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Hard-sphere solids near close packing: Testing theories for crystallization
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The freezing transition of hard spheres has been well described by various versions of density-functional
theory (DFT). These theories should possess the close-packed crystal as a special limit, which represents an
extreme testing ground for the quality of such liquid-state based theories. We therefore study the predictions of
DFT for the structure and thermodynamics of the hard-sphere crystal in this limit. We examine the
Ramakrishnan-YussouffRY) approximation and two variants of the fundamental-measure theéevT)
developed by Rosenfeld and co-workers. We allow for general shapes of the density peaks, going beyond the
common Gaussian approximation. In all cases we find that upon approaching close packing, the peak width
vanishes proportionally to the free distarechetween the particles and the free energy depends logarithmically
on a. However, different peak shapes and next-to-leading contributions to the free energy result from the
different approximate functionals. For the RY theory, within the Gaussian approximation, we establish that the
crystalline solutions form a closed loop with a stable and an unstable branch both connected to the close-
packing point ala=0, consistent with the absence of a liquid-solid spinodal. That version of FMT that has
previously been applied to freezing, predicts asymptotically steplike density profiles confined to the cells of
self-consistent cell theory. But a recently suggested improved version which employs tensor weighted densities
yields wider and almost Gaussian peaks that are shown to be in very good agreement with computer
simulations.

PACS numbses): 61.20.Gy, 64.70.Dv, 61.50.Ah, 64.16h

[. INTRODUCTION sity p. One finds that there is no solution to Edy) at physi-
cal densitiep below the space filling density 6=~ where
Some twenty years ago Alexander and McTague applied is the particle diametgiat and beyond this limitpy is not
the formalism of Landau theory to the freezing transition ofdefined. This implies that those DFTs do not exhibit a
atomic materiajil]. Using symmetry arguments they sug- |IQUId-SO|Id spinodal at all. Therefore the saddle point solu-
gested that a bce crystal should be the universally favore§on branch of the stationarity equation derived from the den-
crystal structure, independent of interaction details. Thisity functional cannot connect to the liquid branch when the
theory attempts to describe the solid as a small, spatiallpU/k density is increased. On the other hand, hard-core sys-
periodic perturbation of a liquid. In a recent pagéi we ems are characterized by a close-packing density as the

argued that such an approach should only be valid near tHi@ximum possible density of a given crystal structure. Upon
liquid-solid spinodal, at which the liquid state becomes IO_approachmg this limit a suitably defined crystalline order

cally unstable. The position of the spinodal is determined b)}d)arameter, €.g., the inverse width of the density peaks, will

i SRR - : iverge along the stabléminimum) branch. One may sur-
the Fourier transform of the liquid direct correlation function mise that that is also true along the saddle point branch. Thus

¢, and is given by the smallest densityfor which the equa-  an alternative scenario to the bifurcation of a crystalline so-
tion lution from the liquid at a spinodal point as discussed in Ref.
_ [2], are two solid solution branches smoothly connected to
pc(p,k)=1 (1)  each other at low densities which diverge at close packing
, ) and are completely isolated from the liquid. In order to test
has a solution. Moreover, the perturbative approach does n@kis hypothesis in the present work we examine the close-
apply to the local minima of the free energy in order- packing limit in detail using DFTs that have previously been
parameter space, which correspond to metastable or stabigyjied to the low-density solid near the phase transition.
crystals, but rather to its saddle points. For the latter we = clearly, the strong localization of the particles in this limit
confirmed universal behavior near the spinodal, which mayyovides an extreme case for such liquid-state based theories.
have implications for nucleatiof®]. _ Hence it is a good testing ground for assessing the qualities
The hard-sphere fluid has become the canonical model fgit different approximations. In contrast to most DFT studies
freezing, since it captures in the most simple form the dominf the hard-sphere solid we do not restrict the shape of the
nant packing effects while attractive interactions are believediensity peaks to Gaussians, but allow for general spherically
to play only a secondary role. The best current theories fosymmetric peaks. This is especially interesting for the com-
hard-sphere freezing are various versions of densitypletely anharmonic hard-sphere crystal for which there is no
functional theory(DFT) [3-7]. Usually they are explicitely 3 priori argument to justify Gaussians, even for small ampli-
constructed to reproduce the Percus-Yevick approximatio,de particle oscillations.
Cpy for the hard-sphere direct correlation function. In Fig. 1 The starting point of density-functional theory is the free
we show the values afpy(p,k) evaluated at the wave num- energy functional of the inhomogeneous particle density
ber k.{p) corresponding to the maximum at a given den-p(r) with the general form
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1 Heref,, is the free energy density ardhe direct correlation
function (DCF) of the hard-sphere liquid at an effective den-
sity p, both of which are commonly approximated by the
0.9 analytically known solutions of the Percus-Yevick integral
equation. In a solid the density consists of a sum of identical

0.95

p CPY(p’kmax(p))

0.8 peaks centered at the lattice sites

0.8

075 p(N=2 pa(r=R). 5

0.7

] 12 14 6 18 Throughout this paper it is assumed that the peaks are nor-
| . ' ' malized
p
FIG. 1. The left-hand side of Eq1) for the hard-sphere direct f d3rpa(r)=1 (6)
correlation function in the Percus-Yevick approximation. The wave

number k., (p) corresponds to the maximum @fy(p,k) at a . . . L
given densityp = p* o2, The curve lies below unity for all admiss- and that the nearest-neighbor distarig, in the lattice is

able densitiesp* <6/w=1.910, i.e., for packing fractions;  determined by the bulk densitRyuy/o = (pce/py)* where
=p* 7/6<1, which means that there is no liquid-solid spinodal. o IS the particle diameter anglp is the maximum possible

The close-packing limit occurs at* = /2. density. In order to reduce the dimensionality of the integra-
tions we moreover assume that is spherically symmetric.
F[p(r)]=Fg[p(r)]+Felp(r)]. 2 Deviations from this symmetry exi$t2,13, but are small

especially near close packii@4]. However, in contrast to
most solid phase calculations which assymeo be Gauss-
ian here we do not restrict its shape.

