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Structure and thermodynamics of a ferrofluid monolayer
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We model a disordered planar monolayer of paramagnetic spherical particles, or ferrofluid, as a two-
dimensional fluid of hard spheres with embedded three-dimensional magnetic point dipoles. This model, in
which the orientational degrees of freedom are three dimensional while particle positions are confined to a
plane, can be taken as a crude representation of a colloidal suspension of superparamagnetic particles confined
in a water/air interface, a system that has recently been studied experimentally. In this paper, we propose an
Ornstein-Zernike integral equation approach capable of describing the structure of this highly inhomogeneous
fluid, including the effects of an external magnetic field. The method hinges on the use of specially tailored
orthogonal polynomials whose weight function is precisely the one-particle distribution function that describes
the surface- and field-induced anisotropy. The results obtained for various particle densities and external fields
are compared with Monte Carlo simulations, illustrating the capability of the inhomogeneous Ornstein-Zernike
equation and the proposed solution scheme to yield a detailed and accurate description of the spatial and
orientational structure for this class of systems. For comparison, results from density-functional theory in the
modified mean-field approximation are also presented; this latter approach turns out to yield at least qualita-
tively correct results.

PACS numbepws): 61.20.Gy, 68.15te, 75.10-b, 75.30—m

[. INTRODUCTION dimensional colloids, an extremely active area of research
dominated by the search for the Kosterlitz-Thoules-Halperin-
Magnetic films currently attract a great deal of interestNelson-Young two-stage melting transitifB]. In these col-
because of their obvious potential for technological applicaloidal systems the leading interaction is the dipole-dipole
tions, especially given the progress in epitaxial growth techpotential, aside from the obvious excluded volume effects
nigues that has facilitated their manufacture. These systentiie to the particle cores. If the external field is sufficiently
consist of thin films(a few atomic layensof paramagnetic strong in relation to the interparticle interaction, the induced
particles(metal oxides in most casedeposited on a solid parallel alignment of the dipoles reduces the dipolar interac-
surface(usually metalli¢. The competition between the dif- tion to a simple, tunable radial repulsive interaction suited
ferent magnetic interactions and the constraint imposed ofor the crystallization and diffusion studies presented in Refs.
the particles to lie on a plane gives rise to a rich variety of{3] and [4]. More generally, however, one must explicitly
phase transitions, from paramagnetic phases to in-plane @onsider the full orientational nature of the dipole-dipole in-
out-of-plane ferromagnetic and even antiferromagneticeraction.
phase$1]. The terms included in the Hamiltonian describing  We are not aware of any theoretical investigation of this
these systems stem from the magnetic dipole-dipole interadype of disordered systems in which the particles carrying
tion, the exchange coupling, and the spin-orbit coupling thathree-dimensional magnetic dipoles are constrained to a pla-
gives rise to a magnetic surface anisotr¢pl In addition to  nar surface and interact with an external field. But in fact,
this type of material, quasi-bidimensional systems can alsbesides simulation calculations—the preferred tool in the
be produced using confined colloids, with the added interesthodeling of ordered phases like those described in Ref.
that both fluid and crystalline structures can be generated in-and direct measurements via digital videomicroscopy
such systems. In particular, Zahn, Miez-Alcaraz, and [3,4], these disordered systems are also tractable within the
Maret[3] have studied self-diffusion in two-dimensional col- framework of the inhomogeneous Ornstein-Zernik@z)
loids by means of an arrangement of superparamagnetic cokquation 6], an approach that has recently been successfully
loidal particles(doped with FgO3) confined to a water/air applied by the authors to describe order-disorder and gas-
interface. An external magnetic field perpendicular to theliquid phase transitions in three-dimensional Heisenberg spin
surface can then be used to induce tunable repulsive interaffuids [7,8]. In the present paper, we further pursue this ap-
tions between the particles and thus separate out the effegisoach and, as in Ref7] and[8], exploit the properties of
of direct and hydrodynamic interactions on the diffusion pro-specially constructed orthogonal polynomials whose weight
cess. Zahn, Lenke, and Maifef] have further exploited this function is precisely the one-particle distribution function of
system to investigate the crystallization dynamics of two-the anisotropic system. This general procedure has already
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been successfully applied to a variety of systems with inter- Il. INTEGRAL EQUATION FORMULATION

nal degrees of freedom, such as polarizable parti@et), The interaction energy for a configuration bf sphere

polydisperse systems in thrgl] and two[12] dimensions, centersr; with embedded three-dimensional magnetic mo-
and the Heisenberg spin systems mentioned above. In tnﬂentsM-Jin the plane ared is
i

present case, anisotropy could also be thought of as an inter-
nal degree of freedom, described by the polar angle of the
dipoles with respect to the normal to the plane, and the sys- U=2 uo(rij)+2 Ugg(rij o ,coj)—z Mi-Bo, (1)
tem could then be viewed as a purely two-dimensional model 1<l 1<l !

with a fluctuating in-plane particle magnetic moment.

