for the case of mixing by open flows~Sec.
III !. In this case the necessity of a multifractal descript
becomes manifest, and this motivates the development
quantitative characterization of the filamental structures
terms of structure functions. This is presented in Sec.
Scaling exponents appear to be related to the distributio
local Lyapunov exponents. We conclude the paper wit
summary and discussion.

II. LOCAL PROPERTIES OF THE CHEMICAL FIELD
AND THE SMOOTH-FILAMENTAL TRANSITION

We consider the flow as externally prescribed, thus
glecting any back influence of the chemical dynamics i
the hydrodynamics~the advected substances are chemica
active but hydrodynamically passive!. In this context, the
general continuum description of chemical reactions in
drodynamic flows is given by sets of reaction-advectio
diffusion equations. They involve, in general, multiple com
ponents and nonlinear reaction terms. Reference@8#
considered the situation in which the chemical kinetics
stable, i.e., there is a local-equilibrium state at each spa
position, determined by the sources and the reaction te
so that concentrations of fluid particles visiting that positi
tend to relax to the local-equilibrium value. Mathematica
this corresponds to the negativity of the Lyapunov expone
associated with the chemical dynamical subsystem. It
shown in @8# that arbitrary chemical dynamics in this cla
can be substituted by linear relaxation towards local equi
rium at a rate given by the largest~least negative! chemical
Lyapunov exponent. Within this restriction, the multiplici
of components is not essential since, except for special ty
of coupling, linearization leads to simple relations betwe
the different fields.

Because of the above remarks, and with the aim of ke
ing the mathematics as simple as possible, we will rest
our considerations in this paper to the simplest chemical e
lution: linear decay, at a rateb, of a single advected sub
stance. A space-dependent source of the substance will
be included, to maintain a nontrivial concentration field
long times. This chemical dynamics can be considered ei
as an approximation to more complex chemical or biologi
evolutions, with maximum chemical Lyapunov expone
2b, or as a description of simple specific processes suc
spontaneous decomposition of unstable radicals, decay
radioactive substance, or relaxation of sea-surface temp
ture towards atmospheric values@10#. The validity of our
ideas for nonlinear multicomponent situations has b
checked for a plankton model in@11#.

The concentration fieldC(r ,t), when advected by a in
compressible velocity fieldv(r ,t) is governed by the equa
tion

]C

]t
1v~r ,t !•¹C5S~r !2bC1k¹2C, ~2.1!

wherek is the diffusion coefficient,b is the decay rate in-
troduced above, andS(r ) is the concentration input from
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chemical sources~negative values representing sinks!. We
restrict our study to the case in which the incompressi
velocity field is two-dimensional, smooth, and nonturbule
Chaotic advection is obtained generically if a simple tim
dependence, for example periodic, is included inv(r ,t). We
assume that diffusion is weak and transport is dominated
advection. Thus one expects that the distribution on sc
larger than a certain diffusive scale is not affected by dif
sion. Therefore we consider the limiting nondiffusive ca
k50. In this limit the above problem can be described in
Lagrangian picture by an ensemble of ordinary differen
equations

dr̂

dt
5v~ r̂ ,t !, ~2.2!

dĈ

dt
5S@ r̂ ~ t !#2bĈ, ~2.3!

where the solution of the first equation gives the trajectory
a fluid parcel,r̂ (t), while the second one describes the L
grangian chemical dynamics in this fluid element:Ĉ(t)
[C@r5 r̂ (t),t#.

To obtain the value of the chemical field at a selec
point r̄ at time t̄ one needs to know the previous history
this fluid element, that is the trajectoryr̂ (t) (0<t< t̄ ) with
the propertyr̂ ( t̄ )5 r̄ . This can be obtained by the integratio
of Eq. ~2.2! backwards in time. Oncer̂ (t) has been obtained
the solution of Eq.~2.3! is

C~ r̄ , t̄ !5C@ r̂ ~0!,0#e2b t̄1E
0

t̄
S@ r̂ ~ t !#e2b( t̄ 2t)dt. ~2.4!

One can obtain the difference at timet̄ of the values of
the chemical field at two different pointsr̄ and r̄1 d̄r sepa-
rated by a small distanced̄r in terms of the difference
C@ r̂ (t)1 d̂r (t),t#2C@ r̂ (t),t#[dC@ r̂ (t),t; d̂r (t)# for 0<t

< t̄ , namely,

dC~ r̄ , t̄ ; d̄r !5dC@ r̂ ~0!,0;d̂r ~0!#e2b t̄

1E
0

t̄
dS@ r̂ ~ t !; d̂r ~ t !#e2b( t̄ 2t)dt, ~2.5!

where d̂r (t) (0<t< t̄ ) is the time-dependent distance b
tween the two trajectories that end atr̄ and r̄1 d̄r at time t̄ ,
anddS, in analogy withdC, is the difference of the sourc
term at pointsr̂ (t) and r̂ (t)1 d̂r (t).