By insertion of Eq.(5) in Eq. (4) one obtains

ﬂFid[p(r)]:J d*rp(r)[In p(HA®—1] @ BF V=Bl pp)

The ideal gas contribution is given hy8=1/(kgT)]

1 — 1
with the thermal de Broglie wavelength While the excess + Epgé(p,k=0) ~ 5P
partF ¢, is not known exactly, a large number of approximate

forms have been suggested and applied to various problems

in the last decadg8—7]. As we do not strive for complete- x> f d”zf dr'r2pA(r)pa(rHw(r,r',R),
ness we will consider only two representative variants in this R

paper: the Ramakrishnan-Yussouff functiof@/9] which is (7)

one of the first and simplest approximations that have been
studied, and the fundamental measure functional developedherec is the Fourier transformed DCF and the integral
by Rosenfeld and co-workef40,11] which at the presentis kernel is given by

believed to provide the best theoretical description of the
hard-sphere fluid. From a given functional the equilibrium
density distribution at a given bulk densiby, is obtained by

2 1 1
w(r,r',\R)=2mx d¢12J dcos@J d cosé’

0 -1 -1
minimization under the constraint ™ 1fd%rp(r)=p,. The

value of the functional at its minimum is the actual free ><c[E(r2+r’2+ R2+ 2rR cosf
energy of the system. For both functionals we performed , ) , y
numerical calculations at a series of bulk densities as well as —2r'Rcos6’ —2rr’ cosy)']. (8

an analytical analysis of the close-packing limit which en-

ables us to determine the asymptotic density profile and freéhe anglesy, 6’, andy are those betweenandR, r’ and
energy. R, and r and r’, respectively, and cog=cosé cos¢’

+cos¢,sindsind’. The contribution fromR=0 simplifies

to
IIl. RAMAKRISHNAN-YUSSOUFF THEORY

, 877'2 r+r’ —
. . W(r!r !0):_, Idr12r120(p1r12)- (9)
The Ramakrishnan-Yussouff functional follows from a rr’ Jjr—r’|

density expansion df, around the homogeneous state trun- _ _ _
cated at the quadratic term: Without loss of generality one may restrict the domainp @f

to the Wigner-Seitz cell, so that the ideal contribution to the
functional can be written as

A. Density functional and equilibrium profiles

1 3rA3p7
BFex!V=Bledpp) = 5y | drd*r’[p(r) = pp]

X[p(r") = pole(pilr—r']). @) ﬁFid/v=4wpbf drr2pa(r)[Inpa(r)A3—1]. (10
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FIG. 2. Density profiles in a high density fcc crystal calculated F|G. 3. The same as Fig. 2 but usingO.QS as the density
from Ramakrishnan-Yussouff DFT. Note that the distandeom  argument of the DCF. In this case the profiles are monotonic.
the lattice site and the density are scaled by the free distance
=Ryn— o, which varies over 2.5 orders of magnitude in this den-maximum at intermediate distances This unphysical be-
sity range. havior vanishes in the close-packing limit. The DCF has

been evaluated at the bulk density: p,, . This most obvious
choice has the disadvantage that the solid has a higher free
energy than the liquid at all densities, as already pointed out
in Ref. [16]. In the earliest DFT work the density of the
coexisting liquid has been used instead, but that is not very
reasonable when high density solids are considered. Other

eXF{(1/47T)§ f dr’r’sz(r’)w(r,r’,R)} schemes to select a densjiyof an “effective liquid” have
= ) been proposed Ref16,17,4, which always implyp<p,,.
Figure 3 shows density profiles obtained with an arbitrarily
47 | drrlexp (1/4 Jdr’r’2 row(r,r’,R — = S _
TFJ' F{( Tr); palrW ) chosen valug* = po>=0.95 which is close to the freezing
(11)  density. Now the maximum does not occur and the conver-
gence to the limiting shape is faster. The profiles are consid-

The Percus-Yevick approximation for the hard-sphereerably flatter at smalt than a Gaussian of the same width.
DCF has the simple form

By minimizing and taking into account the normalization Eq.
(6) one finds the stationarity equation

pa(r)

B. Close-packing limit

= + + 3 -r).

clp.)=Leo(p)+Calp)r +a(p)r1O(e=r). (12 The results shown in Figs. 2 and 3 clearly demonstrate
The density dependence of the coefficientscan for ex-  that, in spite of contrary claim§l8,19, simple density-
ample be found in Ref.15]. In the present context its most functional theories based on the Percus-Yevick DCF do ex-
important feature is the cutoff at the particle diameter whichhibit @ well-defined close-packing limit at which the peak
leads tow(r,r’,R)=0 for R—r—r’>¢. Hence for the width goes to zero. We will analyze this limit in more detalil
strongly peaked profiles in high density solids only the firstin the following. Let us assume that for smalRyy—o
shell of lattice vectors|R|=Ryy) and the term wittR=0  the profile behaves as
must be taken into account. We have calculated
w(r,r’,Ryn) by numerical integration using the trapezoidal _ i r
rule with 56 mesh points, while an analytical expression for palr)= A3p°( )
w(r,r’,0) was derived from Eq9). The stationarity equa-
tion is then discretized im and solved by iteration. An un- with a widthA=a/a whereA,a— 0 with « fixed. We shall

A (14

derrelaxation scheme show that the stationarity equation has a solution consistent
with these assumptions. The ideal free energy in this limit
P = wp{Rt (1—w)p™ (13 becomesgwith N=p,V ands=r/A)

proved helpful to ensure convergence. Het® is the profile *
after thenth iteration andp%, is the right hand side of Eq. BFid/N:‘“TfO dsSpo(s)[In po(s) —3 IN(A/N) —1].
(11) calculated fromp(™. A typical value of the constanb (15)
was 0.2.

