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Subharmonic autoresonance
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Adiabatic passage through higher order resonances in a perturbatively driven dynamical system with a slow
control parameter, yields persisting phase locking and a strong long time response. The phenomenon has a
sharp threshold on the driving amplitude, which scales with the control parameter chigaateresonance
ordern, asA3/(4M,

PACS numbegps): 05.45.Xt, 05.45.Gg

Many physical applications need a strong, controllable remonic driving, for exampledo not necessarily lead to phase
sponse in a dynamical system by applying a weak perturbdecking and autoresonance in the system. We shall see below
tion. One can use a resonance for this purpose, i.e., tune thieat the SHAR theory becomes increasingly complex at
driving frequencyw, to the system’s natural response fre- largern, so we shall studyw=2 and 3 only. Nevertheless,
guency w. Nevertheless, in most cases, the nonlinear frerecent experiments in driven pure electron plasiivdsex-
quency shift destroys the resonance, limiting the responskibit the SHAR forn up to 5.
amplitude toO(e?), wheree is the characteristic strength of ~ We focus our analysis on finding thresholds for entering
the drive[1]. This limitation can be removed by using a the SHAR in a simplest driven one-dimensional dynamical
feedback. For example, one easily reaches large amplitudeystem with a slow parameter. Many other aspects, such as
of a swing by subconsciously decreasing the driving frethe details of the advanced SHAR stage, the effect of a weak
quency, as the oscillation amplitude grows. There also existdissipation, higher dimensionality, etc., will be left for future
another way of obtaining a strong response to a weak pertustudies. Our system is
bation without the feedback and precise tuning. In this ap-
proach, one passes through the resonance by slowly varying Xe+ A2()X+ ax?+ Bx3=esin(t/n), @
some control parametex(t). Then, at certain conditions, on
approaching the resonance, the system phase locks to tith A°=1+\(t) a slow function of timgthe variable, t
drive and enters amautoresonantevolution stage in which and parameters, «, 8, €e<1, are set to be dimensionlgss
the phase locking continues despite the variation.0ofypi- By starting in equilibriumx=x,=0, one crosses the reso-
cally, this means a slow increase of the response amplitud@ance w/n~ wy=1/n when \(t) passes zero. We proceed
which may become large over a long time. The system cafrom numerical illustrations of the FAR and SHAR in this
be put back into a near equilibrium by reversing the directionsystem. Figure 1 shows the evolution of the system’s energy
of variation of\. This simple control of excitation by a weak E=3x2+3A%x?+ 2ax®+1Bx*—exsin@/n) for n=1,2,3
force is important in applications. The first known use ofand driving amplitudes=1.07x 103 [the upper curve in
autoresonance was in particle accelera@fsLater, the idea Fig. 1(a)], 0.05 and 0.12, respectively. We used=1, 3

was implemented in other physical problems, ranging from=0 and initial conditionsx=x,=0. The control parameter
atomic physic$3] through nonlinear wavegl], and plasmas

[5] to fluid dynamicg6]. Recently, it was noticed that pas- 0.75

sage through resonance yields autoresonance only if the driv- & oost @ above threshol |
ing amplitude exceeds a sharp threshg|ddepending on the %0.25» below threshold 1
W

chirp rateA=d\/dt. For instance, when the control param- s e o o o e
eter \(t) is the driving frequencyw, itself, one findse,, @075 . — — : :

~A¥4[5.6]. X, osi(b) n=2 e
In this paper, we study a different type of autoresonance, % 0_2;5_ |
taking place when one slowly passes a resonasize w/n g

(n=2,3,...).This phenomenon will be referred to asb- 1800 0 1000 2000 3000 4000 S000 6000 7000
harmonic autoresonancéSHAR) in the following, in con- :"()'75'@ n=3 AR
trast to thefundamentahutoresonancé-AR), corresponding < il 1
to the n=1 case. The physical mechanism leading to the szo'zs' v ol
SHAR differs from that in the FAR, namely, the SHAR is 1000 0 1000 2000 3000 4000 5000 6000 7000

due to the ability ofnth order nonlinearities in the driven

system to generate an effective drive at the fundamental fre- i, 1. EnergyE versus time(a n=1, e=1.07x1072 (just
quency. This effective drive, in turn, plays a role of an adia-apove the threshold, upper cuyye=1.03x 102 (just below the
batic forcing in transition to autoresonance in the systemihreshold, lower curve (b) n=2, €=0.05; (c) n=3, e=0.12.
Passage through,~ w/n resonances is the only possibility Small time scale structurdslark areasare seen fon=2, 3. The
for creating the internal forcing at fundamental frequency inmapping E(k27n), k=1,2,... att>6000 (dot9 illustrates the
the system, while other resonanc@s in the second har- slow time scale phase locking in the system.
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FIG. 2. Phase space portraits in autoresona@e=2; (b) n FIG. 3. Threshold drive amplitudes, versus chirp raté of the
=3. Lines 1, 2, and 3 represent solutions in intensls- 75 in the control parameter fora= 1, ﬁ:O [numerica| Simu|ations(0)’
vicinity of t=360, 2400, and 7400. The separatrix is shown by thE[heory (full |ines)] and =0, =1 [numerica| simulations Y{),
dashed lines. theory (dashed lined. There is no trapping inta=2 SHAR in the

