PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Fluid Lagrangian approach to the classical-quantum transition
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With a two-field Lagrangian of the Hamilton-Jacobi equation, a coupling between the two fields can be
introduced to yield an appropriate quantum Lagrangian. The quantum effect is nothing more than a quantum
pressure force acting on the otherwise classical pressureless fluid when one of the fields is properly renormal-
ized. Inclusion of the electromagnetic coupling under the present formulation shows that the collisionless
quantum fluid picture remains valid. Similar, but not identical, to the classical collisionless fluids, the flow
circulation and magnetic flux can remain locked together even for a spatially and temporally varying magnetic
field. Extensions beyond the present scope of quantum formulation are also discussed.

PACS numbgs): 47.15.Ki, 47.15.Hg, 67.57.Fg

[. INTRODUCTION forcing. In this regard, the WKB approximation can be fun-
damentally incorrect in making the semiclassical connection
In the early development of quantum mechanics, théetween quantum and classical behaviors when one consid-
action-angle-variable approach has been the key procedugss situations beyond the stationary cases.
for identifying the appropriate conserved quantitigs), Apart from the above considerations from the viewpoint
which may then be quantized by the semiclassical quantiz?f fundamental concept in physics, the fluid description can
tion rules. The rationale behind such an approach is rooted tee a rather useful picture to depict the many-body behaviors
the recognition that the WKB approximation of the Schro of bosonic fields. Recent experimental progresses in the
dinger equation is exactly the Hamilton-Jacobi equation ofBose-Einstein condensation has called for a theoretical un-
classical mechanics, which provides a good scheme to iderflerstanding of the collective quantum behaviors. The quan-
tify the invariant actio2]. However, the WKB approxima- tum fluid picture to be explored below can serve as a good
tion is after all an approximation, and it becomes inaccuraténethodology, by which the potential rich phenomena in the
when the wavelength is long. Even with the Airy-function Bose-Einstein condensates may be understood.
type, 1/4-wavelength phase shift taken into account, the The aim of this paper is to explore the possibility of mak-
WKB approximation is still inaccurate for the low-energy ing @ minimal extension of classical mechanics to arrive at
particles in the reflection problems. Moreover, in the WKB quantum mechanics. An understanding of such an extension
approximation of the Schroedinger equation, it is alwaysmay help us gain an insight to the transition from classical
confined to the regime where the external potential is stationdynamics to quantum mechanics. In Sec. Il, we shall start
ary and the energy conserved. In fact, a serious problem (W’Iththe Hamilton-Jacobi equation and attempt to obtain the
the WKB approximation arises in the nonstationary situationSchralinger equation under the minimum coupling frame-
The time evolution of the Schmnger equation and the work. This prOCEdUre allows us to pln down what causes the
Hamilton-Jacobi equation are very different. The Ham”ton-tranSition from the classical to the quantum. In Sec. ”l, we
Jacobi equation has a natural tendency, as will be elaboratéxtend the formulation to situations that couple to electro-
below, for its solution to get focused and develops singulamagnetic fields. In particular, we confirm that the fluid pic-
caustics, but the Schiinger equation tends to be dispersive ture of quantum mechanics remains valid. In Sec. IV, we
so that the classical caustics can be made disappEa&il shall discuss the implications of such a classical-quantum
After all, the WKB approximation is simply a working rule transition and explore the possible extension beyond the
and it fundamentally does not address why the quantum dystandard quantum mechanics.
namics should be wavelike. Therefore, to understand the ori-

gin of the transition from classical mechanics to quantum ||, QUANTUM COUPLING TO CLASSICAL FLUIDS
mechanics, one needs to seek an insight beyond the WKB

approximation. As mentioned above, the Hamilton-Jacobi equation
In fact, the Hamilton-Jacobi equation is identical to the )

time-dependent Bernoulli equation for a pressureless classi- 3_3 (VS) ——U(rt) 1)

