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Fluid Lagrangian approach to the classical-quantum transition

Tzihong Chiueh
Physics Department and Center of Theoretical Physics, National Taiwan University, Taipei, Taiwan

~Received 11 October 1999!

With a two-field Lagrangian of the Hamilton-Jacobi equation, a coupling between the two fields can be
introduced to yield an appropriate quantum Lagrangian. The quantum effect is nothing more than a quantum
pressure force acting on the otherwise classical pressureless fluid when one of the fields is properly renormal-
ized. Inclusion of the electromagnetic coupling under the present formulation shows that the collisionless
quantum fluid picture remains valid. Similar, but not identical, to the classical collisionless fluids, the flow
circulation and magnetic flux can remain locked together even for a spatially and temporally varying magnetic
field. Extensions beyond the present scope of quantum formulation are also discussed.

PACS number~s!: 47.15.Ki, 47.15.Hg, 67.57.Fg
th
du

iz
d
o
o
e

-
a
n
th
y
B
y

io

on

n
at
la

ve

e
d
o

um
K

he
s
ur
ia
av
n
-
e
s
u
n

n-
ion
sid-

int
an
iors
the
un-
an-
od

the

k-
at

sion
cal
tart
the
e-
the
e

ro-
c-
we
tum
the

less

-

I. INTRODUCTION

In the early development of quantum mechanics,
action-angle-variable approach has been the key proce
for identifying the appropriate conserved quantities@1#,
which may then be quantized by the semiclassical quant
tion rules. The rationale behind such an approach is roote
the recognition that the WKB approximation of the Schr¨-
dinger equation is exactly the Hamilton-Jacobi equation
classical mechanics, which provides a good scheme to id
tify the invariant action@2#. However, the WKB approxima
tion is after all an approximation, and it becomes inaccur
when the wavelength is long. Even with the Airy-functio
type, 1/4-wavelength phase shift taken into account,
WKB approximation is still inaccurate for the low-energ
particles in the reflection problems. Moreover, in the WK
approximation of the Schroedinger equation, it is alwa
confined to the regime where the external potential is stat
ary and the energy conserved. In fact, a serious problem
the WKB approximation arises in the nonstationary situati
The time evolution of the Schro¨dinger equation and the
Hamilton-Jacobi equation are very different. The Hamilto
Jacobi equation has a natural tendency, as will be elabor
below, for its solution to get focused and develops singu
caustics, but the Schro¨dinger equation tends to be dispersi
so that the classical caustics can be made disappeared@3–6#.
After all, the WKB approximation is simply a working rul
and it fundamentally does not address why the quantum
namics should be wavelike. Therefore, to understand the
gin of the transition from classical mechanics to quant
mechanics, one needs to seek an insight beyond the W
approximation.

In fact, the Hamilton-Jacobi equation is identical to t
time-dependent Bernoulli equation for a pressureless cla
cal potential flow. Regardless of whether a finite press
may ever exist, it is well known that the classical potent
flow has a tendency to get steepened and forms shock w
@7#. The steepening is caused by the nonlinear convectio
flow, but in the WKB approximation, it is exactly this non
linear convection term that approximates the dispersive
fect in the Schro¨dinger equation. Moreover, the pressurele
classical potential flow field is nonintegrable even witho
any forcing, but the quantum mechanics is integrable with
PRE 611063-651X/2000/61~4!/3823~5!/$15.00
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forcing. In this regard, the WKB approximation can be fu
damentally incorrect in making the semiclassical connect
between quantum and classical behaviors when one con
ers situations beyond the stationary cases.

Apart from the above considerations from the viewpo
of fundamental concept in physics, the fluid description c
be a rather useful picture to depict the many-body behav
of bosonic fields. Recent experimental progresses in
Bose-Einstein condensation has called for a theoretical
derstanding of the collective quantum behaviors. The qu
tum fluid picture to be explored below can serve as a go
methodology, by which the potential rich phenomena in
Bose-Einstein condensates may be understood.

