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Synchronization and control of coupled Ginzburg-Landau equations using local coupling
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In this paper we discuss the properties of a recently introduced coupling scheme for spatially extended
systems based on local spatially averaged coupling sifjsedsZ. Taseet al, Int. J. Bifurcation Chaos Appl.
Sci. Eng.(to be publisheg and L. Jungeet al, Int. J. Bifurcation Chaos Appl. Sci. En@, 2265(1999].
Using the Ginzburg-Landau model, we performed an extensive numerical examination of this coupling
scheme, i.e., a complete scan through the relevant coupling parameters. Furthermore, we demonstrate suppres-
sion and control of spatiotemporal chaos, e.g., stabilizing the homogeneous steady state and spatially localized
control. As an application all model parameters of the Ginzburg-Landau equation are estimated given only the
local information of the system.

PACS numbgs): 05.45.Xt, 05.45.Gg, 05.45.Jn

[. INTRODUCTION Ginzburg-Landau equations using the sensor coupling and
discuss the influence of relevant coupling parameters. In Sec.
Synchronization phenomena are of fundamental importV the coupling scheme is used for controlling purposes and
tance in many physical, biological, and technical systems. Iin Sec. V we demonstrate that distirlotal regions of the
particular, synchronization of chaotic dynamidg has at- PDE’s can be synchronized and controlled, while the rest of
tracted much attention during the last few years because dhe space remains unaffected. As an application of the sensor
its role in understanding the basic features of coupled noncoupling scheme we estimate all model parameters of a PDE
linear systems and in view of potential applications in com-in Sec. VI.
munication systems, time series analysis, and modé¢fihg
Different coupling schemes have been proposed in order to II. SYNCHRONIZATION OF SPATIALLY EXTENDED
achieve synchronization in particular for unidirectionally SYSTEMS

coupled system§l]. Recently, synchronization and control In th decad hronizati fd ical
of spatially extended systems such as coupled map lattices h the past decade, synchronization of dynamical systems

(CML’s) [3], arrays of coupled oscillatofd], or partial dif- as attracted much interest and various definitions and types

ferential equation$5] have gained much interest. Most of Of. synchronization were proposed: .9, |dent[dz}1 gener-
the studies focused on coupled map lattices, which are th@l|zed[9], lag and phas_,e SYF‘Cth”'Za“@I‘?]- m this paper,
simplest models for spatiotemporal chaos and are the firdye restrict ourselve's taentical synchronizationvhere the
step when exploring spatially extended systems. CML'’s ardV0 cqupled dynaml'cal §ystem§ are ex"’?C“y of the same type
discrete in time and space and the individual maps are us@"d 9iven by a partial differential equation of the form
ally diffusively coupled in space, e.g., with nearest neighbor
coupling. Diffusively coupled ordinary differential equations -~
(CODE’y) are the next stefcontinuous in time and discrete at
in space [4]. A widely used controling technique for both
system classes is the so-called “pinning contr8] which  with spatial lengthL [11]. Usually one speaks of synchroni-
affects single cells, e.g., maps or ODE’s, or in the case ofation of two coupled dynamical systems when the temporal
synchronization, connects pairs of single cells of the twoevolution of their states coincides after some initial transient.
systems. When we now consider the next step and go tf both coupled systems are of the same tygentical syn-
systems with continuous space variables, e.g., partial differchronizationmay occur where the stategt) and v(t) of
ential equationgPDE’s), we run into trouble. The reason is drive and response, respectively, converge to the same values
that we no longer have single cells to control or to connect(i.e. |u(t) —v(t)||—0 for t—). Note, that when we are
Instead we now have a continuum and the pinning controlooking at spatially extended systems like PDE’s, the states
technique which acts on points in space is no longer appliu(x,t) and v(x,t) are continuous functions of the spatial
cable[6]. Therefore, we use in this paper a recently intro-variablés) and the state space is infinite dimensional. In this
duced coupling scheme for PDHE,8] based on local spa- case the above definition reads as follows: Two spatially ex-
tial averaged coupling signalsensory which are a model tended systems are called identically synchronized, if their
for typical experimental sensors and actuators. states converge to each other in the whole spatial domain,
The sensor coupling scheme is introduced in the next seé-e., Vxe[0L]:lim,_..||u(x,t) —v(x,t)||=0.
tion. In Sec. lll we present the results of a detailed numerical Forxe 7 andt e 7 this is the definition of synchronization
examination of the synchronization of two coupled of CML's, for xe Z andt e R for CODE’s and forx,t e R for
PDE’s. As in the case of coupled oscillators there exists an
invariant manifoldu(x)=v(x) (also called synchronization
*Electronic address: L.Junge@dpi.physik.uni-goettingen.de manifold), whose stability properties determine the occur-
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FIG. 1. Left: Principle of the sensor coupling scheme. Right: Visualization of three sensor time(glatieesi overlayefimeasured from
spatiotemporal chaos.