The ferrofluid monolayer will be modeled as a fluid of
hard spheres in a plane with embedded three-dimension
point dipoles; additionally, an external field may be applied )
perpendicular to the plane. Obviously, this model is too sim- R e N SN

- . . : : . Ugg(r2,01,07) 3 [3(rio pa)(rior o) — py- o]
plistic to allow a direct comparison with the experiments, in ris
particular since in the setup of Zatet al. [3] the dipole 2
moment is induced by the external field. This could be mod-
eled by including polarizability{9,10]; although feasible, the dipole-dipole potential, anl, a uniform magnetic field
such an extension would considerably increase the comput&erpendicular to the plane. Even in the absence of the mag-
tional burden and therefore at this stage is beyond the scop€tic field, the planar arrangement of the point dipoles pro-
of our work. In our treatment, the single-particle angular dis-duces anisotropy, so that the one-body density
tribution function, f(cosé), which describes the probability
of finding a dipole at angl®@ with the normal to the plane,
will be the weight function of the special orthogonal polyno-
mials used to expand the one-particle and two-particle cor-
relation functions. This angular distribution function is con-is not a constant. Hergs=N/A is the number density and
nected to the intermolecular potentials and the pairf(w) the orientational distribution function of the interacting
distribution function g(12) through a Born-GreernBG)  dipoles, which is to be found. Letting the magnetic field
equation[6]. The two-body functiorgy(12) in turn is studied define thez axis perpendicular to the plane, the one-body
in terms of an inhomogeneous OZ equation, to which wedistribution forw= (6, ¢) depends only on the polar angle
couple the optimized reference hypernetted-chain closurei(w)=1f(x), wherex=cosé=pu-z. [The distribution func-
The results obtained from this theoretical approach are contion in the noninteracting limit isfy(x) = exp(BuByX)/C,
pared with extensive data from Monte Carlo simulations. Wewhere C = sinh(BuB,)/8uB, is the normalization constait.
find that the linked set of integral equations can furnish arhe two-body density
remarkably accurate description of both the one-body and
two-body structure of the two-dimensional fluid, as well as .
of its thermodynamics. On the other hand, density-functional pAr o1 0)= < ,;l o(r=ri)8(w—w)
theories(DFT) have been extensively applied to the study of
first- and second-order transitions in three-dimensional dipo-
lar fluids, particularly providing qualitative insight into the
order-disorder(ferroelectrig transition in Stockmayer fluids
[13]. Therefore, as an alternative, we also explore here the . p? o) (o o N @
density-functional theory with a modified mean fi¢MMF) - (417)2 (@)H(0)g(r=r'.0,0’)
approximation for the free-energy functiorfd4]. This ap-

proximation, which is considerably less involved than thethen defines the generalized pair distribution function
inhomogeneous OZ equation, provides only semiquantitativg(lz):g(rlz,wl,wz)_ In the expressions above, a caret de-
information on the thermodynamics and the single-particlenotes unit vector while the angular brackets indicate a ca-
structure. This stands in contrast to the relatively accurat@onical ensemble average.

results provided by the same method in the case of the fer- To determinef(x) andg(12) we proceed as in the earlier

where ug(r) is the hard sphere interaction for spheres of
gfametero,

N
p(l)(r,w)=<j2l o(r—rj)é(w—wj) Z%f(w) (3

><5(r’—rj)5(a)'—wj)

romagnetic Heisenberg spin flui@i$5]. works[7-10]. The first BG equation,
The rest of the paper can be sketched as follows. In the
next section, we describe in detail the solution algorithm, d f(w) p

based on specially tailored orthogonal polynomials, for the ax " =- Ef drde'f(e’)g(r,o,o")

coupled system formed by the inhomogeneous OZ equation
for g(12) and the BG equation fdi(cosé). The essentials of
the MMF approach applied to the dipolar monolayer prob-
lem are summarized in Sec. lll, while details of the simula-
tion procedure used to generate our standegfitrence¢data  couples the one-body to the two-body distribution; hgre
can be found in Sec. IV. Finally, Sec. V describes our most=1/kgT is the inverse temperature. The pair function in turn
significant results and conclusions. is obtained from the inhomogeneous OZ equation

fo(w)

d
X&ﬂudd(r,w,w’), (5)
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p
h(riz,01,05)=C(r1p,01,0;) + 4_J dradwsf(ws) Y(roy,0)=4m > 7|m|1m2(r)y|1m1(w1)y|252(w2)-
™ I1,15,my,my
(12)
Xh(rz,01,03)C(r3,03,0,), (6)
o _Similarly, Fourier transforms, which will be used to decon-
whereh=g—1. The OZ equation introduces a second pairyolute the OZ Eq(6), are also conveniently expanded with

function, the generalized direct correlation functmrand so  thex axis along the planar vectér A two-dimensional Fou-
a second, or closure, relation betweeandh is needed. This rjer transform

relation is[16]
(1, @y, w5) = exf — Bug(r) — BUgq(T, @1, w5) 3(12)=f dr y(12)e' " (13)

+y(ro1,0)+b(r0,0,)] is then evaluated as follows. Choose thexis alongk. Then

—1— (1,01, @), (7)  using Eq.(11) we have
wherey=h—c. [The indirect correlation _fun_ctiory will be ;(12)=J dr y(12)ekr coser
used below to repladein Eq. (6) as the principal unknowih.