cal potential flow. Regardless of whether a finite pressure at 2 e

may ever exist, it is well known that the classical potential

flow has a tendency to get steepened and forms shock wavéesnothing more than the Bernoulli equation of a pressureless
[7]. The steepening is caused by the nonlinear convection gfotential flow for a compressible fluid, wheScorresponds
flow, but in the WKB approximation, it is exactly this non- to the velocity potential for the fluidor the generation func-
linear convection term that approximates the dispersive eftion for the Hamilton-Jacobi equatipnThat is, the velocity
fect in the Schrdinger equation. Moreover, the pressurelesdield V=VS. Here,U is the force potential. In the fluid de-
classical potential flow field is nonintegrable even withoutscription, one must define what the velocity fi& means.
any forcing, but the quantum mechanics is integrable with ndVe hence impose the continuity equation
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thereby givingVé a well-defined physical meaning of being
a velocity fieldV. On the other hand, the dynamical equation
for S becomes
wherep is the mass density, or number density if all particles
in the fluid have the same masses. It defines this velocity S (V8)? %2
field to be one which advects the fluid elements in such a -t +U——
o . at 2 4

way that the mass within each element is always conserved.

In this classical description of a pressureless fluid, there - )
exist two independent real scalar fiel8sand p. Equations | herefore, bothS and p can be real fields. Let the wave

(1) and(2) can be derived from the following Lagrangian: function bey=/pexp(S/#), and Eq.(5) can be derived from
the imaginary part of the time-dependent Sclinger equa-

IS (V9)? tion, and Eq.(6) from the real parf8—10]. Comparing Egs.

L=p|7r+ +U(r,t)|, (3 (1) and (8), one finds that the quantum effect results in a

pressurelike force that contributes to evolve the velocity

by a straightforward algebra. Comparing E¢®) and (2), field, th.ough Eq.(8) means to decrib'e a collision!ess quan-
one notes thas can be solved without the knowledge of tum fluid. The_ familiar _Euler equation for a fluid can be
but p can only be solved afte8 is obtained, a characteristic derived by taking a gradient on both sides of E).[see Eq.
of the single-particle description. However, Uf is not an (10 belqw]. , ) , i o
external potential but a function of onjy, we may replaceJ That Is, the mtrodu_ctlon_of an interaction Lagrangian into
by (L) [U(p)dp, which can be regarded as the internal € classical Lagrangian gives rise to a quantum Lagrangian,
energy density antd the enthalpy density. In this situation, which is reduced to the usual S(Etimger description when
bothSandp are well coupled and it reflects the characteristicthe S is properly renormalized t&. Furthermore, ifU=a
of collective behaviors. +bp wherea andb are constant, Eqs5) and(6) represent
This classical Lagrangian can be modified to become onéhe Landau-Ginzberg equation for the bosonic particles near
that yields the Schidinger equation. The modification is mo- Phase transitions. The two-field Lagrangian of quantum me-
tivated by the recognition that the Hamilton-Jacobi equatiorchanics can finally be expressed as
can describe the dynamics of a large number of non- ) R
interacting identical particles which manifest themselves as a S (VS)? )
pressureless fluid, and that the single-particle Sdihger L=p §+ > +7(Vln\/;—)) +W|, 9
equation can also describe the dynamics of a large number of
noninteracting identical particles, such as the Bose gas, Wh&jhere W=U if U is an external potential, andv
the probability density is interpreted as the number density—(1/5) fU(p)dp if U=U(p). We note that the last three
The extension from classical dynamics to quantum dynamicgarms of Eq/(9) constitute the energy density of the quantum
can be conducted by introducing a coupling Lagrangian befjyid [8], which can also be taken as the Hamiltonian density
tTV\r/]e?r)VtShar?dth, ;’.\”thf couph_ng congtant equal id/2. H(VS,p,Vp). Given such a fluid Hamiltonian density, we
atis, the interacting Lagrangian reads note that Eqs(7) and(8) can alternatively be derived from

the Hamiltonian formulation. In other wordsdé/&tz

ap _
E—I—V«(pVS)—O, (2

Vinp+———|=0. ()

(Vin p)z}

ﬁ2

i%
Lim=%~"VS-Vp, (49 —5H/8p and dplat=SHI S, with & being the variational
derivative[11].

