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Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise
level from noisy time series data
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We describe an efficient algorithm which computes the Gaussian kernel correlation integral from noisy time
series; this is subsequently used to estimate the underlying correlation dimension and noise level in the noisy
data. The algorithm first decomposes the integral core into two separate calculations, reducing computing time
from O(N?X Np) to O(N?+ Nﬁ). With other further improvements, this algorithm can speed up the calculation
of the Gaussian kernel correlation integral by a factoyef(2—10)N, . We use typical examples to demon-
strate the use of the improved Gaussian kernel algorithm.

PACS numbse(s): 05.45.Tp, 02.50-r, 05.45.Ac, 05.45.Jn

[. INTRODUCTION tegral core into two separate calculations, which reduces

computing time fromO(N?XNy) to O(N?+N2), whereN
Estimation of dimensions, entropies, and Lyapunov expoandNy are the length of reconstructed state vectors and the
nents has become a standard method of characterizing tfgimber of computed bandwidth values, respectively. With
complex temporal behavior of a chaotic trajectory from mea-other further improvements, this algorithm can speed up the

sured time series dafa]. Of these, the most widely used is calculation of the Gaussian kernel correlation integral by a
the correlation dimension. This is largely due to the fact thafactor of ¥~(2-10N,. We also present robust methods
used for nonlinear least squares fitting in extracting correla-

Grassberger and Procaccia found a simple algorithm tq COMon exponents and noise level. Armed with the improved

; Jlgorithms, we find that the GKA provides a reasonable es-
believed to be a more relevant measure of the attractor thaginate of the correlation dimension and noise level even

the other dimension quantiti¢®]. Many fast and efficient \hen the contaminated noise is as high as 50% of the signal
algorithms have since been developed for calculation of theontent.
correlation dimension and found to be successful in charac- Our problem is formulated as follows. Suppose that we
terizing dynamics frontleantime series daté3,4]. have a scalar time seriess;:i=1,2,...Ng} sampled at
When applied to experimental data, the dimension algoequally spaced timels=iAt, whereAt is the sampling time
rithms have limitations since all recorded data are to sométerval. The data is assumed to be corrupted by Gaussian
extent corrupted byoise which masks the scaling region at Noise. Our aim is to measure two dynamical invariants—
small scales. It has been shown that a 2% noise is seriofrrelation dimension and entropy—and estimate the noise

; . evel in the time series.
enputgf} tq pre;/r(le nt acglu rate fesﬂmat[tﬁﬁl'lz'rom anl_appllid Following Takens[18], the underlying attractor can be
point ot view, the problem of characterizing honiinéar ime o .y strycted using delay co-ordinates. The reconstruction

series in the presence of noise is therefore nontrivial and 0f1\heds the measured time seffeg in an m-dimensional

practical significance. Considerable effort has been given tgclidean space to creaé=N—(m—1)7 delay state vec-
understanding the influence of noise on dimension measurgors {x; :i=1,2,...N} in terms of

ments and exploring new scaling laws; $ée-15. A com-

parison of methods dealing with the influence of Gaussian Xi=[Si,Si+r:Si+2r1e-Sit(m=1)7] » 1)

noise on the correlation dimension can be foundl6l. In  \hareris an integer, referred to as a time lage delay time

addition, a Grassberger-Procaccia-type algorithm for estimajg s — 7At), andmis called the embedding dimension.

ing entropy has been developed to characterize experimental This paper is organized as follows. After this introduction,

data[l?}. ] ) . we describe the Gaussian kernel algorithm and its direct
In this paper, we address the estimation of correlationmyiementation in Sec. 1. We explore the efficient imple-

exponents and noise level in the presence of Gaussian Noiggantation and simplified calculation of the Gaussian kernel

in time series data. In the presence of noise, the dimensiogyre|ation integral in Sec. Ill. Section IV is devoted to tech-

and entropy are defined as those invariants of the underlyingica| considerations and further improvements of the GKA.

clean time serie$12,14,16. Particular attention is paid 10 Numerical tests are presented by way of examples in Sec. V.
efficient implementation of the Gaussian kernel algonthm,:ina”y we conclude this work in Sec. VI.

