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Hard-sphere solids near close packing: Testing theories for crystallization

Benito Groh and Bela Mulder
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 8 July 1999!

The freezing transition of hard spheres has been well described by various versions of density-functional
theory ~DFT!. These theories should possess the close-packed crystal as a special limit, which represents an
extreme testing ground for the quality of such liquid-state based theories. We therefore study the predictions of
DFT for the structure and thermodynamics of the hard-sphere crystal in this limit. We examine the
Ramakrishnan-Yussouff~RY! approximation and two variants of the fundamental-measure theory~FMT!
developed by Rosenfeld and co-workers. We allow for general shapes of the density peaks, going beyond the
common Gaussian approximation. In all cases we find that upon approaching close packing, the peak width
vanishes proportionally to the free distancea between the particles and the free energy depends logarithmically
on a. However, different peak shapes and next-to-leading contributions to the free energy result from the
different approximate functionals. For the RY theory, within the Gaussian approximation, we establish that the
crystalline solutions form a closed loop with a stable and an unstable branch both connected to the close-
packing point ata50, consistent with the absence of a liquid-solid spinodal. That version of FMT that has
previously been applied to freezing, predicts asymptotically steplike density profiles confined to the cells of
self-consistent cell theory. But a recently suggested improved version which employs tensor weighted densities
yields wider and almost Gaussian peaks that are shown to be in very good agreement with computer
simulations.

PACS number~s!: 61.20.Gy, 64.70.Dv, 61.50.Ah, 64.10.1h
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I. INTRODUCTION

Some twenty years ago Alexander and McTague app
the formalism of Landau theory to the freezing transition
atomic materials@1#. Using symmetry arguments they su
gested that a bcc crystal should be the universally favo
crystal structure, independent of interaction details. T
theory attempts to describe the solid as a small, spati
periodic perturbation of a liquid. In a recent paper@2# we
argued that such an approach should only be valid near
liquid-solid spinodal, at which the liquid state becomes
cally unstable. The position of the spinodal is determined
the Fourier transform of the liquid direct correlation functio
c̃, and is given by the smallest densityr for which the equa-
tion

r c̃~r,k!51 ~1!

has a solution. Moreover, the perturbative approach does
apply to the local minima of the free energy in orde
parameter space, which correspond to metastable or s
crystals, but rather to its saddle points. For the latter
confirmed universal behavior near the spinodal, which m
have implications for nucleation@2#.

The hard-sphere fluid has become the canonical mode
freezing, since it captures in the most simple form the do
nant packing effects while attractive interactions are belie
to play only a secondary role. The best current theories
hard-sphere freezing are various versions of dens
functional theory~DFT! @3–7#. Usually they are explicitely
constructed to reproduce the Percus-Yevick approxima
cPY for the hard-sphere direct correlation function. In Fig
we show the values ofc̃PY(r,k) evaluated at the wave num
ber kmax(r) corresponding to the maximum at a given de
PRE 611063-651X/2000/61~4!/3811~12!/$15.00
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sity r. One finds that there is no solution to Eq.~1! at physi-
cal densitiesr below the space filling density 6/ps23 where
s is the particle diameter~at and beyond this limitcPY is not
defined!. This implies that those DFTs do not exhibit
liquid-solid spinodal at all. Therefore the saddle point so
tion branch of the stationarity equation derived from the d
sity functional cannot connect to the liquid branch when
bulk density is increased. On the other hand, hard-core
tems are characterized by a close-packing density as
maximum possible density of a given crystal structure. Up
approaching this limit a suitably defined crystalline ord
parameter, e.g., the inverse width of the density peaks,
diverge along the stable~minimum! branch. One may sur
mise that that is also true along the saddle point branch. T
an alternative scenario to the bifurcation of a crystalline
lution from the liquid at a spinodal point as discussed in R
@2#, are two solid solution branches smoothly connected
each other at low densities which diverge at close pack
and are completely isolated from the liquid. In order to te
this hypothesis in the present work we examine the clo
packing limit in detail using DFTs that have previously be
applied to the low-density solid near the phase transition

Clearly, the strong localization of the particles in this lim
provides an extreme case for such liquid-state based theo
Hence it is a good testing ground for assessing the qual
of different approximations. In contrast to most DFT stud
of the hard-sphere solid we do not restrict the shape of
density peaks to Gaussians, but allow for general spheric
symmetric peaks. This is especially interesting for the co
pletely anharmonic hard-sphere crystal for which there is
a priori argument to justify Gaussians, even for small amp
tude particle oscillations.

The starting point of density-functional theory is the fr
energy functional of the inhomogeneous particle dens
r(r ) with the general form
3811 © 2000 The American Physical Society
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3812 PRE 61BENITO GROH AND BELA MULDER
F@r~r !#5F id @r~r !#1Fex@r~r !#. ~2!

The ideal gas contribution is given by@b51/(kBT)#

bF id @r~r !#5E d3rr~r !@ ln r~r !l321# ~3!

with the thermal de Broglie wavelengthl. While the excess
partFex is not known exactly, a large number of approxima
forms have been suggested and applied to various prob
in the last decades@3–7#. As we do not strive for complete
ness we will consider only two representative variants in t
paper: the Ramakrishnan-Yussouff functional@8,9# which is
one of the first and simplest approximations that have b
studied, and the fundamental measure functional develo
by Rosenfeld and co-workers@10,11# which at the present is
believed to provide the best theoretical description of
hard-sphere fluid. From a given functional the equilibriu
density distribution at a given bulk densityrb is obtained by
minimization under the constraintV21*d3rr(r )5rb . The
value of the functional at its minimum is the actual fr
energy of the system. For both functionals we perform
numerical calculations at a series of bulk densities as we
an analytical analysis of the close-packing limit which e
ables us to determine the asymptotic density profile and
energy.

