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Structure and thermodynamics of a ferrofluid monolayer
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We model a disordered planar monolayer of paramagnetic spherical particles, or ferrofluid, as a two-
dimensional fluid of hard spheres with embedded three-dimensional magnetic point dipoles. This model, in
which the orientational degrees of freedom are three dimensional while particle positions are confined to a
plane, can be taken as a crude representation of a colloidal suspension of superparamagnetic particles confined
in a water/air interface, a system that has recently been studied experimentally. In this paper, we propose an
Ornstein-Zernike integral equation approach capable of describing the structure of this highly inhomogeneous
fluid, including the effects of an external magnetic field. The method hinges on the use of specially tailored
orthogonal polynomials whose weight function is precisely the one-particle distribution function that describes
the surface- and field-induced anisotropy. The results obtained for various particle densities and external fields
are compared with Monte Carlo simulations, illustrating the capability of the inhomogeneous Ornstein-Zernike
equation and the proposed solution scheme to yield a detailed and accurate description of the spatial and
orientational structure for this class of systems. For comparison, results from density-functional theory in the
modified mean-field approximation are also presented; this latter approach turns out to yield at least qualita-
tively correct results.

PACS number~s!: 61.20.Gy, 68.15.1e, 75.10.2b, 75.30.2m
s
ca
ch
em

-
o
o

e
ti
g

ra
ha

ls
re
d

l-
c

th
ra

fe
ro

o

rch
rin-

ole
cts
tly
ed
ac-
ed
fs.

ly
in-

his
ing
pla-
ct,
the

py
the

ully
as-
pin
p-

ght
of
ady
I. INTRODUCTION

Magnetic films currently attract a great deal of intere
because of their obvious potential for technological appli
tions, especially given the progress in epitaxial growth te
niques that has facilitated their manufacture. These syst
consist of thin films~a few atomic layers! of paramagnetic
particles~metal oxides in most cases! deposited on a solid
surface~usually metallic!. The competition between the dif
ferent magnetic interactions and the constraint imposed
the particles to lie on a plane gives rise to a rich variety
phase transitions, from paramagnetic phases to in-plan
out-of-plane ferromagnetic and even antiferromagne
phases@1#. The terms included in the Hamiltonian describin
these systems stem from the magnetic dipole-dipole inte
tion, the exchange coupling, and the spin-orbit coupling t
gives rise to a magnetic surface anisotropy@2#. In addition to
this type of material, quasi-bidimensional systems can a
be produced using confined colloids, with the added inte
that both fluid and crystalline structures can be generate
such systems. In particular, Zahn, Me´ndez-Alcaraz, and
Maret@3# have studied self-diffusion in two-dimensional co
loids by means of an arrangement of superparamagnetic
loidal particles~doped with Fe2O3) confined to a water/air
interface. An external magnetic field perpendicular to
surface can then be used to induce tunable repulsive inte
tions between the particles and thus separate out the ef
of direct and hydrodynamic interactions on the diffusion p
cess. Zahn, Lenke, and Maret@4# have further exploited this
system to investigate the crystallization dynamics of tw
PRE 611063-651X/2000/61~4!/3838~12!/$15.00
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dimensional colloids, an extremely active area of resea
dominated by the search for the Kosterlitz-Thoules-Halpe
Nelson-Young two-stage melting transition@5#. In these col-
loidal systems the leading interaction is the dipole-dip
potential, aside from the obvious excluded volume effe
due to the particle cores. If the external field is sufficien
strong in relation to the interparticle interaction, the induc
parallel alignment of the dipoles reduces the dipolar inter
tion to a simple, tunable radial repulsive interaction suit
for the crystallization and diffusion studies presented in Re
@3# and @4#. More generally, however, one must explicit
consider the full orientational nature of the dipole-dipole
teraction.

We are not aware of any theoretical investigation of t
type of disordered systems in which the particles carry
three-dimensional magnetic dipoles are constrained to a
nar surface and interact with an external field. But in fa
besides simulation calculations—the preferred tool in
modeling of ordered phases like those described in Ref.@1#
—and direct measurements via digital videomicrosco
@3,4#, these disordered systems are also tractable within
framework of the inhomogeneous Ornstein-Zernike~OZ!
equation@6#, an approach that has recently been successf
applied by the authors to describe order-disorder and g
liquid phase transitions in three-dimensional Heisenberg s
fluids @7,8#. In the present paper, we further pursue this a
proach and, as in Refs.@7# and @8#, exploit the properties of
specially constructed orthogonal polynomials whose wei
function is precisely the one-particle distribution function
the anisotropic system. This general procedure has alre
3838 © 2000 The American Physical Society
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PRE 61 3839STRUCTURE AND THERMODYNAMICS OFA . . .
been successfully applied to a variety of systems with in
nal degrees of freedom, such as polarizable particles@9,10#,
polydisperse systems in three@11# and two@12# dimensions,
and the Heisenberg spin systems mentioned above. In
present case, anisotropy could also be thought of as an i
nal degree of freedom, described by the polar angle of
dipoles with respect to the normal to the plane, and the s
tem could then be viewed as a purely two-dimensional mo
with a fluctuating in-plane particle magnetic moment.