(GKA) developed by Dik$12]. We first decompose the in-
Il. GAUSSIAN KERNEL ALGORITHM

* Author to whom correspondence should be addressed. Electronic A. Theoretical background
address: phydjy@phy.hw.ac.uk The essence of the Gaussian kernel algorithm in estimat-

TURL: http:/iwww.phy.hw.ac.uk/resrev/ndos/index.html ing correlation exponents and noise level is summarized as
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follows [12]. (1) The Gaussian kernel correlation integral whereo, o, and o, are standard deviations of the input

Tm(h) for the noise-free case scales as noisy signal{s;}, underlying clean componert;}, and
Gaussian noise pafh;}. In the total signak;=c;+n;, we
Tm(h):f dXPm(X)f dypm(y)e*HX*VHZ"‘hz _have_as_sume@ci} azmd {zni} t(z) be statistically independent,
i.e.,, s=c+n and ci=o0¢+ o}, wheres, ¢, andn are the
h\P means of{s;}, {c¢;}, and{n;}, respectively.
~emm(—> for h—0, m—x, (2
\/E B. Direct implementation of the GKA
whereD andK are the correlation dimension and entropy, The numerical implementation of the Gaussian kernel al-

is referred to as the bandwidth, apgl(x) is the distribution gorithm rgquires the tran§formation of t_he input. time s_eries
function. The scaling behaviaF,(h)~e~™K%hP in Eq. (2) data {s;:i=1,2,...Ng} into a new time series{v;:i

was first justified by Gheet al.[19] and latter by Dik§12] =12, - - - Ns} according to

with inclusion of the factor (/m)®, in which them depen- s—35

dence was originally introduced by Fraekal. [20] to im- vi=— (8)
prove convergence oK. (2) In the presence of Gaussian Os

noise, the distribution functiofp,(y) can be expressed in ) _ ) )
terms of a convolution between the underlying noise-freeJnder the transformatio(8), the noise effect is described by
distribution functionp(x) and a normalized Gaussian dis- the distribution functiori4) and the standard deviation of the

tribution function with standard deviatiom [12,21], i.e., noise part iso- in Eq. (7). Accordingly, the delay state vec-
tors are reconstructed by replacifg} with {v;} in Eq. (2).

In the case of discrete sampling, we assume vector points

bm(y):f dx pm(X)pd(lly—xI) on the attractor to be dynamically independently distributed
according tdpn(X) and use an average over delay vectors to
replace the integrals over the vector distributions in (.

1 - -
e dxpm(x)e—uy—xn 120° (3) ConsequentlyT,(h) can be computed bj12]
(oN2m)™ J
N N
N 1 2 2
here To(h)= e~ Ixi=xjl%/4h", 9
" = N1 & ©
L by ice T (h) i ies of di

paly—x|h= —= eI (4)  In practice,T(h) is calculated at a series of discrete band-

(oy2m) width valuesh, (k=0,1,2 ... N,). The parameterd, K,

and o are then extracted through fitting the scaling relation
(6) to the Gaussian kernel correlation sdm(h) computed
from Eq.(9). One can see that such a direct implementation
of the GKA has a computational complexi@(N?x N,).

accounts for noise effects in tinedimensional space. || is
the EuclideanI(,) norm.
Under conditiong2) and (3), the Gaussian kernel corre-

lation integralT,(h) in the presence of Gaussian noise and

the corresponding scaling law becofi] C. Nonli fit
. Nonlinear Ttting

~ _ - - — Ix—y[[214n2 After computing the Gaussian kernel correlation sum, the
Tm(h) fdx pm(X)f dypm(y)e ®) parameterd, K, and ¢ in Eq. (6) can be extracted using
nonlinear least squares fittif@2]. Here we exemplify the