and either sign is acceptable. The particle mass has been
taken to be unity and it will remain so hereafter. The result- 11l. MINIMAL COUPLING TO ELECTROMAGNETIC
ing equations of motion are FIELDS

S (VS)? ik Given the above framework that describes the classical-

e $?V28= -U, (5) guantum transition, it is now a straightforward matter to ex-

tend it to situations that contain an electromagnetic coupling.
We will not repeat all the algebra but to mention the key
steps. The pressureless classical fluids, described by the
Ip Yin Hamilton-Jacobi equation, have already had a w_ell-known
—+V-(pVS)+——V?p=0. (6) procedure to get coupled to the electromagnetic fields. That
ot 2 is simply to insert tdV S a diamagnetic current (e/c)A and

o added to 9S/gt, wheree andc are the electric charge and
They do not yet bear any resemblance to the Sthger |i4ht speed, respectivelyd and @ the vector potential and
equation. To transform into a recognizable form, we renorjecyric potential. Such a prescription warrants the gauge in-
malize the field variabl&=S*(i#/2)Inp and identifySto  variance of the Hamilton-Jacobi equation, i.e., invariant to
be the physical velocity potential field. Such a transformationhe simultaneous transformation§— S+ (e/c) y,A—A

and

keeps the density satisfying the continuity equation: +Vy, and ®—®—(1/c)(dx/dt), and hence the classical
Lagrangian density, Eq.3), must be modified accordingly.

3_P L V-(pVE)=0 ) For the quantum mechanical coupling, it also needs to satisfy

at P ' the gauge invariance, and therefore the coupling should be in
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betweenV p andVS— (e/c)A, instead ofV S alone. Thatis, Without any systematic flow. In fact, this paradox derives its
in the presence of electromagnetic fields, the velocity field ©rigin fro(;n the Zamyiltonr;\]aco?i equation. . e fuid
PR 2 To understand what the uniform rotation does to the flui
appearing in Egs(8) and (9) must be replaced bW S '
PP g d " © - P }V we consider the radial force balance of Ef0). Split the
—(elc)A, and 9S/at replaced bydS/aot+ed®, whereS is

) . ; : velocity field into V=V,+V,, with the former being the
defined in the same way as in the neutral particle case. static rotational component ?ind the latter the dynamical po-
Inclusion of electromagnetic coupling in fact does yield P y P

the same important conservation equations as in the classic, r_1t|al componeqt. Upon undergoing a u_mform rotation, _the
magnetized fluid. The counterpart of the classical EuleflUid must experience an outward centrifugal force, which

equation, which is equivalent to the momentum conserva@/ises from the inertia force term,-VV, of Eq. (10), but
tion, in quantum mechanics now reads this force is over-balanced by an inward Lorentz force

(elc)(V,XB), resulting in a net inward force. This inward
force has nothing to balance for the classical pressureless
fluid described by the Hamilton-Jacobi equation, and it hence
yields radial-orbit oscillations, rushing into the origis 0 at
(Vinp)? a finite speed. For axisymmetric boundary conditions, such a
T” = fluid will certainly develop a density singularity at=0.

(10) However, equipped with additional quantum pressure oppos-

ing the converging flow, the quantum fluid can attain a regu-

The third term accounts for the additional electromagnetigar state, for which the density peaksrat 0 with a finite
forces acting on the fluid. Aside from the quantum pressurgg|ye.
force, this equation is what should be expected for classical The paradox given above can be removed when the clas-
magnetized fluids. This equation of motion has a rather delisica) particles possess additional angular momenta other than
cate control of dynamics that warrants tioothrotational  h4¢ arising from the diamagnetic current. The guiding cen-
component of velocity field to be always locked with the oo ¢ harticles can be located at a finite radiuFhe addi-
diamagnetic current- (€/C)A. To see this point clearly, We yjona1 angular momenta makes the particles to acquire a