Thus we have expressed the behavior of an Eule
quantity dC( r̄ , t̄ ; d̄r ) in terms of Lagrangian quantities, i
particular of d̂r (t). Further analysis of Eq.~2.5! requires
specification of the behavior ofd̂r . The signature of chaotic
advection is the exponentially growing behavior of th
quantity at long times. More precise statements need a
tional assumptions on the character of the flow. The simp
framework is obtained if we restrict our attention to initi
conditionsr̂ (0) in an invarianthyperbolicset@9#. In this case
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one can identify at each point two directions, the one
which the flow iscontractingc(r ) and theexpandingdirec-
tion e(r ). They depend continuously on position~for time
dependent flows there is an additional explicit tim
dependence that we do not write down to simplify the no
tion!. Sincec ande form at each point a vector basis whic
is not orthonormal, it is convenient to introduce also the d
basis (c†,e†) at each point. Chaotic advection manifests its
in the fact that for any initial separationsd̂r (0) the long-time
behavior of d̂r is ud̂r (t)u;ue@ r̂ (0)#†

• d̂r (0)uelt ~for t.0),
wherel is the positive Lyapunov exponent along the traje
tory ande@ r̂ (0)#†

• d̂r (0) gives the component of the initia
separation along the expanding direction. At long times,
direction of d̂r (t) tends to become aligned with the expan
ing direction of the flow atr̂ (t), e@ r̂ (t)#. However, if the
initial separation is aligned with the contracting direction
the initial point,l should be substituted byl8, the contrac-
tive Lyapunov exponent, ande† by c†. For incompressible
flows one hasl852l. The Lyapunov exponentl of the
trajectory depends in principle both on the initial positi
and on the duration of the trajectory,l5l„r̂ (0),t…. For clar-
ity of the formulas, we suppress in our notation these dep
dencies. In the limit of infinitely long times, an asymptot
valuel„r̂ (0),`…[l„r̂ (0)… is attained. In the rest of this sec
tion we assume that this limit is reached fast enough so
we can neglect the time dependence onl. The space~initial
condition! dependence of the infinite-time Lyapunov exp
nentl ~for hyperbolic systems! is such that almost all initia
conditions lead to the same valuel0, the most probable
Lyapunov exponent, whereas deviations may possibly oc
in sets of zero measure@17#.

In order to analyze Eq.~2.5! one has to consider the bac
wards evolution. In this case typical solutions behave, fot
,0 and large, as

ud̂r ~ t !u;uc@ r̂ ~0!#†
• d̂r ~0!uel8t5uc@ r̂ ~0!#†

• d̂r ~0!ue2lt

so that, also in this backwards dynamics, close initial con
tions diverge, and the difference will tend to become align
with the most expanding direction of the backwards flo
„the contracting of the forward flow,c@ r̂ (t)#…. Again, there is
a particular direction for the orientation of the initial cond
tion ~the contracting one in the backwards flow which is t
expanding one in the forward dynamics! for which 2l

should be replaced byl. In Eq. ~2.5!, d̂r is obtained back-
wards starting fromd̄r at t5 t̄ . In this case

d̂r ~ t !'c~ r̄ !†
• d̄rel( t̄ 2t)c@ r̂ ~ t !#, ts<t< t̄ . ~2.6!

The exponential separation~2.6! holds only while the dis-
tanced̂r (t) is not too large, and saturates when approach
the size of the system or some characteristic cohere
length of the velocity field. The time at which this happe
definests , a saturation time. We assume that both the vel
ity field and the sourceS(r ) have only large scale structure
such that their corresponding coherence lengths are com
rable to the system size,that we take as the unit of lengt

scales. Thus, the saturation time is given byts5 t̄

1l21ln ud̄r u.
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For smalld̄r , Eq. ~2.5! can be written as

dC~ r̄ , t̄ ; d̄r !'dC@ r̂ ~0!,0;d̂r ~0!#e2b t̄

1E
0

ts
dS@ r̂ ~ t !; d̂r ~ t !#e2b( t̄ 2t)dt

1E
ts

t̄
d̂r ~ t !•“S@ r̂ ~ t !#e2b( t̄ 2t)dt ~2.7!

~if ts.0). We will not need to specify the dependence ofdS

on d̂r for times previous tots , as long asdS remains
bounded. Substitution of Eq.~2.6! in the second integra
leads to

dC~ r̄ , t̄ ; d̄r !'dC@ r̂ ~0!,0;d̂r ~0!#e2b t̄

1E
0

ts
dS@ r̂ ~ t !; d̂r ~ t !#e2b( t̄ 2t)dt

1 d̄r•c~ r̄ !†E
ts

t̄
c@ r̂ ~ t !#•“S@ r̂ ~ t !#e(l2b)( t̄ 2t)dt.