h2 \m2 GKA described above; a robust fitting procedure will be pre-
=72 J dXPm(X)f dy pm(y) sented in Sec. IV.
Figure 1 illustrates the fitte®, K, ando as a function of
x @~ Ix=yI?/4(h?+ o?) embedding dimension. The clean data are generated by the
standard Heon map[23]. The noisy data are produced by
_ h2 \m2 mK&( h2+ 02) b/2 5 adding 5% Gaussian noise to the output of the first variable.
=¢ h+o? © m © In calculating T,,(h) from Eq. (9), we use the following
parameters: N=5000, N,.~= 500, N,=100, log(g)=—10,
for Vh?+0?—0, m—oo, andm=1,2,...,10. Wechoosee, to be equal to the attrac-
tor diameter. A definition and discussion of these parameters
where ¢ is a normalized constant. will be detailed below. As seen in Fig. 1, the fitted correla-

In Eq. (6), D andK are the two invariants to be estimated, tion exponentD andK and noise levebr converge to their

and the parameter is referred to as the noise level, defined true values when the embedding dimension is increased be-
as yondm= 3. We note that a convergencebnando is readily

achieved while K exhibits fluctuations, since saturation

should only appear in principle as—c. In this example,

o= —= =, (7)  the average values of the correlation exponents and noise
Ts  Nogtoy level, taken over embedding dimensioms=3-10, are ob-
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2.5¢ ! ' ' " (a) tractor. The summand,(e;j; , €, €+ 1) is a double step func-
2.0F 3 tion with €, < ¢, 1, defined through the Heaviside step func-

15k ] tion 6(-) by 6,(€,€1,€,)=0(e—€;) 0(e,— €), that is,
- 1 if ¢<e<e
11

0,(€,€1,€5)= 0 otherwise.

Dimension D

Noticing that the term={L; S, 0,(e;; . ek, €+1) in Eq.
(10) depends on the indek only, this allows us to decom-
pose Eq(10) into two separate stepél) Calculation of the
binned interpoint distance distributiah,(€,), given by

Entropy K

Cm(€)={Number of pairs(i,j) whose distances

-

Noise Level ¢ (%)
o™ A O ® OO
T
(
A

satisfy €;=||x—x;l| e[ €, €+1)}

N N
2, 2 0%l ) (12)

(2) calculation of the Gaussian kernel correlation sum in
r y terms of

Np

o

2 4 6 8 10 A e
Embedding Dimension m Tm(h)= mkzo Crl( €)™ ™ (13

FIG. 1. Estimation of(a) correlation dimensio, (b) correla-
tion entropyK, and(c) noise levels using Haon map data. The
dotted lines give their “true” value®=1.22,Ky,=0.29[18],
ando;,=5%. h,=0.2 is used; see below for its definition.

In Eqg. (12), we choose the binned interpoint distanegé a
way such that they are equidistant in a logarithmic scale.
This choice has its numerical advantage since it gives a high
resolution at the small scale where the interpoint distance
distributions are more relevant to our calculations. In addi-
tion, the bandwidth valuebl, are determined in the same
way asey.

SinceC,(€) can be readily computed, the calculation of
T,,(h) based on Eq(13) becomes simple. Equatior4?)

We notice thaff ,(h) in Eq. (9) is essentially an average and2(13) jointly lead to a computational complexil@(Nz
of the functione~% %14 over all pairs(i.j) with an equal +Np). By.companson with the d!rect.calculatlon based on
unitary weight. For a given bandwidth,, this algorithm EqN (91’ th,'\? ;ildtzjcesNthe computing time by a factor f
must perform N—1)N operations to scan all distances. For TbrE —( | b/N) ]t;v b- c d the Grassh
another bandwidtth,. (k’#Kk), all the same distances are e relation betweenCp(e) and the Grassberger-
revisited again. Such a distance scanning process is repeateﬁocaCC'a(GP) correlation integratin(€) in the Euclidean

tained as D=1.227+-0.011, K=0.301+x0.003, and o
=4.984+0.028.