II. RAMAKRISHNAN-YUSSOUFF THEORY

A. Density functional and equilibrium profiles

The Ramakrishnan-Yussouff functional follows from
density expansion ofFex around the homogeneous state tru
cated at the quadratic term:

bFex/V5b f ex~rb!2
1

2VE d3rd3r 8@r~r !2rb#

3@r~r 8!2rb#c~ r̄,ur2r 8u!. ~4!

FIG. 1. The left-hand side of Eq.~1! for the hard-sphere direc
correlation function in the Percus-Yevick approximation. The wa
number kmax(r) corresponds to the maximum ofcPY(r,k) at a
given densityr5r* s23. The curve lies below unity for all admiss
able densitiesr* ,6/p51.910, i.e., for packing fractionsh
5r* p/6,1, which means that there is no liquid-solid spinod
The close-packing limit occurs atr* 5A2.
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Here f ex is the free energy density andc the direct correlation
function ~DCF! of the hard-sphere liquid at an effective de
sity r̄, both of which are commonly approximated by th
analytically known solutions of the Percus-Yevick integr
equation. In a solid the density consists of a sum of ident
peaks centered at the lattice sitesR:

r~r !5(
R

rD~r2R!. ~5!

Throughout this paper it is assumed that the peaks are
malized

E d3rrD~r !51 ~6!

and that the nearest-neighbor distanceRNN in the lattice is
determined by the bulk density,RNN /s5(rCP/rb)1/3 where
s is the particle diameter andrCP is the maximum possible
density. In order to reduce the dimensionality of the integ
tions we moreover assume thatrD is spherically symmetric.
Deviations from this symmetry exist@12,13#, but are small
especially near close packing@14#. However, in contrast to
most solid phase calculations which assumerD to be Gauss-
ian here we do not restrict its shape.

By insertion of Eq.~5! in Eq. ~4! one obtains

bFex/V5b f ex~rb!

1
1

2
rb

2c̃~ r̄,k50!2
1

2
rb

3(
R

E drr 2E dr8r 82rD~r !rD~r 8!w~r ,r 8,R!,

~7!

where c̃ is the Fourier transformed DCF and the integ
kernel is given by

w~r ,r 8,R!52pE
0

2p

df12E
21

1

d cosuE
21

1

d cosu8

3c@ r̄,~r 21r 821R212rR cosu

22r 8R cosu822rr 8 cosg!1/2#. ~8!

The anglesu, u8, andg are those betweenr andR, r 8 and
R, and r and r 8, respectively, and cosg5cosu cosu8
1cosf12sinu sinu8. The contribution fromR50 simplifies
to

w~r ,r 8,0!5
8p2

rr 8
E

ur 2r 8u

r 1r 8
dr12r 12c~ r̄,r 12!. ~9!

Without loss of generality one may restrict the domain ofrD

to the Wigner-Seitz cell, so that the ideal contribution to t
functional can be written as

bFid /V54prbE drr 2rD~r !@ ln rD~r !l321#. ~10!

e

.
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PRE 61 3813HARD-SPHERE SOLIDS NEAR CLOSE PACKING: . . .
By minimizing and taking into account the normalization E
~6! one finds the stationarity equation

rD~r !

5

expF ~1/4p!(
R

E dr8r 82rD~r 8!w~r ,r 8,R!G
4pE drr 2 expF ~1/4p!(

R
E dr8r 82rD~r 8!w~r ,r 8,R!G .

~11!

The Percus-Yevick approximation for the hard-sph
DCF has the simple form

c~ r̄,r !5@c0~ r̄ !1c1~ r̄ !r 1c3~ r̄ !r 3#Q~s2r !. ~12!

The density dependence of the coefficientsci can for ex-
ample be found in Ref.@15#. In the present context its mos
important feature is the cutoff at the particle diameter wh
leads to w(r ,r 8,R)50 for R2r 2r 8.s. Hence for the
strongly peaked profiles in high density solids only the fi
shell of lattice vectors (uRu5RNN) and the term withR50
must be taken into account. We have calcula
w(r ,r 8,RNN) by numerical integration using the trapezoid
rule with 503 mesh points, while an analytical expression f
w(r ,r 8,0) was derived from Eq.~9!. The stationarity equa
tion is then discretized inr and solved by iteration. An un
derrelaxation scheme

r (n11)5vrnew
(n) 1~12v!r (n) ~13!

proved helpful to ensure convergence. Herer (n) is the profile
after thenth iteration andrnew

(n) is the right hand side of Eq
~11! calculated fromr (n). A typical value of the constantv
was 0.2.

The resulting profiles are shown in Fig. 2. Their wid
scales with the free distancea5RNN2s that a sphere can
move into the direction to its neighbor if the latter is ke
fixed. The profile shapes approach a limiting form discus
below. Their most striking property is the occurrence o

FIG. 2. Density profiles in a high density fcc crystal calculat
from Ramakrishnan-Yussouff DFT. Note that the distancer from
the lattice site and the density are scaled by the free distanca
5RNN2s, which varies over 2.5 orders of magnitude in this de
sity range.
.
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maximum at intermediate distancesr. This unphysical be-
havior vanishes in the close-packing limit. The DCF h
been evaluated at the bulk densityr̄5rb . This most obvious
choice has the disadvantage that the solid has a higher
energy than the liquid at all densities, as already pointed
in Ref. @16#. In the earliest DFT work the density of th
coexisting liquid has been used instead, but that is not v
reasonable when high density solids are considered. O
schemes to select a densityr̄ of an ‘‘effective liquid’’ have
been proposed Ref.@16,17,4#, which always implyr̄,rb .
Figure 3 shows density profiles obtained with an arbitrar
chosen valuer̄* 5 r̄s350.95 which is close to the freezin
density. Now the maximum does not occur and the conv
gence to the limiting shape is faster. The profiles are con
erably flatter at smallr than a Gaussian of the same width

B. Close-packing limit

The results shown in Figs. 2 and 3 clearly demonstr
that, in spite of contrary claims@18,19#, simple density-
functional theories based on the Percus-Yevick DCF do
hibit a well-defined close-packing limit at which the pea
width goes to zero. We will analyze this limit in more deta
in the following. Let us assume that for smalla5RNN2s
the profile behaves as

rD~r !5
1

D3
r0S r

D D ~14!

with a widthD5a/a whereD,a→0 with a fixed. We shall
show that the stationarity equation has a solution consis
with these assumptions. The ideal free energy in this li
becomes~with N5rbV ands5r /D)

bF id /N54pE
0

`

dss2r0~s!@ ln r0~s!23 ln~D/l!21#.