rence of stable(high quality synchronization[12]. This  coupling schemd8]. Now we have to choose a coupling
manifold is asymptotically stable and high quality synchro-term that will be applied locally with each sensor signal as
nization occurs if the transverse subsystem, (X,t) driving force. We use throughout this paper a unidirectional
=1[u(x,t)—v(x,t)] has an asymptotically stable fixed point dissipative coupling, but we want to stress that other cou-
at zero. Indeed, all techniqugs| for verifying synchroniza- pling terms should work well, too. To implement this cou-
tion, e.g., necessary criteria like negative conditional pling we have to measure in the driven syst&msensor
Lyapunov exponents aufficientcriteria[12] like Lyapunov  signals at the same positions and apply the dissipative cou-
functions and stability of invariant sets, can be generalizegling term with coupling strengtla
and in principle be applied to these systems, too.

But the particular coupling techniques often are difficult o G(Un_v_n), nd—1/2<x<nd+1/2
to generalize for PDE’s in a straightforward way, because  f(u,,v,)= (3
this would imply that one has to couple in the whole spatial 0, elsewhere
domain[13] or in points[3,5,14, which may be impractical N . )
in experiments. Theensorcoupling scheme, introduced in @t €ach sensor position=1,... N, respectively. Figure
Refs.[7,8], generalizes the pinning coupling scheme to sys-_l(a) shows the principle of the sensor coupling scheme and
tems with continuous space variables. The idea is that typicdlustrates where we place the sensors and apply the local
experimental measuring devices have a finite resoluteord ~ dissipative coupling forces.
measure local spatial averages of some spatial observable, AS an example we examine in this paper the one-
According to Refs[7,8] we want to call these elemengen- dimensional complex Ginzburg-Landau equati¢GLE)

sorsthat measure scalar time series of the form (15,16
— 1 [nd+1/2 ou ) 5 )
u”(t):I_J u(t)ydx, n=1,...N, 2) E=,uu—(1—la)|u| u+(1+iB)Au, ue[OL] (4
nd—1/2

with periodic boundary conditions. This equation possesses

uniform traveling wave solutions, which are all unstable
r parameter values af and 8 with 1— aB8<<0 where dif-

erent types of turbulence occur. In this paper we examine

which represent average values of spatial intervals of width
Figure Xb) shows a spatiotemporal chaotic dynamics wher
the amplitude information is color coded. We have measure
with three sensors yielding three scalar signals which ar
plotted overlayed on the original dynamics. One sees that wi/O Parameter setsy=1.0, «=2.0, and f=0.7 corre-
cannot resolve all fine detail in space anymore, but we havgpondmg to phase turpulenp@see Fig. )] and
now, due to our finite resolution, only some averaged infor— +-0: @=2.0, 8=1.2, which yields defect turbulengeee
mation about the local dynamics from parts of the systemF'g' 2b)]. For synchronlzatlon purposes we apply to an iden-
tical copy of Eq.(4) at N locations coupling termg&3) using

However, as we shall demonstrate in the following, this is . . :
for properly chosen coupling parameters enough to comS€nsors of width. Note that this is a local control technique
and the driven system

pletely synchronize this system with anotligfentica) sys-

tem using the sensor time series as coupling signals. 5
Because of the exponential decrease of spatial correla- v_ i 2 i .

tions in extended chaoptic systems, we need forpthis coupling at “? (1=ie)|v[v+(1+iB)Av+f(uy,vn) (5)

technique several but a finite numiérof coupling signals

that contain all the necessary information to reconstruct thean evolve between the sensor locations freely in time. In

whole state in the synchronization process. An equidistanfig. 3 we useN=15 equally spaced sensors with width

arrangement oN sensors with distancg=L/N turns outto =3 and coupling strength=0.2 to synchronize two GLE’s

be nearly optimalfor periodic boundary conditiongor this  with lengthL= 100 in the phase turbulent regime.
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have computed the Lyapunov dimension for several lengths
FIG. 2. Dynamical regimes of the Ginzburg-Landau equation[18].