Ill. SIMPLIFIED ALGORITHM

N,+1 times, leading toO(N2xN,) operations, which "°M 1S

wastes a large amount of computing time. The algorithm can N,

be simplified by eliminating repetition in distance scanning. C (e € 14
Since the same distances will be used for all bandwidth val- m(€)= N(N 1) 2 Cnl &) (19

ues we can calculate a binned interpoint distance distribution

Cm(€) once and then take the average by summing ovewhere the integeN, corresponds t&=ey . A further un-
indices k=0,1,2,..Ny) of all binned interpoint distances, derstanding of Eq(13) can be gained from an alternative
instead of pairdi,j). As a result, the GaUSSIan kernel corre- expression of the Gaussian kernel correlation integral. To do
lation sum is approximated by averagieg eglan’ over all  So, we define the Gaussian kernel correlation integgdh)
interpoint distances with the weight functidh,(e,). Under  interms of interpoint distance distribution densify(e) and

these considerations, E@) can be rewritten as Gaussian kernel functiow(e/h)=e™ e%/an? as[12]
1 N, / N N ., w0 ¢
T - . — € l4h T (h)=f (e)W(—)de, (15
Tm(h) N(N_l) &0 i:l; 02(6|116k16k+1) e ) m 0 Mm h
(10)

where n,,(€) is given by
where €;;=||x;—x;||, andk=0 andNj, correspond to mini-
mum (g;) and maximum §,) distances, respectively. Here _ dCr(e) (16)
we assume thaté, =0 ande, equals the diameter of the at- €)= " ge
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where C(€) is the GP correlation integral with the hard In the following, we introduce a three-step fitting method,
kernel functionw(r/€)= 6(e—r). Substituting Eq(16) into  which is found to be quite robust. The described method can
Eq. (15), the Gaussian kernel correlation integiigl(h) is  extractD ando to a high precision and obtain a fair estimate
expressed as of K. The procedure is detailed as follows.

(1) Fitting D, o, and 8. We use the relatio6) between
T.(h) and h to fit D, o, and 8. The values ofD and o
obtained will be used in the next step. Lettifg- pe~ "X
yields a model equation

To(h)= f;e—fzf““zdcm(e» (17

This is the integral form of Eq(13). ~
If one performs a partial integration in E¢L7), Tp(h) y(h)=Tn(h)=ph"m P%(h?+¢?)P~™2 (19

can be expressed in the form of . o
(2) Fitting K and deriving ¢. We use y(h)

1 (= =T 1(h)/T(h) to eliminateg, leading to a model
Tm(h):_zf efszthm(e)ede. (18 m+1(h)/Ty(h) ¢ g
2h< Jo m \DP~2
i y(h)=he ¥ —m+1) (h*+0?)~ 12, (20
In previous work, this formula was used to estimatg(h)
[24,25. We fit K with D and o fixed. Then¢ can be derived from
¢=Be™K whereg is given in the last step.
IV. COMPUTATIONAL CONSIDERATIONS (3) Refitting D, K, ando. We use the original relatiof6)

to fit D, K, and o with the fixed ¢ derived in the last
step. D, K, ando obtained in the last two steps are used as
The use of the simplified algorithm given by Eq42) trial values.
and(13) can speed up the calculationBf,(h). For instance, Note that the use of Eq20) requires computing the
for N=10000 andN,= 200, this gives rise to a gain factor Gaussian kernel correlation integrals for two consecutive
y~200. We note that most of the time is consumed in comembedding dimensions. In practice, we complgh) for
puting the binned interpoint distance distributiGg(ey) in m=1,2,...M and extracD, K, ando as functions ofm. Thus
Eq. (12), which takesN(N—1) operations. Apart from the the fitting procedure described above is performed for con-
remarkable advance by using Eq$2) and (13), a further  secutive embedding dimensions. Furthermore, the standard
reduction of Computing time is achievable. In this algorithm,deviations of the correlation integré]’m(h) are used as
we adopt three improvements. weights in the fitting procedurfé2]. This can greatly reduce
(1) A set of N, representative points randomly chosen onfitting errors by comparison with a calculation using equal

the attractor are used for the sum ovéo replace the origi- \eights. The latter results in large deviations at higher em-
nal N points in Eqg.(12). This reducesO[N(N—1)] to  pedding dimensions.

