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Heat conduction in one-dimensional nonintegrable systems

Bambi Hu,1,2 Baowen Li,1,3,* and Hong Zhao1,4

1Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
2Department of Physics, University of Houston, Houston Texas 77204-5506

3Department of Physics, National University of Singapore, 119260 Singapore
4Department of Physics, Lanzhou University, 730000 Lanzhou, China

~Received 17 June 1999; revised manuscript received 24 November 1999!

Two classes of one-dimensional nonintegrable systems represented by the Fermi-Pasta-Ulam~FPU! model
and the discretef4 model are studied to seek a generic mechanism of energy transport on a microscopic level
sustaining macroscopic behaviors. The results enable us to understand why the class represented by thef4

model has a normal thermal conductivity and the class represented by the FPU model does not even though the
temperature gradient can be established.
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Heat conduction in one-dimensional~1D! nonintegrable
Hamiltonian systems is a vivid example for studying the m
croscopic origin of the macroscopic irreversibility in term
of deterministic chaos. It is one of the oldest but still a rath
fundamental problem in nonequilibrium statistical mechan
@1#. Intended to understand the underlying mechanism of
Fourier heat conduction law, the study of heat conduct
has attracted increasing attention in recent years@2–11#.

Based on previous studies, we can classify the 1D latt
into three categories. The first one consists of integrable
tems such as the harmonic chain. It was rigorously sho
@12# that, in this category, no temperature gradient can
formed, and the thermal conductivity is divergent. The s
ond category includes a number of nonintegrable syst
such as the Lorentz gas model@2,10#, the ding-a-ling and
alike models@3#, the Frenkel-Kontorova~FK! model@5#, etc.
In this category, the heat current is proportional toN21, and
the temperature gradientdT/dx;N21; thus the thermal con
ductivity k is a constant independent of system sizeN. The
Fourier heat conduction law (J52kdT/dx) is justified. The
third category also includes some nonintegrable syst
such as the Fermi-Pasta-Ulam~FPU! @4,6# chain, the di-
atomic Toda chain@7#, the ~mass! disorder chain@8#, the
Heisenberg spin chain@9#, and so on. In this category, a
though the temperature gradient can be set up withdT/dx
;N21, the heat current is proportional toNa21 with a
;0.43, and the thermal conductivityk;Na is divergent as
one goes to the thermodynamic limitN→`.

These facts suggest thatnonintegrability is necessary to
have a temperature gradient, but it is not sufficient to gu
antee the normal thermal conductivityin a 1D lattice. This
picture prompts us to ask two questions of fundamental
portance:~i! Why do some nonintegrable systems have n
mal thermal conductivity, while others fail?~ii ! How can the
temperature gradient be established in those nonintegr
systems having divergent thermal conductivities?

The reason for the divergent thermal conductivity in
integrable system is that the energy transports freely al
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the chain without any loss, so that no temperature grad
can be established. The set up of temperature gradien
nonintegrable systems implies the existence of scatter
However, the different heat conduction behaviors in the t
categories of nonintegrable systems indicate that the un
lying mechanism must be different. To illustrate the point,
us write the Hamiltonian of a generic 1D lattice as

H5(
i

Hi , Hi5
pi

2

2
1V~xi 21 ,xi !1U~xi !, ~1!

whereV(xi 21 ,xi) stands for the interaction potential of th
nearest-neighbor particle, andU(xi) is an external~or on-
site! potential. The origin of the external potential in re
physical systems varies from model to model. For instan
in the FK model@5# the external potential is the interactio
of the adsorbed atoms with the crystal surface. It isU(x) that
is distinguished from the two categories of nonintegrable
tices.U(x) vanishes in all 1D lattices having divergent the
mal conductivities. We are thus convinced that theexternal
potential plays a determinant role for normal thermal co
duction.

In this paper we would like to study the scattering mech
nism and the role of the external potential in heat conduct
in the two categories of nonintegrable systems. For this p
pose, we choose two representatives from these two cat
ries, i.e., the discretef4 model ~see, e.g. Ref.@13#! and the
FPU model. Each model is the simplest anharmonic appr
mation of a monoatomic solid. In thef4 model,V takes a
harmonic form, and the external potentialU(x)5mx2/2
1bx4/4, with m fixed to be zero in this paper. In the FP
model, U vanishes andV takes an anharmonic form of (xi
2xi 21)2/21b(xi2xi 21)4/4, andb51 throughout this pa-
per. In the case ofb50, the FPU model reduces to a ha
monic chain.