QEZ ;?:rutrTi tl:r]aetigﬁlga Eg:}eg‘ﬁj; (t))?Eu(;.glalttedi\}i and counter-clockwise rotating velocity with the same speed as
P -1tg the local magnetization current, i.eqJ d¢)/r=(e/c)A, at
9 the guiding centers, thereby always yielding static guiding
E[Q-F(G/C)B]-FVX{VX[Q-F(e/C)B]}:O, (11)  centers. By increasing the angular momentum, the particle
guiding centers can be situated at any large radius. Such a

where the vorticityQ=V X V. Equation(11) represents the picture qf static guiding cgnters can be extended tq quantum
local conservation law of the vector fiefd+ (e/c)B, much mechanlcs, where a partlcglar angull'ar momenta yield static
as Eq.(2) represents the local conservation law of the scalafl€nsity peaks at some particular radii; furthermore, the prob-
field p. Equation(11) also means that the angular momentumablility density can be made more or less uniform on a coarse
of a quantum particle has to be tied to the magnetic flux noscale when many modes of different angular momenta and
only in stationary states but also in dynamical states. If ini-energies are superposed. Consequently, the fluid description
tially Q-+ (e/c)B=0, this condition will remain true in the of quantum mechanics has no contradiction to the conven-
whole evolution. This shows the delicacy of E0), in that  tional picture of non-interacting particles that are subject to
no othersmoothrotational component of velocity field can magnetic forces.
ever exist in quantum fluids, and the only extra ones are As a result of superposition of many counter-rotating
singular vortex lines or shedf8]. Smooth rotational velocity modes of different angular momenta in this system, there
component is typically absent in the classical magnetize@xist many topological defects, i.e., singular vortex lines, lo-
fluid of no pressure, but generally not in the classical magcated wherep=0 [8], and the quantum system is generally
netized fluid with finite pressure. In this regard, the quantumhonstationary. This leads us to the final issue about how the
flui_d,_hav_ing afi_nite quantum pressure, has a_rather restrictegortex lines should evolve in the general time-dependent
built-in kinematics from that of a classical fluid. _situations. If initially S is a multivalued function, e.g., con-
Having obtained Eq(10) and discussed the conservation taining a term such as¢ whereb is a constant ané some
of '.'”e"’.“ an<fj angular momenta, we now tlurn to a Closfehexézimuthal angle around a three-dimensional line, the vector
T e oSS A1800: O e el (e il ot vnih at the vore e n
pron. P ' 11). This equation demands that the vortex line must be

static uniform magnetic ﬂeI(Bz,Ato illustrate the issue. fgsen to the quantum fluid and carried about by the fluid
Given that the velocity field/=VS—(e/c)A, we find that  motion. In general the constahis arbitrary, but in quantum

the velocity fieldV can become unbound at a large distancemechanics the constatt is required to be &, with m

since its rotational component is so. For example, the gaugeing an integer, in order to make the wave function single-
A=(1/2)Br¢ gives a uniform rotation to the entire fluid. valued. Once the vortex line is initially quantized, it should
This situation seems very different from what one wouldremain so throughout the evolution. Thus, from the dynami-
have anticipated for a collection of noninteracting magne-<al viewpoint, the quantization of angular momentum is
tized particles that are distributed more or less uniformly intherefore not a consequence of dynamics but a consequence
space and each is circulating around its own guiding centeof the initial condition.
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IV. SUMMARY AND DISCUSSION pressureless fluid is not surprising since the Sdimger

In this paper, we report a field-theoretical approach tha{squat!on Is based on an extenspn of the Hamilton-Jacobi
. A . . . equation. However, the fact that it does not possess the gen-
yields the transition from the classical equation of motion to

. . . : . _—eral characteristics of finite-pressure classical fluids casts a
the quantum equation of motion by introducing a coupling

X . . . guestion mark on the foundation of quantum mechanics
between the classical velocity potenti@r the generation . . . . "
. . N : based on the Hamilton-Jacobi equation, since the “quan-
function) S and the classical density field. The coupling e . -
) . . tum” fluid also contains a finite quantum pressure.
constant is found to be imaginary and equal/id2. Such a

imaginary coupling constant makes the originally real field ol-\l;gethl_(leam;lrtt(i)crz]l;aJ?jc?lt;n?i?:lsjafjlr?ge\;v?ﬁeogglsrllj?wl":y ti?)er}]wtsrgi Eﬁe
to become complex. However, if one appropriately subtract P y P

) . i A particle trajectory is solvable. But this is true only for inte-
the imaginary part fron8 and redefines a real fielf, one  gahje systems. As the Schiinger equation is built upon a
can arrive at the two-field description of the Sdtirmer

) straightforward extension of the Hamilton-Jacobi equation. It
equation.