O[(N—=1)XN,g]. Usually, we useN ¢~ N/10.
(2) We observe that large distances have a negligible con-

tribution to the Gaussian kernel correlation slig(h), as in

the GP algorithm26]. Thus we set an upper limit of the e . i o
correlation distance, to be smaller than the attractor diam- €2 fitting procedure described above, that is, determination

eter, above which the binning is not done. This can sav@f the largest bandwidti to be used within the scaling

computing time by a factor of £8-10", depending on the region. This is a difficult task in the presence of noise. The
value ofe ' reason is simple: noise masks the scaling region at the small
u-

(3) A recursive version is used. Since we comp@itée,) ;cale. Intu!tively,h_c should be small enough to.keep fitting
for a series of consecutive embedding dimensians in the gcahng region presented by the underlying nmse-free
~1,2,..M and in thel, norm EE(mJF 1)= Ei(m)_"(vi-%—mr dynamlchs. Burl:C cra]mn(c;; behso Isdmall aé to pr?vent extracting
—uj+m7)2, the distance in then dimension is successively echggdttr?ec:c:Izn arr; lo S Iouth not be T’O arge so as tot
used in the f+1) dimension. g region. In the general case, we suggest a

;T .choice ofh.=30.
These three binning methods are found to be very effi Numerical simulations show that the fitteds insensitive

cient and speed up the calculation by a factdt0'- 10" at to the choice of cutoff bandwidtih.. Thus, an iteration

least. scheme can be adopted. In the first run, a thial for ex-
ample,h,=0.5, is used so as to obtain a fitted The value
of 3o is in turn adopted as the cutoff bandwidih.

Direct fitting based on Eq6) does not make sense. We  Caution should be used when the noise level is either high
find that thoughD and o can be extracted with a high preci- or low. For example, a 30% noise level will give risehg
sion, there is an uncertainty betweéenand K. This is be-  =0.9. This value is close to the upper limit of the linear
cause¢ ande”™X% are not independent for a fixed but  scaling region for most chaotic attractoftested. On the
their productB= ¢e" ™K is a real independent parameter. other hand, when the noise level is low, say, below 3%, the
In the nonlinear fitting process, as long as a stgbie ob-  value of 3r is to small to be used foh.. In practice, we
tained, the program will return values gfandK. But such  recommend fittingD, K, and o for a series of cutoff band-
¢ andK are in general arbitrary. width values starting from a small value and from this iden-

A. Efficient binning

C. Choice of cutoff bandwidth h
There exists an unsolved technical problem in the nonlin-

B. Robust fitting procedure
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FIG. 2. Computing time as a function of the upper limit of scale 4
€4, given by log(e,), for oj,=10%. (a) Henon map,N=5000 and 0.2 0.4 0.6 0.8 1.0 0'2_ 05 0.8 1.1 1.4
m=1,2,...,10 and (b) Lorenz chaos, N=10000 and m Cut—off Bandwidth h,

=1,2,...,15. Twolinear regions | and Il are indicated by the
dashed and solid lines, respectively. Note that the appearance Bfal
steps in(a) is because we use one second as the time unit.