(4). (a) Phase turbulencéb) Defect turbulence, amplitudes are gray |, Fig. 4 the Lyapunov dimension is plotted vs the length
scaled. L in the two examined dynamical regimésee. Fig. 2 The

. . L Lyapunov dimensiorD, shows an excellent linear scaling

Figure 32 shows the dynamics of the driving system andWith the lengthL for phase and defect turbulence, which

in Fig. 3(b) the evolution of the response system is plotted. , . .
At t=170 the coupling is switched on and the response Sysc_onf|rms the results of Keefd 6]. Making a least squares fit

tem converges quickly to the synchronized state. At the be9f the slopes we obtain the following relation®,
ginning of the coupling the perturbation introduced through™0-332- for defect turbulence and ~0.102. for phase
the controllers induces a periodic pattern, which decays verjirbulence. The higher slope for the defect turbulent regime
fast in favor of the dynamics of the synchronized state. In thd€flects the more erratic and complex behavior of the dynam-
next section we shall study this coupling scheme and thécs in this regime. In the rest of this section, we want to
involved parameters in more detail. examine the synchronization of defect turbulence in more
detail.

In experiments one often wants to use as few controllers
as possible. Therefore, we computed the minimal nurhber
of sensors needed to synchronize the two systems for several

In this section we discuss the results from an intensivéonfigurations of the coupling parameters. In the following
numerical investigation of the properties of the sensor couthis quantity will serve as an indicator for the performance of
pling scheme using the one-dimensional GLE. In particularthe Used coupling configuration.

we shall discuss the relation and interdependence of the three Figureé 5 shows the scaling of the minimal number of
coupling parametert, |, ande. For solving the PDE’s we needed sensois with the system length for fixed width|
used an implicit Crank-Nichelson discretization schétig ~ and different values of the coupling strengtfof the local
which is second order in space, first order in time, and un€oUPling term. In the left plot the widthis fixed to 0.5 and
conditionally stable. For consistency, all simulations wergln the right plotl =3.0. Each line corresponds to a specific
performed with a time step of 0.01 and a grid of 2 points percPUPling strengths which increases from top=0.5 to bot-
unit length of the PDE. We checked the calculations for finetom e=4.0. Note that the minimal number of sensadis
resolutions in space and time and found qualitatively andreeded for synchronization scales linearly with the system
quantitatively good agreement. lengthL, which is valid for all combinations dfande yield-

The GLE shows extensive chaos which means that exteﬁng SynChronlzathn. In other Words, the.dlstance between
sive quantities like the attractor dimension are growing lin-tWO Sensors remains constant when one increases the length
L of the system. This distance is of the same order as the
correlation length of the dynamics. The reason that we do not
have to couple in the whole spatial domain is the fact that

IIl. INTERDEPENDENCE OF THE COUPLING
PARAMETERS OF THE SENSOR COUPLING
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FIG. 5. Minimal numbem of coupling signals needed for syn-
FIG. 3. Synchronization of two coupled GLE’s in the phase chronization vs the spatial lengthfor fixed width| of the sensors.
turbulent regime(a) Drive system.b) Response system driven by Left: |=0.5 and rightl=3.0. The coupling strengtla increases
N=15 sensors with width=3 and coupling strengte=0.2. from top to bottome=0.5,1.0,1.5,2.0,3.0,4.0.
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FIG. 7. Percentage of the system sizeovered by the control-

needed for synchronization vs the widtbf the sensors for a fixed lers vs | and L: Left NI/L vs | for_ L=200 and e
=0.5,1.0,1.5,2.0,3.0,4.Grom bottom to top. Right: NI/L vs L for

system lengti. = 100. The right plot shows the numbirof sen-

sors needed for synchronization normalized to the Lyapunov dif = 2:0 andl=0.5, .. .,8.0 (from bottom to top.