latter case.
was varied as\(t)=D sinG=#t/T) (with D=0.7 and T

=7500) between the initia,= — 1000 and finalt; =7500 ¢ _ 1 43¢ 1073 just below the threshold. We see that for
integration times, so the desired resonances were encoun- he oh locking is d d aft ) d
tered att=0. One can see in the figure that, in all cases, th e< e, the phase locking is destroyed after passing an

efficient excitation proceeds just beyohd 0 and the final ‘ihe final excitation energy 1S _smaII. We have stu@ed this
energy reaches a substantial value-.7, despite the rela- threshold phenomenon numerically for other conditions and
tive smallness of the driving amplitude In addition to the summarize our results in Fig. 3. The figure shows the depen-

smooth averaged growth, the energy curves teloe (au- delnce of the threshold drive amplitude on the'chirp rate
toresonant modulations, as well as, fast time scale struc-:5d|[z|77/ T ?{f th_elcontiotl) par arlneter %tz O_f(())r d|fje1rer1t_n
tures, seen best far=2 and 3[dark areas in Figs.(b) and and two setsa=1, f=0 (circles and a=0, =1 (tri-

1(c)]. Nevertheless, these structures disappear if one margg%le?' Onet fl_nds, th?t for the secog;i_ sletmust_t declgeatsr,]e at
the energy at equal time intervalss® (the mapping is or entering autoresonance, soiS negative. Further-

shown by dots in Fig. 1 fot>6000), demonstrating the M€ th_ere Is non=2 autoresonance for th‘? set. For a
continuing phase locking in the system on the slow timeSmooth initial phase locking in these calculations we used

scale. Because of the phase locking, the energy is nearfy €of (1), where the slow switching on function wdst)

27n periodic at all times. The phase locking of energy:O'Sh{l(;'f[anr[(HZTO)/T‘ﬂl} and Tﬁ:T/ZS' Thus,eoalmost
curves reflects the phase locking of autoresonant solution&€@ched its constant valug at the resonancet£0). For
The latter are shown far=2, 3 in Fig. 2, as portraits in the each set of parameters, we have taken 20 equally spaced over

phase space in the vicinity\t=75) of three times beyond [0,27r] values of the initial phase of the drive. The numerical
the linear resonancé=360,2400, and 740(ines 1, 2, and thresholde,,, was defined as the average between two values

3 in the figure. We see that the portraits comprise a nestec?’ € for which one obtains autoresonance for ali(e,) or

set of almost closed trajectories, each depending,cand ~ N°Ne €=e,) of the initial drlvm_g phases. The width of the
making two or three turns around the origin before nearlyreshold, €1~ €;)/ ey, was typically less than 3%. One can
closing on itself. It takes a period of nearlyr® to complete seeall(r‘;ln)l?lg. 3 that our calculations yield the scaliag

the closure, while fast rotations within this period yield the ~A™" " in agreement with the predictions of the thecsge
small time scale structures in Fig. 1. The slow expansion oP®/0W, shown by solid ¢=1, =0) and dashed«{=0,

the orbit itself(as moving from curves 1 to 2 and 3 in Fig. 2 B=1) lines. Before proceeding to the theory, we give a
reflects the slow time scale excitation to higher energiesgualltatlve explanation of the threshold scaling phenomenon

necessary to preserve the phase locking with variation.of 1" Slow passage through higher order resonances. Suppose
Note that, in all the examples, we closely approach the sepdl=2- We drive the system ai,=1/2 in this case, yielding
ratrix for A=1+D (dashed lines in Fig.)2 If one further & nonresonantO(e) linear response at this frequency. As
increases\, the autoresonance is destroyed by overlap Witﬁh_e result, the quadratic nonlmeanty of tr;e oscillator yields a
other resonances, followed by stochastic escape from the pdfiven response of amplitude,s~O(e”) at frequency
tential well. The stochastic ionization of atoms or dissocia-@efi=2@o=1. This nonlinear excitation plays a role of an
tion of molecules after a stage of autoresonant excitd@n effectivedrive, wh|ch passes the Imgar resonance, as the con-
are among potential applications of this effect. trol parameter varies in time. T_hls passage yields pha_se
Next, we proceed to the problem of thresholds. Numerilocking, and later the SHAR, as in the FAR case, but with
cally, for entering autoresonances in Fig. 1, the driving am{he driving amplitude replaced k. If the FAR threshold
plitudes must exceed certain thresholds. We illustrate thi§cales ag, '~A¥, then then=2 SHAR threshold scales
phenomenon in Fig.(&), where the upper curve corresponds as (€e1)in~A%4, or ef >~A%. For n=3, the third order
to €=1.07x103 just above the threshold e,=1.05 nonlinearity yieldse.s~ € and the corresponding threshold
X 1073, in this casg while the lower curve shows the result ef}, *~AY Finally, if  vanishes in Eq(1), then there is no
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second order response in the system, so the trappingninto £, is used to write the variational evolution equations for the
=2 SHAR is impossible. In order to confirm these qualita-remaining slow variablesa; and ® (recall that Q=1
tive predictions and find the proportionalities in the scaling+dd/dt):