~2.8!

Taking the limit d̄r→0 ~for a finite t̄ ) leads tots,0.
Thus the first integral disappears and the first term can
linearized. By writingd̄r5n̄ud̄r u so thatn̄ is a unit vector,
one finds the directional derivative along the direction ofn̄
as

n̄•“C~ r̄ , t̄ !'n̄•c~ r̄ !†c@ r̂ ~0!#•“C@ r̂ ~0!,0#e(l2b) t̄

1n̄•c~ r̄ !†E
0

t̄
c@ r̂ ~ t !#•“S@ r̂ ~ t !#e(l2b)( t̄ 2t)dt.

~2.9!

If l,b this derivative remains finite in thet̄→` limit
and the asymptotic fieldC`( r̄ )[C(r , t̄→`) is smooth~dif-
ferentiable!. Otherwise the derivatives ofC diverge as
;e(l2b) t̄ leading to a nowhere-differentiable irregula
asymptotic field. The exception again is the expanding dir
tion of the forward flow: whend̄r points along that direction
one should substitute in Eq.~2.9! l and c by 2l and e,
respectively. This directional derivative is always finit
Thus, there is at each point a direction along whichC` is
smooth. It should be noted that, because of the explicit t
dependence of the vectorsc and e referred to before, the
limiting distribution C` will not be a steady field, but one
following the time dependence of the stable and unsta
directions. For time-periodic flowsv(r ,t), C` will also be
time periodic. Its singular characteristics, however, do
change in time.

In order to characterize the singular asymptotic field
take the limit t̄→` for fixed finite d̄r in Eq. ~2.8!,
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dC`~ r̄ ; d̄r !'E
ud̄r u21/l

`

dS@ r̂ ~x!; d̂r ~x!#x2b21dx1ud̄r un̄•c~ r̄ !†

3E
1

ud̄r u21/l

c@ r̂ ~x!#“S@ r̂ ~x!#xl2b21dx, ~2.10!

where we used the change of variableset̄ 2t→x. If b.l one
finds for the dominant term in theud̄r u→0 limit the simple
scalingdC`;ud̄r u, but whenb,l

dC`~ r̄ ; d̄r !;ud̄r ub/l. ~2.11!

According to Eq.~1.1! the value of the Ho¨lder exponent is

a5minH b

l
,1J . ~2.12!

This general relation expresses the local~space-dependent!
Hölder exponent in terms of the local infinite-time Lyapun
exponent and the chemical decay rate. For hyperbolic
tems this Lyapunov exponent has the valuel0 everywhere
but in a set of zero measure.

The smooth-filamental transition can best be underst
by neglecting the fluctuations in the Lyapunov spectru
Hence we study first~in the remainder of this section! the
consequences of Eq.~2.12! for l5l0. In Sec. III we will
consider open flows. For such systems, it becomes evi
that the resulting chemical field cannot be characterized b
single Hölder exponent. In Sec. IV a structure-function fo
malism will be presented as a convenient way to characte
this dispersion in the values of the local Ho¨lder exponent.

Coming back to Eq.~2.12! with l5l0, for b.l0 the
asymptotic chemical field is smooth (a05min$b/l0,1%51).
But if b,l0, the asymptotic chemical field becomes an
regular fractal object. Since there is always an orientation
d̄r along whicha051, the object has afilamentalstructure,
that is, irregular in all directions but one where it is smoo
The graph of the field along a one-dimensional cut
transect, or the contours of constant concentration are
fractals, as they are two-dimensional sections of the wh
C`(r ) embedded in a three-dimensional space. More p
cisely, the one-dimensional transect~along the directionx)
of the field is a self-affine function with its graph embedd
in an inherently anisotropic space (C,x) with the axis repre-
senting different physical quantities. Contours of const
concentrations, however, are self-similar fractal sets of
two-dimensional physical space (x,y). The fractal dimension
of both the graph of the transects and of the isolines is gi
by D522a0.

In Figs. 1 and 2 we present snapshots of the asympt
field C` evolving according to~2.2! and ~2.3!. For the flow
we take a simple time-periodic velocity field defined in t
unit square with periodic boundary conditions by

vx~x,y,t !52
2U

T
QS T

2
2t modTD cos~2py!,

vy~x,y,t !52
2U

T
QS t modT2

T

2D cos~2px!, ~2.13!
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whereQ(x) is the Heaviside step function. In our simula
tionsU51.2, which produces a flow with a single connect
chaotic region in the advection dynamics. The value of
numerically obtained Lyapunov exponent isl0'2.67/T.

Backward trajectories with initial coordinates on a recta
gular grid were calculated and used to obtain the chem
field at each point by using Eq.~2.4! forward in time with the
source termS(x,y)511sin(2px)sin(2py). The values of the
parameters used in Fig. 1 areT51.0 andb54.0, for which
the Lyapunov exponent isl052.67,b. A smooth pattern is
seen, in agreement with our theoretical arguments. In Fig
the parameters areT51.0 andb50.1, so thatl0.b and a
filamental pattern is obtained.