The ferrofluid monolayer will be modeled as a fluid
hard spheres in a plane with embedded three-dimensi
point dipoles; additionally, an external field may be appli
perpendicular to the plane. Obviously, this model is too s
plistic to allow a direct comparison with the experiments,
particular since in the setup of Zahnet al. @3# the dipole
moment is induced by the external field. This could be m
eled by including polarizability@9,10#; although feasible,
such an extension would considerably increase the comp
tional burden and therefore at this stage is beyond the sc
of our work. In our treatment, the single-particle angular d
tribution function, f (cosu), which describes the probabilit
of finding a dipole at angleu with the normal to the plane
will be the weight function of the special orthogonal polyn
mials used to expand the one-particle and two-particle c
relation functions. This angular distribution function is co
nected to the intermolecular potentials and the p
distribution function g(12) through a Born-Green~BG!
equation@6#. The two-body functiong(12) in turn is studied
in terms of an inhomogeneous OZ equation, to which
couple the optimized reference hypernetted-chain clos
The results obtained from this theoretical approach are c
pared with extensive data from Monte Carlo simulations. W
find that the linked set of integral equations can furnish
remarkably accurate description of both the one-body
two-body structure of the two-dimensional fluid, as well
of its thermodynamics. On the other hand, density-functio
theories~DFT! have been extensively applied to the study
first- and second-order transitions in three-dimensional d
lar fluids, particularly providing qualitative insight into th
order-disorder~ferroelectric! transition in Stockmayer fluids
@13#. Therefore, as an alternative, we also explore here
density-functional theory with a modified mean field~MMF!
approximation for the free-energy functional@14#. This ap-
proximation, which is considerably less involved than t
inhomogeneous OZ equation, provides only semiquantita
information on the thermodynamics and the single-part
structure. This stands in contrast to the relatively accu
results provided by the same method in the case of the
romagnetic Heisenberg spin fluids@15#.

The rest of the paper can be sketched as follows. In
next section, we describe in detail the solution algorith
based on specially tailored orthogonal polynomials, for
coupled system formed by the inhomogeneous OZ equa
for g(12) and the BG equation forf (cosu). The essentials o
the MMF approach applied to the dipolar monolayer pro
lem are summarized in Sec. III, while details of the simu
tion procedure used to generate our standard~reference! data
can be found in Sec. IV. Finally, Sec. V describes our m
significant results and conclusions.
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II. INTEGRAL EQUATION FORMULATION

The interaction energy for a configuration ofN sphere
centersr j with embedded three-dimensional magnetic m
mentsmj in the plane areaA is

U5(
i , j

u0~r i j !1(
i , j

udd~r i j ,v i ,v j !2(
j

mj•B0 , ~1!

where u0(r ) is the hard sphere interaction for spheres
diameters,

udd~r12,v1 ,v2!52
m2

r 12
3 @3~ r̂12•m̂1!~ r̂12•m̂2!2m̂1•m̂2#

~2!

the dipole-dipole potential, andB0 a uniform magnetic field
perpendicular to the plane. Even in the absence of the m
netic field, the planar arrangement of the point dipoles p
duces anisotropy, so that the one-body density

r (1)~r ,v!5K (
j 51

N

d~r2r j !d~v2v j !L 5
r

4p
f ~v! ~3!

is not a constant. Here,r5N/A is the number density and
f (v) the orientational distribution function of the interactin
dipoles, which is to be found. Letting the magnetic fie
define thez axis perpendicular to the plane, the one-bo
distribution forv5(u,w) depends only on the polar angleu,
f (v)5 f (x), where x5cosu5m̂• ẑ. @The distribution func-
tion in the noninteracting limit isf 0(x)5exp(bmB0x)/C,
whereC5sinh(bmB0)/bmB0 is the normalization constant.#
The two-body density

r (2)~r ,v,r 8,v8!5K (
iÞ j

d~r2r i !d~v2v i !

3d~r 82r j !d~v82v j !L
5

r2

~4p!2
f ~v! f ~v8!g~r2r 8,v,v8! ~4!

then defines the generalized pair distribution functi
g(12)5g(r12,v1 ,v2). In the expressions above, a caret d
notes unit vector while the angular brackets indicate a
nonical ensemble average.

To determinef (x) andg(12) we proceed as in the earlie
works @7–10#. The first BG equation,

d

dx
lnF f ~v!

f 0~v!G52
r

4pE dr dv8 f ~v8!g~r ,v,v8!

3
d

dx
budd~r ,v,v8!, ~5!

couples the one-body to the two-body distribution; hereb
51/kBT is the inverse temperature. The pair function in tu
is obtained from the inhomogeneous OZ equation
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h~r12,v1 ,v2!5c~r12,v1 ,v2!1
r

4pE dr3dv3f ~v3!

3h~r13,v1 ,v3!c~r32,v3 ,v2!, ~6!

whereh5g21. The OZ equation introduces a second p
function, the generalized direct correlation functionc, and so
a second, or closure, relation betweenc andh is needed. This
relation is@16#

c~r ,v1 ,v2!5exp@2bu0~r !2budd~r ,v1 ,v2!