In our numerical simulations the Nose´-Hoover thermo-
stats@14# are put on the first and last particles, keeping th
at temperaturesT1 and T2 , respectively. The motions o
these two particles are governed by

ẍ152z1ẋ11 f 12 f 2 , ż15 ẋ1
2/T121,

ic
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FIG. 1. ~a! Temperature profiles for the FPU
model, the f4 model, the harmonic and the
monoatomic Toda model.~b! The quantityJN vs
the system sizeN for the FPU model~solid
square! andf4 ~solid circle!. Profiles of the har-
monic and the monoatomic Toda are shown
the inset of~b!. The lines in~b! and its inset are
drawn to guide the eye.T150.3, T250.2.
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ẍN52z2ẋN1 f N2 f N11 , ż25 ẋ1
2/T221. ~2!

wheref i52(V81U8) is the force acting on thei th particle.
The equation of motion of the other particle isẍi5 f i2 f i 11.
The eighth-order Runge-Kutta algorithm was used. All co
putations are carried out to double precision. Usually
stationary state set in after 107 time units. We should poin
out that we have performed computations using other ty
of thermostats, and no qualitative difference was found.

Figure 1~a! shows temperature profiles. In all nonint
grable systems, the temperature scales asT5T( i /N). How-
ever, in the FPU case there is a singular behavior near
two ends, which is a typical character of 1D nonlinear l
tices having divergent thermal conductivities. In the sa
figure we also show the temperature profiles for two in
grable lattices: the harmonic and monoatomic Toda mod
In these two cases no temperature gradient could be se
and the stationary state corresponds toT5(T11T2)/2,
which is consistent with the rigorous result@12#.

In Fig. 1~b!, we plot the quantityJN versusN for the FPU
model and thef4 model. The inset shows the same quant
for the harmonic chain and the monoatomic Toda chain. T
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e

local heat flux is defined byJi5 ẋi(]V/]xi 11). We found
that when the system reaches a stationary state, the
averagê Ji& is site independent, and is denoted asJ. For the
harmonic chain and the monoatomic Toda chainJN is ex-
pected to be proportional toN sinceJ is N independent. This
is indeed the case, as illustrated in the inset. In both the F
andf4 modelsdT/dx is proportional to21/N, the thermal
conductivity k52J/(dT/dx)}JN. Figure 1~b! shows that,
in contrast to integrable systems and the FPU model, h
conduction in thef4 model obeys the Fourier law.

The heat currentJ in all nonintegrable systems decreas
as the system sizeN is increased (J;Na21,0,a,1). To
clarify the underlying mechanism we decompose the inter
tion of the thermostat into a series of kicks, and study
transport of a single kick along the chain. A free bounda
condition is used in our calculation, but we should stress t
the results do not depend on the type of boundary condit
In Fig. 2 we plotpi versusi after a long time (t5800) for
four lattices: the harmonic chain~a!, the monoatomic Toda
chain ~b!, the FPU model~c!, and thef4 model ~d!. The
amplitude of the wave profile in the harmonic chain d
creases continuously with time, but the global profile
t
FIG. 2. The momentum excitation in differen
lattices. ~a! The harmonic chain~b! The mono-
atomic Toda chain~c! The FPU model and~d!
Thef4 model. The inset in~d! illustrates the time
evolution of the total momentum of thef4 chain.
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FIG. 3. ~a! The time dependence of the mo
mentum of a solitary wave.~b! The momentum
~after collision! vs the phase. The solid triangl
represents the results of the case in which b
left and right solitary waves have the same initi
momentum. The solid circle represents the ca
when solitary waves have different initial mo
menta~see the text for more in detail!. The hori-
zontal line is the momentum before collision.~c!
The maximal momentum gainDpmax vs initial
momentump0. ~d! The ratio of the heat flux of
J(400)/J(800) vs the average temperatureT
5(T11T2)/2 on a semilogarithmic scale. Th
results shown here are for the FPU model.
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mains unchanged. In both the FPU and Toda models,
observe that a solitary wave separates from the long
Initially this wave front is connected with other low ampl
tude excitations. After a certain time, this wave front mov
faster, separates from the tail, and goes forward and ret
its amplitude. In the meantime the tails behind it evolve
the same way as that in the harmonic chain. In thef4 model,
the head part of the profile becomes weaker and weaker.
reason for this is that in the first three cases~a!–~c! both the
total energy and the total momentum are conserved, whe
in the f4 model the momentum conservation breaks do
due to the external potential. The inset in Fig. 2~d! shows
that the total momentum in thef4 model decreases at lea
exponentially with time. The decay of the momentum w
time indicates a loss of correlation. It is thus reasonable
envisage energy transport along thef4 chain as a random
walk-like scattering.