~15!

The relevant contributions toFex are

w~r 5sD, r 85s8D,0!516p2c~ r̄,0!1O~D! ~16!

and

-

FIG. 3. The same as Fig. 2 but usingr̄50.95 as the density
argument of the DCF. In this case the profiles are monotonic.
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3814 PRE 61BENITO GROH AND BELA MULDER
w~r 5sD, r 85s8D,RNN!

52pE
0

2p

df12E
21

1

dxE
21

1

dx8

3c„r̄,s@11D/s~a1sx2s8x8!1O~D2!#…

54p2c~ r̄,s!w̃~s,s8,a!1O~D!, ~17!

where

w̃~s,s8,a!

5
1

ss8
E

2s

s

ds3E
2s8

s8
ds38Q~s382s32a!

55
0, s81s,a,

~s1s82a!2/~2ss8!, s81s.a, 2a,s82s,a,

2~12a/s8!, s82s.a,

2~12a/s!, s82s,2a.
~18!

Thus we finally have in leading order inD

bFex/N522p2NNNc~ r̄,s!

3E
0

`

dss2E
0

`

ds8s82r0~s!r0~s8!w̃~s,s8,a!

1const5F1const, ~19!

whereNNN denotes the number of nearest neighbors.
The total free energy can now be minimized in two d

ferent ways. First, one can restrict to profiles of a fixed sh
r0(s), e.g., Gaussians, and differentiate only with respec
the scaled widtha for fixed a which gives

352a
]F

]a
. ~20!
pa
n
an
-

th
t

nj
o

e
o

Due to the form ofw(s,s8,a) for a→` one hasF→0 and
thus the right hand side of Eq.~20! also decays. On the othe

hand, fora→0 F tends to a positive constant@sincec( r̄,s)
is negative#, thus its derivative will be negative for suffi
ciently well behavedr0(s). Therefore, the right hand side o
Eq. ~20! is zero both ata50 and a5` and positive in
between which implies a maximum at a finite value ofa.
This can be explicitly checked for Gaussians@r0(s)
5p23/2exp(2s2)# and step functions@r0(s)53/(4p)Q(1
2s)# for which the integrals in Eq.~19! yield 1

2 @1
2erf(a/A2)# and 1

2 2 3
5 a1 1

4 a32 3
32 a41 1

320a5. Depending
on the height of this maximum Eq.~20! has zero or two
solutions. In the first case there are no stationary points w
vanishing peak width atrb5rcp . This is the case for the
‘‘Onsager solid’’ discussed in Ref.@2# which belongs to the

same class of approximate functionals, but withc( r̄,r ) re-

placed by its low-density limit2Q(s2r ). If 2c( r̄,s) is
larger @e.g., cPY(rcp

fcc ,s)5220.345] the solution with
smallera corresponds to a saddle point and the solution w
largera to the stable solid minimum. We emphasize that t
widths D5a/a for both solutions tend to zero forrb

→rcp . In Fig. 4 we display the results obtained for fcc a

bcc solids, employing Gaussian profiles andr̄5rb ~fcc: rcp*
5A2, NNN512; bcc: rcp* 53A3/4, NNN58). We also in-
clude numerical solutions of]F/]D50 for the nonasymp-
totic functional discussed above, evaluated for Gaussi
They approach the asymptotics quite slowly, especially
the saddle points. At low densities both branches are c
nected at an inflection point below which no solidlike sol
tions exist.

Alternatively one can differentiate the asymptotic fun
tional in Eqs.~15! and~19! with respect to the profiler0(s).
Here one may seta51 without loss of generality. This lead
to the Euler Lagrange equation
r0~s!5

expFpNNNc~ r̄,s!E
0

`

ds8s82r0~s8!w̃~s,s8,1!G
4pE

0

`

ds s2 expFpNNNc~ r̄,s!E
0

`

ds8s82r0~s8!w̃~s,s8,1!G . ~21!
s-
xed

nt

t to

h
ds
Its solutions, which represent the asymptotic profileshape,
obviously only depend on the value ofc at r 5s, because
near close packing the distance between two interacting
ticles is always very close tos. The resulting shapes, show
in Figs. 2 and 3, are rather flat close to the lattice site
decay strongly aroundr /a50.6, so they are definitely non
Gaussian.

The iteration never converged to a second solution
would repesent the saddle point, even when started from
Gaussian saddle point discussed above. It has been co
tured in a DFT study of the isotropic-nematic transition
r-

d

at
he
ec-
f

hard rods@20# that in general the saddle point is not acce
sible by iteration because it corresponds to an unstable fi
point ~see also Ref.@21#!.

We mention a subtle point in connection with Eq.~21!.

Due to the form ofw̃ the right hand side goes to a consta
for s@1, which means that no normalized solution on@0,̀ )
can exist. However, as mentioned above, one may restric
functions with a finite support@e.g., r ,RNN/2, i.e., s
,RNN /(2a)]. For the numerical program indeed a muc
lower cutoff was used. In principle the solution now depen
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PRE 61 3815HARD-SPHERE SOLIDS NEAR CLOSE PACKING: . . .
on the cutoff, but in practice this dependence is extrem
weak because the constant approached for larges is of the

order of exp@ 1
2NNNc( r̄,s)#.10253 so that the contributions

from the tail ofr0(s) are neglegible for any reasonable val
of the cutoff. Similar remarks apply to Eq.~11!.