mensionD, vs the widthl. The coupling strengthk increases from

top to bottome=0.5,1.0,1.5,2.0,3.0,4.0. The dotted line in the left also depends linearly on the system sizethe slopem

plot indicates the border where the sensors begin to overlap. =N/L is equivalent toN/D . With the relationsD
~0.331L andN~mL [19], we can convert the slopas to

the uncoupled areas are correlated with the coupled areas iy PL~m/0.331. This quantity is plotted in the right plot of
their neighborhood and they receive the information abouf9: 6

the drive dynamics due to the internal spatial diffusion of the ~The quantityN/D, is independent of the system lendth
system. In the left plot of Fig. 5 we usée- 0.5, which is one and is a measure for the minimal number of controllers per

grid point per controller and means coupling in pinning attractor dimension needed for synchronization with this
points in the used spatial resolution of the numerical integrac®upling. This allows us to study the benefit of using spa-
tion scheme. The stronger the coupling strengtthe less tially gxtended sensors in a compact and systematic way.
coupling signals we need to obtain synchronization. This igl "€ right plot of Fig. 6 indicates that the efforts necessary
what one might expect: stronger coupling leads to better pef®r Synchronizing two coupled GLE ) and(S) with sensor

formance. In the right plot we used the spatially extendecd?@UPIing depend only on the dimensionality of the underly-
sensor signals of width=3.0 and we find that the number of N9 chaotic attractor. To synchronize the two coupled GLE'’s

sensor signal®l seems to be independent ofand we need [Egs.(4) and(5)] it is'sufficient to use about 0.5 contrqllers.
fewer controllers than in the left plot. The explanation of thisP€r attractor dimension. One needs the fewest coupling sig-

phenomena is again that the uncoupled areas receive the {2l when coupling with sensors which possess a large width

formation from the neighboring coupled areas due to internal: ' €refore, from a practical point of view, the sensor cou-

diffusion. When we use very small sensors we have to appl}ing iS superior to the pinning coupling technique.

a strong coupling force to transport the local drive informa- Because of the use of spatially extended sensors one may
tion to the uncoupled areas between the sensor positions. Bk how much area is used by the controllers. This problem
when using spatially extended sensors it is not necessary {8 addressed in Fig. 7 where the percentage of the area in
apply strong coupling because the uncoupled areas are musRace covered by the sensors and control&rs is plotted
smaller than in the case of coupling with pinnings. On theVS the widthl and the system size, respectively. The left
other hand, because of using local spatially averaged cod!ot of Fig. 7 shows clearly that the price one has to pay for
pling signals, we do not have to transmit more information tolransmitting fewer sensor signals by using controllers with

achieve this. The left plot in Fig. 6 shows the dependence ogréater widthl (see Fig. 6 is the larger area one has to
N on the widthl for a fixed system length of =100, the influence. When one is transmitting the minimum informa-

coupling strengths increases from top to bottom. For pin- ti0n by using the largest possible widthne has to couple in
ning coupling (=0.5 in our spatial griflwe have to apply the whole spatial domain. Therefore, the loss of information
strong forcing to yield good performand@ the sense of through the local averaging process and by using fewer cou-

using fewer coupling signals or controllgr8y increasing pling signals is compensated through a larger size of the

the width| of the sensor signals we find good performanc _coupled areas. The left plot of Fig. 7 shows that this effect is

even for weak coupling strengths. Using very wide sensors igjdependenF of the_ system _siie In the diagram on_the
slightly better than intermediate values of the widgrbut ~ 9ht-hand side of Fig. INI/L is plotted vs the system size

then we come close to thelotted line where the sensors for different values of the width The percentage of the area
start to overlap which means that the controllers cover th&'Sed for coupling is for a fixed coupling configuration inde-

whole system lengti.. To show that this behavior of the Pendent of the system leng[@0]. This confirms our state-
coupling scheme is quite general, at least for the GLE wdnent above that the distance between the controllers remains

consider in the right part of Figs a quantity which is inde- constant for fixed ande and therefore the covered area, too.

pendent of the system length Because the numbéd of

sensors needeq to obtain synphromzanon behaves like ) STABILIZING THE HOMOGENEOUS STEADY STATE
extensive quantity, we can eliminate the system lemhghy

calculating the slopem of Fig. 5. A small slope indicates The sensor coupling technique can also be applied to sup-
good performance while a greater slope means that we haygess spatiotemporal chaos. To demonstrate this, we have
to use more controllers per unit length of the system tostabilized the homogeneous steady state0 of Eq. (4).
achieve synchronization. Since the Lyapunov dimen&lgn  This state is a solution of E¢4) and is highly unstable. To

FIG. 6. The left figure shows the minimal numhberof sensors
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geneous steady state=0 vs the widthl for a fixed system length 100 0.3