1g~r ,v1 ,v2!1b~r ,v1 ,v2!#

212g~r ,v1 ,v2!, ~7!

whereg5h2c. @The indirect correlation functiong will be
used below to replaceh in Eq. ~6! as the principal unknown.#
It is here that the only approximation of the calculation m
be introduced, for the so-called ‘‘bridge’’ functio
b(r ,v1 ,v2) is not known in any usable form@16#. In this
paper, we will use the reference hypernetted-chain~RHNC!
closure @17,18#, optimized to achieve minimization of th
free energy@19#. This choice consists in replacing the u
known functionb with the bridge function obtained from
some calculable reference model, here taken to be the
hard disk fluid at the same density,

b~r ,v1 ,v2!'bHD~r ;s0!, ~8!

wheres0 is the reference fluid disk diameter that is varied
attain a minimum in the free energy@19#.

Equations~5!–~8! form a closed set; the problem now
to cast them into a computable form. This is achieved
expanding all angle-dependent functions in generali
spherical harmonics@7,8#

Ylm~v!5
1

A4p
~21!meimwPlm~cosu! ~9!

that are orthogonal with weight functionf (v),

E dv f ~v!Ylm~v!Y l 8m8
* ~v!5d l l 8dmm8 . ~10!

Sincef (v) here depends only onu, it is just the generalized
Legendre functionsPlm(cosu) that must be specially con
structed. We refer to Ref.@8# for some formal details of thei
construction. Their actual calculation is based on a rob
algorithm proposed by Press and Teukolsky@20#.

Pair functions such asg are now expanded in this bas
set as

g~r ,v1 ,v2!54p (
l 1 ,l 2 ,m1 ,m2

g l 1l 2

m1m2~r !Yl 1m1
~v1!

3Yl 2m̄2
~v2!exp@2 i ~m12m2!w r #, ~11!

wherew r is the azimuthal angle of the planar vectorr with
the x axis in the plane andm̄52m. In practice, it is conve-
nient to align thex axis alongr , sow r50 and the expansion
simplifies to
r

t

re

y
d

st

g~r ,v1 ,v2!54p (
l 1 ,l 2 ,m1 ,m2

g l 1l 2

m1m2~r !Yl 1m1
~v1!Yl 2m̄2

~v2!.

~12!

Similarly, Fourier transforms, which will be used to deco
volute the OZ Eq.~6!, are also conveniently expanded wi
thex axis along the planar vectork. A two-dimensional Fou-
rier transform

g̃~12!5E dr g~12!eik•r ~13!

is then evaluated as follows. Choose thex axis alongk. Then
using Eq.~11! we have

g̃~12!5E dr g~12!eikr coswr

54p (
l 1 ,l 2 ,m1 ,m2

E
0

`

dr rg l 1l 2

m1m2~r !E
0

2p

dw re
ikr coswr

3e2 i (m12m2)wrYl 1m1
~v1!Yl 2m̄2

~v2!

54p (
l 1 ,l 2 ,m1 ,m2

g̃ l 1l 2

m1m2~k!Yl 1m1
~v1!Yl 2m̄2

~v2!, ~14!

where

g̃ l 1l 2

m1m2~k!52p i m12m2E
0

`

dr rg l 1l 2

m1m2~r !Jum12m2u~kr !.

~15!

Here,Jm(x) is the Bessel function of orderm generated by
the integral overw r . Similarly, an inverse transform is

g l 1l 2

m1m2~r !5
1

2p i m12m2
E

0

`

dk kg̃ l 1l 2

m1m2~k!Jum12m2u~kr !.

~16!

It follows from the circular symmetry of the system th
um12m2u must be an even integer.

With these operations of Fourier transformation and
pansion in generalized spherical harmonics, the OZ Eq.~6! is
converted into a set of algebraic equations for the expan
coefficients,

g̃ l 1l 2

m1m2~k!5r (
l 3 ,m3

~21!m3@ g̃ l 1l 3

m1m3~k!1 c̃l 1l 3

m1m3~k!# c̃l 3l 2

m3m2~k!.

~17!

Coefficients with even or odd index pairs (m1 ,m2) form
disjoint sets, so Eq.~17! can be solved for theg̃ l 1l 2

m1m2(k)

coefficients in the matrix forms

G̃~k!5rC̃~k!C̃~k!@ I 2rC̃~k!#21, ~18!

for m1 ,m2 even, and

G̃~k!52rC̃~k!C̃~k!@ I 1rC̃~k!#21, ~19!

for m1 ,m2 odd. Here,I is the unit matrix. The iteration
scheme that is now used to solve forf (x) andg(12) follows
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that of earlier works@7–10#, with the differences that aris
from the reduced dimensionality having been spelled
above.

The thermodynamics of the system is then immediat
obtainable by quadratures. For the internal energyUdd , pres-
surep, and isothermal compressibilityKT , we get

bUdd

N
5

1

2

r

~4p!2E dr dv1dv2 f ~v1! f ~v2!