The smooth-fractal transition also appears in the tim
dependence of the concentration measured at a fixed poi
space. This can be shown by a similar analysis for the
ference

dC~r ,t;dt ![C~r ,t1dt !2C~r ,t ! ~2.14!

instead of the spatial difference discussed above. Ifb,l0
the signalC(r ,t) becomes nondifferentiable in time and ca
be characterized by the same Ho¨lder exponentb/l0. The fact
that scaling properties of the temporal signal and that of
spatial structure are the same—analogously to the so-ca

FIG. 1. Top: a snapshot of the chemical concentrationC` ob-
tained in the flow~2.13! for b54.0 andl052.67, so that a smooth
distribution is obtained. Bottom: a horizontal cut along the liney
50.25.
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‘‘Taylor hypothesis’’ in turbulence—can be exploited in e
periments or in analysis of geophysical data.

We conclude with some comments on the range of va
ity of Eq. ~2.9!. The Lagrangian description~2.2! and~2.3! in
which our approach is based is valid only for scales at wh
diffusion is negligible. Thus there is a minimum admissib
value l di f f(k);Ak of d̄r and our calculation should be un
derstood as giving the gradients only up to this scale, fra
lity being washed out at smaller scales by the presenc
diffusion. Nevertheless we think that, if diffusion is wea
the fractal-filamental transition will be seen at scales lar
than this diffusive scale. For fixedd̄r larger than the diffu-
sion length, Eq.~2.8! remains valid until a timet̄ &ts( d̄r )
that means that the divergence of the gradients will also s
rate at a finite value;( l di f f)

b/l021.
Another limitation to the validity of our equations arise

from the fact that, for most chaotic flows of physical re
evance, not all the points visited by the fluid particle will b
hyperbolic. The stable and unstable directions in the previ
discussion become tangent at some points and equa
such as Eq.~2.8! become undefined there. More important
Kol’mogorov-Arnol’d-Moser~KAM ! tori will be present in
the system, so that for values ofr̄ lying on KAM trajectories
the value of the Lyapunov exponent appearing in Eq.~2.6!

FIG. 2. Top: a snapshot of the chemical concentrationC` for
b50.1 andl052.67, so that a filamental structure is obtained. T
lower panel shows a horizontal cut along the liney50.25, clearly
displaying the fractal nature of the field.
-

h

a-
of

r

u-

s
ns

will not be positive but zero. Another effect of the KAM tor
will be to partition space into ergodic regions. Each regi
will be characterized by a different value ofl0, and there is
the possibility of observing different morphologies in th
different regions. For the values of parameters used in F
1 and 2, KAM tori occupy a very small and practically un
observable portion of space, so that the filamental pat
appears to be well described by the same Ho¨lder exponent
nearly everywhere. However, an example is given in@8# in
which filamental and smooth regions coexist separated
KAM tori.

III. OPEN FLOWS

Let us now consider again the problem~2.2! and ~2.3!
with a velocity field corresponding to an open flow who
time dependence is restricted to a finite region~mixing re-
gion!, with asymptotically steady inflow and outflow region
A prototype of this flow structure is a stream passing arou
a cylindrical body. If the inflow velocity is high enough vor
tices formed in the wake of the cylinder make the flow tim
dependent in this region, while the flow remains steady
front of the cylinder or in the far downstream region. W
assume again that the flow is nonturbulent, so that the ve
ity field is spatially smooth.

Passive advection in such open flows was found to b
nice example of chaotic scattering@13,14#. Advected par-
ticles ~or fluid elements! enter the unsteady region, underg
transient chaotic motion@15#, and finally escape and mov
away downstream on simple orbits. The time spent in
mixing region, however, depends strongly on the initial c
ordinates, with singularities on a fractal set corresponding
particles trapped forever in the mixing region. This is due
the existence of a nonattracting chaotic saddle~although of
zero measure! formed by an infinite number of bounded hy
perbolic orbits in the mixing region. The stable manifold
this chaotic saddle contains orbits coming from the inflo
region but never escaping from the mixing zone. The
points correspond to the singularities of the residence time
a droplet of dye is injected into the mixing region so that
overlaps with the stable manifold, most of it will be advect
downstream in a short time. But part of the dye will rema
close to the chaotic saddle for very long times, and conti
ously ejected along its unstable manifold. In this way the d
traces out the unstable manifold of the chaotic saddle, res
ing in fractal patterns characteristic to open flows@13,14,16#.
Permanent chaotic advection is restricted to a fractal se
zero Lebesgue measure, the chaotic saddle. Points clo
the unstable manifold of the chaotic saddle have spent a
time in the mixing region of the flow moving near chaot
orbits with a positive Lyapunov exponent. For points pr
cisely at this unstable manifold, the backwards trajector
@the ones from which the Lyapunov exponent in Eq.~2.12!
should be computed# remain in the chaotic saddle, thus lea
ing to l0.0. The other trajectories escape from the chao
saddle in a short time, thus being characterized by
Lyapunov exponent equal to zero.