FIG. 3. Fitted parametei3, K, ando as a function of the cutoff
ndwidthh, in the Heon map(left column and Lorenz model
(right column. The solid, dotted, and dashed lines correspond to

o ) ] ] three input noise levelsy;,=2%, 5%, and 10% for the H@n map
tifying the saturation region of the scaling parameters as @andg,,=5%, 10%, and 20% for the Lorenz model.

function ofh.. A good cutoff bandwidth is thus chosen as a
value below the deformation region, but as large as possiblﬁ)ng time; for the former 29569 seconds8 hour$ are

to reduce the fitting errors. required while for the latter 4679 seconds are needed. By
contrast, the simplified algorithm is much faster than the di-
V. EXAMPLES AND TESTS rect implementation of the GKA and, as expected, gives a

In this section, we demonstrate the performance of th&P€eding-up factory="Taiec/ Tsimpiiec=400. This value is
simplified Gaussian kernel algorithm presented in Secs. I1fVic€ Ny since the exponential operation is time consuming
and IV by applying it to some well-known chaotic systems,!" Ed: (9). It follows that the improvement by using Eq&2)
namely, the Heon map and Lorenz chaos. First the cleannd(13) is indeed significant. o
data are generated from the standard mo8s The noisy We next examine the dependence of the computing time
time series are then prepared by adding a Gaussian noiQ¥ the upper limit of the correlation distaneg. Figure 2
component with a standard deviatian, to the noise-free dePICts the computing time for the Hen map and Lorenz
data. In all cases, we fiX,= 200, log(e)=—10. The num- system. Our tests are terminated at the smallest sgale
ber of delay vector®, the embedding dimensian, and the below which the measureld and o deviate from their cor-
upper limit of scalee, are left to be adjustable. The comput- "€sPonding true values Ey 10%, in Fig. 2 jog)=0 for the
ing time to be used below is the full CPU time of the pro- Henon map and loge)=0.5 for the Lorenz system. By
gram and all tests are done on an ULTRA 10 SUN Workstaomparison with the direct implementation, a total
tion. In addition, the recursive algorithm is adopted for bothSPeeding-up factoy=2500 has been achieved&f. More-

direct and improved Gaussian kernel algorithms and th@Ver we see that the use gf alone leads to an improvement
number of reference points is set to Ke,=N/10. of speed by 1-6 times. A further feature is observed in Fig.

2: that there is a turning point which separates two linear
regions. Below this point, the computing time shows a rela-
A. Speed with respect to direct implementation tively weak dependence on lgg,), while in the second re-

In order to make a comparison with the direct implemen-910n decreasing:, gives rise to a significant reduction of
tation of the GKA in Secs. Il B and 11 C we first set the upper COMPuting time. This leads us to suggest inabe set within
limit of the correlation distance, to be equal to the diam- the linear region |I.
eter of the attractor. In this case, all interpoint distances are
binned in order to test the improvement of the simplified B. Cutoff bandwidth h,
algorithm Eq3(12) and (13) with respect to the direct cal- Figure 3 shows the average values @f K, and o on
culation of Eq.(9). Two groups of controlled tests have beenincreasing the cutoff bandwidth in the Heon map and
conducted using=10000,m=1,2, ...,15 for theLorenz | grenz system. Plotted are average values taken aver
chaos anCNZSOOO,m:].,Z, P ,10 for the Heon map. Not =3—-6 for the Heon map N:SOOO) and ovem=6-10

surprisingly, the direct calculation of,(h) takes quite a for the Lorenz model {=10000). These represent mea-
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4 ' ' (a) ' ' ] 0in<20%. These results show that the Gaussian kernel al-
] gorithm is a reliable tool for measuring the correlation di-
a 3t : mension and noise level from noisy time series and works
g o well for different types of noise sources when the noise level
g P 1.088888835 is be!oyv 20%. Thls nice property prowd_es a basis for. char-
g acterizing e'xperlmental data that are believed to contain both
a (L 1 types of noise.
0 . ) VI. CONCLUDING REMARKS
50 ' ) ' P The main point in this paper is to develop an efficient
= 40F 8 ] algorithm to simplify the calculation of the Gaussian kernel
‘b’ 8 ] correlation integral. Numerical simulations show that our im-
— 30F 8 3 proved algorithm is computationally efficient and speeds up
(3] I . .
> ,,9‘ the calculation by a factory~(2—-10N, by comparison
= 20t ',9' 3 with direct implementation. We hope that this improved al-
% g gorithm meets broad computational needs and can find wide-
2 10p @ E spread applications in characterizing experimental data.
0 R4 ‘ ‘ . . We find that the GKA not only works for pure Gaussian