3g~r ,v1 ,v2!budd~r ,v1 ,v2!

5 1
2 rE dr (

l 1 ,l 2 ,m1 ,m2

gl 1l 2

m1m2~r !bul 1l 2

m1m2~r !, ~20!

bp

r
512

1

4

r

~4p!2E dr dv1dv2 f ~v1! f ~v2!

3g~r ,v1 ,v2!r
d

dr
bu~r ,v1 ,v2!

511 1
2 prs2g00

00~s!1
3

2

bUdd

N
, ~21!

rkBTKT511rh̃00
00~0!. ~22!

The coefficients of the dipole-dipole potential~2! that appear
in the energy calculation, Eq.~20!, can be readily obtained
They are explicitly

bu00
00~r !5^x&2

bm2

r 3
, ~23!

bu01
00~r !5bu10

00~r !5^x&sx

bm2

r 3
, ~24!

bu11
00~r !5sx

2 bm2

r 3
, ~25!

bu11
11~r !5bu11

2121~r !5
1

4
~12^x2&!

bm2

r 3
, ~26!

bu11
121~r !5bu11

211~r !52
3

4
~12^x2&!

bm2

r 3
, ~27!

where sx
25^x2&2^x&2 is the variance off (x). The virial

pressure from these coefficients then obviously reduce
the dipole-dipole energy term seen in Eq.~21!.

The potential coefficients are used in evaluating Eq.~5!
expanded in the new orthogonal polynomials to yield@8#

d

dx
lnF f ~x!

f 0~x!G5 (
l 1l 2m

j l 1l 2mPl 1m~x!
dPl 2m~x!

dx
, ~28!

with

j l 1l 2m52rE dr (
l 3m3

gl 1l 3

mm3~r !ul 3l 2

m3m
~r !. ~29!
t

y

to

This expression can be recast in the form

ln f ~x!5 ln f 0~x!1(
l 50

`

alPl0~x!, ~30!

where theal for l .0 are determined by numerical~Gauss-
ian! integration of Eq.~28! anda0 by normalization.

Finally, with the magnetic field normal to the plane, th
longitudinal ~out-of-plane! and transverse~in-plane! mag-
netic susceptibilities are obtained, respectively, as@8#

xL /rbm25sx
2@11rh̃11

00~0!#1sx^x&@rh̃10
00~0!1rh̃01

00~0!#

1^x&2@11rh̃00
00~0!#, ~31!

xT /rbm25 1
2 ~12^x2&!@12rh̃11

11~0!#. ~32!

It was noted above that a hard disk fluid is used as
reference model for the optimized RHNC closure. Since
free energy minimization of the optimization procedure im
plicitly assumes thermodynamic consistency of the refere
system, and no such solution is known for hard disks,
have sought at least to approximate that condition by usin
pressure-consistent closure for the hard disk fluid@21#,

c~r !5h~r !2~12j!@g~r !ebuHD(r )21#2j ln@g~r !ebuHD(r )#.
~33!

This is a blend of the familiar Percus-Yevick (j50) and
hypernetted-chain (j51) closures controlled by the param
eterj to achieve consistency of the virial and compressibil
pressures. The density dependence ofj constrained in this
way is found by calculation to be fitted by

j50.092010.1222r* 10.1642r* 210.1100r* 3, ~34!

with r* [rs2.
Reference@21# ~see also Ref.@22#! lays out an accurate

numerical algorithm for the Fourier-Hankel transform

g̃~k!52pE
0

`

dr rg~r !J0~kr ! ~35!

and its inverse.@The algorithm is based on the zeros
J0(x), an almost-periodic function, and so leads to uneq
intervals in the numerical grids forr andk.# Here, we need
not only this transform but also those forJm(kr), with m
.0 an even integer. This has been handled in our calcula
by a two-dimensional version of the ‘‘raising’’ and ‘‘lower
ing’’ operations previously used for spherical Bessel fun
tion transforms@23# that reduce all transforms to theJ0(kr)
variety. Specifically, to transform a coefficientg (m)(r )
[g l 1l 2

m1m2(r ) for which m[um12m2u52,4,6, . . . , we apply

the lowering operation

g (m22)~r !5g (m)~r !22~m21!r m22E
r

`

dx
g (m)~x!

xm21

~36!

recursively until reachingg (0)(r ) and then transform this las
function with the algorithm of Eq.~35!. For an inverse trans
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form, the functiong (0)(r ) obtained from aJ0(kr) inversion
is subsequently raised to the finalg l 1l 2

m1m2(r ) by recursive ap-

plication of

g (m)~r !5g (m22)~r !2
2~m21!

r m E
0

r

dx xm21g (m22)~x!

~37!

until reachingm5um12m2u. The integrals in Eqs.~36! and
~37! are evaluated using a trapezoidal rule with unequal
tervals. All calculations are carried out with 1000 points
the r andk grids.