The resulting profiles are shown in Fig. 2. Their width The relevant contributions t&, are
scales with the free distan@= Ry\y— o that a sphere can
move into the direction to its neighbor if the latter is kept w(r=sA, r’=s’A,0)=167rzc(EO)+O(A) (16)
fixed. The profile shapes approach a limiting form discussed
below. Their most striking property is the occurrence of aand
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w(r=sA, r'=s"A,Ryn)
2 1 1
:277 d(ﬁlzJ' dXJ dX’
0 -1 -1
xc(p,o[1+Alo(a+sx—s'x')+0(A2)])
=47%c(p,0)W(s,s',a)+O(A), (17)
where

w(s,s',a)

1 S s/
=—,f dsgf ds;0(sz—s3—a)
ss'J-s -s'

0, s'+s<a,

(s+s'—a)?/(2sS), s'+s>a, —a<s' —s<a,
| 21— als), s'—s>a,

2(1—als), s'—s<—a.

(18)

Thus we finally have in leading order ik
BF o/ N=—272Ny\c(p, o)
xf dsszf ds’'s'%pg(S)po(s')W(s,s’, a)
0 0

+const=® + const, (29

whereNyy denotes the number of nearest neighbors.
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Due to the form ofw(s,s’,a) for a— >~ one hasb—0 and
thus the right hand side of EQRO) also decays. On the other

hand, forae—0 & tends to a positive constagincec(p, o)

is negativé, thus its derivative will be negative for suffi-
ciently well behavegby(s). Therefore, the right hand side of
Eq. (20) is zero both ata=0 and a=% and positive in
between which implies a maximum at a finite value caf
This can be explicitty checked for Gaussiafigg(s)

=7 3exp(-s)] and step functions py(s)=3/(47)0O (1
—s)] for which the integrals in Eq.(19) yield 3[1
—erf(a/\2)] and : —2a+ia®— 2 a*+ 555>, Depending

on the height of this maximum Ed20) has zero or two
solutions. In the first case there are no stationary points with
vanishing peak width ap,=p.,. This is the case for the
“Onsager solid” discussed in Ref2] which belongs to the
same class of approximate functionals, but wittp,r) re-
placed by its low-density limit-@(o—r). If —c(p,0) is
larger [e.g., pr(pI:C';:,O'): —20.345] the solution with
smallera corresponds to a saddle point and the solution with
larger « to the stable solid minimum. We emphasize that the
widths A=a/a for both solutions tend to zero fop,
—pcp- In Fig. 4 we display the results obtained for fcc and
bce solids, employing Gaussian profiles g py, (fcc: pg,
=2, Nyv=12; bee: pf,=3/3/4, Nyw=8). We also in-
clude numerical solutions ofF/dA=0 for the nonasymp-
totic functional discussed above, evaluated for Gaussians.
They approach the asymptotics quite slowly, especially for
the saddle points. At low densities both branches are con-
nected at an inflection point below which no solidlike solu-
tions exist.

The total free energy can now be minimized in two dif-  Aternatively one can differentiate the asymptotic func-
ferent ways. First, one can restrict to profiles of a fixed shapggnal in Eqgs.(15) and (19) with respect to the profilg(s).

po(s), e.g., Gaussians, and differentiate only with respect Qg0 one may set=1 without loss of generality. This leads
the scaled widthy for fixed a which gives to the Euler Lagrange equation

o
3=—a—. (20)
|
ex;{ wNNNC(;o)fwds’s’zpo(s’)Vv(s,s’,l)
0
po(S)= : (21

47rf ds s’-ex;{ TrNNNc(;o)f ds's'2po(s")W(s,s’,1)
0 0

Its solutions, which represent the asymptotic pro§lepe  hard rodg20] that in general the saddle point is not acces-
obviously only depend on the value ofat r=o, because sible by iteration because it corresponds to an unstable fixed
near close packing the distance between two interacting papoint (see also Ref[21]).

ticles is always very close to. The resulting shapes, shown e mention a subtle point in connection with E@1).

in Figs. 2 and 3, are rather flat close to the lattice site an%ue to the form of the right hand side goes to a constant

decay strongly around/a=0.6, so they are definitely non- ) . )
Gaus){sian. gy y y for s> 1, which means that no normalized solution[@xpe)

The iteration never converged to a second solution thafan exist. However, as mentioned above, one may restrict to
would repesent the saddle point, even when started from thiginctions with a finite supporfe.g., r<Rw/2, i.e., s
Gaussian saddle point discussed above. It has been conjeeRnn/(2a)]. For the numerical program indeed a much
tured in a DFT study of the isotropic-nematic transition of lower cutoff was used. In principle the solution now depends
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IIl. FUNDAMENTAL-MEASURE THEORY
0.14
0.12 A. Density functional
' Fundamental measure theory at present represents the best
0.1 available DFT for strongly inhomogeneous hard-sphere
b 008 fluids. In contrast to most previous approaches it does not
3 . . . .
0.06 depend on the direct correlation function as an input, but
rather reproduces the Percus-Yevick correlation function as
0.04 an output of the theory in the homogeneous limit. While the
0.02 —  numerical original expressianLO] gave a divergent excess free energy
0  as . for strongly localized particles, a recent empirical modifica-
ymptotic . . . .
tion proved suitable also for the description of the freezing
0 002 004 006 008 01 012  yansition[11]. We will call this version FMT1. Another new
a/c approximation has recently been suggested by Tarazona and
Rosenfeld[28] based on more fundamental grounds. They
beo presented a new derivation of FMT by enforcing the func-
tional to reduce to exactly known expressions in the zero-
0.04 and one-dimensional limit. They obtained a more compli-
cated expression for one of the excess free energy contribu-
tions that cannot be expressed in terms of weighted densities
b : i
3 and also does not reduce to the Percus-Yevick free energy in
0.02 the homogeneous limit. They also suggested a simplification
by rescaling a certain expansion of this exact expression,
------------------ which we adopt as FMT2. Due to its construction we expect
FMT2 to provide a better description of the high-density
0 ~_asymptotic crystal in which the individual particles are confined to