Thus open flows provide a rather clear example of stro
space dependence of Lyapunov exponents. According to
~2.12!, the Hölder exponent may be different from 1 only o
the unstable manifold of the chaotic saddle, thus imply
that the transition from smooth to filamental structure n
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only takes place in this fractal set of zero measure. The ba
ground chemical field is always smooth, independently of
value ofb.

To check these ideas, we obtain numerically the distri
tions of chemical fields advected by an open flow. Our
locity field is taken from a kinematic model of a time
periodic flow behind a cylinder, described in@13#. This flow
was found to be qualitatively similar to the solution of th
Navier-Stokes equation in the range of the Reynolds num
corresponding to time-periodic vortex seeding. The conc
tration pattern shows irregularities separated by smooth
gions ~Fig. 3, obtained withb50.96). This is more clearly
observed in the longitudinal transect. The relation betw
the singular regions and the location of the chaotic sad
can be made patent by comparing the gradient of the fi
with the spatial dependence of the escape times from
scattering region. In particular, Fig. 4 shows the absol
value of the gradient of the concentration fieldu¹C`(r )u that
is highly intermittent. It also displays the time~in the time-
reversed dynamics! that fluid particles initially in a line per-
pendicular to the mean flow take to escape the region
chaotic motion. Most of the particles leave the region in
short time, but longer times appear for initial locations clo
to the stable manifold~in the time-reversed dynamics! of the
chaotic saddle. Clearly, these diverging times are associ
with the singularities in the gradient distribution. By increa
ing the value ofb the flow characteristics~trajectories, mani-
folds, escape times, etc.! remain unchanged, but the sing
larities in the advected field decrease and finally a smo
distribution is obtained.

A chemical field with the same structure can also be
tained in open flows whose time dependence~and thus the
chaoticity of advection! is not restricted to a finite domain
by restricting the spatial dependence of the chemical sou
to a finite region. This case was investigated in the contex
plankton dynamics in@11#.

FIG. 3. Top: a snapshot of the chemical patternC` formed in
the wake of a cylinder~the black semicircle at the left is half of it
section!. Mean flow is from left to right. We have used the strea
function given in Ref.@15#. b50.96, and all the stream functio
parameter values are the same as in@15# except the boundary-laye
thickness of the cylinder which here takes the valuea520.0, and
the vorticity strength which isv535.06 in our calculations. Bot
tom: a horizontal cut taken along the liney51.0.
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Since the irregularities now appear only on a set of m
sure zero, one could ask if they can have any signific
effect on measurable quantities. In order to clarify this,
stead of the previous characterization of the pointw
strength of the singularities by the Ho¨lder exponent, let us
investigate the scaling of the spatial average of the diff
encesdC` with distancedr[udr u. For simplicity, let us as-
sume that, on the saddle, there is no distribution in the lo
infinite-time Lyapunov exponents, i.e., that the advection
the chaotic saddle is characterized by a single Lyapunov
ponentl0. In this case the partial fractal dimension~i.e., the
dimension of intersections of the set with a line! of the mani-
folds of the chaotic saddle is@13,17#

D̃512
k

l0
. ~3.1!

Herek is the escape rate, which is the rate of the exponen
decay (;e2kt) of the number of fluid elements spendin
time longer thant in the wake of the cylinder. On a one
dimensional transect of unit length the total number of s
ments of lengthdr is (dr )21 while the number of segment
containing parts of the unstable manifold~with partial fractal
dimension D̃) is N(dr );dr 2D̃. Thus, according to Eq
~2.12! the spatial average ofdC` along this line,
^dC`(r ;dr )&, can be written as

^dC`~r ;dr !&5~dr !~dr !2D̃~dr !b/l0

1~dr !@~dr !212~dr !2D̃#~dr !, ~3.2!

where the first term pertains to the singular, while the sec
one to the smooth component. In the limitdr→0 the domi-
nating behavior is

^dC`~r ;dr !&;dr z, ~3.3!

with

FIG. 4. Top: The absolute value of the gradient of the chem
field in Fig. 3 along the linex57.3. The lower figure shows the
escape time for particles along this line (x57.3). This is calculated
by computing the time that every single particle takes to arrive
the line x522.0 ~far from the chaotic wake region! in the
backwards-in-time dynamics.
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z5min $1,11b/l02D̃%5minH 1,
b1k

l0
J ~3.4!

showing that ifD̃,(b/l0) ~or b1k.l0) the average will
be dominated by the smooth component, but if the frac
dimension of the singular set is large enough they contrib
to the scaling of̂ dC`(r ;dr )&. Note that we are analyzing
the small-dr behavior of this last quantityafter performing
the average, and this could give anomalous values to
exponentz. Before taking the average, the scaling is d
scribed by the exponent 1 at almost all the points so that
is also the average value of the Ho¨lder exponent. The aver
age has been performed along a one-dimensional line
transect of the two-dimensional pattern. For common vel
ity fields and transects this will be equivalent to the compl
average over the whole fluid, except in the particular cas
which the transect is chosen to be completely aligned w
the filaments.