Because the direct correlation function goes asympt
cally as the potential,

cl 1l 2

m1m2~r !;2bul 1l 2

m1m2~r ! ~38!

for r large, the calculation of the transforms ofc needed in
Eq. ~17! can be adversely affected by the long-range nat
of the dipole potential, Eqs.~23!–~27!, since the numerica
versions of the transforms are necessarily truncated at a fi
range. To avoid this problem, we subtract from the coe
cients of c a long-range function, appropriately weighte
that can be analytically transformed, namely,

buLR
(0)~r !5

bm2

r 3
@12e2ar~11ar 1 1

2 a2r 2!#

5 1
2 bm2a3E

0

1

dxx2e2arx, ~39!

for those coefficients that transform with aJ0(kr) kernel,
Eqs.~23!–~26!, and

buLR
(2)~r !5

bm2

r 3
@12e2ar~11ar 1 1

2 a2r 21 1
6 a3r 3!#

5 1
6 bm2a4r E

0

1

dxx3e2arx, ~40!

for those that transform with aJ2(kr) kernel, Eq.~27!. Here,
a is a numerical parameter that we set ata525/R, where
R520s is the maximum range ofr in the calculation. The
numerical transformation of the resulting short-range fu
tions then presents no problems and the analytical transfo
of buLR

(0)(r ) andbuLR
(2)(r ) are added back in with the appro

priate weights to complete the transformations.

III. DENSITY-FUNCTIONAL THEORY IN MODIFIED
MEAN FIELD APPROXIMATION

As usual in DFT treatments, the free energy functio
F@r# is split into a reference partF0@r# corresponding to
pure hard disks and a second contributionFdd@r# arising
from the magnetic dipoles,

F@r#5F0@r#1Fdd@r#. ~41!

The dipolar contribution in turn can be split into ideal a
excess components,
-

i-

e

ite
-

-
s

l

Fdd@r#5Fdd
id 1Fdd

ex@r#, ~42!

where the ideal part is simply

bFdd
id

N
5

1

4pE dv f ~v!ln f ~v!2bmB0^x&. ~43!

As is found in Sec. V, we model the one-body function a

f ~v!5 f ~x!5
1

C
e2ax21bx, ~44!

with the normalization constant

C5
1

4
Ap

a
eb2/4aFerfS 2a2b

2Aa
D 1erfS 2a1b

2Aa
D G . ~45!

Here erf(x) is the standard error function and we have p
a[2bm2K, b[bmB, whereK and B are effective values
of the magnetic surface anisotropy and external magn
field, respectively. Now, from Eq.~43!, it is straightforward
to show that

bFdd
id /N52a^x2&1~b2b0!^x&2 ln C. ~46!

Analytic expressions for the moments^xn& can be readily
derived. Equation~46! is somewhat ill conditioned for cal
culations at small values ofa, since the expression forC
contains both vanishing and diverging terms that have to
handled analytically. It is then advisable to perform a ser
expansion arounda50, which is rapidly convergent.

The excess term has now to be approximated. We fol
Teixeira and Telo da Gama@14# in applying the modified
mean field approximation, which leads to the excess f
energy expression

bFdd
ex

N
5

r

~4p!2Er .s
drdv1dv2f ~v1! f ~v2!

3$12exp@2budd~r ,v1 ,v2!#%. ~47!

This integral is evaluated numerically employing Gauss
quadrature on the angular variables and a simple trapezo
rule on r @8#, just as in the numerical algorithm for solvin
the integral equation in Sec. II.

For givenr, m, andB0, one has now to minimize the fre
energy defined by Eqs.~41!–~47! with respect to the param
etersa and b. The search for the minimum of a functio
defined in terms of a numerical multidimensional quadrat
is an ill-conditioned problem and so Newton-Raphson
conjugate gradient algorithms are not well suited. We ha
found that a direct search Complex algorithm@24# provides a
sufficiently robust method.

Finally, the excess internal energy in the MMF appro
mation must be evaluated by numerical integration of

bUdd

N
5

1

2

r

~4p!2Er .s
drdv1dv2f ~v1! f ~v2!

3exp@2budd~r ,v1 ,v2!#budd~r ,v1 ,v2!.

~48!
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IV. MONTE CARLO „MC … SIMULATION

The MC simulations were performed in the canonic
(NVT) ensemble using 576 particles in a square box w
periodic boundary conditions. The long range of the dip
interaction was accounted for by an Ewald sum, which fo
three-dimensional dipole interaction with particle centers
stricted to a two-dimensional periodic lattice is absolut
convergent. We have found that the results exhibit no dep
dence on the boundary conditions, since for thr
dimensional dipoles the potential decays as 1/r 3, in contrast
with the pure two-dimensional system with two-dimension
electrostatics in which the interactions decay as 1/r 2.

In deriving the expression for the Ewald sum, it is conv
nient to divide the dipole moment into an in-plane comp
nentmi

i and an out-of-plane componentm i
' . The total energy

can then be written as the sum of two contributions@25#,

Udd5U i1U' , ~49!

where

FIG. 1. Angular distribution functionf (cosu) in a ferrofluid
monolayer of dipolar hard spheres atrs250.4 and various externa
fields. Open circles denote MC data, solid line RHNC results,
dash-dotted line results from DFT-MMF. The dotted line tracki
the MC points is a least squares fit~LSF! whose coefficients are
shown in the figure.
l
h
e
a
-

n-
-

l

-
-

U i52
1

2 (
i 51

N

(
j 51

N

(
n

8@B~ ur i j 1nu!mi
i
•mj

i1C~ ur i j 1nu!