It is here that the only approximation of the calculation must

be introduced, for the so-called *“bridge” function =47 j drry, fmz(r)f de,ekr coser
b(r,w;,w,) is not known in any usable forfil6]. In this l1l2,my.mz JO

paper, we will use the reference hypernetted-cHRIHNC) xe " (M=Mery ()W~ (wy)
closure[17,18, optimized to achieve minimization of the lymy(€1)F1omy( @

free energy{19]. This choice consists in replacing the un-

known functionb with the bridge function obtained from =47 > mlmz(k)Mlml(wl)Mzaz(wz), (14

some calculable reference model, here taken to be the pure 11.12.my.m;

hard disk fluid at the same density,

b(r,wy,wy)~byp(r;og), (8)

where

N,

mlmz(k) 27T|m1 mzf drrymlmz(r)J\ml_m2|(kr)-
whereo is the reference fluid disk diameter that is varied to
attain a minimum in the free energ$9]. (15
Equations(5)—(8) form a closed set; the problem now is
to cast them into a computable form. This is achieved by,
expanding all angle-dependent functions in generalize
spherical harmonicf7,8]

Here,J(X) is the Bessel function of orden generated by
éhe integral overp, . Similarly, an inverse transform is

mqim mqim
L | Yy, (1= mf kk?’ 1, 2(K)Jjm, —m,(KT).
Vim(w)=—(—1)"e'm*P, (cosd 9 16
Im(@) m( ) Im(COS6) 9 (16)
_ _ _ It follows from the circular symmetry of the system that
that are Orthogonal with WE|ght fUnCtldT(a)), |m1_m2| must be an even integer_
With these operations of Fourier transformation and ex-
do f X )= S1r . 10 pansion in generalized spherical harmonics, the OZ&ds
f @ 1(@) Vil @) Yy (@) = O O (19 converted into a set of algebraic equations for the expansion

. o ) coefficients,
Sincef(w) here depends only of), it is just the generalized

Legendre functionsP|,(cosé) that must be specially con- -
structed. We refer to Ref8] for some formal details of their 7’|m|m (k)= P 2 (=)™ Y 1m3(k)+clmlm3(k)]clrn3mz(k)
construction. Their actual calculation is based on a robust (17)
algorithm proposed by Press and Teukol$RQ].

Pair functions such ag are now expanded in this basis Coefficients with even or odd index pairsn{,m,) form

setas disjoint sets, so Eq(17) can be solved for theyI lmz(k)
coefficients in the matrix forms

Yo e)=4m X YA, (@1) B o _
f1la M2 T'(k)=pC(k)C([I = pC(k)] (18)

XN, my(@z)exg —i(mi—my)e ], (11) for m,,m, even, and
wherecp_r |§ the ammuthal_angle of the pIa_nar _ve_ctownh T(K)=— pCRTK[I + pC (k)] L, (19)
the x axis in the plane antch=—m. In practice, it is conve-

nient to align thex axis alongr, so¢,=0 and the expansion for m;,m, odd. Here,l is the unit matrix. The iteration
simplifies to scheme that is now used to solve f@x) andg(12) follows
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that of earlier workg7—10], with the differences that arise This expression can be recast in the form
from the reduced dimensionality having been spelled out

o

above.
The thermodynamics of the system is then immediately Inf(x)=In f0(x)+|20 aPio(X), (30
obtainable by quadratures. For the internal endigy, pres-
surep, and isothermal compressibilitgy, we get where thea, for | >0 are determined by numeric&Bauss-
ian) integration of Eq(28) anday by normalization.
BUgq 1 j dr deoden Flw)f Finally, with the magnetic field normal to the plane, the
N 2 (4r)2 rdoydo; f(og)f(wz) longitudinal (out-of-plang and transversdin-plane mag-
netic susceptibilities are obtained, respectively[&s
Xg(riwlin)ﬁudd(riwlin) - - -
xu/pBu?=0Z[ 1+ ph3X0)]+ o (X)[ phIY(0) + phoY0)]
1 mym; mlmZ
o[ 3 oo, eo A1+ 9RO, (31
PP, Han)H(ws) xrlpBut=3(1=(EN1-ph1i(0)]. (32
P It was noted above that a hard disk fluid is used as the
reference model for the optimized RHNC closure. Since the
xg(r, wl,wz)f Bu(r w1,0>) free energy minimization of the optimization procedure im-
plicitly assumes thermodynamic consistency of the reference
N 2 00 3 BUqq system, and no such solution is known for hard disks, we
=1+zmpogoo)+ 5N 2D have sought at least to approximate that condition by using a
pressure-consistent closure for the hard disk fl@it]],
pkgTKy=1+ph3%0). (22)

o(r)=h(r)— (1= &[g(r)e el —1]— £In[g(r)e ol )].
The coefficients of the dipole-dipole potent{@) that appear (33
in the energy calculation, Eq20), can be readily obtained.