relations, we develop the theory didiabatic passage

through higher order resonances. (Qai)pL €a,cos®=0, ©)]
Our theory uses Whitham’s averaged variational principle
[8] as a convenient tool in studying slow modulations in the (Q%2—A?)a;+2yal—esin®=0. 4

system. We write the Lagrangian of the problem
In the vicinity of the resonance\~1+ 3\ (t), so to lowest

1 1 1 1 order, Eqgs(3) and (4) yield
L=-x2— ZA%X?— Zax®—= Bx*+ exsin(t/n) (2 as(3) @y
2 2 3 4 1 1
€
a;=—-ecos®, d,=-\(t)—ya’+-—sind. (5
and seek solutior=u(6,t), which is 2n periodic in6 and = 2°€ 2 (U= ras 2a, ®

evolves on both slow and fast temporal scales. The explicit ] .

time dependence in(4,t) is assumed to be slow, batt) is  Now, we assume>0 and seek solutions of E€5) in the
the fast angle variable, while the angular frequenf(t)  form a;=a+p and ®==/2+¢, wherea is defined via

= 0, is viewed as a slow function of time. We also assume &\ (t)— ya2+ (e/2a)=0, while |p/a|<1 and|&|< . Then,
continuing phase locking in the system on the slow timeon linearization, Eqs(5) yield p;= — (A/2G) + ;e sin¢, and
scale, i.e., that the phase mismadeke (6—t)/n between the ¢=—Gp, where A=\,>0 is the chirp rate ands=2y
oscillator and the drive is bounded and slow. The Whitham’s, e/(2a2). The Hamiltonian for this system isl(p,&)=
method aIIo_ws to take_advantage of a large diffe_rence be'—Gp2/2+V(§), where V(£)=(A/2G)é+ (el2)cos is a
tween the time scales in the problem and, essentially, avefyieq cosine potential. Only when the tilting is small enough,
age out the fast scale. The analysis is greatly simplified i o 'A/G< ¢ does this potential have equilibrium points, and

studzling thle thresf?old conditions, since theh thLeShﬁldl IS Qe can have trapped solutions and phase locking in our sys-
i t. | in studying the t i - —
weaklynonlinear effect. Indeed, in studying the threshold in m. But G has a minimumG,—3(2/)"%y 2% at a,

the FAR case, one needs to consider oscillation amplitudetg

: .= (el2y)'3 where the small tilting condition is most difficult
of O(e'®) (see below Thus, as conjectured above, for find- (e Y) s WHEIR .
ing the n=2 or 3 SHAR thresholds, one must deal with to satisfy. This yields the threshold for FAR in our system

excitation amplitudes o®(e%3) or O(e), respectively. en=1=2| 4|~ 12 A/6) 34 ®)
We proceed by constructing Whitham’s averaged varia- th Y '
tional principle for the FAR case in our system. The solutiongyoo \we include the possibility of<0, in which case\,
is represented as<=1</':10+alcos¢9+a2pos(29+_n2), where st be negative and=|\,|. We find Eq.(6) in excellent
a(t) is slow andO(e'") by assumption, ;’Vh'lmog(t) aré  agreement with our numerical resultsee theA%* depen-
also slow, but scalésee below as ap,~a;~0(e*). Al gence forn=1 in Fig. 3. Note that these developments
higher harmonics irx are neglected to desired order. The show that the critical amolituda: ~a.. for having a continu-
amplitudesa; and the phasey, are viewed as new unknown . S P 1em. 9 .
P i pnase, ing phase locking is 0D(e?), justifying the truncation of

ts(l,(r)r\',nv iﬂetﬂzngzn:a\éagfnm:; Sll\:le(;t_ (I\)’\)/ear\:\g";ev;?; ;;ntoe\::ftloqhe series representation of our solution in calculating the
grang 9 averaged Lagrangian.

tﬁ'ez ff\;stzﬂl_ar;gtuljlg Hvarlal:rlle, I"e'i. cglc:ilatz/;l d The threshold for entering the SHAR @2 can be also
=(2m) “Jo"L(,1)dé. Here, the slow time is fixed an treated by using the averaged variational principle. One

L(Q't) f'S eyaluaéed gy Squt'tUt;ng our Lhreg-ter(;n rePreSenheeds to choose a different lowest order representation of the
tation for x into Eq.(2 ) and neglecting the time derivatives solution, since we must extend the theoryap~O(e?3).