3~mi
i
•r i j !~mj

i
•r i j !#1

p

A (
GÞ0

erfc~G/2a!

G
F i~G!F i* ~G!

2
2a3

3Ap
(
i 51

N

~m i
i!2 ~50!

and

U'52
1

2 (
i 51

N

(
j 51

N

(
n

8B~ ur i j 1nu!m i
'm j

'

1
p

A (
GÞ0

F 2a

Ap
expS 2

G2

4a2D 2G erfcS G

2a D G
3F'~G!F'

* ~G!

1
2Apa

A (
i 51

N

(
j 51

N

m i
'm j

'2
2a3

3Ap
(
i 51

N

~m i
'!2. ~51!

Here, the functionsB(r ) andC(r ) are given by

d

FIG. 2. Angular distribution functionf (cosu) in a ferrofluid
monolayer of dipolar hard spheres atrs250.8 and various externa
fields. Labels as in Fig. 1.
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B~r !52
erfc~ar !

r 3
2

2a

Ap

exp~2a2r 2!

r 2
, ~52!

C~r !53
erfc~ar !

r 5
1

2a

Ap
S 3

r 2
12a2D exp~2a2r 2!

r 2
, ~53!

while

F i~G!5(
i 51

N

~G•mi
i!exp@ iG•r i #, ~54!

F'~G!5(
i 51

N

m i
' exp@ iG•r i #. ~55!

In Eqs.~50! and~51!, A5L2 is the area of the system andL
the box edge length. The prime in the sum overn
5(nx ,ny), with nx ,ny integers, means thatiÞ j for n50.
With the valuea55.7/L that was adopted in our calcula
tions, only the terms withn50 need be retained in Eqs.~50!
and~51!. The sum in reciprocal space extends over all latt
vectorsG52pn/L such thatunu2<nmax

2 564. Because of the
rather large system size the reciprocal space contributio
the energy is generally quite small.

FIG. 3. Radial projectiong000(r ) and angular projections
hklm(r )5h110(r ) andh112(r ) of the pair distribution functiong(12)
in a ferrofluid monolayer of dipolar hard spheres atrs250.4 and
bmB050. Here and in Figs. 4–8, the angular projection curve w
the largest contact value corresponds toh112(r ) for bmB050 and
h110(r ) for bmB054. Open circles denote MC data and solid lin
represent RHNC results.
e

to

FIG. 4. Same as Fig. 3 forrs250.4 andbmB054.

FIG. 5. Same as Fig. 3 forrs250.7 andbmB050.
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FIG. 6. Same as Fig. 3 forrs250.7 andbmB054.

FIG. 7. Same as Fig. 3 forrs250.8 andbmB050.
In the calculations presented in this work, simulation ru
consisted of 50 000 to 100 000 cycles, each cycle implyin
translation, rotation, and occasional inversion of the dipo
moment, carried out on every particle in the sample. The
space contribution in Eqs.~47! and~48! was truncated at hal
the box length. In order to assess the system size depend
of the results, some calculations were performed with 16
particle samples; they showed no significant deviations fr
the smaller sample results.

FIG. 8. Same as Fig. 3 forrs250.8 andbmB054.

FIG. 9. Compressibility factorbp/r and excess internal energ
bUdd /N for a ferrofluid monolayer of dipolar hard spheres. Op
circles denote MC data, solid line RHNC results, and dash-do
line results from DFT-MMF. The curves, from bottom to top, co
respond tobmB050,1, and 4.
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TABLE I. Magnetic and thermodynamic properties of a planar ferrofluid monolayer of dipolar
spheres of diameters with embedded point dipolesm in an external magnetic fieldB0 normal to the plane,
calculated in optimized RHNC approximation forbm2/s351; s0 is the optimized disk diameter of th
reference hard disk system.

rs2 bmB0 s0 /s bmB bm2K bUdd /N bp/r b]p/]r xL /rbm2 xT /rbm2

0.1 0 0.9587 0 20.048 20.061 1.147 1.314 0.270 0.376
0.2 0 0.9658 0 20.105 20.129 1.340 1.783 0.223 0.425
0.3 0 0.9731 0 20.172 20.204 1.600 2.506 0.188 0.480
0.4 0 0.9799 0 20.248 20.286 1.962 3.670 0.161 0.543
0.5 0 0.9853 0 20.332 20.375 2.486 5.621 0.139 0.616
0.6 0 0.9900 0 20.425 20.474 3.274 9.054 0.121 0.711
0.7 0 0.9934 0 20.530 20.585 4.508 15.42 0.106 0.873
0.8 0 0.9950 0 20.673 20.731 6.523 27.83 0.094 1.481

