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Heat conduction in one-dimensional nonintegrable systems
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Two classes of one-dimensional nonintegrable systems represented by the Fermi-PastaRIWamodel
and the discretey* model are studied to seek a generic mechanism of energy transport on a microscopic level
sustaining macroscopic behaviors. The results enable us to understand why the class representgd by the
model has a normal thermal conductivity and the class represented by the FPU model does not even though the
temperature gradient can be established.

PACS numbg(s): 44.10:+i, 05.45—a, 05.70.Ln, 66.76f

Heat conduction in one-dimensionélD) nonintegrable the chain without any loss, so that no temperature gradient
Hamiltonian systems is a vivid example for studying the mi-can be established. The set up of temperature gradients in
croscopic origin of the macroscopic irreversibility in terms nonintegrable systems implies the existence of scattering.
of deterministic chaos. It is one of the oldest but still a ratheHowever, the different heat conduction behaviors in the two
fundamental problem in nonequilibrium statistical mechanicscategories of nonintegrable systems indicate that the under-
[1]. Intended to understand the underlying mechanism of théying mechanism must be different. To illustrate the point, let
Fourier heat conduction law, the study of heat conductiorus write the Hamiltonian of a generic 1D lattice as
has attracted increasing attention in recent yg2rsl 1].

Based on previous studies, we can classify the 1D lattices pi2
into three categories. The first one consists of integrable sys- H=2> H;, H =5 FVXi-1xi)+UX), (D)
tems such as the harmonic chain. It was rigorously shown '

e e et a2 nere\(x_, x) stands for te meracton ptenta of e
ond category includes a number of nonintegrable Systemgearest-nelghbor partl.clle, and(x;) is an externaKor on-
such as the Lorentz gas mod@,10], the ding-a-ling and Site) potential. The origin of the external potential in real

: hysical systems varies from model to model. For instance
alike modeld 3], the Frenkel-Kontorovg~K) model[5], etc. P L . S
In this cate;{or]y the heat current is pf:):po)rtional\t[bl] and M the FK model[5] the external potential is the interaction

the temperature gradied/dx—N % thus the thermal con- i & PR CA T XL T8 ROV S T e
ductivity k is a constant independent of system d\zeThe g g 9

Fourier heat conduction lawl& — xd T/dX) is justified. The tices.U(x) vanishes in all 1D lattices having divergent ther-

. : . mal conductivities. We are thus convinced that éxternal
third category also includes some nonintegrable systems . .
such as the Fermi-Pasta-Ula(fPU) [4,6] chain, the di- potential plays a determinant role for normal thermal con-

. : . . duction
atomic Toda chair{7], the (mas$ disorder chain[8], the . . .
Heisenberg spin chaifd], and so on. In this category, al- In this paper we would like to study the scattering mecha-

) nism and the role of the external potential in heat conduction

though the temperature gradient can be set up @iffdx . ) . .

= . . 1 in the two categories of nonintegrable systems. For this pur-
~N™+, the heat current is proportional with « h . f h
~0.43, and the thermal conductivity—N* is divergent as pose, we choose twoArepresentatlves rom these two catego-
oné o’es 1o the thermodvnamic lint_ o ries, i.e., the discreté® model(see, e.g. Ref.13]) and the

9 ynam S FPU model. Each model is the simplest anharmonic approxi-

These facts suggest thabnintegrability is necessary to

. 2" . mation of a monoatomic solid. In thé* model,V takes a
have a temperature gradient, but it is not sufficient to guar - monic form. and the external otentibl(x) = mx2/2
antee the normal thermal conductivilly a 1D lattice. This ' b

picture prompts us to ask two questions of fundamental im—jL px/4, with m fixed to be zero in this paper. In the FPU

portancei(i) Why do some nonintegrable systems have nor-mc’deLgJ vanishes and{l takes an_anharmonlc form' oki(
mal thermal conductivity, while others fail#) How can the ~Xi—1)/2+ 'B(Xi_xij) /4, and =1 throughout this pa-
temperature gradient be established in those nonintegrabpeer' _In the_ case 0B=0, the FPU model reduces to a har-
systems having divergent thermal conductivities? monic chain. . . . .