The aim of this paper is to explore the possibility of ma
ing a minimal extension of classical mechanics to arrive
quantum mechanics. An understanding of such an exten
may help us gain an insight to the transition from classi
dynamics to quantum mechanics. In Sec. II, we shall s
with the Hamilton-Jacobi equation and attempt to obtain
Schrödinger equation under the minimum coupling fram
work. This procedure allows us to pin down what causes
transition from the classical to the quantum. In Sec. III, w
extend the formulation to situations that couple to elect
magnetic fields. In particular, we confirm that the fluid pi
ture of quantum mechanics remains valid. In Sec. IV,
shall discuss the implications of such a classical-quan
transition and explore the possible extension beyond
standard quantum mechanics.

II. QUANTUM COUPLING TO CLASSICAL FLUIDS

As mentioned above, the Hamilton-Jacobi equation

]S

]t
1

~¹S!2

2
52U~r,t !, ~1!

is nothing more than the Bernoulli equation of a pressure
potential flow for a compressible fluid, whereS corresponds
to the velocity potential for the fluid~or the generation func-
tion for the Hamilton-Jacobi equation!. That is, the velocity
field V[“S. Here,U is the force potential. In the fluid de
scription, one must define what the velocity field“S means.
We hence impose the continuity equation
3823 © 2000 The American Physical Society
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]r

]t
1“•~r“S!50, ~2!

wherer is the mass density, or number density if all partic
in the fluid have the same masses. It defines this velo
field to be one which advects the fluid elements in suc
way that the mass within each element is always conser

In this classical description of a pressureless fluid, th
exist two independent real scalar fieldsS and r. Equations
~1! and ~2! can be derived from the following Lagrangian:

L5rF]S

]t
1

~“S!2

2
1U~r ,t !G , ~3!

by a straightforward algebra. Comparing Eqs.~1! and ~2!,
one notes thatS can be solved without the knowledge ofr,
but r can only be solved afterS is obtained, a characteristi
of the single-particle description. However, ifU is not an
external potential but a function of onlyr, we may replaceU
by (1/r)*U(r)dr, which can be regarded as the intern
energy density andU the enthalpy density. In this situation
bothSandr are well coupled and it reflects the characteris
of collective behaviors.

This classical Lagrangian can be modified to become
that yields the Schro¨dinger equation. The modification is mo
tivated by the recognition that the Hamilton-Jacobi equat
can describe the dynamics of a large number of n
interacting identical particles which manifest themselves a
pressureless fluid, and that the single-particle Schro¨dinger
equation can also describe the dynamics of a large numb
noninteracting identical particles, such as the Bose gas, w
the probability density is interpreted as the number dens
The extension from classical dynamics to quantum dynam
can be conducted by introducing a coupling Lagrangian
tween“S and“r, with a coupling constant equal toi\/2.
That is, the interacting Lagrangian reads

L int56
i\

2
“S•“r, ~4!

and either sign is acceptable. The particle mass has b
taken to be unity and it will remain so hereafter. The resu
ing equations of motion are

]S

]t
1

~“S!2

2
7

i\

2
¹2S52U, ~5!

and

]r

]t
1“•~r“S!1

6 i\

2
¹2r50. ~6!

They do not yet bear any resemblance to the Schro¨dinger
equation. To transform into a recognizable form, we ren
malize the field variableŜ5S6( i\/2)lnr and identifyŜ to
be the physical velocity potential field. Such a transformat
keeps the densityr satisfying the continuity equation:

]r

]t
1“•~r“Ŝ!50, ~7!
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thereby giving“Ŝ a well-defined physical meaning of bein
a velocity fieldV. On the other hand, the dynamical equati
for Ŝ becomes

]Ŝ

]t
1

~“Ŝ!2

2
1U2

\2

4 F¹2ln r1
~“ ln r!2

2 G50. ~8!

Therefore, bothŜ and r can be real fields. Let the wav
function bec[Arexp(iŜ/\), and Eq.~5! can be derived from
the imaginary part of the time-dependent Schro¨dinger equa-
tion, and Eq.~6! from the real part@8–10#. Comparing Eqs.
~1! and ~8!, one finds that the quantum effect results in
pressurelike force that contributes to evolve the veloc
field, though Eq.~8! means to decribe a collisionless qua
tum fluid. The familiar Euler equation for a fluid can b
derived by taking a gradient on both sides of Eq.~8! @see Eq.
~10! below#.