The solitary waves in the FPU chain exchange energy
momentum when colliding with each other. This causes
ergy loss, and the heat current decreases when the sy
size is increased. To show this, we begin two excitation
the two ends of the chain with different momenta; one mo
to the right and the other to the left. Letp156, pN53, and
pi50 (iÞ1 andN) be our initial excitations. We calculat
the momenta of the solitary waves~by simply summing up
momenta of several lattices around the peaks! and investi-
gate the waves change before and after the interaction.
find that the larger wave generally transfers part of its m
mentum and energy to the smaller one, as shown in Fig. 3~a!.
The collision takes place att5850, where a peak is shown

Moreover, the interaction between solitary waves is fou
to depend closely on a ‘‘phase’’ difference. Here t
‘‘phase’’ difference is defined as a time lag between the
citations of two solitary waves. For instance, if we excite
solitary wave from the left end at timet, and another one
from the right end at timet1d, thend is the ‘‘phase’’ dif-
ference. These two solitary waves, traveling through
chain in opposite directions, will collide with each other aft
a certain time. Although the physical meaning of t
‘‘phase’’ is not obvious, it is an important and good quant
to describe the interaction. We showpL

a versusd for two
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different kinds of collision in Fig. 3~b!, wherepL
a is the mo-

mentum of the solitary wave from the left after collision.
the first case both left and right solitary waves have the sa
initial momentumpL5pR56.27, which is excited by initial
conditions ofp15pN56 andpi50 for otheri. In the second
case, the left wave haspL56.27 and the right onepR

53.28, excited by initial conditions ofp156, pN53, and
pi50 for iÞ 1 andN. The figure shows thatPL

a depends on
the ‘‘phase’’ sinusoidally.

Other interesting features of the collision of solita
waves are shown in Fig. 3~c!, where we plot the maximum
momentum gainDpmax versus the initial momentump0 for
the FPU model.Dpmax is measured by subtracting the initia
momentump0 from the maximumpL in Fig. 3~b!. First, this
picture tells us that the exchange of momentum and ene
depends on the initial momentum and energy. Second, t
exists a critical momentum below which no energy exchan
can take place. The criticalp0

c;1.8 is clearly seen in the
figure. Forp0,p0

c , Dpmax is zero. This result is very sig
nificant; it indicates that there exists a threshold for the s
tary wave interaction, and below this threshold the inter
tion ceases, i.e., no momentum and energy is exchan
between the solitary waves. A direct consequence of this
is the existence of a threshold temperature below which
FPU chain should behave like a harmonic chain; that is,
excited waves travel freely along the chain without any e
ergy loss, no temperature gradient can be set up, and the
current remains a constant even though the size of the c
is changed. To prove this argument, we show the quan
J(400)/J(800) versusT5(T11T2)/2 in Fig. 3~d!, where
J(N) is the heat current flux for a system of sizeN. In the
case of a size-independentJ(N) one should obtain
J(400)/J(800)51; otherwise one would obtain
J(400)/J(800).1. Figure 3~d! captures this transition nicely
for the FPU chain. The corresponding temperature thresh
is aboutTc;0.01. In the region ofT;0.001 the numerical
calculations do show that no temperature gradient is form

The different scattering mechanism in the FPU chain a
those chains having normal thermal conductivities lead t
different temperature dependence of the thermal conducti
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k(T). In Fig. 4 we plotk(T) for a FPU chain with an exter
nal potential of formU(x)52g cos(2px) for g50, 0.01,
0.05, and 0.1. The chain size is fixed atN5100. As pointed
out above, in a smallg regime such asg50 and 0.01, the
energy transport is assisted by the solitary waves, and
system has a largek which decreases as the temperature
increased. However, in the opposite regime (g50.05 and
0.1!, the energy transport is diffusive and obeys the Fou
law; k increases with temperature, because more phon
are excited.

FIG. 4. The thermal conductivityk(T) for the FPU chain with
an external potentialU(x)52g cos(2px).
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In summary, by studying two classes of 1D nonintegra
lattices, we have answered the two questions raised at
beginning:~i! The multiple scattering of the excited mode
by the external potential leads to a decay~at least exponen-
tially! of the correlation, so that a diffusive transport proce
can be reached, and the heat conduction obeys the Fo
law. ~ii ! Although the interaction of solitary waves makes
possible to set up a temperature gradient in the FPU
similar nonintegrable models, the momentum conserva
prohibits the diffusive transport and consequently leads t
divergent thermal conductivity. In addition, we have unco
ered an important fact in the FPU model, namely, the ex
tence of a threshold temperature, below which the FPU m
behaves like a harmonic chain.

Note added in proof. After submission of this paper we
became aware of the following results. Prosen and Camp
@15# proved in a more rigorous way that for a 1D classic
many-body lattice total momentum conservation impl
anamalous conductivity. The normal thermal conductivity
thef4 lattice has also been observed by Aoki and Kusne
@16#. The role of the external potential has been further st
ied by Tsironiset al., @17#.
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