The free energy of the solid is determined by inserting
calculated equilibrium profiles into the density functional.
asymptotic behavior is given by

bF/N523lna1 f 01O~a!. ~22!

The leading logarithmic contribution stems fromF id and is in
accordance with the result of free volume theory@22# and
cell theory@23,24#. It has been proven exact for parallel ha
cubes@25# and for finite hard-sphere systems@26# and is
generally believed to be exact also in the thermodyna
limit. The various theories differ in their prediction for th
constantf 0. In the Ramakrishnan-Yussouff approach~with
r̄5rb) for an fcc solid we obtainf 0521.7 which is far
above the molecular dynamics resultf 0521.493 @27#. As
shown in Fig. 5 the asymptotic form is approached qu
slowly, i.e., the higher order terms in Eq.~22! are important
up to high densities~which probably will also produce a ba
equation of state!. The free energies from the full minimiza
tion are only slightly below those for the best Gaussian p
file ~Fig. 5!.

FIG. 4. WidthsD corresponding to minima~lower branches!
and saddle points~upper branches! of the Ramakrishnan-Yussou
functional restricted to Gaussian profiles for fcc and bcc solids.
asymptotic linear behavior indicated by the dashed lines was ca
lated from Eq.~20!.
ly

e

ic

e

-

III. FUNDAMENTAL-MEASURE THEORY

A. Density functional

Fundamental measure theory at present represents the
available DFT for strongly inhomogeneous hard-sph
fluids. In contrast to most previous approaches it does
depend on the direct correlation function as an input,
rather reproduces the Percus-Yevick correlation function
an output of the theory in the homogeneous limit. While t
original expressions@10# gave a divergent excess free ener
for strongly localized particles, a recent empirical modific
tion proved suitable also for the description of the freez
transition@11#. We will call this version FMT1. Another new
approximation has recently been suggested by Tarazona
Rosenfeld@28# based on more fundamental grounds. Th
presented a new derivation of FMT by enforcing the fun
tional to reduce to exactly known expressions in the ze
and one-dimensional limit. They obtained a more comp
cated expression for one of the excess free energy contr
tions that cannot be expressed in terms of weighted dens
and also does not reduce to the Percus-Yevick free energ
the homogeneous limit. They also suggested a simplifica
by rescaling a certain expansion of this exact express
which we adopt as FMT2. Due to its construction we exp
FMT2 to provide a better description of the high-dens
crystal in which the individual particles are confined
quasi-zero-dimensional cages formed by their neighbors

For a one-component hard-sphere fluid in three dim
sions the fundamental-measure functional has the form

bFex@r~r !#5E d3r(
i 51

3

f i@na~r !#, ~23!

where the functionsf i depend only on the weighted dens
ties

na~r !5E d3r 8r~r !wa~r2r 8!. ~24!

e
u-

FIG. 5. Free energies per particle of high density solids from
Ramakrishnan-Yussouff DFT, the two versions of fundamen
measure DFT, and from molecular dynamics@27#. The de Broglie
wave length has been set to the particle diameter. The asymp
behavior indicated by the dotted lines is logarithmic in the fr
distancea @see Eq.~22!# in all cases.
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3816 PRE 61BENITO GROH AND BELA MULDER
In FMT1 only one vectorial and two independent sca
weight functions occur:

w3~r !5QS s

2
2r D ,

w2~r !5dS s

2
2r D ,

wV2~r !5
r

r
dS s

2
2r D . ~25!

For FMT2 a tensor weight function is necessary:

ŵi j ~r !5
r i r j

r 2
dS s

2
2r D . ~26!

The expressions for the excess free energy density are

f152
n2

ps2
ln~12n3!, ~27!

f25
n2

22nV2
2

2ps~12n3!
, ~28!

f3
FMT15

~n2
22nV2

2 !3

24pn2
3~12n3!2

, ~29!

f3
FMT25

9

8p

detn̂

~12n3!2
. ~30!

The density ansatz Eq.~5! induces a corresponding form fo
the weighted densities

na~r !5(
R

nD
(a)~r2R! ~31!

with

nD
(a)~r !5E d3r 8rD~r 8!wa~r2r 8!. ~32!

If rD is spherically symmetric the calculation of th
weighted densities reduces to one-dimensional integratio

FIG. 6. The space between two nearest-neighbor sites~black
dots! in a crystal. The radii of the spheres ares/26O(D) whereD
is the width of the~spherical! density peaks. The weighted densiti
in region A are only influenced from one site while in B both sit
contribute. In the remaining space the excess free energy den
f i are neglible.
r

s

nD
(3)~r !5

p

r Eur 2s/2u

r 1s/2

dr8r 8S s2

4
2~r 2r 8!2D rD~r 8!

1QS s

2
2r D4pE

0

s/22r

dr8r 82rD~r 8!, ~33!

nD
(2)~r !5

ps

r E
ur 2s/2u

r 1s/2

dr8r 8rD~r 8!, ~34!

nD
(V2)~r !5

r

r

p

r 2Eur 2s/2u

r 1s/2

dr8r 8S r 22r 821
s2

4 D rD~r 8!.

~35!

In this case the matrixn̂D(r ) @defined by n̂(r )5(Rn̂D(r
2R)] is diagonal in any coordinate system aligned withr .
An explicit calculation yields the eigenvalues

nD
(11)~r !5nD

(22)~r !5
p

2r s
3Eus/22r u

r 1s/2

dr8r 8

3F4r 2r 822S s2

4
2r 822r 2D 2GrD~r 8! ~36!

and

nD
(33)~r !5

p

r s
3Eus/22r u

r 1s/2

dr8r 8S s2

4
2r 821r 2D 2

rD~r 8!.

~37!

Note that Trn̂D(r )5nD
(2)(r ). As rD is a strongly peaked

function of width D the weighted densities
nD

(2)(r ), nD
(V2)(r ), and n̂D(r ) have appreciable values onl

for ur 2s/2u&D while nD
(3)(r ) tends to 1 for much smallerr

and to 0 for much largerr. Thus for smallD at any pointr in
a solid at most two terms contribute appreciably to the s
in Eq. ~31!.