That is, the introduction of an interaction Lagrangian in
the classical Lagrangian gives rise to a quantum Lagrang
which is reduced to the usual Schro¨dinger description when
the S is properly renormalized toŜ. Furthermore, ifU5a
1br wherea andb are constant, Eqs.~5! and ~6! represent
the Landau-Ginzberg equation for the bosonic particles n
phase transitions. The two-field Lagrangian of quantum m
chanics can finally be expressed as

L5rF ]Ŝ

]t
1

~“Ŝ!2

2
1

\2

2
~“ lnAr!21WG , ~9!

where W5U if U is an external potential, andW
5(1/r)*U(r)dr if U5U(r). We note that the last thre
terms of Eq.~9! constitute the energy density of the quantu
fluid @8#, which can also be taken as the Hamiltonian dens
H(“Ŝ,r,“r). Given such a fluid Hamiltonian density, w
note that Eqs.~7! and ~8! can alternatively be derived from
the Hamiltonian formulation. In other words,]Ŝ/]t5

2dH/dr and ]r/]t5dH/dŜ, with d being the variational
derivative@11#.

III. MINIMAL COUPLING TO ELECTROMAGNETIC
FIELDS

Given the above framework that describes the classi
quantum transition, it is now a straightforward matter to e
tend it to situations that contain an electromagnetic coupli
We will not repeat all the algebra but to mention the k
steps. The pressureless classical fluids, described by
Hamilton-Jacobi equation, have already had a well-kno
procedure to get coupled to the electromagnetic fields. T
is simply to insert to“S a diamagnetic current2(e/c)A and
addeF to ]S/]t, wheree andc are the electric charge an
light speed, respectively,A and F the vector potential and
electric potential. Such a prescription warrants the gauge
variance of the Hamilton-Jacobi equation, i.e., invariant
the simultaneous transformationsS→S1(e/c)x,A→A
1“x, and F→F2(1/c)(]x/]t), and hence the classica
Lagrangian density, Eq.~3!, must be modified accordingly
For the quantum mechanical coupling, it also needs to sat
the gauge invariance, and therefore the coupling should b
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PRE 61 3825FLUID LAGRANGIAN APPROACH TO THE CLASSICAL- . . .
between“r and“S2(e/c)A, instead of“S alone. That is,
in the presence of electromagnetic fields, the velocity fieldV
appearing in Eqs.~8! and ~9! must be replaced by“Ŝ

2(e/c)A, and ]Ŝ/]t replaced by]Ŝ/]t1eF, where Ŝ is
defined in the same way as in the neutral particle case.

Inclusion of electromagnetic coupling in fact does yie
the same important conservation equations as in the clas
magnetized fluid. The counterpart of the classical Eu
equation, which is equivalent to the momentum conser
tion, in quantum mechanics now reads

]V

]t
1V•¹V1F S e

cD ]A

]t
1e¹F2S e

cDV3BG
1¹H U2F\2

4 S ¹2ln r1
~¹ ln r!2

2 D G J 50.

~10!

The third term accounts for the additional electromagne
forces acting on the fluid. Aside from the quantum press
force, this equation is what should be expected for class
magnetized fluids. This equation of motion has a rather d
cate control of dynamics that warrants thesmoothrotational
component of velocity field to be always locked with th
diamagnetic current,2(e/c)A. To see this point clearly, we
may for the time being pretendV to be unrelated toB and
take acurl operation on both sides of Eq.~10!. It gives

]

]t
@V1~e/c!B#1“3$V3@V1~e/c!B#%50, ~11!

where the vorticityV[“3V. Equation~11! represents the
local conservation law of the vector fieldV1(e/c)B, much
as Eq.~2! represents the local conservation law of the sca
field r. Equation~11! also means that the angular momentu
of a quantum particle has to be tied to the magnetic flux
only in stationary states but also in dynamical states. If
tially V1(e/c)B50, this condition will remain true in the
whole evolution. This shows the delicacy of Eq.~10!, in that
no othersmoothrotational component of velocity field ca
ever exist in quantum fluids, and the only extra ones
singular vortex lines or sheets@9#. Smooth rotational velocity
component is typically absent in the classical magneti
fluid of no pressure, but generally not in the classical m
netized fluid with finite pressure. In this regard, the quant
fluid, having a finite quantum pressure, has a rather restri
built-in kinematics from that of a classical fluid.