O This i I f the familiar P -Yevi
They are explicitly is is a blend of the familiar Percus-Yevick=0) and

hypernetted-chaing=1) closures controlled by the param-

2 eter¢ to achieve consistency of the virial and compressibility
Ugg(r):<x>2ﬂ_’;, (23)  pressures. The density dependencef afonstrained in this
r way is found by calculation to be fitted by
Bu? £=0.0920+0.122* +0.164*2+0.110Q* 3, (34
BUdlr) = Bur)=(x)oy—-, (24)
r with p* =po?.

Referencg 21] (see also Ref[22]) lays out an accurate

ical algorithm for the Fourier-Hankel t f
AU =02 zﬂ,u (25 numerical algorithm for the Fourier-Hankel transform
300=27 [ dr v k) 39
11 -1-1 1 2 Bu? 0
Bui(n=puy (N=7(1-())—, (26 o o
r and its inverse[The algorithm is based on the zeros of

Jo(x), an almost-periodic function, and so leads to unequal
1-1 1 ) intervals in the numerical grids farandk.] Here, we need
Buig "(r)=pBuy(r)=—7(1—(x >)r_3’ (27 not only this transform but also those faf,(kr), with m
>0 an even integer. This has been handled in our calculation
where ¢2=(x?—(x)2 is the variance off(x). The virial Py a two-dimensional version of the “raising” and “lower-

pressure from these coefficients then obviously reduces 9" operations previously used for spherical Bessel func-

the dipole-dipole energy term seen in E2j1). tion transformg 23] that reduce all transforms to thkig(kr)
i o i i variety. Specifically, to transform a coefficient(™(r)
The potential coefficients are used in evaluating &. m% p 1y,
expanded in the new orthogonal polynomials to yik =,1, (r) for which m=[m; —m;[=2,4.6. .., weapply
the Iowerin operation
f(x) dPy,m(X) g.op

ax" %) :HE &1 mPym(¥)—g > (28) Y (x)

e Y2 (r)=yM(r)—2(m—1)rm" 2J dxl o=
with (36)

& 1m= J dr 2 glm”b(r)umsm(r) (29) recursively until reaching/?)(r) and then transform this last
1'2

function with the algorithm of Eq(35). For an inverse trans-
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form, the functiony(®)(r) obtained from aly(kr) inversion Fad p]=F+F o], (42)
is subsequently raised to the fingl+ 2(r) by recursive ap-
- 12 where the ideal part is simply
plication of
Fd o1
2(m—=1) (r =—| dof(w)Inf(w)— BuByX). 43
—y(m)(r):,y(mfz)(r)_ ( rm )fodx mel,y(mfz)(x) N 477.f (& ((1)) (w) ﬁ/-l’ 0< > ( )
(370  Asis found in Sec. V, we model the one-body function as
until reachingm=|m;—m,|. The integrals in Eqs(36) and 1,
(37) are evaluated using a trapezoidal rule with unequal in- flo)=f(x)= c® by, (44)
tervals. All calculations are carried out with 1000 points in
ther andk grids. with the normalization constant
Because the direct correlation function goes asymptoti-
cally as the potential, 1 |7 2a—b 2a+b
C=—\/—€e"" erf +erfl ——||. (45
4 N a 2\a 2.a

e A(r) ~ = Buy 1 H(r) (38)

) ) Here erff) is the standard error function and we have put
for r large, the calculation of the transforms oheeded in 3= 32K, b=guB, whereK andB are effective values
Eq. (17) can be adversely affected by the long-range natureyf the magnetic surface anisotropy and external magnetic

of the dipole potential, Eq423)-(27), since the numerical fie|d, respectively. Now, from Eq43), it is straightforward
versions of the transforms are necessarily truncated at a finitg) show that

range. To avoid this problem, we subtract from the coeffi-
cients ofc a long-range function, appropriately weighted, BFI4IN=—a(x?)+(b—bg)(x)—InC. (46)
that can be analytically transformed, namely,
Analytic expressions for the momeng") can be readily
©) Bu? o L oo derived. Equatior(46) is somewhat ill conditioned for cal-
Buig(r)=—-[1-e “(1+ar+3za7%)] culations at small values od, since the expression foE
r contains both vanishing and diverging terms that have to be
L 1 - handled analytically. It is then advisable to perform a series
=3Bu1 CYSJ dxxPe” "™, (39  expansion around=0, which is rapidly convergent.
0 The excess term has now to be approximated. We follow
Teixeira and Telo da Gamil4] in applying the modified
mean field approximation, which leads to the excess free
energy expression

for those coefficients that transform with Ja(kr) kernel,
Egs.(23)-(26), and

ﬂ/v‘z _ ex
(€ o B 1 .2.2,1 3.3 F
AUR(N="grlime Tt art et Fraa_ _» | ardodantiopio)
N (4m?)r>o
1
I%,B,uza“rf dxxe™ @™, (40 X{1—exd — Bugy(r,wg,ws)]} (47)
0