We only consider fcc solids. By exploiting the cryst
symmetry the integration in Eq.~23! can be restricted to a
simplex corresponding to 1/48 of the unit cell. In a coord
nate system aligned with the conventional cubic unit cell
vertices are

~0,0,0!, RNNS 1

A2
,0,0D ,

RNNS 1

2A2
,

1

2A2
,0D , RNNS 1

2A2
,

1

2A2
,

1

2A2
D . ~38!

It will be helpful to distinguish between the region A, that
‘‘affected’’ by only one lattice site, and the region B affecte
by two sites, i.e., the set of those points whose distanc
two sites differs froms/2 by a length of orderD. As de-
picted in Fig. 6 region B consists of lens shaped sets aro
the midpoints between neighboring sites. Here the integra
f i@na(r )# do not depend on the azimuthal angle around
line joining the sites, thus only a two-dimensional numeric
integration over cylindrical coordinatesr8 and z8 must be
performed. In order to compute the fulln̂ in region B the

ies
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contribution from one of the sites must be transformed to
coordinate system determined by the direction to the o
site. This is accomplished by a rotation around an axis p
pendicular to this direction by the angleg given by

cosg5
r1•r2

r 1r 2

5
r821z822RNN

2 /4

$@r821~z81RNN /2!2#@r821~z82RNN /2!2#%1/2
.

~39!

Since in region Ana(r ) depends only on the distance to th
nearest lattice site the corresponding integration can eve
reduced to one dimension after the angular factors stemm
from the shape of the simplex have been worked out ana
cally. In practice a sufficiently large cutoffD ~typically D
.2a) was chosen beyond whichrD(r ) is assumed to be
zero, and the integrals over A and B were calculated se
rately. This approach proved to be much faster and m
accurate than a straightforward 2d integration over the wh
simplex, because then the integrand is essentially zer
large parts of the integration region.

B. Equilibrium profiles

In order to determine the equilibrium density profile und
the constraint of spherical symmetry the functional deri
tives of Fex are calculated. We first write

dbFex

drD~r !
5E d3r 8(

i ,a

]f i

]na

dna~r 8!

drD~r !
~40!

and

dna~r 8!

drD~r !
5

d

drD~r ! (
R

nD
(a)~r 82R!5(

R

dnD
(a)~d!

drD~r ! U
d5r82R

.

~41!

For nD
(3)(d) the second term in Eq.~33! is rewritten as

Q(s/22d)@12*s/22d
` dr8r 82rD(r 8)# which leads to

FIG. 7. Density profiles obtained from the fundamental-meas
theory FMT1.
e
er
r-

be
ng
ti-

a-
re
le
in

r
-

dnD
(3)

drD~r !
5Fpr

d S s2

4
2~r 2d!2D

24pr 2QS s

2
2dD GQS Ud2

s

2U2r D , ~42!

where we assumed that alwaysr ,s/21d. Furthermore one
finds

dnD
(2)~d!

drD~r !
5

psr

d
QS Ud2

s

2U2r D , ~43!

dnD
(V2)~d!

drD~r !
5d

pr

d3 S d22r 21
s2

4 DQS Ud2
s

2U2r D . ~44!

For the tensor weighted density straightforward calculat
leads to a similar but more lengthy expression. The par
derivatives]f i /]na are easily obtained from Eqs.~27!–
~29!. The functional derivative can now be computed by
serting Eqs.~42!–~44! into Eq. ~41! and that into Eq.~40!.
For the integration overr 8 in Eq. ~40! we adopt a similar
scheme as for the functional itself. Due to the step functio
in Eqs. ~42!–~44! in region A the cutoffD can be replaced
by the distancer for which the derivative is evaluated. I
region B two terms from the lattice sum contribute. Becau
the integrand is nonanalytic at the lines where one of
distancesd equalss/22r , s/2, or s/21r we partitioned
the integration region B appropriately for the numerical
tegration. Together with the ideal free energy Eq.~10! one
readily obtains the stationarity equation

rD~r !

5
exp$2~1/4pr 2!@dbFex/N/drD~r !#%

4pE dr8r 82 exp$2~1/4pr 82!@dbFex/N/drD~r 8!#%

.

~45!

Again a mesh is introduced forrD(r ) and the weighted den
sities are calculated by the trapezoidal rule with linear int
polation between the mesh points. More sophisticated
merical integration routines are used for the integration o
r 8 in Eq. ~40! for regions A and B, and Eq.~45! is iterated
until the maximum relative change inrD(r ) is less than
1025.

The resulting profiles for FMT1 are displayed in Fig.
They are almost constant at smallr and then decrease steep
aroundr 5a/2, increasingly fast upon approaching the clos
packing limit. In the next section we show that the limitin
shape indeed is a simple step function. The profiles
FMT2 shown in Fig. 8 exhibit a much smoother, Gaussia
like decay and their width, measured, e.g., by^r 2&
5*d3r r 2rD(r ), on the scalea is considerably larger than
for both the RY and FMT1 functionals. Clearly, again th
absolute width goes to zero linearly witha, as expected in
the close-packing limit.

C. Close-packing limit

As for the Ramakrishnan-Yussouff functional we assu
that asymptotically the density profile has the form Eq.~14!
with D5sd. We have seen that in the important range t

e
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argument of the weighted densities is close tos/2. Therefore
we setr /s51/21td and determine the leading contribution
to nD

(a)(r ) for small d and fixedt:

nD
(3)~ t !5(

i 50

`

n3i~ t !d i52pF2Q~2t !E
0

2t

dss2r0~s!

1E
utu

`

dssr0~s!@~s2t !1d~ t22s2!

12d2t~s22t2!1•••#G ~46!

nD
(2)~ t !5

1

s (
i 50

`

n2i~ t !d i 21

5
2p

sdEutu

`

dssr0~s!~122td14t2d21••• ! ~47!

nD
(V2)~ r̂ ,t !5 r̂

2p

sdEutu

`

dssr0~s!