IV. STRUCTURE FUNCTIONS

The strongly intermittent structure of singularities in op
flows is an extreme example. There are additional inhom
geneities affecting both the open and the closed flows:
though, in the long-time limit the Lyapunov exponent is t
same for almost all trajectories in an ergodic region, dev
tions can persist on fractal sets of measure zero, and a
saw above such sets can contribute significantly to the glo
scaling. The origin of these inhomogeneities can be tra
back by analyzing the finite-time distribution of Lyapuno
exponents. This will be done in the following. For a robu
quantitative characterization of the filamental structure,
cessible to measurements, we consider now the scaling p
erties of the structure functions associated with the chem
field.

The qth order structure function is defined as

Sq~dr !5^udC`~r ;dr !uq&, ~4.1!

where^ & represents averaging over different locationsr , and
q is a parameter@we will only consider structure functions o
positive order (q.0)]. In the absence of any characterist
length over a certain range of scales the structure funct
are expected to exhibit, asdr→0, a power-law dependenc

Sq~dr !;dr zq ~4.2!

characterized by the set of scaling exponentszq .
We also note that some of the scaling exponents are

rectly related to other characteristic exponents, such as
one characterizing the decay of the Fourier power spect
G(k);k2g, or the box-counting fractal dimensionDG of the
graph of the functionC`(x,y) as a function ofx by simple
relations@17#:

g5z211 and DG522z1 . ~4.3!

If the Hölder exponent of the field has the same value eve
where, given by Eq.~2.12! with l5l0, the scaling expo-
nents of the resultingmono-affinefield are simply
l
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zq5qa05q
b

l0
~4.4!

~we have assumedb,l0). In general, the singular spatia
inhomogeneities of the Lyapunov exponent could be und
stood by realizing that the finite-time stretching rates, or
cal Lyapunov exponents@12#, have a certain distribution
around the most probable value. This distribution approac
the time-asymptotic form@12,17#:

P~l,t !;t1/2e2G(l)t, ~4.5!

whereG(l) is a function characteristic to the advection d
namics, with the property thatG(l0)5G8(l0)50 and
G(l).0, where l0 is the most probable value of th
Lyapunov exponent. At infinitely-long times all the measu
becomes concentrated at this single valuel0, as stated be-
fore. The form~4.5! is valid only for hyperbolic systems
Nonhyperbolicity ~i.e., the presence of KAM tori! can
strongly affect the distribution at small values ofl but
aroundl0 and for larger values it remains a good appro
mation. As we shall see later only this region contributes
the structure functions of positive order.

As time increases the distribution becomes more a
more peaked aroundl0. The ~Lebesgue! area of the set of
initial conditions with local Lyapunov exponents in a sma
interval (l,l1dl) that excludesl0 decreases at long time
with a dominant exponential behavior:

dAl~ t !;e2G(l)tdl, ~4.6!

showing that only sets of measure zero can have Lyapu
exponent different froml0 in the t→` limit. Such sets,
however, can still have nonzero fractal dimensions. At fin
times, the area~4.6! encloses the final anomalous set, with
transverse thickness that, due to stretching by the cha
advection, decreases likel l(t);e2lt. The number of boxes
needed to cover the set of areadAl(t) using boxes of size
l l(t) is

Nl~ t !;
dAl~ t !

l l
2~ t !

;e[2l2G(l)] t; l l~ t ! [G(l)/l] 22 ~4.7!

which gives the dimension for the set to which this ar
converges in the infinite-time limit:

D~l!522
G~l!

l
. ~4.8!

Thus, an arbitrary line across the system will be found co
posed by subsets of dimensionD̃(l)5D(l)21, each one
characterized by different valuesl of the Lyapunov expo-
nents and in consequence of the Ho¨lder exponentsa(l)
5min $b/l, 1%.

Now, the scaling exponents in Eq.~4.2! can be readily
obtained. The number of segments of sizedr belonging to a
subset characterized by Lyapunov exponentl scales as
N(l);dr 2D̃(l), while the total number of such nonoverlap
ping segments scales as;dr 21. Thus, the structure function
can be written as
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Sq~dr !;E
lmin

lmax
dr 22D(l)udC`„r ~l!,dr …uqdl

;E
lmin

b

dr 22D(l)dr qdl1E
b

lmax
dr 22D(l)dr qb/ldl.