, ) is therefore of interest to ponder whether there may exist a
We find, from Eq(5), that the quantum mechanical effect ore general formulation of particle dynamics than the

is nothing more than an imaginary viscous force acting on afyapmijton-Jacobi equation that can be extended to the quan-
otherwise classic_al pressureless. potential flow. With thesghm regime. A hint to this issue is that in a steady state, the
results, two questions naturally arise. What can be the microramilton-Jacobi equation yields highly foliated solutions
scopic origin of the imaginary viscosity? What does theinat are multivalued almost everywhere when the particle
imaginary viscous force do to the dynamics of the flow?qynamics is highly chaotic, indicative of that the simple-
Equation(8) reveals an answer to the second question. Theninged expression of classical momentum in terms of the

imaginary viscous force yields an effective pressure forcg adient of a scalar fiel¥S is far from adequate. On this
[8], which turns out to be dispersive; it prevents the forma-note, we shall stress that the highly foliategl of the

tion of caustics produced by the nonlinear steepening of COny4mijton-Jacobi equation means tiatontains densely dis-
vection. As to the first question, a deep insight is neededyi,teq singularities such as the branch cuts, and with proper
More than three decades ago, Nelson proposed the existengg, jarizations the classical momentum may acquire a
of some intrinsic fluctuations in the space that force the pargqoth rotational component. Thus, the conventional quan-
ticle trajectory to fluctuate about the classical ofti?]. The ;1 mechanics can be inappropriate in the highly chaotic
intrinsic fluctuations must instantaneously adjust themselve,segime. Actually, quantum mechanics of present formulation
according to a certain rule that depends on the instantaneoyss only heen tested at high precision for the integrable sys-
probability densﬂy of the particle. Such an |_nterpretat|_on Oftems, or weakly chaotic systems where perturbation theories
quantum mechanics, the so called stochastic mechanics, ha§j| hold and the classical action space is densely filled with
acquired continual attentions in the past ye8—16. In i, arjant KAM surfaces. In this regime, the Hamilton-Jacobi
Refs.[15,16, the quantityV'S defined above has been used g4 ation is a good starting point for its extension to quantum
to calculate the particle trajectory in the complex space diyechanics. However, in the highly chaotic regime where the

mension for making a contact with the weak measurementy,mijton-Jacobi equation becomes a bad description of par-
theory. Recently, stochastic mechanics been also refined {g|e dynamics, will the Schidinger equation remain a reli-