The reason for the divergent thermal conductivity in an In our numerical simulations the Noéover thermo-

- ; tats[14] are put on the first and last particles, keeping them
integrable system is that the energy transports freely alon . ' X
g y 9y P y t temperature§, and T_, respectively. The motions of

these two particles are governed by
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Harmonic FIG. 1. (a) Temperature profiles for the FPU

0.26 model, the ¢4 model, the harmonic and the
- monoatomic Toda mode(b) The quantityJN vs
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0.24 squarg and ¢* (solid circle). Profiles of the har-
monic and the monoatomic Toda are shown in
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Xn=— Xyt = Fnets 'g_:;(i/-r__l_ 2) local heat flux is defined by, =x;(aV/dx;.,). We found
that when the system reaches a stationary state, the time

wheref,= — (V' +U’) is the force acting on thigh particle. average_(\]i> is.site independent, and. is denoted]aEpr the
The equation of motion of the other particlexis=f,—f, , 1. harmonic chain and the monoatomic Toda chai is ex-

The eighth-order Runge-Kutta algorithm was used. All com—peCtEd to be proportional ® sinceJ is N independent. This

putations are carried out to double precision. Usually theS indeed the case, as illustrated in the inset. In both the FPU

stationary state set in after 2@ime units. We should point and ¢ modelsdT/dx is proportional to—1/N, the thermal
out that we have performed computations using other typegonductivity x=—J/(dT/dx)eJN. Figure 1b) shows that,
of thermostats, and no qualitative difference was found.  in contrast to integrable systems and the FPU model, heat
Figure 1a) shows temperature profiles. In all noninte- conduction in thep* model obeys the Fourier law.
grable systems, the temperature scale¥ad (i/N). How- The heat currend in all nonintegrable systems decreases
ever, in the FPU case there is a singular behavior near thas the system sizM is increased J~N“"1,0<a<1). To
two ends, which is a typical character of 1D nonlinear lat-clarify the underlying mechanism we decompose the interac-
tices having divergent thermal conductivities. In the sameion of the thermostat into a series of kicks, and study the
figure we also show the temperature profiles for two intetransport of a single kick along the chain. A free boundary
grable lattices: the harmonic and monoatomic Toda modelsondition is used in our calculation, but we should stress that
In these two cases no temperature gradient could be set uihe results do not depend on the type of boundary condition.
and the stationary state corresponds Tte- (T, +T_)/2, In Fig. 2 we plotp; versusi after a long time {=800) for
which is consistent with the rigorous res[di2]. four lattices: the harmonic chaif@), the monoatomic Toda
In Fig. 1(b), we plot the quantity N versusN for the FPU  chain (b), the FPU modelc), and the¢* model (d). The
model and thep* model. The inset shows the same quantityamplitude of the wave profile in the harmonic chain de-
for the harmonic chain and the monoatomic Toda chain. Thereases continuously with time, but the global profile re-
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mains unchanged. In both the FPU and Toda models, waifferent kinds of collision in Fig. &), wherep} is the mo-
observe that a solitary wave separates from the long tailnentum of the solitary wave from the left after collision. In
Initially this wave front is connected with other low ampli- the first case both left and right solitary waves have the same
tude excitations. After a certain time, this wave front mOVeSnitiaJ momentumpL: Pr= 627’ which is excited by initial
faster, separates from the tail, and goes forward and retaing,ngitions ofp, = py=6 andp; =0 for otheri. In the second

its amplitude. In the meantime the tails behind it evolve i”case, the left wave hap, =6.27 and the right oneg

the same way as that in .the harmonic chain. Ingfienodel, =3.28, excited by initial conditions g6,=6, py=3, and

the head part of the pr_oflle bepomes weaker and weaker. Thpe}:0 fori# 1 andN. The figure shows th&®? depends on
reason for this is that in the first three casas-(c) both the N Y .

total energy and the total momentum are conserved, whered2® phase” sinusoidally.

in the ¢* model the momentum conservation breaks down Other interesting features of the collision of solitary
due to the external potential. The inset in Figd)2shows Vaves are shown in Fig.(§, where we plot the maximum