0.1 1 0.9718 0.826 20.043 20.034 1.172 1.358 0.277 0.358
0.2 1 0.9729 0.695 20.099 20.089 1.379 1.840 0.222 0.409
0.3 1 0.9770 0.596 20.167 20.159 1.645 2.564 0.186 0.466
0.4 1 0.9820 0.518 20.244 20.240 2.010 3.725 0.159 0.531
0.5 1 0.9859 0.457 20.329 20.331 2.537 5.670 0.138 0.605
0.6 1 0.9902 0.407 20.423 20.432 3.322 9.091 0.120 0.701
0.7 1 0.9936 0.367 20.528 20.545 4.554 15.46 0.106 0.861
0.8 1 0.9950 0.336 20.672 20.694 6.588 27.90 0.094 1.458

0.1 4 1.0716 3.516 0.001 0.133 1.335 1.687 0.348 0.218
0.2 4 1.0393 3.053 20.030 0.237 1.705 2.469 0.225 0.259
0.3 4 1.0180 2.640 20.091 0.291 2.110 3.380 0.164 0.312
0.4 4 1.0054 2.290 20.175 0.288 2.574 4.603 0.133 0.378
0.5 4 0.9994 2.001 20.275 0.233 3.158 6.531 0.116 0.457
0.6 4 0.9969 1.766 20.384 0.138 3.975 9.902 0.105 0.555
0.7 4 0.9963 1.575 20.504 0.009 5.228 16.21 0.097 0.702
0.8 4 0.9970 1.424 20.651 20.161 7.230 28.77 0.089 1.121
in
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is-
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V. RESULTS AND CONCLUSIONS

One of the most significant structural quantities in an
homogeneous system is obviously the one-particle distr
tion function, in this case the angular distribution functi
f (x). Using Eqs.~28!–~30! we find by calculation that

f ~x!5
1

C
exp~bm2Kx21bmBx!, ~56!
-
u-

captures the orientational order of the system. In Eq.~56!, K
andB are effective values of the magnetic surface anisotro
and external magnetic field, respectively, while the norm
ization constantC is given in Eq.~45!. A comparison be-
tween our Monte Carlo data forf (x) and results from the
RHNC integral equation and the MMF approximation is d
played in Figs. 1 and 2 for various densities and exter
fields. Given that the magnitude of common magnetic
poles is appreciably smaller than that of their electric co
er of
C

7

TABLE II. Comparison of magnetic and thermodynamic properties of a planar ferrofluid monolay
dipolar hard spheres in an external magnetic fieldB0 normal to the plane, calculated in optimized RHN
approximation, Monte Carlo~MC! simulation, and density functional theory~DFT!, for bm2/s351.

rs2 bmB0 bmB bm2K bUdd /N bp/r
RHNC MC DFT RHNC MC DFT RHNC MC DFT RHNC MC

0.4 0 0 0 0 20.248 20.26 20.202 20.286 20.292 20.248 1.962 1.95
0.7 0 0 0 0 20.530 20.60 20.400 20.585 20.614 20.443 4.508 4.60
0.8 0 0 0 0 20.673 20.67 20.393 20.731 20.742 20.489 6.523 6.76

0.4 1 0.518 0.52 0.57220.244 20.22 20.180 20.240 20.248 20.206 2.010 2.00
0.7 1 0.367 0.38 0.35620.528 20.53 20.435 20.545 20.571 20.401 4.554 4.63
0.8 1 0.336 0.34 0.38320.672 20.71 20.426 20.694 20.709 20.443 6.588 6.87

0.4 4 2.290 2.28 2.57820.175 20.16 20.100 0.288 0.282 0.275 2.574 2.5
0.7 4 1.575 1.58 1.88720.504 20.51 20.148 0.009 20.017 0.190 5.228 5.26
0.8 4 1.424 1.45 1.80220.651 20.70 20.177 20.161 20.175 0.153 7.230 7.50
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terparts, we have only considered a relatively moderate
duced dipole, m* 5(bm2/s3)1/251. In all cases, the
agreement seen in the figures between the integral equ
and the simulation results is excellent. The MMF approa
despite its crude assumptions, can be considered s
quantitative. The most noticeable feature observed in th
figures is the breaking of the symmetry of the distributi
with respect to the plane (x5cosu50) due to the externa
field, with the response of the dipoles to the field bei
weaker at higher densities. This effect of density is read
understandable, since the dipole-dipole interaction favor
head-to-tail alignments increases the tendency of the dip
to remain in-plane. The same effect can also be seen in
zero-field truncated Gaussian distributions of Figs. 1 and
which become progressively more sharply peaked aboux
50 as the density increases, approaching a fully copla
distribution. A similar effect can be induced by an increa
of the dipole moment.

We now focus on the pair structure of the system.
dipolar fluids, in addition to the center-to-center pair dist
bution functiong000(r )[g00

00(r ), the most significant projec
tions of g(12) are those onto the standard rotational inva

FIG. 10. Longitudinal and transverse magnetic susceptibili
of a ferrofluid monolayer in the RHNC approximation~lines! and
from MC simulation~symbols!. Solid lines~circles! correspond to
bmB050, dotted lines~squares! to bmB051, and dash-dotted
lines ~diamonds! to bmB054. The error on the MC results for th
susceptibilities is about 5%.
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ants f1105m̂1•m̂2 and f11253(m̂1• r̂ )(m̂2• r̂ )2m̂1•m̂2,
namely, h110(r ) and h112(r ), quantities that are connecte
respectively to the relative orientation of a pair of dipoles
a given separation and to the contribution of a given ori
tation to the dipolar excess energy. In terms of the calcula
coefficients gl 1l 2

m1m2(r ) of this paper, these projections a

given by

h110~r ![3^g~12!f110~12!&v1v2

53@^x&2g00
00~r !12^x&sxg01

00~r !