3@122td1~6t222s2!d21•••#, ~48!

nD
(11)~ t !54pdE

utu

`

dssr0~s!~s22t21••• !, ~49!

nD
(33)~ t !5

2p

d E
utu

`

dssr0~s!@122td14~2t22s2!d21•••#,

~50!

where the caret denotes a unit a vector. Since for anyr0(s)
the first two terms in the expansions ofnD

(2) and unD
(V2)u are

identical one hasn2
22nV2

2 5O(d0) in region A. On the other
hand, in region B the contributions tonV2 from the two lat-
tice sites have almost opposite directions so thatn2

22nV2
2

;d22 there. For FMT2 we find detn̂;d in both regions,
because, due to the quadratic dependence ofwi j (r ) on the
components ofr , the two contributions do not cancel eac
other in region B. Taking into account that the volumes of
and B are proportional tod and d2, respectively, we can
estimate the order of the individual free energy contributio
F i5N21*d3rf i@na(r )#:

FIG. 8. Density profiles obtained from the improve
fundamental-measure theory FMT2.
s

A B

F1 d0 d
F2 d d0

F3
FMT1 d4 d21

F3
FMT2 d2 d3

Thus at this point a qualitative difference between the t
approximations arises, as different terms become domin
in the close-packing limit. We first discuss FMT1, for whic
F3B is the leading term. In a cylindrical coordinate syste
(z8,r8,f8), centered at the midpoint between two sites a
with its axis directed towards~see Fig. 6! one of them, the
distancesr 6 to the sites, which occur as the argument of t
weighted densitiesnD

(a) , are

r 65@r821~z86Rnn/2!2#1/2. ~51!

In the scaled coordinatesr5r82/(ds2) andz5z8/(ds) one
hast651/21r6z1O(d) and

n2
22nV2

2 5
4

d2
n20~ t1!n20~ t2!1••• ~52!

which finally yields

F3B
FMT1.

32

d E
0

`

drE
0

`

dzS n20~ t1!n20~ t2!

n20~ t1!1n20~ t2! D
3

3
1

@12n30~ t1!2n30~ t2!#2
. ~53!

Since n30(t)P@0,1# and n20(t)>0 this expression is posi
tive. It attains its minimum value zero for all profilesr0(s)
that have a strict cutoff ats51/2 so that region B is empty
In this restricted class of profiles the dominant contributio
areF1A andFid . The former can be written as

F1A52E
21/2

1/2

dt n20~ t !ln@12n30~ t !#1O~d!. ~54!

But the fact thatn20(t)52]n30/]t implies F1A511O(d)
for all profiles. Since here the peaks around different sites
independent of each other, this result is consistent with
extensively discussed 0D limit of the fundamental-meas
functional @11,28#: For density profilesrD(r ) constrained to
a volume that cannot hold more than one particle the ex
excess free energy isbFex51 if *d3rrD(r )51. One of the
merits of the present theory is that this limit is almost exac
fulfilled @11#. At last we are left with the ideal free energ
Eq. ~15! as the only relevantO(d0) term, which, naturally,
favors an evenly distributed density:

r0~s!→ 6

p
QS 1

2
2sD . ~55!

This finding implies that the usually assumed Gauss
peaks represent a particularly bad approximation in this c
Indeed, in the Appendix we show that the widthD of the best
Gaussian is asymptotically related to the free distancea by
a;DAln(2D) which means that the ratioD/a tends to zero,
albeit very slowly. The intuitive reason is that the tail of th
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Gaussian profile leads to an unfavorable free energy co
butionF3B that can only be kept small if the tail increasing
‘‘retracts.’’

Actually the above arguments for the asymptotic s
function shape in FMT1 can be generalized to nonspher
profiles. Starting from

rD~r !5
1

D3
r0~r /D! ~56!

and setting agains5r /D, D5sd5a, and ur u/s51/21td
one has

nD
(3)~ r̂ ,t !5E d3s Q„r̂ s2t2d~ t222t r̂ s1s2!…r0~s!.

~57!

Expanding for smalld gives

nD
(3)~ r̂ ,t !5E d3s Q~ r̂ s2t !r0~s!1O~d!. ~58!

Analogously we find

nD
(2)~ r̂ ,t !5E d3sr0~s!

3F1

d
d~ r̂ s2t !2~ t222t r̂ s1s2!d8~ r̂ s2t !1O~d!G

~59!

and, usingnD
(V2)(r )52¹nD

(3)(r ),

nD
(2)~ r̂ ,t !5E d3sr0~s!

3F1

d
r̂d~ r̂ s2t !2 r̂ ~ t222t r̂ s1s2!

3d8~ r̂ s2t !22@s2~ r̂ s! r̂ #d~ r̂ s2t !1O~d!G .
~60!

Since the last term in this equation is perpendicular tor̂ the
combinationn2

22nV2
2 is still of order d0 in region A. If in

region B the same coordinates (z,r,f8) as before are use
and the vectors to the nearest lattice sites are denoted byr6 ,
the fact that r̂1 r̂25211O(d) yields n2

22nV2
2 5O(d22).

Thus, in summary all estimates for the individual term
given in the table above remain valid. Again the domina
term F3B is positive and minimized by cutoff profiles. A
the leading terms of the scalar weighted densities are rel
by n20( r̂ ,t)52]n30( r̂ ,t)/]t the contributionF1A in leading
order is still independent of the profile. The ideal term no
enforcesrD(r ) to be constant in the maximum allowed r
gion C that is compatible withB5B. It can be constructed
by shifting the bounding planes of the Wigner-Seitz cell
ward bys/2 ~see Fig. 9!. A given pointr in C contributes to
the weighted densities atr 8 only if ur2r 8u<s/2. By con-
struction all suchr 8 lie within the Wigner-Seitz cell and thu
cannot be ‘‘reached’’ from anyr in the cell C8 around an-
other site, which means that B is indeed empty. However
point P outside of C were added the distance to its mir
ri-

p
al

t

ed

-

a
r

point P8 with respect to the closest Wigner-Seitz bounda
plane would be less thans so that elements of B would lie
on their joining line~see Fig. 9!. The cell C constructed her
is identical to that of the self-consistent cell theory@23#. Its
volume for an fcc solid isa3/A2.