This integral is evaluated numerically employing Gaussian
for those that transform with &(kr) kernel, Eq.(27). Here,  quadrature on the angular variables and a simple trapezoidal
@ is a numerical parameter that we setaat 25R, where  rule onr [8], just as in the numerical algorithm for solving
R=20c is the maximum range af in the calculation. The the integral equation in Sec. Il.
numerical transformation of the resulting short-range func-  For givenp, u, andB,, one has now to minimize the free
tions then presents no problems and the analytical transformghergy defined by Eq$41)—(47) with respect to the param-
of Bu{%(r) andBu{2)(r) are added back in with the appro- etersa and b. The search for the minimum of a function

priate weights to complete the transformations. defined in terms of a numerical multidimensional quadrature

is an ill-conditioned problem and so Newton-Raphson or

ll. DENSITY-FUNCTIONAL THEORY IN MODIFIED conjugate gradient algorithms are not well suited. We have
MEAN FIELD APPROXIMATION found that a direct search Complex algorith24] provides a

) ~ sufficiently robust method.
As usual in DFT treatments, the free energy functional Fina”y, the excess internal energy in the MMF approxi_

Flp] is split into a reference pafq[p] corresponding to  mation must be evaluated by numerical integration of
pure hard disks and a second contributiegy p] arising

from the magnetic dipoles, BUgyg 1 »p
N 2 (4m)2
Flpl=Folp]+Fadp]. (41) (4)

The dipolar contribution in turn can be split into ideal and Xexf— Bugd(r,@1,w) ] Bugd(r, @1, @).
excess components, (48

f drdwldwzf(wl)f(wz)
r=>o
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—— RHNC R

04 | — - DFT g 04

omc
—— MC (LSPF) y=0.61 exp(-0.67x)
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0.3 } } } 03 t } }
07 . /‘ 07 | ]
BuB,=1 ’ BuB=1
06 - sk 0 g TSeg T~
: @
£ 05 F 05
5 9 &
= oMc = . oMme
a4l 0 eEFT e MC(LSF) y=0.52 exp(-0.22x+0.52x) i 04 —— MC (LSF) y=0.61exp(-0.71x"+0,34x)
—— RHNC —— RHNC
— .. DFT —-- DET
0.3 g 03 4
0.2 : : : 02 l l l
25 oMe 2 T 25T —Oﬂg(LSF)yd)M (~0.70x"+1,45x) 1
BB, :ll;dbivﬂ.csﬂyﬂ.lﬁexp(—o.l6x+-,28x] p BB =4 el  47exp(—0. .
2 b —-- DFT /e 2 b — - DFT |
15 |
1 -
05 |
0
-1

monolayer of dipolar hard spheresgat?=0.4 and various external monolayer of dipolar hard spheresgat”=0.8 and various external
fields. Open circles denote MC data, solid line RHNC results, andields. Labels as in Fig. 1.
dash-dotted line results from DFT-MMF. The dotted line tracking

the MC points is a least squares fitSF) whose coefficients are 1 N N
shown in the figure. Uj=- > S>> ,[B(|rij+n|)ﬂ‘i"ﬂlj‘+c(|rij +nl)
i=1j=1 n
IV. MONTE CARLO (MC) SIMULATION T erfd G/2a)

_ , , , X(ﬂ‘i"rij)(ﬂk"rij)]+x > ——&  FIGF(©)
The MC simulations were performed in the canonical G#0

(NVT) ensemble using 576 particles in a square box with N
periodic boundary conditions. The long range of the dipole _ 2 2 50
; ; _ 2 () (50)
interaction was accounted for by an Ewald sum, which for a 3Jmi=1
three-dimensional dipole interaction with particle centers re-
stricted to a two-dimensional periodic lattice is absolutely
convergent. We have found that the results exhibit no depen-
dence on the boundary conditions, since for three- NN
dimensional dipoles the potential decays as',lih contrast 1

- mone th too-cimens U=-53 3 S Bl +n)ut e
with the pure two-dimensional system with two-dimensional L D & =~ ij Mi Hj
electrostatics in which the interactions decay a$.1/