0 0005 001 0015 002 0025 003 0.035 quasi-zero-dimensional cages formed by their neighbors.
For a one-component hard-sphere fluid in three dimen-

alo sions the fundamental-measure functional has the form

FIG. 4. WidthsA corresponding to minim&lower branches 3
and saddle pointsupper branchgsof the Ramakrishnan-Yussouf _ 3 A
functional restricted to Gaussian profiles for fcc and bcc solids. The BFedp(n]= | d ri; $ilna(n],
asymptotic linear behavior indicated by the dashed lines was calcu-
lated from Eq.(20).

(23

where the functionsp; depend only on the weighted densi-

on the cutoff, but in practice this dependence is extremel)l?ieS
weak because the constant approached for largeof the
order of expiNync(p,o)]=10"% so that the contributions s ,
from the tail ofpq(s) are neglegible for any reasonable value No(r)= | dr'p(Nwy(r=r"). (24)
of the cutoff. Similar remarks apply to E{qL1).

The free energy of the solid is determined by inserting the

-9 T ) . 50
calculated equilibrium profiles into the density functional. Its 6 RY
asymptotic behavior is given by 40 e A FMTT

v MD
BFIN=—3lna+f,+0(a). (22 s © 8 EMT2
< 307, °

The leading logarithmic contribution stems frdfy and is in W &
accordance with the result of free volume the2?] and 20 ¢
cell theory[23,24]. It has been proven exact for parallel hard . o
cubes[25] and for finite hard-sphere systerfi®6] and is 4y, 8
generally believed to be exact also in the thermodynamic 10 vy
limit. The various theories differ in their prediction for the Vg
E)nstantfo. In the Rarnakrishnan-—Yussouff approa@m’th 10% 510 10° 0.0050.01 0.05 0.1
p=p,) for an fcc solid we obtainf,=21.7 which is far &/6=R, /o-1

above the molecular dynamics res@ijj= —1.493[27]. As

shown in Fig. 5 the asymptotic form is approached quite G, 5. Free energies per particle of high density solids from the
slowly, i.e., the higher order terms in E@2) are important  Ramakrishnan-Yussouff DFT, the two versions of fundamental-
up to high densitieswhich probably will also produce a bad measure DFT, and from molecular dynamies]. The de Broglie
equation of state The free energies from the full minimiza- wave length has been set to the particle diameter. The asymptotic
tion are only slightly below those for the best Gaussian probehavior indicated by the dotted lines is logarithmic in the free
file (Fig. 5). distancea [see Eq(22)] in all cases.
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(3) T r+ol2 0'2 2
ny’(r)=— dr'r’| ——(r—r’ r'
A( r Jir—on 4 ( )% palr’)
o ol2—r
+0| 51 47TJO dr'r'?pa(r'), (33
o (rtol2
n(AZ)(r)=T ‘ /zldr’r’pA(r’), (34)
r—o
FIG. 6. The space between two nearest-neighbor shksk

dots in a crystal. The radii of the spheres ar&2+ O(A) whereA r o (rtol2 o2
is the width of thespherical density peaks. The weighted densities n(AVZ)(r) =—-— dr’r'( r2—r'24 — pa(r’).
in region A are only influenced from one site while in B both sites rr2)ir-on2 4
contribute. In the remaining space the excess free energy densities (35

¢; are neglible.

In this case the matrixn,(r) [defined byn(r)=3gn,(r

In FMT1 only one vectorial and two independent scalar—R)] is diagonal in any coordinate system aligned with

weight functions occur:

g
W3(f)=®(§—r),

I 25
Wyo(r) = %2 r. (25
For FMT2 a tensor weight function is necessary:

g
S

v”vii(r)=%5(2 : (26)

The expressions for the excess free energy density are

n
¢1=——>In(1-ny), 27
mo
2_ 2
L LY
¢2_2’7T(T(1_n3), (28)
FMTL_ (n3—ngy)®
R yo—— (29
24n3(1—ny)
9 detn
FMT2
- 30
¢3 877 (1_ n3)2 ( )

The density ansatz E¢5) induces a corresponding form for

the weighted densities
nu(r)=2 n{(r-R) (3D
R
with

0= [ O pa(r w1, 32

An explicit calculation yields the eigenvalues

) =n@@r = [
2r3 Jiat2-r|

2 2
U__rlz_rz
4

dr'r’

X pa(r’) (36

4r2r/2_<

and

2
pal(r’).

a (rtol2

)=

2

g
drrrl<__r/2+r2
r3Jjor2-r| 4

(37

Note that Tm,(r)=n{®(r). As p, is a strongly peaked
function of width A the weighted densities

n®(r), n{’?(r), andn,(r) have appreciable values only
for |r — /2| <A while n{¥)(r) tends to 1 for much smaller
and to 0 for much larger. Thus for smallA at any pointr in

a solid at most two terms contribute appreciably to the sum
in Eq. (32).