We now turn to the second approximation~FMT2! for
which F2B andF id are the dominant contributions.@Remem-
ber that F1A is independent ofr0(s) in leading order.#
Analogous to Eq.~53! we have, neglecting higher orders
d,

F2B.24E
0

`

drE
0

`

dz
n20~ t1!n20~ t2!

12n30~ t1!2n30~ t2!
~61!

with t651/21r6z. The corresponding stationarity equatio
is

r0~s!5
exp$2~1/4ps2!@dF2B /dr0~s!#%

4pE
0

`

ds8s8exp$2~1/4ps82!@dF2B /dr0~s8!#%

.

~62!

The functional derivative is calculated as in Sec. III B. T
resulting asymptotic profile shown in Fig. 8 is close to tho
obtained for finite densities using the full functional. It
almost, but not exactly Gaussian.

The asymptotic free energy of the fundamental-meas
theory also has the form Eq.~22!. In FMT1 one hasf 0
5 1

2 ln 250.3466. Under the constraint of spherical symme
this is replaced byf 05 ln(6/p)50.6470, both of which are
much closer to the correct value than the Ramakrishn
Yussouff theory. Results for finite distance from close pa
ing are given in Fig. 5 and agree, probably by accide
rather well with the computer simulations. The approach
the asymptotic law is quite slow. On the other hand
FMT2 not only the profiles but also the free energies~Fig. 5!
approach their asymptotic limit faster in this version of t
theory. The value of the constant in Eq.~22! is found to be
f 0521.527 in very good agreement with the MD resul
However, in view of the relatively large change inf 0 due to

FIG. 9. Illustration of the cells C for which the fundament
measure theory predicts a constant density~a 2D analogon of the
3D crystal is drawn!. The circular arcs and their straight connectio
limit the set of points whose distance to C is smaller thans/2, i.e.,
the region A. The point P cannot belong to C because otherwis8
would belong to C8 and some points in between would have d
tances smaller thans/2 from both C and C8, i.e., region B would be
nonempty.
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3820 PRE 61BENITO GROH AND BELA MULDER
nonsphericity of the profiles as observed for FMT1, this m
well be fortuitous. We did not consider nonspherical profi
in FMT2.

D. Saddle point

In view of the discussion in the introduction it would b
interesting also to keep track of the saddle point between
liquid and the solid state when close packing is approach
Unfortunately, again one is plagued by the fact that the ite
tion of the stationarity equation does not converge to a s
ond solution. Furthermore the arguments of the asympt
analysis do not apply to the saddle point because they es
tially involve a minimization in two steps. Hence one mu
revert to parametrizations of the density with a few para
eters. For Gaussians and step functions the saddle poin
curs at a widthD proportional toa2/3 in FMT1 and toa1/2 in
FMT2. However, a priori there is no reason to assume tha
the saddle point the profile has a similar shape as at
minimum. We also tried profiles of the formsrD(r )
;exp@2(r/D)n# andrD(r );(11r /D)2n and found numeri-
cally that in both cases the free energy at the maximum w
respect toD decreases with decreasingn, down to the lowest
feasible values ofn. This suggests that the actual sadd
point profile may decay very slowly, while within these r
stricted classes of profiles a true saddle point at a nonde
erate profile seems not to exist.

IV. MONTE CARLO SIMULATIONS

Although an extensive computer simulation study of t
density distribution in hard-sphere crystals has been car
out before@14#, no useful results for the radial distributio
function have been published. In order to assess the qu
of the various theories we therefore undertook a small Mo
Carlo ~MC! simulation ourselves. In an NVT ensemble of3

spheres in an fcc arrangement we measured the distribu
of the particles’ distancer from their equilibrium sites. We
corrected for the movement of these sites due to shifts in
center of mass. Measurements were taken over 23106 MC
steps per particle for two bulk densities. The results are p
ted in Fig. 10 on a logarithmic scale versus (r /a)2 and com-
pared to the various DFT calculations. The quantitat
agreement is excellent for FMT2. The profiles are close
Gaussians but decay faster at large distance than a Gau
fitted to the small distance part. The dependence of
scaled profiles on bulk density is rather small in the exa
ined range, but still qualitatively reproduced by the theo
The actual width of the profiles will increase with increasi
particle number@14#, but we did not attempt to correct fo
finite size effects. In Ref.@14# it was found that in the ther
modynamic limit for high densities the width behaves
^r 2&1/2/a51.09860.004, again in almost perfect agreeme
with FMT2, for which ^r 2&1/2/a51.025. This means tha
FMT2 is the first DFT which yields the correct value of th
Lindemann parameter.

V. SUMMARY AND DISCUSSION

In summary, we have analyzed the close-packing limit
the hard-sphere crystal using three versions of DFT. All
them predict a peak widthD that vanishes proportional to th
free distancea and yields a logarithmic term in the free e
y
s
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ergy @see Eq.~22!# stemming from the ideal gas entrop
Numerically this has been observed before, for Gauss
peaks, in two other DFTs, the generalized liquid approxim
tion ~GELA! and the modified weighted density approxim
tion ~MWDA ! @29#. For the latter, however, it was foun
later that the solutions correspond to ‘‘unphysical’’ branch
@30#. Results for the profile widtĥr 2&1/2 obtained from all
mentioned DFT versions are compared in Fig. 11. FMT2 a
MWDA agree satisfactorily with the simulations, while th
peak widths predicted by GELA is considerably smaller b
still larger than those of FMT1 and RY. The relative perfo
mance of the different theories can also be judged from
profile shape obtained by free minimization. RY gives t
narrow profiles with an unphysical maximum if the bulk de
sity is used as the expansion point~Fig. 2!. The shape and
width are also wrong for other expansion points~Fig. 3!.
FMT1 predicts asymptotically steplike profiles confined
the cells of cell theory~Fig. 7!. Only the FMT2 profiles~Fig.
8! are in quantitative agreement with simulations at hi
densities~Fig. 10!. In spite of the anharmonicity of the hard
sphere crystal they are close to Gaussians. The GELA

FIG. 10. Comparison of the density profiles from Monte-Ca
simulation and the density-functional theory FMT2 for two bu
densities. A Gaussian profile would correspond to a straight lin
this plot.