In deriving the expression for the Ewald sum, it is conve- T 2u G2 G
nient to divide the dipole moment into an in-plane compo- + A Tex -— |-G erfc( 2(1)
nent/u‘i‘ and an out-of-plane componeat . The total energy CFO LN 4a
can then be written as the sum of two contributip®s], XF, (G)F*(G)
2\/;a NN 208 N
L L 142
Ugg=Uj+U,, (49 A izlj:l i Mj_ﬁ;l (mi)=. (81

where Here, the function8(r) andC(r) are given by
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pG’=0.4, BuB,=0, Bu’/c’=1

£

/o

FIG. 3. Radial projectiong®Y(r) and angular projections
h¥M(r)=hr) andh'*qr) of the pair distribution functiony(12)
in a ferrofluid monolayer of dipolar hard spherespat’=0.4 and

BuBy=0. Here and in Figs. 4-8, the angular projection curve with

the largest contact value correspondshité(r) for BuBy,=0 and

h¥%r) for BuBy=4. Open circles denote MC data and solid lines

represent RHNC results.

_ 2.2
B(r)= erfc;(sar) B Zi exp( 201 r ), 52

N

2.2
C(r)—3erf(;(5ar) +j%(f2+2a2)exq rza r ), (53
while
N

Fi(G)= 2, (G- p)exiliGri], (54)
N

FL(G)=2 ui exiG r]. (55
=1

In Egs.(50) and(51), A=L? is the area of the system ahd
the box edge length. The prime in the sum owver
=(ny,ny), with n,,n, integers, means that~j for n=0.

With the valuea=5.7L that was adopted in our calcula-

tions, only the terms witlm= 0 need be retained in Eq&0)

and(51). The sum in reciprocal space extends over all lattice

2

max— 64. Because of the

vectorsG=2#n/L such thatn|?<n

rather large system size the reciprocal space contribution to

the energy is generally quite small.

£

1.5

PRE 61

pG’=0.4, BUB,=4, pu’/c’=1

1/0

FIG. 4. Same as Fig. 3 fgro®>=0.4 andBuBy=4.

pG’=0.7, BUB,=0, pu’/c’=1

1/0

FIG. 5. Same as Fig. 3 fgro>=0.7 andBuBy=0.
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pe’=0.7, BuB,=4, Bp’ic’=1
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FIG. 6.
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pcz=0.8, BuB,=0, [5].[2/(53=1
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&

1/c

FIG. 7. Same as Fig. 3 fgro>=0.8 andBuBy=0.
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pG’=0.8, BUB,=4, Bu’/c’=1

%)

1/c
FIG. 8. Same as Fig. 3 fgro>=0.8 andBuBy,=4.

In the calculations presented in this work, simulation runs
consisted of 50 000 to 100 000 cycles, each cycle implying a
translation, rotation, and occasional inversion of the dipoles
moment, carried out on every particle in the sample. The real
space contribution in Eq$47) and(48) was truncated at half
the box length. In order to assess the system size dependence
of the results, some calculations were performed with 1600-
particle samples; they showed no significant deviations from
the smaller sample results.

8 ’

BP/p

BUN

pc’

FIG. 9. Compressibility factoBp/p and excess internal energy
BUq4q/N for a ferrofluid monolayer of dipolar hard spheres. Open
circles denote MC data, solid line RHNC results, and dash-dotted
line results from DFT-MMF. The curves, from bottom to top, cor-
respond toBuBy=0,1, and 4.
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TABLE I. Magnetic and thermodynamic properties of a planar ferrofluid monolayer of dipolar hard
spheres of diameter with embedded point dipoleg in an external magnetic fielB, normal to the plane,
calculated in optimized RHNC approximation f@u?/c®=1; o is the optimized disk diameter of the
reference hard disk system.

po®  BuBy oolc  BuB  Bu’K  BUgg/N  Bplp  Biplap  x.lpBu®  xtlpBu’