1sx
2g11

002~12^x2&!g11
11~r !# ~57!

and

h112~r ![
3

2
^g~12!f112~12!&v1v2

52
3

2 F ^x&2g00
00~r !12^x&sxg01

00~r !1sx
2g11

00~r !

1
1

2
~12^x2&!g11

11~r !2
3

2
~12^x2&!g11

121~r !G .
~58!

Note that these standard projections do not vanish at la
separations, in contrast to the coefficientshl 1l 2

m1m2(r ) obtained

in the special orthogonal polynomial expansion. In fact,
follows from the equations above that they have the limiti
behavior

lim
r→`

h110~r !53^x&2, ~59!

lim
r→`

h112~r !52
3

2
^x&2. ~60!

The dipole-dipole energy, Eq.~20!, can be obtained directly
from h112(r ) in the form

bUdd

N
52

2

3
prE

0

`

drh112~r !
bm2

r 2
. ~61!
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-
t
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n-
FIG. 11. Planar projection of simulation snap
shots of a ferrofluid monolayer for two differen
dipole moments without external field. The a
rows indicate the projection of the three dime
sional magnetic dipole.
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The correlation functions obtained from the RHNC int
gral equation are compared with MC simulation data in Fi
3–8 for various densities and external fields. These st
correspond to the paramagnetic fluid regime. This system
known to exhibit a strong tendency to polymerize at lo
densities and temperatures@26,27#, by which in principle one
would not expect a gas-liquid transition to occur in the a
sence of dispersive forces, and hence one cannot prop
ascribe these states to a gas or a liquid phase.

It can be appreciated that the optimized RHNC integ
equation provides an excellent description of the microsco
structure of the dipolar fluid, with and without external fiel
except in the case ofrs250.8. Here, the integral equatio
renders a much more pronounced orientational struc
while the spatial ordering is exactly reproduced. This d
crepancy will be further discussed below when analyzing
thermodynamic properties. The behavior at large separat
is well reproduced, including the crossover ofh110(r ) and
h112(r ), which is driven by the limiting behavior defined i
Eqs. ~59! and ~60! when the symmetry with respect to th
plane is broken by the external field. It can also be seen
the contact values of the correlation functions decre
slightly as the field is augmented; this is due to the fact t
the out-of-plane alignment induced by the field introduc
repulsive dipole-dipole interactions. This effect is obvious
less significant at low densities.

Finally, we collect in Table I all the thermodynamic an
magnetic properties calculated in RHNC approximatio
Those properties for which MC and DFT data are also av
able are compared with the RHNC values in Table II and
plotted in Fig. 9. In accord with the results for the structu
the thermodynamic description provided by the RHNC eq
tion is also found to be in good agreement with simulatio
Once again, the DFT results are semiquantitative and t
quality worsens considerably as the density increases.

It is worth noting that we have encountered converge
problems in the RHNC solutions for reduced densities ab
0.8. As can be seen in Table I and Fig. 10, this correspo
to a region where the transverse~i.e., in-plane! susceptibility
starts to rise appreciably and is where the orientational o
~see Figs. 7 and 8! predicted by the integral equation is mo
v.
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pronounced than what is actually found in the simulatio
This orientational structure disagreement is in consona
with the discrepancies in the behavior of the transverse
ceptibility depicted in Fig. 10. Thus, whereas the increase
the theoretical susceptibility and the difficulties in conve
gence seem to indicate that the system might be clos
some sort of in-plane order-disorder transition, the simu
tion predicts no anomalous behavior for these high-den
states. Nonetheless, at somewhat higher dipole momen
simulation results start to show a clear head-to-tail in-pla
alignment of the dipoles with formation of vortex structure
as can be appreciated in Fig. 11. It thus might happen
the integral equation underestimates the value of the tra
tion dipole moment. Alternatively, it could be the case th
the ordering process for a low-dipole moment in a fin
system is an extremely slow one that is only captured by
simulation at lower temperatures, although calculations
various systems sizes and lengths of the run do not see
support this possibility. The situation thus remains inconc
sive, though we are of the opinion that the lack of conv
gence in the integral equation procedure is indicating
onset of some in-plane ordering.

In summary, we have presented an integral equation
malism that is able to provide an accurate description
fluidlike dipolar monolayers for both their one-particle an
two-particle structural properties and for their thermodyna
ics. A simple DFT treatment has been shown to be capa
of providing a qualitatively correct picture of the fluid be
havior. Future work on this model will focus on the study
possible in-plane transitions, incorporating exchange inte
tions and magnetic surface anisotropy.
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