Having obtained Eq.~10! and discussed the conservatio
of linear and angular momenta, we now turn to a close
amination of Eq.~10! and point out a possible paradox of th
fluid description. We shall examine the simplest case, wit
static uniform magnetic fieldBẑ, to illustrate the issue
Given that the velocity fieldV5“Ŝ2(e/c)A, we find that
the velocity fieldV can become unbound at a large distan
since its rotational component is so. For example, the ga
A5(1/2)Brf̂ gives a uniform rotation to the entire fluid
This situation seems very different from what one wou
have anticipated for a collection of noninteracting mag
tized particles that are distributed more or less uniformly
space and each is circulating around its own guiding ce
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without any systematic flow. In fact, this paradox derives
origin from the Hamilton-Jacobi equation.

To understand what the uniform rotation does to the flu
we consider the radial force balance of Eq.~10!. Split the
velocity field into V5Vr1Vp , with the former being the
static rotational component and the latter the dynamical p
tential component. Upon undergoing a uniform rotation,
fluid must experience an outward centrifugal force, whi
arises from the inertia force termVr•“Vr of Eq. ~10!, but
this force is over-balanced by an inward Lorentz for
(e/c)(Vr3B), resulting in a net inward force. This inwar
force has nothing to balance for the classical pressure
fluid described by the Hamilton-Jacobi equation, and it he
yields radial-orbit oscillations, rushing into the originr 50 at
a finite speed. For axisymmetric boundary conditions, suc
fluid will certainly develop a density singularity atr 50.
However, equipped with additional quantum pressure opp
ing the converging flow, the quantum fluid can attain a reg
lar state, for which the density peaks atr 50 with a finite
value.

The paradox given above can be removed when the c
sical particles possess additional angular momenta other
that arising from the diamagnetic current. The guiding ce
ters of particles can be located at a finite radiusr. The addi-
tional angular momenta makes the particles to acquir
counter-clockwise rotating velocity with the same speed
the local magnetization current, i.e., (]S/]f)/r 5(e/c)Af at
the guiding centers, thereby always yielding static guid
centers. By increasing the angular momentum, the part
guiding centers can be situated at any large radius. Su
picture of static guiding centers can be extended to quan
mechanics, where a particular angular momenta yield st
density peaks at some particular radii; furthermore, the pr
ability density can be made more or less uniform on a coa
scale when many modes of different angular momenta
energies are superposed. Consequently, the fluid descrip
of quantum mechanics has no contradiction to the conv
tional picture of non-interacting particles that are subject
magnetic forces.

As a result of superposition of many counter-rotati
modes of different angular momenta in this system, th
exist many topological defects, i.e., singular vortex lines,
cated wherer50 @8#, and the quantum system is genera
nonstationary. This leads us to the final issue about how
vortex lines should evolve in the general time-depend
situations. If initially S is a multivalued function, e.g., con
taining a term such asbf whereb is a constant andf some
azimuthal angle around a three-dimensional line, the ve
field V1(e/c)B will not vanish at the vortex line in Eq
~11!. This equation demands that the vortex line must
frozen to the quantum fluid and carried about by the flu
motion. In general the constantb is arbitrary, but in quantum
mechanics the constantb is required to be 2mp, with m
being an integer, in order to make the wave function sing
valued. Once the vortex line is initially quantized, it shou
remain so throughout the evolution. Thus, from the dyna
cal viewpoint, the quantization of angular momentum
therefore not a consequence of dynamics but a consequ
of the initial condition.
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IV. SUMMARY AND DISCUSSION

In this paper, we report a field-theoretical approach t
yields the transition from the classical equation of motion
the quantum equation of motion by introducing a coupli
between the classical velocity potential~or the generation
function! S and the classical density fieldr. The coupling
constant is found to be imaginary and equal toi\/2. Such a
imaginary coupling constant makes the originally real fieldS
to become complex. However, if one appropriately subtra
the imaginary part fromS and redefines a real fieldŜ, one
can arrive at the two-field description of the Schro¨dinger
equation.