FIG. 11. The peak widthŝr 2&1/2 near the close packing densit
obtained from different versions of DFT and computer simulatio
The GELA and MWDA data were taken from Ref.@29# and the
molecular dynamics~MD! results for 500 particles from Ref.@14#.
The diamonds denote our Monte Carlo simulations with 512 p
ticles.
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MWDA results where obtained under the assumption
Gaussian peaks. At present it is not clear what happ
within these approximations if more general shapes are
lowed nor whether the proportionalitŷr 2&1/2;a is strictly
valid in the close-packing limit. The results for the next-t
leading free energy contribution also improve from RY
FMT1 to FMT2 ~Fig. 5!, the two FMT versions being muc
closer to the correct result than RY. This could have be
expected from the way the RY approximation is construct
A density expansion around a liquid state certainly is di
cult to justify for the highly ordered high-density crystal.

If one restricts the profiles to a fixed shape saddle po
of the free energy are found at widths decaying;ax with
xRY51, xFMT152/3, andxFMT251/2. Insofar the global sce
nario for the crystalline solutions proposed in the introdu
tion is comfirmed~see also Fig. 4!. However, as detailed in
Sec. III D, in larger classes of functions the saddle po
remains elusive. We remark that the saddle point is a pr
erty closely connected to the mean-field type free ene
functional and, e.g., is not directly accessible by compu
simulations.

Comparing the two variants of FMT we see that the str
ture in the close-packing limit is sensitive to subtle diffe
ences between DFT approximations and thus might b
guiding line in the construction of better FMT-like function
als. Besides our FMT1 some other approximations forf3
have been suggested in Ref.@11# which are all of the form

f35
n2

3

~12n3!2
f ~j! with j5uju5UnV2

n2
U. ~63!

The power ofn2 is determined by dimensional argumen
and the functionf can only depend on the absolute value oj
because of the isotropy of space. From Eqs.~47! and~48! we
have j511O(d2) in region A. In order not to spoil the
correct leading order for a quasi-zero-dimensional situa
as given byF1A one has the additional requirementf (j
→1);(12j)n with n>2, which impliesF3A;d2n22. But
in region B j varies between zero and one so that alwa
F3B;d21. The functionf must be nonnegative in this rang
otherwise the functional would not be bounded from bel
†this happened in the original FMT@10# for which f (j)
5(1/32j2)/(8p)‡. Then the argument of Sec. III C run
through and the asymptotic profiles will always be step fu
tions. We conclude that an improved description of the h
density solid is not possible within FMT if only the scal
and vector weighted densities are used, the tensor we
function of FMT2 is inevitable. On the other hand in FMT
the behavior near close packing is exclusively determined
f2 so that no conditions on the precise form off3 can be
deduced.

Note added in proof. Very recently we learned of an im
proved FMT version derived by Tarazona@31# which re-
places Eq.~30! with

F3
FMT2 5

3

16p
@nV2•n̂•nV22n2nV2

2 2tr~ n̂3!1n2tr~ n̂2!#.

Using the methods of the present work, we could show t
this modification does not alter the profile shape in the clo
packing limit or the value off 0 .
f
ns
l-

n
:

-

ts

-

t
p-
y
r

-

a

n

s

-
h

ht

y

at
-

ACKNOWLEDGMENTS

We thank Sander Pronk for providing the Monte Ca
program and Y. Rosenfeld for stimulating discussions. T
work is part of the research program of the Stichting vo
Fundamenteel Onderzoek der Materie~Foundation for Fun-
damental Research on Matter! and was made possible b
financial support from the Nederlandse Organisatie v
Wetenschappelijk Onderzoek~Netherlands Organization fo
the Advancement of Research!. B.G. acknowledges the fi
nancial support of the EU.

APPENDIX: GAUSSIAN PEAKS IN FMT1

For Gaussian density peaksr0(s)5p23/2e2s2
the leading

contributions to the weighted densities are@see Eqs.~46!–
~48!#

n30~ t !5
1

2
@12erf~ t !#, n20~ t !5

1

Ap
e2t2 ~A1!

and for a widthD5a/(2a) the dominant excess free energ
contribution is@see Eq.~53!#

F3B5
32

p3/2

s

DE0

`

drE
0

`

dz@e(r1a1z)2
1e(r1a2z)2

#23

3F1

2
erf~r1a1z!1

1

2
erf~r1a2z!G22

1O~D0!.

~A2!

In order thatFex does not become too large fora→0 we
expecta→`. In this limit the substitutionsr85ra andz8
5za yield

F3B5
1

12Ap

s

D

exp~23a2!

a2
. ~A3!

Now we can add

bFid /N52
3

2
ln p~D/l!22

5

2
~A4!

and minimize with respect toD which gives

s

D

1

2Ap
expS 2

3

4

a2

D2D 53. ~A5!

This equation indeed has a solution withD/a→0 for a→0;
solved fora one has

a5
2D

A3
F2 lnS 6Ap

D

s D G1/2

~A6!

which demonstrates thatD/a decays only very slowly. Nev-
ertheless this decay is at variance with the physical expe
tion D/a→const which is well supported by computer sim
lations @14# and, as shown in the main text, is also fulfille
within the present theory if allowance is made for more ge
eral profile shapes.
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