that the total momentum in thé* model decreases at least MOMeNtuM gaim py,, versus the initial momenturp, for
exponentially with time. The decay of the momentum with the FPU modelApy,., is measured by subtracting the initial
time indicates a loss of correlation. It is thus reasonable tgnomentump, from the maximunp, in Fig. 3b). First, this
envisage energy transport along thé chain as a random- picture tells us that the exchange of momentum and energy
walk-like scattering. depends on the initial momentum and energy. Second, there
The solitary waves in the FPU chain exchange energy an@Xxists a critical momentum below which no energy exchange
momentum when colliding with each other. This causes encan take place. The criticalg~1.8 is clearly seen in the
ergy loss, and the heat current decreases when the systdigure. Forp,<pg, Apmay iS zero. This result is very sig-
size is increased. To show this, we begin two excitations atificant; it indicates that there exists a threshold for the soli-
the two ends of the chain with different momenta; one movesary wave interaction, and below this threshold the interac-
to the right and the other to the left. Lp{=6, py=3, and tion ceases, i.e., no momentum and energy is exchanged
pi=0 (i#1 andN) be our initial excitations. We calculate between the solitary waves. A direct consequence of this fact
the momenta of the solitary wavély simply summing up is the existence of a threshold temperature below which the
momenta of several lattices around the peaksd investi- FPU chain should behave like a harmonic chain; that is, the
gate the waves change before and after the interaction. Wexcited waves travel freely along the chain without any en-
find that the larger wave generally transfers part of its mo-ergy loss, no temperature gradient can be set up, and the heat
mentum and energy to the smaller one, as shown in F&. 3 current remains a constant even though the size of the chain
The collision takes place at=850, where a peak is shown. is changed. To prove this argument, we show the quantity
Moreover, the interaction between solitary waves is found](400)/J(800) versusT=(T,+T_)/2 in Fig. 3d), where
to depend closely on a “phase” difference. Here theJ(N) is the heat current flux for a system of sike In the
“phase” difference is defined as a time lag between the excase of a size-independeni(N) one should obtain
citations of two solitary waves. For instance, if we excite aJ(400)/J(800)=1; otherwise one would obtain
solitary wave from the left end at timg and another one J(400)/3(800)>1. Figure 3d) captures this transition nicely
from the right end at time+ 6, then § is the “phase” dif-  for the FPU chain. The corresponding temperature threshold
ference. These two solitary waves, traveling through thds aboutT.~0.01. In the region off ~0.001 the numerical
chain in opposite directions, will collide with each other after calculations do show that no temperature gradient is formed.
a certain time. Although the physical meaning of the The different scattering mechanism in the FPU chain and
“phase” is not obvious, it is an important and good quantity those chains having normal thermal conductivities lead to a
to describe the interaction. We shapf versusé for two  different temperature dependence of the thermal conductivity
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0.25 In summary, by studying two classes of 1D nonintegrable
® lattices, we have answered the two questions raised at the
0.20} A\ beginning:(i) The multiple scattering of the excited modes
2 N 7=0 by the external potential leads to a deday least exponen-
g 015¢ &L\L tially) of the correlation, so that a diffusive transport process
S =001 ,43394504 can be reached, and the heat conduction obeys the Fourier
0100 YT e law. (i) Although the interaction of solitary waves makes it
b vﬁ=0~gz/'" possible to set up a temperature gradient in the FPU and
0.05r - y=0.1 similar nonintegrable models, the momentum conservation
./ o prohibits the diffusive transport and consequently leads to a
0'0%.0 02 04 06 08 10 12 divergent thermal conductivity. In addition, we have uncov-
T ered an important fact in the FPU model, namely, the exis-

tence of a threshold temperature, below which the FPU mode
FIG. 4. The thermal conductivity(T) for the FPU chain with  pehaves like a harmonic chain.

an external potentidll (X) = — y cos(2mx). Note added in proofAfter submission of this paper we
became aware of the following results. Prosen and Campbell
[15] proved in a more rigorous way that for a 1D classical
many-body lattice total momentum conservation implies
N . anamalous conductivity. The normal thermal conductivity in
0.05, and 0.1. The chain size is fixedhet 100. As pointed the ¢* lattice has also been observed by Aoki and Kusnezov

out above, in a sr_naw r_egime such as/=_0 and 0.01, the 16]. The role of the external potential has been further stud-
energy transport is assisted by the solitary waves, and thg 4 by Tsironiset al, [17].

system has a large which decreases as the temperature is

increased. However, in the opposite regime=(0.05 and B.L. would like to thank G. Casati for useful discussions.
0.1, the energy transport is diffusive and obeys the FourieiThis work was supported in part by the Hong Kong Research
law; « increases with temperature, because more phonorSrant Council and the Hong Kong Baptist University Fac-
are excited. ulty Research Grant program.

x(T). In Fig. 4 we plotk(T) for a FPU chain with an exter-
nal potential of formU(x)= — ycos(2wx) for y=0, 0.01,
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