We only consider fcc solids. By exploiting the crystal
symmetry the integration in Eq23) can be restricted to a
simplex corresponding to 1/48 of the unit cell. In a coordi-
nate system aligned with the conventional cubic unit cell its
vertices are

1
(0,0,0, Ryn E,o,o),
RFL%WLLH3S
NN2\/512\/§! ’ NN2\/§12\/§12\/§()

It will be helpful to distinguish between the region A, that is
“affected” by only one lattice site, and the region B affected
by two sites, i.e., the set of those points whose distance to
two sites differs froma/2 by a length of orderA. As de-
picted in Fig. 6 region B consists of lens shaped sets around
the midpoints between neighboring sites. Here the integrands
¢i[n,(r)] do not depend on the azimuthal angle around the
line joining the sites, thus only a two-dimensional numerical

If p, is spherically symmetric the calculation of the integration over cylindrical coordinatqs: and z’ must be
weighted densities reduces to one-dimensional integrationsperformed. In order to compute the full in region B the



PRE 61

HARD-SPHERE SOLIDS NEAR CLOSE PACKING. .

1.4

3817

e —— 5”23) [ﬂ'r(oz ( d)z)
. — =13 = —|—=——(r—=
1.2 7 o \ 0 4
___________ < e %2135 pa(r) | d
T - P38 , |0 o
© ol \ — =14 —4mr?0| 5 —d] 0| |d-5 -], (42
< prp=1.41
= 0.6 where we assumed that alwarys o/2+d. Furthermore one
< 04 finds
0.2 snP(d) war®(d a’ ) 3
— e —— _— _r s
0 dpa(r) d 2
0 02 04 06 08 1 12 14 16 onld(d)  ar o2 o
2 —d—dZ=r24+ — .
t/(R,,-G) 3pa(T) d3<d re+ 4)® d 5 r). (44

FIG. 7. Density profiles obtained from the fundamental-measur

theory FMT1 For the tensor weighted density straightforward calculation

leads to a similar but more lengthy expression. The partial
derivatives d¢; /dn, are easily obtained from Eq$27)—
29). The functional derivative can now be computed by in-
erting Eqs{(42)—(44) into Eq. (41) and that into Eq(40).

For the integration over’ in Eq. (40) we adopt a similar
scheme as for the functional itself. Due to the step functions
in Egs.(42)—(44) in region A the cutoffA can be replaced
by the distance for which the derivative is evaluated. In
region B two terms from the lattice sum contribute. Because
the integrand is nonanalytic at the lines where one of the
distancesd equalso/2—r, o/2, or o/2+r we partitioned
the integration region B appropriately for the numerical in-
tegration. Together with the ideal free energy ELQ) one
readily obtains the stationarity equation

contribution from one of the sites must be transformed to th
coordinate system determined by the direction to the othe
site. This is accomplished by a rotation around an axis per
pendicular to this direction by the anglegiven by

r+'r_
ror_

cosy=

~ p'2+2'2—Riy /4
{[p"?+(2' + R /2?][p"*+ (2 = Run2)" 1}
(39

Since in region An,(r) depends only on the distance to the pa(r)
nearest lattice site the corresponding integration can even be
reduced to one dimension after the angular factors stemming =
from the shape of the simplex have been worked out analyti-
cally. In practice a sufficiently large cutoff (typically A
=2a) was chosen beyond which,(r) is assumed to be
zero, and the integrals over A and B were calculated sepa; _. I :
rately. This approach proved to be much faster and mora@‘.gam a mesh is introduced fary(r) gnd the w<_a|gh.ted dgn-
accurate than a straightforward 2d integration over the wholg't'es are calculated by the trapezoidal rule with linear inter-

: . 4 : .polation between the mesh points. More sophisticated nu-
simplex, because then the integrand is essentially zero inh~ "~ . ; . ; X

. . : merical integration routines are used for the integration over
large parts of the integration region.

r' in Eq. (40) for regions A and B, and Ed45) is iterated
until5 the maximum relative change ip,(r) is less than
10 ~.

In order to determine the equilibrium density profile under_ The resulting profiles for FMT1 are displayed in Fig. 7.
the constraint of spherical symmetry the functional deriva-1 ey are almost constant at smaiind then decrease steeper
tives of F, are calculated. We first write arourjdr :_a/_2, increasingly fas_t upon approaching thg c.Ic_)se—
packing limit. In the next section we show that the limiting

exp{— (1/4mr?)[ 6BF oy /NI 8pa(r)]}

477J dr'r’2exp{— (1/4mr'?)[ 8BF o /NI SpA(r')]}
(45)

B. Equilibrium profiles

OBFex [ 5 ,~ 9bi on,(r’) 40  shape indeed is a simple step function. The profiles for
Spa(r) “ o, Spa(r) (40 FMT2 shown in Fig. 8 exhibit a much smoother, Gaussian-
like decay and their width, measured, e.g., Wy?)
and =[d®rr?p,(r), on the scalea is considerably larger than
for both the RY and FMTL1 functionals. Clearly, again the
, " absolute width goes to zero linearly with as expected in
ANy (1 ): 6 2 n(“)(r’—R)=2 5n(A)(d) the close—packir?g limit. g P
Spa(r) — dpa(r) ® 4 R opa(r) |, ., o
(41) C. Close-packing limit

As for the Ramakrishnan-Yussouff functional we assume
that asymptotically the density profile has the form Ef)
with A=g6. We have seen that in the important range the

For nP)(d) the second term in Eq(33) is rewritten as
O(ol2—d)[1—[%,_qdr'r"2p,(r")] which leads to
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A B
0.25 d, & )
D, 8 &°
‘36 0.2 (DEMTl 5 51
nI:E 015 (I)EMTZ 52 58
% 01 Thus at this point a qualitative difference between the two
' approximations arises, as different terms become dominant
0.05 in the close-packing limit. We first discuss FMT1, for which
® 45 is the leading term. In a cylindrical coordinate system
0 (z',p',¢"), centered at the midpoint between two sites and

0 02 04 06 08 1 12 14 16 18 2 with its axis directed towardésee Fig. 6 one of them, the
R o) distances .. to the sites, which occur as the argument of the
m weighted densities{®, are