L=100 (left) and normalized by the Lyapunov dimensid@ 0.2

(right). The coupling strengtle increases from top to bottome ( 0.1
=1.5,2.0,3.0,4.0). 0

do this we usedi(x)=0 as a driving signal for the sensors, x
i.e., we try to synchronize the driven system with the zero FIG. 9. Local . ¢ ch ing 1 ith
solutionu=0. Again we have scanned the coupling param- - 9. Local suppression of chaos using two areas with four
. ) controllers of widthl=2.0 and coupling strength=2.0, respec-
eters and the results are presented in Fig. 8. The plots arg

L . : N Ively. The small rectangles on top of the diagram indicate the po-
similar to Fig. 6. The left diagram ”? .Flgi 8 shows the num- sition and the width of the sensors. The figure shows the amplitude
ber N of sensors needed for stabilization 0&=0 vs the

. . i dynamics of the controlled system The system length wak
width I for a fixed _system length=100. In_ the rlght plotthe 100 and the parameters=1.0,2=2.0 8= 1.2 lead to defect tur-
quantityN normalized by the Lyapunov dimensi@n of the  ence.

unperturbed dynamics is given in dependence on the Width

The relations between the coupling parameters remain qualispes completely. The rest of the system remains in the de-
tively the same compared to the synchronization case, bykct turbulent regime.

now one has to use more controllers to achieve the control |, Fig. 10 we tried to synchronize the two systems in two
goal. The quotienN/D| is again independent of the system regions using six controllers with width=2.0 and a cou-
sizeL. This quantity is plotted v§in the right-hand side of pling strengthe = 2.0, respectively. The upper plot shows the
Fig. 8. One may conclude that at least one sensor controllgfyplitude dynamic of the driven system where again the
per attractor dimension is necessary, which is approximansitions of the controllers are indicated through small rect-

tively twice that in the synchronization case. angles. To verify local synchronization, the lower plot of
This is intuitively clear when one remembers that the statq:ig_ 10 shows the local synchronization erre(x,t)

u=0is npt an attractive §et in phase space while the Ofiginaj——|u(x,t) —uv(x,1)|. In the coupled regions we observe stable
attractor is a stable solution of E(). It is thus not surpris-  gynchronization with only slight fluctuation around the syn-

ing that the controllers have to be closer to each other. Fogjyonized state at the borders of the controlled areas.
widths >3 we were not able to stabilize the homogeneous

steady statei=0 and turbulence or stationary solutions oc-
cur between the controllers dependending on the coupling
strengthe and the number of controlleis.

VI. PARAMETER ESTIMATION OF SPATIALLY
EXTENDED SYSTEMS

As an application of the sensor coupling scheme we esti-
V. LOCALIZED SYNCHRONIZATION AND CONTROL mate the model parameters of the GLE using a method based
on chaos synchronization. This method was demonstrated by
In the preceding sections we have applied the sensor cogeveral authorg2] to work well for coupled maps and
pling scheme globally, which means that our goal was toODE’s even with experimental data. The use of synchroni-
COﬂtrOllsynChronize the driven System on the whole Spatiaiation has the advantage that 0n|y the parameter Vpdnas
axis. In the following we demonstrate synchronization anc be estimated and not the whole state of the driving system.
control of parts on the spatial domain. The sensor coupling ishijs gives a drastic reduction in the complexity of the prob-
a local control technique and we have argued above that them, in particular in the case of spatially extended systems.
performance of the coupling scheme depends only on thguppose we have a dynamical system which is well modeled

distance between neighboring controllers. Therefore it is noghrough a map, ODE, or in our case through a PDE, e.g.,
surprising that it is also possible to achieve the desired goal

dynamics only in local regions. In Fig. 9 we suppress chaos
only in two regions. To do this, we have arranged in two -
areas four controllers with width=2.0 and a coupling at
strengthe = 2.0, respectively. The small rectangles in Fig. 9

indicate the position and width of the controllers. The figureFurthermore, we assume that the system can be identically
shows that chaos is successfully suppressed in the two areaynchronized with a computer model driven by the measured
Near the border of the sensors the chaotic dynamics is naensor signals;=h;(u),i=1, ... N, if we know the correct
totally suppressed and we observe slight fluctuations aroungarameter vectop. The strategy to find this set of correct
zero but in the middle of the two regions the amplitude van-parameters is the following. We choose an initial guess of

Ju ( du d%u

uﬁﬁp> xe[0.L]. (6)
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time T, e.g.,&(T;p)=u;(T) —v;(T). From theN measured
sensor signals we build the error function

FIG. 10. Local synchronization of chaos using two areas with
six controllers of widthl=2.0 and coupling strength=2.0, re-
spectively. The small rectangles indicate the position and the width
of the sensors. The system length was 100 and the parameters
u=1.0a=2.08=1.2 result in defect turbulence. Top: amplitude
dynamics of the response systemBottom: synchronization error
lu—vl.