~4.9!

In the limit dr→0 the integrals are dominated by a sadd
point and, after some manipulations, the scaling exponen
Eq. ~4.2! are obtained as

zq5min
l

H q,
qb

l
122D~l!J 5min

l
H q,

qb1G~l!

l J .

~4.10!

The right-hand side can be seen as a family of lines in
(q,zq) plane labeled by the parameterl so that the value of
zq is given by the lower envelope of these lines. Note t
the shape ofG(l) for l small enough becomes irrelevant f
determining zq because of the minimum condition. Thu
multifractality, characterized by nonlinearity in theq depen-
dence ofzq , is affected only by the largest stretching rates
the flow. Equation~3.4! is a particular case of Eq.~4.10! for
q51 and in the approximation of considering a single va
of l on the chaotic saddle.

According to Eq.~4.10! theqth order structure function is
dominated by a subset characterized by a Lyapunov ex
nentlq . Applying the extremum condition to Eq.~4.10! we
obtain an equation forlq

d

dl
G~l!ul5lq

5
qb1G~lq!

lq
~4.11!

which can be substituted into Eq.~4.10! to obtain theqth
order scaling exponent.

The existence of a distribution of local Lyapunov exp
nents also affects the smooth-filamental transition. As
Hölder exponent is space dependent, the transition does
take place at a uniquely defined value ofb. Singularities exist
even in a overall smooth regime for points corresponding
backwards trajectories with Lyapunov exponents larger t
b. These points occupy fractal sets of dimensionD(l) given
by Eq. ~4.8! with b,l,lmax. Thus, the fractal dimension
of the singular set is maxl.bD(l)5D(b), indicating that the
set becomes space-filling@see Eq.~4.8!# asb approachesbc
5l0. Therefore, the bulk transition, a macroscopic effe
that affects the overall appearance of the chemical fi
takes place in a closed flow at the same critical valuebc
5l0 as in a flow without any spreading in the Lyapun
spectrum.

We note that Eq.~4.10! could also be obtained more d
rectly from the averaging of Eq.~2.11! over different values
of l using the probability distribution~4.5! of the local
Lyapunov exponent. In that case we would not have the g
metrical interpretation in terms of fractal dimensionsD(l).

We have analyzed numerically the chemical decay un
advection by the closed flow~2.13! to check the theoretica
predictions above. Numerically computed histograms of
local Lyapunov exponents are shown in Fig. 5 and the c
respondingG(l) functions are represented in Fig. 6. Th
in
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G(l) functions obtained from histograms corresponding
different times coalesce except in the small-l region, thus
confirming that Eq.~4.5! correctly describes the observe
distribution.

Numerically calculated scaling exponents@i.e., obtained
by direct application of Eq.~4.1!#, and the family of lines
corresponding to Eq.~4.10! based on the histogram of th
local Lyapunov exponents of Fig. 5 are shown in Fig.
where the prediction of the monofractal approximation (zq
5qb/l0) is also shown. The monofractal approximation a
pears to be accurate for smallq. The graph-fractal dimension
or the widely used Fourier power spectrum exponent are
lated toz1 andz2 by Eqs.~4.3! so that their estimate base
on the monofractal description that considers just the b
value of the Ho¨lder exponent can deviate from the actu
values.

In a recent work by Namet al. @18# the power spectrum o
a decaying scalar field~with space-dependent decay rate! has
been investigated and related to the distribution of lo
Lyapunov exponents of the advecting flow. The result for
spectral exponent obtained in@18# using an eikonal-type
wave packet model@19#, and taking into account finite dif-
fusion, is consistent with our formula~4.10! @that for q52,

FIG. 5. The distribution of local Lyapunov exponents at thr
different times, obtained for the closed flow~2.13! with T51.0 and
U51.2. The long-time mean Lyapunov exponent isl052.67.

FIG. 6. The functionG(l), obtained from the distributions in
Fig. 5 and Eq.~4.5!. Collapse of data for the three times into th
same curve confirms the validity of Eq.~4.5!. The dotted line is a
parabolic fit @0.4(l22.67)2# that provides a good approximatio
near the minimum.
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and with Eq.~4.3! gives the value of the spectral slope# ob-
tained in the nondiffusive limit.

The functionG(l) is characteristic to the advecting flow
Let us now consider a special case where we approxim
G(l) by a parabola

G~l!5
~l2l0!2

2D
. ~4.12!

This can be thought of as the first term in a Taylor expans
around l0, which is a good approximation to obtain th
small-q scaling exponents. In this case Eq.~4.11! can be
solved explicitly:

lq5A~l0!212qbD. ~4.13!

This gives the scaling exponents

zq5AS l0

D D 2

1
2qb

D
2

l0

D
. ~4.14!