FIG. 8. Density profiles obtained from the improved

_r .12 ’ 271/2
fundamental-measure theory FMT2. re=[p" "+ (2’ £Ry/2)"]7% (51)

In the scaled coordinatgs=p'?/(80?) andz=z'/(5c) one

argument of the weighted densities is closertd. Therefore hast. =1/2+ p+z+0(5) and

we setr/o=1/2+t4 and determine the leading contributions
to n(“)(r) for small § and fixedt: , , 4
* nz_nvzzgnzo(H)nzo(L)‘F“' (52

n®(t) =Z =27 2(—t)f7tds§po(s)
B 0 which finally yields
md B S(t2— <2 Moot ) Nog(t_)
+ fl (sPo(S(s— 1)+ 8(t* ) HEUTL f dp f (nzj(t +§Zo<t
+28%(s?—t?)+ - - -]} (46) 53

X
B [1—n30(t+)—n30(t_)]2

1 .
n@(t)== > ny(t)o'? Since ngy(t) €[0,1] and n,y(t)=0 this expression is posi-
7i=0 tive. It attains its minimum value zero for all profiles(s)
2w that have a strict cutoff at=1/2 so that region B is empty.
=55 ’ ‘dSSOO(s)(l 2t5+4t25°+---) (47)  In this restricted class of profiles the dominant contributions
ared,, andF;y. The former can be written as

~ N2 [
ni’ (.t =T gfquSOo(S) q>1A=—f/;dtnzo(t)|n[1—n30(t)]+0(5). (54

X[1—2t5+(6t2—28%)8°+---], (48 o
[ ( ) 1 (9 Bt the fact thatg(t) = — dng/at implies =1+ O(5)

(11) o by for all profiles. Since here the peaks around different sites are
na (t):47T5J dsspo(s)(s“—t+---), (49  independent of each other, this result is consistent with the
g extensively discussed 0D limit of the fundamental-measure
2 functional[11,28: For density profilep,(r) constrained to
n(t)= 7J dssg(S)[1—2t8+4(2t2—s?) 8%+ - - -], a volume that cannot hold more than one particle the exact
1 excess free energy 8F =1 if [drp,(r)=1. One of the
(50) merits of the present theory is that this limit is almost exactly
fulfilled [11]. At last we are left with the ideal free energy
Eq. (15) as the only relevan®(s°) term, which, naturally,
favors an evenly distributed density:

where the caret denotes a unit a vector. Since for@jtg)
the first two terms in the expansions mf’ and|n{'?)| are
identical one has3—n2,=0(4°) in region A. On the other

hand, in region B the contributions tg,, from the two lat-

tice sites have almost opposite directions so th&at n2, po(s)— —0O| 5 —s]. (59

~ 872 there. For FMT2 we find det~ & in both regions,

because, due to the quadratic dependencey;df) on the This finding implies that the usually assumed Gaussian

components of, the two contributions do not cancel each peaks represent a particularly bad approximation in this case.
other in region B. Taking into account that the volumes of Alndeed, in the Appendix we show that the widttof the best

and B are proportional t& and &2, respectively, we can Gaussian is asymptotically related to the free distaamtsgy
estimate the order of the individual free energy contributionsa~ A y/In(—A) which means that the ratitv/a tends to zero,
®;=N"1fd3 ¢;[n,(r)]: albeit very slowly. The intuitive reason is that the tail of the
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Gaussian profile leads to an unfavorable free energy contri-
bution® 55 that can only be kept small if the tail increasingly
“retracts.”

Actually the above arguments for the asymptotic step

profiles. Starting from

function shape in FMT1 can be generalized to nonspherical

1
m(r)ZPpo(r/A) (56)

and setting agais=r/A, A=oé=a, and|r|/oc=1/2+t5
one has

ng3>(F,t)=f d3s O (rs—t— 8(t2—2trs+s2))py(s).
(57)
Expanding for smalls gives
ng?’)(F,t):fd3s®(Fs—t)p0(s)+0(5). (58
Analogously we find

nP00= [ dspols

1 . R .
X Eé(rs—t)—(tz—2trs+sz)6’(rs—t)+0(5)

(59

and, usingn{?(r)=—vn(r),
n?¢w=f&wa9

1. . ~ -
X|5 ré(rs—t)—r(t>—2trs+s?)

X 8'(rs—t)—2[s—(rs)r]s(rs—t)+0(d)|.
(60)

Since the last term in this equation is perpendicular the
combinationn3—n2, is still of order &° in region A. If in

region B the same coordinates, §,¢’) as before are used

and the vectors to the nearest lattice sites are denoted by
the fact thatr . r_=—1+0(4) yields n3—n2,=0(5?).

c/2

o
!

FIG. 9. lllustration of the cells C for which the fundamental
measure theory predicts a constant den@ty2D analogon of the
3D crystal is drawh The circular arcs and their straight connection
limit the set of points whose distance to C is smaller th@?, i.e.,
the region A. The point P cannot belong to C because otherwise P
would belong to C and some points in between would have dis-
tances smaller thas/2 from both C and C i.e., region B would be
nonempty.

point P with respect to the closest Wigner-Seitz boundary
plane would be less thas so that elements of B would lie
on their joining line(see Fig. 9. The cell C constructed here
is identical to that of the self-consistent cell the®g]. Its
volume for an fcc solid i3/ /2.