We find, from Eq.~5!, that the quantum mechanical effe
is nothing more than an imaginary viscous force acting on
otherwise classical pressureless potential flow. With th
results, two questions naturally arise. What can be the mi
scopic origin of the imaginary viscosity? What does t
imaginary viscous force do to the dynamics of the flo
Equation~8! reveals an answer to the second question. T
imaginary viscous force yields an effective pressure fo
@8#, which turns out to be dispersive; it prevents the form
tion of caustics produced by the nonlinear steepening of c
vection. As to the first question, a deep insight is need
More than three decades ago, Nelson proposed the exist
of some intrinsic fluctuations in the space that force the p
ticle trajectory to fluctuate about the classical orbit@12#. The
intrinsic fluctuations must instantaneously adjust themse
according to a certain rule that depends on the instantan
probability density of the particle. Such an interpretation
quantum mechanics, the so called stochastic mechanics
acquired continual attentions in the past years@13–16#. In
Refs.@15,16#, the quantity“S defined above has been us
to calculate the particle trajectory in the complex space
mension for making a contact with the weak measurem
theory. Recently, stochastic mechanics been also refine
relax the instantaneity condition@17#. A similar but some-
what different idea, the so-called de Broglie-Bohm theo
@10,18#, had also been put forth prior to that of Nelson.
that theory, the Schro¨dinger equation evolves the pilot wav
whose phase is the velocity potentialŜ given above. The
velocity ¹Ŝ then evolves the particle position andr de-
scribes the self-consistent probability density of the part
appearing at a certain location. In spite of these efforts
remains un-interpreted what the nature of such intrinsic fl
tuations should be. The present work is no exception; we
not understand what the underlying physical mechanism
for the imaginary diffusion that appears in Eq.~5!.

In the presence of electromagnetic fields, we find that
dynamical picture of a fluid still holds for describing th
quantum dynamics. An important result derived from o
analysis is that thesmoothrotational component of the ve
locity fields must always remain the same as the diamagn
current, no matter how rapidly the electromagnetic fie
may vary. Though this result is the same as that of the
namics of a classical pressureless magnetized fluid, the r
is however different from that of a fluid with finite pressur
which can have a finitesmoothrotational component of ve
locity other than the diamagnetic current if this rotation
component is initially given. The fact that quantum mecha
ics shares the same property of angular momentum with
t
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pressureless fluid is not surprising since the Schro¨dinger
equation is based on an extension of the Hamilton-Jac
equation. However, the fact that it does not possess the
eral characteristics of finite-pressure classical fluids cas
question mark on the foundation of quantum mechan
based on the Hamilton-Jacobi equation, since the ‘‘qu
tum’’ fluid also contains a finite quantum pressure.

The Hamilton-Jacobi equation was originally devised
solve the particle dynamics under the assumption that
particle trajectory is solvable. But this is true only for int
grable systems. As the Schro¨dinger equation is built upon a
straightforward extension of the Hamilton-Jacobi equation
is therefore of interest to ponder whether there may exis
more general formulation of particle dynamics than t
Hamilton-Jacobi equation that can be extended to the qu
tum regime. A hint to this issue is that in a steady state,
Hamilton-Jacobi equation yields highly foliated solutio
that are multivalued almost everywhere when the part
dynamics is highly chaotic, indicative of that the simpl
minded expression of classical momentum in terms of
gradient of a scalar field“S is far from adequate. On this
note, we shall stress that the highly foliatedS of the
Hamilton-Jacobi equation means thatScontains densely dis
tributed singularities such as the branch cuts, and with pro
regularizations the classical momentum may acquire
smooth rotational component. Thus, the conventional qu
tum mechanics can be inappropriate in the highly chao
regime. Actually, quantum mechanics of present formulat
has only been tested at high precision for the integrable
tems, or weakly chaotic systems where perturbation theo
still hold and the classical action space is densely filled w
invariant KAM surfaces. In this regime, the Hamilton-Jaco
equation is a good starting point for its extension to quant
mechanics. However, in the highly chaotic regime where
Hamilton-Jacobi equation becomes a bad description of
ticle dynamics, will the Schro¨dinger equation remain a reli
able description of quantum mechanics? Can Eq.~10!, with a
general vector fieldV, together with the density continuity
equation be a better description of the chaotic quant
world? An obvious result the latter formulation produces
that the angular momentum no longer needs to be quanti
unless the initial condition specifies. This is because nowV
and r, rather than the wave functionc, are the physical
fields.