relax the instantaneity conditiol7]. A simiIa}r but some- e description of quantum mechanics? Can(&@), with a
what different idea, the so-called de Broglie-Bohm theoryyenera| vector field/, together with the density continuity
[10,18, had also been put forth prior to that of Nelson. In gqai0n be a better description of the chaotic quantum
that theory, the Schrbinger equation evolves the pilot wave, o142 An obvious result the latter formulation produces is
whose phase is the velocity potent@lgiven above. The that the angular momentum no longer needs to be quantized,
velocity VS then evolves the particle position apdde-  unless the initial condition specifies. This is because how
scribes the self-consistent probability density of the particleand p, rather than the wave functiott, are the physical
appearing at a certain location. In spite of these efforts, ifields.
remains un-interpreted what the nature of such intrinsic fluc- We now turn to a different discussion that also extends
tuations should be. The present work is no exception; we dguantum mechanics beyond the present scope. From the
not understand what the underlying physical mechanism igresent formulation based on the Hamilton-Jacobi equation,
for the imaginary diffusion that appears in E§). it is also natural to contemplate why the coupling constant
In the presence of electromagnetic fields, we find that thenust be imaginary. What if the coupling constant is a real
dynamical picture of a fluid still holds for describing the quantity? Consider the situation wheke= =i which is a
guantum dynamics. An important result derived from ourpositive real quantity. The last term in E) is nothing
analysis is that themoothrotational component of the ve- more than a viscous force, witk playing a similar role as
locity fields must always remain the same as the diamagnetithe viscosity, and the last term in E¢) has an effect of
current, no matter how rapidly the electromagnetic fieldsnegative diffusion. Alternatively, one may choogdo be a
may vary. Though this result is the same as that of the dynegative real quantity, yielding a negative viscosity and posi-
namics of a classical pressureless magnetized fluid, the restive density diffusion. While the physics of viscous force is
is however different from that of a fluid with finite pressure, well understood, the negative diffusion is a much less com-
which can have a finitemoothrotational component of ve- monly known phenomenon. The negative diffusion may oc-
locity other than the diamagnetic current if this rotationalcur in turbulent media. Under the action of small-scale tur-
component is initially given. The fact that quantum mechan-bulent motion, the large-scale flow may self-organize to form
ics shares the same property of angular momentum with theoherent patterns. The self-organization process can be real-
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ized as a negative diffusion procgd®,20. In fact, with a is different from the path for a complex time taken with a
real k and ifU is indeed an external potential, E&) can be  real potential. The former can be useful when the latter en-
reduced to a Schdinger equation that has an imaginary counters extended singularities, such as branch cuts, across
time, for which the wave function can be expressedygas which the analytical continuation cannot pass. Taking a com-
=e 5% The quantityS can be identified as the partition plex 7 is equivalent to taking both the potentid andt to
function in statistical mechanics and the imaginary timebe complex by forcingr to be real, and it may provide a
identified asB, the inverse temperature. On the other handphysical avenue to get around the extended singularities.
Eg. (6) has no immediate physical significance in statisticalThis is so because the situations with a complegan be
mechanics whelJ is an external potential. We will return to mapped to real quantum mechanical problems with complex
this issue again. potentials, and they have a physical correspondence to the

Next, we may further inquire what # takes a complex inelastic scattering problems, for which singularities are less
value. This case may have a correspondence to certain physikely to occur.

cal situations. To see how it may happen et xe'®, where In fact, an interesting result a compléxcan produce is
both @ and« are real constants. We may transform away thethat one may evolve the system as an initial-valued problem.
phase factoe'® with the following new variables: By choosing a fixed anglee and a real timet, one may
_ . _ observe, at least numerically, how the wave function evolves
§;=Sd*, r=te’'®, U;=Ue”“ (120 in time. Unlike the situation with a complex time but réal

at any instant in time, one now has a well-defined manner
(explained belowto analytically continue the wave function
with respect ta to its actual value, without the need of the
past and future wave functions. The idea is to make use of
6Slda, Oplda, and their higher-order derivatives. One
. needs to numerically comput&r,t) andp(r,t) for several

. ) %'s of small differences, so that these derivatives can be
theory where inelastic processes take place.

Aside f he fund i . b evaluated. The accuracy of the analytically continued solu-
_Aslde from the fun ame'nta ISSUes concerning: a et,tef'on depends on how many higher derivatives to be retained
insight of quantum mechanics, we now address a technic

- X ) . the solution construction. As the parallel computation has
application of a compleX. It is sometimes useful to find a become the state of art, such a strategy should be easily
guantum partition function from the corresponding quantumaajizable. '
transition probability by analytically continuing an imagi-
nary B8 to a realB and then sum over all initial stat¢21].

The analytical continuation may be conducted in the com-
plex 8 domain. But from the present formulation, the ana- This work was supported in part by the National Science
lytical continuation may also be carried out in the complex Council of Taiwan under Grant Nos. NSC88-2112-M008-

domain. The path of analytical continuation for a complex 039 and NSC88-2112-M008-040.

To be useful, we technically force to be a real quantity.
That is, the Schminger equation with a complek can be
transformed into a quantum mechanical problem with a com
plex potentialU; and real “time” 7, for which the wave
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