N
iEl [(ui—v;)>0] ‘
(7)

e(p)=ma

N
gl [(ui—0v;)<0] ‘

and determine the roots efp) using a simple damped New-
ton method 17]. In this error function(7) we have summed

the parameter vectqu, and if this choice is not too bad a ©OVver all sensor errors = u;—v; which are greatefless than
more sophisticated form of synchronization called generalZ€0 and took the maximum of the absolute values. of the two
ized synchronizatiod9] occurs. The driving system deter- SUMs as synchronization error. The error functigh is
mines the dynamics of the driven system still in a uniqueS0mewhat sophisticated, but since we synchronize the mea-
manner despite the parameter difference between the tw@Hred sensor signals with a computer model we can easily
systems. The attractors of drive and response are not iden®mpute any complicated cost function. The advantage and
cal copies of each other, but there still exists a relation betotivation of Eq.(7) is the combination of all local synchro-
tween them. We can use this behavior to estimate the urlization errors into one quantity and the fact that the local
known parameterp of our model by varying as long as grror_sei(t) cannot cancgl each othe_r._ For the parameter es-
the synchronization error goes to zero which means that thmation we introduced in Eq(4) additional parameters in-
systems synchronize perfectly and we have found the corre€uding the spatial length =p,

parameter vectop of the driving system.

Generalized synchronizatid8] ensures that the synchro-
nization error is a smooth function @f and simulations in-
dicate that this is valid in a large area of the parameter space
[2]. The strategy for parameter finding in REZ] was the
minimization of the oveiM time steps averaged synchroni-

zation errorE(p) = VIMEMN U —uM12=0 whereu? and  mated the parameters of the GL® for two parameter sets.

v denote the measured sensor signals at positiahthe The first setp;=1.0p,=2.0p3=0.7p,=L =407 yields
time n. In this paper we want to use another strategy. Wephase turbulent dynamics. To synchronize the two systems
compute the synchronization errors of the sensors at somee used\ =99 sensor signals with width=0.5 for the cou-

Ju . .
E:plu_(1_|p2)|U|ZU+(1+|p3)AU, xe[0,p4].
8

The PDE was solved again by an implicit scheme but now
with a finer resolution of 1000 grid points. We have esti-
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pling. In the defect turbulent regimg,=1.0p,=2.0p; VII. CONCLUSION

=1.2p,=L=40w we usedN=233 sensors with width

=3.5. Figure 11 shows the evolution of the parameters dur- In this paper we have examined synchronization and con-
ing the estimation procedure, phase turbulefieft column  trol of continuous spatially extended systerfisere the
and defect tutbulencéright column. In both regimes all  Ginzburg-Landau equatidmsing locally averaged coupling
parameters including the spatial lengih=L are estimated sjgnals. The number of coupling signals needed for synchro-
correctly. This shows that even in high-dimensional systemsjization scales linearly with the system length and the
(D ~13 for phase turbulence ari2} ~40 for defect turbu- | yapunov dimension, respectively. Using spatially extended
lence synchronization based parameter estimation methodgensors results in a significant reduction of the minimal num-
can be applied succesfully. Note that for phase turbulencge; of coupling signals. The coupling scheme was applied
coupling in pinning pointd =0.5 (one spatial grid point in ;ccesfully for global and local synchronization and control

the numerll_cal m_tegrlatlon schel)(;\e? lésefd ??d bW? needehd E]urposes. As an application we used this scheme for estimat-
more coupling signals compared to defect turbulence wherg /fy "0 B DE o time-series.

wide sensor$= 3.5 were applied. This shows again the bet-
ter performance of spatially extended coupling devices. The
results are robust with respect to small additional noise on
the sensor signals. A more detailed discussion of the perfor-
mance of synchronization based parameter estimation algo-
rithms with noisy Coup”ng Signa|s can be found in H:gl] We thank L. Kocarev, Z. Tasev, and the members of the
where the authors examined different low-dimensional syshonlinear dynamics group of the Third Physical Institute for
tems and a high-dimensional hyperchaoticsBler type os- stimulating discussions on chaos synchronization, and the
cillator. DFG (Grant No. Pa 643/1)land W. Lauterborn for support.
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