noise, but is also applicable to other types of noise provided
that the underlying noise level is relatively low, say, below
20%, such as a combination of Gaussian with uniform 11D
FIG. 4. Measurements df) correlation dimensiorD and (b) noise and even uniformly distributed noise. This property is
noise levelo using the Gaussian kernel algorith@®, O, and ¢ of practical importance since the noise type is usually un-
correspond to Gaussian, uniform, and a combination of uniformknown a priori in experimenta| time series data. More gen-
with Gaussian noise, respectively. The dotted lines give their trugrglly, any filtering and the presence of multiple noise
vglues_. Calcylatlons are performed based on averages over emb%urces will turn the noise into an approximately Gaussian
ding dimensionsn=8-15. distribution according to the central limit theorem. Recently,
) ) ) ) the GKA has been successfully used to characterize electro-
surements in the discrete mapping and continuous flow SYSardiograph data of ventricular fibrillatidi27].
tems. For both types of dynamics, it is obvious that there isa 11,0 simplified GKA provides a reliable estimation of the

brc()jad s_cal:ngef?_[[ctmdwhere ?mhtt%e corre:jailrcl)n_ dtlmenat)n correlation dimension and noise level. However, it seems
andnoise ‘eveyiitied are saturated around NI ru€ values ;g it 1o extract exactly the correlation entropgyfrom the

and from thish, can be chosen. Notice that the correlation

entropy K _exhibits a sensitive dependence on the Cutoﬂlnon-linear fitting procedure described in Sec. IVB. This is
bandwidthh, for o, =5%, decreasing with,, and shows understandable because we have assuimtedbe a constant

considerable difference for different noise levels at the Iargén Eq. (6), wh|c_h in turn leads 1o EC('ZO_)' This is true_ o_nly
bandwidth. The latter indicates that it is more difficult to Whenvh“+ o~ is small. Therefore, for fixed, the deviation
measurek when the noise level is high. Furthét,should be of K will increase with the bandwidth, . On the other hand,
estimated whem is sufficiently large[20]. The tests given the correlation entropy is asymptotically obtained only as

in Fig. 3 do not meet this limiting condition. m— o0 according to its definition.
Note that, in writing Eq.(9), we assume that the delay

vectors are independently distributed on the attractor accord-
) ] . ing to the distributiorip,,(x). This is not always true. For
We examine the estimatdd and o as a function ofoi,  data generated from continuous dynamical systems, serial
for different types of independent and identically d|str|butedtempora| correlation must be ruled di&8]. Finally, though
(IID) noise: Gaussian, uniform, and a combination of thethe simplified algorithm is much faster than the direct imple-
Gaussian with uniform 1D noise with each belng 50%. Thementation of the GKA, it is not suitable for too |0ng time

Lorenz system is used as a representative example. The inpgéries since the algorithm faZ(€) is still O(NX N,).
noise leveloy, is set from 0% to 50%. Numerical results are Nevertheless, the improved GKA is fast enough fdr

shown in Fig. 4. As can be seen, the measurements of cor= 10*—1¢% long on most current workstations and personal
relation dimensiorD and noise levelr are in good agree- computers.

ment with their true values for pure Gaussian IID noise Up to  Source code$FORTRAN 77 can be obtained on request
oin=50%. The results also show good consistency for thgrom the first author.

combined noise when the noise levelag<40%. This is

what is expected since the GKA is established under an as-

0 10 20 30 40 50
Input Noise Level o, (%)

C. Precision against noise level

sumpf[ion_of Gaussia_n noise. By contrast, the correla_ltiqn d_i- ACKNOWLEDGMENT
mension is underestimated and exhibits a large deviation in
the case of the pure uniform IID noise fof,=20%, but the This work was funded by a Research Development Grant

Gaussian kernel algorithm still provides a fair estimatéof by the Scottish Higher Education Funding Cout8HEFQ,
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