We now turn to the second approximatiodfMT2) for
which ®@,5 andF4 are the dominant contributiondRemem-
ber that®,, is independent ofpy(s) in leading ordern.
Analogous to Eq(53) we have, neglecting higher orders in
0,

=7 Mooty )nag(to)
‘1’25224f0 dpfo dLl_”so(h)‘”so("—)

with t.=1/2+ p*z. The corresponding stationarity equation
is

(61)

exp{— (1/4ms®)[ 6D ,5/ 5po(s)1}

po(S)= ” .
477J ds’'s’exp{— (1/4ms'?)[ 6D 5/ Spo(s') ]}
0

(62

The functional derivative is calculated as in Sec. Il B. The
resulting asymptotic profile shown in Fig. 8 is close to those
obtained for finite densities using the full functional. It is

Thus, in summary all estimates for the individual termsgimost, but not exactly Gaussian.

given in the table above remain valid. Again the dominant

The asymptotic free energy of the fundamental-measure

term @4 is positive and minimized by cutoff profiles. As theory also has the form Edq22). In FMT1 one hasf,

the leading terms of the scalar weighted densities are related 1 |5 2—0.3466. Under the constraint of spherical symmetry

by noo(T,t) = — dngg(r,t)/ét the contributiond, , in leading  this is replaced byf,=In(6/m)=0.6470, both of which are
order is still independent of the profile. The ideal term nowmuch closer to the correct value than the Ramakrishnan-
enforcesp,(r) to be constant in the maximum allowed re- Yussouff theory. Results for finite distance from close pack-

gion C that is compatible witB=(J. It can be constructed

ing are given in Fig. 5 and agree, probably by accident,

by shifting the bounding planes of the Wigner-Seitz cell in-rather well with the computer simulations. The approach to

ward byo/2 (see Fig. 9. A given pointr in C contributes to
the weighted densities at only if [r—r'|<0o/2. By con-

the asymptotic law is quite slow. On the other hand for
FMT2 not only the profiles but also the free enerdiesy. 5

struction all suchr’ lie within the Wigner-Seitz cell and thus approach their asymptotic limit faster in this version of the

cannot be “reached” from any in the cell C around an-

theory. The value of the constant in E@2) is found to be

other site, which means that B is indeed empty. However if &= —1.527 in very good agreement with the MD results.
point P outside of C were added the distance to its mirroHowever, in view of the relatively large changefig due to
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nonsphericity of the profiles as observed for FMT1, this may 1 oY oy
well be fortuitous. We did not consider nonspherical profiles P 3
in FMT2. 0.1 FMT1, p*,=1.3
FMT2, p*,=1.3
D. Saddle point 0.01 MC, p*,=1.3

In view of the discussion in the introduction it would be g 10°
interesting also to keep track of the saddle point between the¢ =
liquid and the solid state when close packing is approached 10*
Unfortunately, again one is plagued by the fact that the itera-
tion of the stationarity equation does not converge to a sec
ond solution. Furthermore the arguments of the asymptotic 10°®
analysis do not apply to the saddle point because they essel 0 1 5 3 4 5 6 7 8
tially involve a minimization in two steps. Hence one must
revert to parametrizations of the density with a few param-
eters. For (_Baussians ar_ld step ‘;‘72.‘3“0”5 the saddI%zp_oint 0¢ FiG. 10. Comparison of the density profiles from Monte-Carlo
curs at a widthA prop(_)rtl_onal tqa in FMT1 and toa™*in simulation and the density-functional theory FMT2 for two bulk
FMT2. However, a priori there is no reason to assume that gfensities. A Gaussian profile would correspond to a straight line in
the saddle point the profile has a similar shape as at thgjs piot.
minimum. We also tried profiles of the formp,(r)

~exg —(r/A)" andps(r)~(1+r/A)"" and found numeri- o4y [see Eq.(22)] stemming from the ideal gas entropy.
cally that in both cases the free energy at the maximum Wity merically this has been observed before, for Gaussian
respect tad decreases with decreasingdown to the lowest peaks, in two other DFTSs, the generalized liquid approxima-
fea}smle v_alues ofh. This suggests that. the.agtual saddlegion (GELA) and the modified weighted density approxima-
point profile may decay very slowly, while within these re- 5, (MWDA) [29]. For the latter, however, it was found

stricted classes of profiles a true saddle point at a nondegelkier that the solutions correspond to “unphysical” branches

FMT2, p*,=1.41

{r/a)®

erate profile seems not to exist. [30]. Results for the profile widtt{r2)*? obtained from all
mentioned DFT versions are compared in Fig. 11. FMT2 and
IV. MONTE CARLO SIMULATIONS MWDA agree satisfactorily with the simulations, while the

epeak widths predicted by GELA is considerably smaller but
atill larger than those of FMT1 and RY. The relative perfor-
mance of the different theories can also be judged from the

ofile shape obtained by free minimization. RY gives too

arrow profiles with an unphysical maximum if the bulk den-
sity is used as the expansion poiffig. 2). The shape and

idth are also wrong for other expansion poirig. 3.

T1 predicts asymptotically steplike profiles confined to

e cells of cell theoryFig. 7). Only the FMT2 profilegFig.

) are in quantitative agreement with simulations at high
densities(Fig. 10. In spite of the anharmonicity of the hard-
sphere crystal they are close to Gaussians. The GELA and

Although an extensive computer simulation study of th
density distribution in hard-sphere crystals has been carrie
out before[14], no useful results for the radial distribution
function have been published. In order to assess the quali
of the various theories we therefore undertook a small Mont
Carlo(MC) simulation ourselves. In an NVT ensemble df 8
spheres in an fcc arrangement we measured the distributi
of the particles’ distance from their equilibrium sites. We
corrected for the movement of these sites due to shifts in th
center of mass. Measurements were taken ovel® MC
steps per particle for two bulk densities. The results are plot
ted in Fig. 10 on a logarithmic scale versugg)? and com-
pared to the various DFT calculations. The quantitative
agreement is excellent for FMT2. The profiles are close to — FMT2 :
Gaussians but decay faster at large distance than a Gaussii
fitted to the small distance part. The dependence of the g4
scaled profiles on bulk density is rather small in the exam-
ined range, but still qualitatively reproduced by the theory. §
The actual width of the profiles will increase with increasing ZQ
particle numbef14], but we did not attempt to correct for VvV 0.02
finite size effects. In Ref.14] it was found that in the ther-
modynamic limit for high densities the width behaves as
(r?)Y2a=1.098+0.004, again in almost perfect agreement

with FMT2, for which (r?)¥%a=1.025. This means that 01
FMT?2 is the first DFT which yields the correct value of the 0 0.01 0.02 0.03 0.04 0.05
Lindemann parameter. alo