0.1 0 0.9587 O —0.048 -—0.061 1.147 1.314 0.270 0.376
0.2 0 0.9658 O —-0.105 -—0.129 1.340 1.783 0.223 0.425
0.3 0 09731 O —-0.172 —-0.204 1.600 2.506 0.188 0.480
0.4 0 09799 O —0.248 —0.286 1.962 3.670 0.161 0.543
0.5 0 0.9853 O —-0.332 —-0.375 2.486 5.621 0.139 0.616
0.6 0 0.9900 O —0.425 —0.474 3.274 9.054 0.121 0.711
0.7 0 09934 O —0.530 —0.585 4.508 15.42 0.106 0.873
0.8 0 09950 O —-0.673 —0.731 6.523 27.83 0.094 1.481
0.1 1 0.9718 0.826 —0.043 —0.034 1.172 1.358 0.277 0.358
0.2 1 0.9729 0.695 —0.099 -—0.089 1.379 1.840 0.222 0.409
0.3 1 0.9770 0.596 -0.167 —0.159 1.645 2.564 0.186 0.466
0.4 1 0.9820 0.518 —0.244 —0.240 2.010 3.725 0.159 0.531
0.5 1 0.9859 0.457 —-0.329 -0.331 2.537 5.670 0.138 0.605
0.6 1 0.9902 0.407 —0.423 —0.432 3.322 9.091 0.120 0.701
0.7 1 0.9936 0.367 —0.528 —0.545 4554 15.46 0.106 0.861
0.8 1 0.9950 0.336 —0.672 —0.694 6.588 27.90 0.094 1.458
0.1 4 1.0716 3.516 0.001 0.133 1.335 1.687 0.348 0.218
0.2 4 1.0393 3.053 —-0.030 0.237 1.705 2.469 0.225 0.259
0.3 4 1.0180 2.640 —0.091 0.291 2.110 3.380 0.164 0.312
0.4 4 1.0054 2.290 —-0.175 0.288 2.574 4.603 0.133 0.378
0.5 4 0.9994 2.001 -0.275 0.233 3.158 6.531 0.116 0.457
0.6 4 0.9969 1.766 —0.384 0.138 3.975 9.902 0.105 0.555
0.7 4 0.9963 1.575 —0.504 0.009 5.228 16.21 0.097 0.702
0.8 4 0.9970 1.424 -0.651 —-0.161 7.230 28.77 0.089 1.121
V. RESULTS AND CONCLUSIONS captures the orientational order of the system. In(&6), K

andB are effective values of the magnetic surface anisotropy

One of the most sigr_lifican_t structural quantitigs in an .in'and external magnetic field, respectively, while the normal-
homogeneous system is obviously the one-particle distribuz ti0n constanC is given in Eq.(45). A comparison be-

tion function, in this case the angular distribution function yyeen our Monte Carlo data fdi(x) and results from the

f(x). Using Eqs.(28—(30) we find by calculation that RHNC integral equation and the MMF approximation is dis-
1 played in Figs. 1 and 2 for various densities and external

_ = 2K 2+ f|elds.'G|ven th_at the magnitude of common magnetic di-

fo0 Cexﬂﬁ’u Kx*+ BB, (56) poles is appreciably smaller than that of their electric coun-

TABLE Il. Comparison of magnetic and thermodynamic properties of a planar ferrofluid monolayer of
dipolar hard spheres in an external magnetic fig{dnormal to the plane, calculated in optimized RHNC
approximation, Monte CarléMC) simulation, and density functional theof@FT), for Bu?/a®=1.

po® BuByg BuB Bu’K BUqga/N Bplp
RHNC MC DFT RHNC MC DFT RHNC MC DFT RHNC MC
04 0 O 0 0 —0.248 —0.26 —0.202 —0.286 —0.292 —0.248 1.962 1.95
0.7 0 0 0 0 —0.530 —0.60 —0.400 —0.585 —0.614 —0.443 4508 4.60
0.8 0 0 0 0 —-0.673 —0.67 —0.393 —0.731 —0.742 —0.489 6.523 6.76
04 1 0518 052 0.572—-0.244 —0.22 —0.180 —0.240 —0.248 —0.206 2.010 2.00
0.7 1 0.367 0.38 0.356—0.528 —0.53 —0.435 —0.545 —-0.571 —0.401 4.554 4.63
0.8 1 0.336 0.34 0.383-0.672 —0.71 —0.426 —0.694 —0.709 —0.443 6.588 6.87
04 4 2290 2.28 2.578-0.175 —0.16 —0.100 0.288 0.282 0.275 2.574 257
07 4 1575 1.58 1.887—-0.504 —0.51 —0.148 0.009 —0.017 0.190 5.228 5.26
08 4 1424 145 1.802-0.651 —0.70 —0.177 —0.161 —0.175 0.153 7.230 7.50




PRE 61 STRUCTURE AND THERMODYNAMICS OFA .. .. 3847

1 ants ¢'O=pi-pm, and G'=3(puy 1) (pp 1)~ - o,
namely, h*'9r) and h'*qr), quantities that are connected

] respectively to the relative orientation of a pair of dipoles at
a given separation and to the contribution of a given orien-
tation to the dipolar excess energy. In terms of the calculated

coefficientsglrjllg‘z(r) of this paper, these projections are

2

X /PBK

given by
h1%r)=3(g(12) ¢'%12),,..,

=3[(x)2goy(r) + 2(x) 7, g3%r)
1 +05035— (1= (x?)g11(r)] (57)

R ‘ ‘ . ‘
0 02 04 06 08 and

FIG. 10. Longitudinal and transverse magnetic susceptibilities h1%r)= §<g(12) ¢112(12)>
of a ferrofluid monolayer in the RHNC approximatidines) and 2 192
from MC simulation(symbolg. Solid lines(circles correspond to

BuBy=0, dotted lines(squares to BuBy=1, and dash-dotted
lines (diamond$ to BuBy=4. The error on the MC results for the
susceptibilities is about 5%.