We now turn to a different discussion that also exten
quantum mechanics beyond the present scope. From
present formulation based on the Hamilton-Jacobi equat
it is also natural to contemplate why the coupling const
must be imaginary. What if the coupling constant is a r
quantity? Consider the situation wherek[6 i\ which is a
positive real quantity. The last term in Eq.~5! is nothing
more than a viscous force, withk playing a similar role as
the viscosity, and the last term in Eq.~6! has an effect of
negative diffusion. Alternatively, one may choosek to be a
negative real quantity, yielding a negative viscosity and po
tive density diffusion. While the physics of viscous force
well understood, the negative diffusion is a much less co
monly known phenomenon. The negative diffusion may o
cur in turbulent media. Under the action of small-scale t
bulent motion, the large-scale flow may self-organize to fo
coherent patterns. The self-organization process can be
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ized as a negative diffusion process@19,20#. In fact, with a
realk and if U is indeed an external potential, Eq.~5! can be
reduced to a Schro¨dinger equation that has an imagina
time, for which the wave function can be expressed asc
5e2S/k. The quantityS can be identified as the partitio
function in statistical mechanics and the imaginary tim
identified asb, the inverse temperature. On the other ha
Eq. ~6! has no immediate physical significance in statisti
mechanics whenU is an external potential. We will return t
this issue again.

Next, we may further inquire what if\ takes a complex
value. This case may have a correspondence to certain p
cal situations. To see how it may happen, let\5keia, where
botha andk are real constants. We may transform away
phase factoreia with the following new variables:

S15Seia, t5te2 ia, U15Ue2ia. ~12!

To be useful, we technically forcet to be a real quantity.
That is, the Schro¨dinger equation with a complex\ can be
transformed into a quantum mechanical problem with a co
plex potentialU1 and real ‘‘time’’ t, for which the wave
function is taken to bec5AreiS1 /k. A complex potential in
quantum mechanics is encountered usually in an effec
theory where inelastic processes take place.

Aside from the fundamental issues concerning a be
insight of quantum mechanics, we now address a techn
application of a complex\. It is sometimes useful to find a
quantum partition function from the corresponding quant
transition probability by analytically continuing an imag
nary b to a realb and then sum over all initial states@21#.
The analytical continuation may be conducted in the co
plex b domain. But from the present formulation, the an
lytical continuation may also be carried out in the complex\
domain. The path of analytical continuation for a complex\
D

tt.

,

,
l

si-

e

-

e
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-

is different from the path for a complex time taken with
real potential. The former can be useful when the latter
counters extended singularities, such as branch cuts, ac
which the analytical continuation cannot pass. Taking a co
plex \ is equivalent to taking both the potentialU1 and t to
be complex by forcingt to be real, and it may provide a
physical avenue to get around the extended singularit
This is so because the situations with a complex\ can be
mapped to real quantum mechanical problems with comp
potentials, and they have a physical correspondence to
inelastic scattering problems, for which singularities are l
likely to occur.

In fact, an interesting result a complex\ can produce is
that one may evolve the system as an initial-valued probl
By choosing a fixed anglea and a real timet, one may
observe, at least numerically, how the wave function evol
in time. Unlike the situation with a complex time but real\,
at any instant in time, one now has a well-defined man
~explained below! to analytically continue the wave functio
with respect to\ to its actual value, without the need of th
past and future wave functions. The idea is to make use
dS/da, dr/da, and their higher-order derivatives. On
needs to numerically computeS(r ,t) andr(r ,t) for several
a ’s of small differences, so that these derivatives can
evaluated. The accuracy of the analytically continued so
tion depends on how many higher derivatives to be retai
in the solution construction. As the parallel computation h
become the state of art, such a strategy should be ea
realizable.
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