V. SUMMARY AND DISCUSSION FIG. 11. The peak widthé 2)¥2 near the close packing density

obtained from different versions of DFT and computer simulations.
In summary, we have analyzed the close-packing limit ofthe GELA and MWDA data were taken from RéR29] and the
the hard-sphere crystal using three versions of DFT. All ofmolecular dynamic$MD) results for 500 particles from RefL4].
them predict a peak width that vanishes proportional to the The diamonds denote our Monte Carlo simulations with 512 par-
free distancea and yields a logarithmic term in the free en- ticles.
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MWDA results where obtained under the assumption of ACKNOWLEDGMENTS
Gaussian peaks. At present it is not clear what happens

within these approximations if more general shapes are al- We thank Sander Pronk for prowdmg th_e '\"Of.“e Carlq
lowed nor whether the proportionality2>1/2~a is strictly program and Y. Rosenfeld for stimulating discussions. This

valid in the close-packing limit. The results for the next-to- gﬁ;ﬁ;ﬂgﬁgg (t)hn%erfzsgslicgefr&%@rrn@%fng‘;iOS;'(;QE'r::%r:/_oor
leading free energy contribution also improve from RY to

FMT1 to FMT2 (Fig. 5), the two FMT versions being much O.'amer.“a' Research on Majteand was made pogs@le by
. financial support from the Nederlandse Organisatie voor
closer to the correct result than RY. This could have been

expected from the way the RY approximation is constructedwe'[enSChappeIijk Onderzogkletherlands Organization for
A density expansion around a liquid state certainly is difﬁ-the Advancement of ReseajctB.G. acknowledges the fi-

cult to justify for the highly ordered high-density crystal. nancial support of the EU.

If one restricts the profiles to a fixed shape saddle points
of the free energy are found at widths decayin@* with APPENDIX: GAUSSIAN PEAKS IN FMT1
Xry=1, Xgmm1=2/3, andxgyro=1/2. Insofar the global sce-
nario for the crystalline solutions proposed in the introduc-
tion is comfirmed(see also Fig. ¥ However, as detailed in (49)]
Sec. llI D, in larger classes of functions the saddle point
remains elusive. We remark that the saddle point is a prop-

For Gaussian density peajis(s)= 7 3%~ the leading
contributions to the weighted densities dsee Eqs(46)—

erty closely connected to the mean-field type free energy Nao(t) = l[]_—erf(t)], Noo(t) = ie—tz (A1)
functional and, e.g., is not directly accessible by computer 2 Jr
simulations.

Comparing the two variants of FMT we see that the strucand for a widthA =a/(2a) the dominant excess free energy
ture in the close-packing limit is sensitive to subtle differ- contribution is[see Eq(53)]
ences between DFT approximations and thus might be a
guiding line in the construction of better FMT-like function- @3822 EJOcdpfocdz[e(p-%—a-i-z)z_l_e(p+a—Z)2]—3
als. Besides our FMT1 some other approximations dgr a3 A Jo 0

have been suggested in REE1] which are all of the form .

1 1
serflptatz)+5erf(p+a—z) +0(A9).

%12

3

T ith ¢=|=
. (&) with &=|4=

(63

Nyv2
n;

(A2)

The power ofn, is determined by dimensional argumentsIn order thatF., does not become too large far—0 we
and the functiorf can only depend on the absolute valugof expecta—o. In this limit the substitutionp’=pa andz’
because of the isotropy of space. From E43) and(48) we  =zq yield

have é=1+0(46%) in region A. In order not to spoil the

correct leading order for a quasi-zero-dimensional situation 1 o exp—3a?)
as given byd,;, one has the additional requiremefit¢ ®3B:12\/;K o?
—1)~(1-£)" with n=2, which implies®3,~ 62"~ 2. But

in region B ¢ varies between zero and one so that always\ow we can add
® 45~ 6~ L. The functionf must be nonnegative in this range,

otherwise the functional would not be bounded from below 3 , 9

[this happened in the original FMT10] for which f(¢) ﬁFid/N:_Eln m(A/N) 2 (A4)
=(1/3—¢?)/(8m)]. Then the argument of Sec. Il C runs

through and the asymptotic profiles will always be step funcand minimize with respect td which gives

tions. We conclude that an improved description of the high
density solid is not possible within FMT if only the scalar 1

and vector weighted densities are used, the tensor weight ﬁex _ZP =3 (A5)
function of FMT2 is inevitable. On the other hand in FMT2 &

the behavior near close packing is exclusively determined b
¢, so that no conditions on the precise form ¢f can be

(A3)

3a?

Bl

Mhis equation indeed has a solution withha— 0 for a—0;
solved fora one has

deduced.
Note added in proofVery recently we learned of an im- oA INREL
proved FMT version derived by Tarazoidl] which re- a=— —In(6\/;—) (AB)
places Eq(30) with \/5 o
3 .
FMT2 _ A a2 4n3 ~o which demonstrates thdt/a decays only very slowly. Nev-
3 1677[nV2 N+ Nz = NNy, — (%) Fn,tr(N) . ertheless this decay is at variance with the physical expecta-

tion A/a— const which is well supported by computer simu-
Using the methods of the present work, we could show thalations[14] and, as shown in the main text, is also fulfilled
this modification does not alter the profile shape in the closewithin the present theory if allowance is made for more gen-
packing limit or the value of. eral profile shapes.
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