The above relation has been obtained recently by Ch
kov in @20#, where the problem of advection of decayin
substances was considered in a probabilistic setup, using
chastic chemical sources and a random velocity field tha
spatially smooth but uncorrelated in time. The distribution
stretching rates was assumed to be Gaussian as in Eq.~4.12!.
This assumption could be realistic for deterministic dynam
cal systems in many cases, and could give good estimate
the scaling exponents for smallq. For higher-order moments
however, higher-order terms in the expansion ofG(l) can
become important. Moreover, the possible values ofl could
be limited by a finite maximum valuelmax, e.g., in time-
periodic flows, where the finite time-Lyapunov exponen
cannot have arbitrarily large values. This implies that
scaling exponents forq.q* , wherelq* 5lmax, should dis-
play a simple linear dependence

FIG. 7. The scaling exponentszq for the situation of Figs. 5 and
6 and withb51.0. Thick line: the monofractal approximationzq

5qb/l0. Thin lines: the curveszq5q andzq5@qb1G(l)#/l, for
different values ofl; the numerical values ofG(l) are obtained
from Fig. 6. According to Eq.~4.10!, the actual values of the sca
ing exponents are given by the lower envelope of this set of cur
This is confirmed by the numerically determined values ofzq

~crosses!. Dashed line: the approximation~4.14!.
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zq5
qb1G~lmax!

lmax
~4.15!

that differs from theq1/2 behavior of Eq.~4.14! for largeq.

V. SUMMARY AND DISCUSSION

Multifractality of advected fields generated by chaotic a
vection has been observed previously in the case of pas
advection with no chemical activity (b50) @21#. It was
shown that the measure defined by the gradients of the
vected scalar field has multifractal properties and its spe
of dimensionsDq has been related to the distribution of loc
Lyapunov exponents@21#. This multifractality, however,
does not affect the slope of the power spectrum@22,23# @the
so-called Batchelor spectrum:G(k);k21] or scaling expo-
nents of the structure functions@zq50 for all q, as can be
seen from Eq.~4.10! by settingb50]. The effect of multi-
fractality on the power spectrum has a character transien
time, moving towards smaller and smaller scales and fin
disappearing when reaching the diffusive end of the sp
trum. In the stationary state only the diffusive cutoff of th
power spectrum is affected@24# that can still be important for
the interpretation of some experimental results. By comp
ing these results for the conserved case with the ones
sented here for the decaying scalar we can conclude
although the origin of the multifractality is the same in bo
situations—the nonuniformity of the local Lyapuno
exponents—in the presence of chemical activity this h
stronger consequences~non-Batchelor power spectra an
anomalous scaling!.

We have presented a simple mechanism that can gen
multifractal ~or more precisely, multiaffine! distributions of
advected chemical fields. The main ingredients are cha
advection and linear decay of the advected quantity in
presence of nonhomogeneous sources. Essentially the
mechanisms were considered in@20#, but with stochastic
time dependencies both in the flow as in the chemi
sources, considering advection by the spatially smooth li
of a Kraichnan-like model generally intended to repres
turbulent flows. Our results stress that anomalous sca
may appear in simple regular~e.g., time periodic! laminar
flows where stochasticity appears just as a consequenc
the low-dimensional deterministic chaos generated by
Lagrangian advection dynamics. In addition we have p
vided numerical evidence for the theoretical predictions. I
interesting to mention that the extension of Chertkov’s wo
to nonlinear chemistry@25# finds results very similar to the
linear decay, simply substituting the decay rate by an av
age rate. This is also the result we find within our determ
istic models@8,11#, being the rate of the chemical Lyapuno
exponent.

Chaotic advection is characteristic of most tim
dependent flows. The linear decay of the advected subst
is in fact just the simplest prototype of a family of chemic
reaction schemes, where the local dynamics converges
wards a fixed point of the chemical rate equations. The lo
dynamics can also be generated by nonchemical proce
e.g., by biological population dynamics in the case of plan
ton advection@11,29#, or by the relaxation of the sea-surfac
temperature towards the local atmospheric value@10#. Inho-

s.
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mogeneities of the chemical sources or of other parame
of the local dynamics arise naturally in these contexts so
we expect our results to be of relevance in biological a
geophysical settings. In fact, fractality and multifractal
have been already observed in these contexts, for examp
the distribution of stratospheric chemicals~e.g., ozone!
@26,27#, and in sea-surface temperature and phytoplank
populations @28#. The structure of these fields has be
sometimes associated with turbulence of the advecting fl
We think that the simple mechanism, able to generate c
plex multifractal distributions, investigated in this paper c
be at the origin of some of the structures observed in g
physical flows. Further work in this direction could help o
d
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,

rs
at
d

in

n

.
-

o-

the interpretation of geophysical data in order to gain qu
titative information about the processes involved. Laborat
experiments seem also to be feasible.
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