3
== 5| (})7g50(r) + 2(x) 7, gBilr) + o ZgR(T)

1 3
+ 5 (1= ()i = 5 (1= () g1y 1(r)|.

terparts, we have only considered a relatively moderate re-
duced dipole, u* =(Bu?/d®)?=1. In all cases, the (58)
agreement seen in the figures between the integral equation
and the simulation results is excellent. The MMF approachNote that these standard projections do not vanish at large
despite its crude assumptions, can be considered semyeparations, in contrast to the coefficienf§ (r) obtained
guantitative. The most noticeable feature observed in thesl% the special orthogonal polynomial exlpfamsion In fact it
figures is the breaking of the symmetry of the distributionf . : o

. _ ollows from the equations above that they have the limiting
with respect to the planexE cos6=0) due to the external behavior
field, with the response of the dipoles to the field being
weaker at higher densities. This effect of density is readily
understandable, since the dipole-dipole interaction favoring
head-to-tail alignments increases the tendency of the dipoles
to remain in-plane. The same effect can also be seen in the
zero-field truncated Gaussian distributions of Figs. 1 and 2, lim h'%%r)=— §<x)2
which become progressively more sharply peaked aBout 2 '
=0 as the density increases, approaching a fully coplanar
distribution. A similar effect can be induced by an increaseThe dipole-dipole energy, E420), can be obtained directly

of the dipole moment. from h''%r) in the form
We now focus on the pair structure of the system. In

dipolar fluids, in addition to the center-to-center pair distri- U
bution functiong®9(r)=gdXr), the most significant projec- BYdd _
tions of g(12) are those onto the standard rotational invari- N

lim h%r)=3(x)?, (59

(60)

r—oo

" 2
prO drh”z(r)'Br'L:. 61)
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FIG. 11. Planar projection of simulation snap-
shots of a ferrofluid monolayer for two different
dipole moments without external field. The ar-
rows indicate the projection of the three dimen-
sional magnetic dipole.
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The correlation functions obtained from the RHNC inte- pronounced than what is actually found in the simulation.
gral equation are compared with MC simulation data in FigsThis orientational structure disagreement is in consonance
3-8 for various densities and external fields. These statesith the discrepancies in the behavior of the transverse sus-
correspond to the paramagnetic fluid regime. This system iseptibility depicted in Fig. 10. Thus, whereas the increase in
known to exhibit a strong tendency to polymerize at lowthe theoretical susceptibility and the difficulties in conver-
densities and temperaturgz6,27], by which in principle one gence seem to indicate that the system might be close to
would not expect a gas-liquid transition to occur in the ab-some sort of in-plane order-disorder transition, the simula-
sence of dispersive forces, and hence one cannot propertion predicts no anomalous behavior for these high-density
ascribe these states to a gas or a liquid phase. states. Nonetheless, at somewhat higher dipole moment the

It can be appreciated that the optimized RHNC integralsimulation results start to show a clear head-to-tail in-plane
equation provides an excellent description of the microscopi@lignment of the dipoles with formation of vortex structures,
structure of the dipolar fluid, with and without external field, as can be appreciated in Fig. 11. It thus might happen that
except in the case gfo®=0.8. Here, the integral equation the integral equation underestimates the value of the transi-
renders a much more pronounced orientational structurgon dipole moment. Alternatively, it could be the case that
while the spatial ordering is exactly reproduced. This dis-the ordering process for a low-dipole moment in a finite
crepancy will be further discussed below when analyzing thesystem is an extremely slow one that is only captured by the
thermodynamic properties. The behavior at large separatior@mulation at lower temperatures, although calculations for
is well reproduced, including the crossover lf!%r) and  various systems sizes and lengths of the run do not seem to
h4r), which is driven by the limiting behavior defined in support this possibility. The situation thus remains inconclu-
Egs. (59 and (60) when the symmetry with respect to the sive, though we are of the opinion that the lack of conver-
plane is broken by the external field. It can also be seen thaence in the integral equation procedure is indicating the
the contact values of the correlation functions decreasenset of some in-plane ordering.
slightly as the field is augmented; this is due to the fact that In summary, we have presented an integral equation for-
the out-of-plane alignment induced by the field introducesmalism that is able to provide an accurate description of
repulsive dipole-dipole interactions. This effect is obviouslyfluidlike dipolar monolayers for both their one-particle and
less significant at low densities. two-particle structural properties and for their thermodynam-

Finally, we collect in Table | all the thermodynamic and ics. A simple DFT treatment has been shown to be capable
magnetic properties calculated in RHNC approximation.of providing a qualitatively correct picture of the fluid be-
Those properties for which MC and DFT data are also availhavior. Future work on this model will focus on the study of
able are compared with the RHNC values in Table 1l and argossible in-plane transitions, incorporating exchange interac-
plotted in Fig. 9. In accord with the results for the structure,tions and magnetic surface anisotropy.
the thermodynamic description provided by the RHNC equa-

tion is alsc_) found to be in good agreement vyith_ simulation._ ACKNOWLEDGMENTS
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