(such asa;; anq 772Q of all sloyvobjects. Formglly, the aver- The desired form is x=ag+a; COSO+a, COS(D 7)
aged Lagranglan is a function 9f slow variables an(d) +bcos@2+ w), while the interaction term in the Lagrang-
only, £,="Ly[ay,8;,83, 72, P, P A(1)] (recall that (1) 5 (2) for this problem isexsin(@2—®), where ®=(6
=0—t s the phase mismaich, so the dependence pan- —1)/2 is the phase mismatch. Next, we averagever 4,

ters Ly an deoldt=_1+dcp/dt). The ma_in step Of. th? and arrive at the averaged Lagrangiéndepending on the
Whitham'’s approach is to replace the variational pr|nC|pIeSIOW variablesa,, b, 7,, 4, andd:
(I} 1 1 L] .

SfL(x,x)dt=0 in the original problem by the averaged
variational principledf £,[a;,a5,a3,7,,P,P;A(t)]dt=0. a 3 b
Then, variations with respect ta;, 7,, and ® yield the Lo=Ly— Zalbzcos(Z,u)— Ebz— > sin(®+puw), (7)
desired slow evolution equations in the problem. In our case,

£1=£0—(6/2)?1S|2<D, \évhgrelngarsthze rlesonazncé}{wi where we approximatd ~Q~1 in £, and in the third term
~1),  Lo=3(Q°—A%)ai—3a51 383720881~ 32631 n the right hand side. Furthermore, one can again eliminate
- %azaicosnz. Then, the variation with respect & yields  the slow variables , and 7, in £,, and obtain the expres-
ap,=— aa?. Similarly, the variations with respect & and  sion, 4£y=(Q2—A%)a’+ yaj, used already in deriving
75, yield a,= aajcosz, and 77,=0, respectively. The sub- Egs.(3) and(4). Next, we take variations with respectdo
stitution of these results back int6, gives the following anda,, yielding

reduced, weakly nonlinear averaged Lagrangiafy; 4 (2 5

— A?)a?+ yai—2ea;sin®, wherey=(5a2/12)— £ 3. Now, (Qaf)+ebcog®+u)=0, (8
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2_ A2 3. % _
(Q°—=A%a;+2vyaj 2b cog2u)=0. (9

Finally, the variations with respect t@, and b, yield
€ cos@+ u)~(2abay/3)sin(2u), |b|~4e/3 and [P+ u|
~ /2. Then, near the resonance, E(.and(9) become

4e?a
an=- g sin(2®), (10
od) = LI 11
( )V—EA(U‘"Yal_ 9a, cog2®d). (11

But this system is the same as E(f. for the FAR, with®
replaced by & — 7/2 ande by e.¢;=8€?a/9. This replace-
ment yields the desired=2 SHAR thresholdsee theA®®
dependence in Fig.)3

el ?=1.5a%y| Y4 Al6)%E. (12
Finally, we consider the=3 SHAR case. We seek6

periodic solutions in#, write, to desired orderx=a,
+aj,cosf+ a, cos (B+n)+c; cos@3+ky)+c; cos(H/3
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— B/4). This similarity yields the following threshold for en-
tering SHARatn=3 (see theA* dependence in Fig.)3

el 3=(8/9)|9a2/20— BI8| Y y|~Ye(Al6)Y4 (13

In conclusion, we have studied the adiabatic passage
through subharmonic resonances in a driven nonlinear dy-
namical system. It was shown that, after starting in equilib-
rium, the system phase locks to the drive as one approaches
the resonance by slowly varying the control parameter.
Later, at certain conditions, the system enters the SHAR re-
gime, where it self-adjusts its response continuously, to stay
in resonance with the drive. The SHAR mechanism involves
a different path to synchronization in driven systems with
slow parameters via generatingh order driven response at
the fundamental frequency, which, in turn, leads to phase
locking and autoresonance in the system. By using a weak
drive at a 1A fraction of the fundamental resonant fre-
quency, in SHAR, one reaches and controls large excitations
in the system. The phenomenon has a sharp threshold on the
drive’s amplitude, which scales with the chirp rate of the
control parameter as,~A%¥(“" . While first experiments on
the SHAR in pure electron plasmas demonstrate the effect
forn=2, 3, 4, and §7], the theoretical challenge remains to
describen>3 cases, multidimensional dynamical generali-

+k5), and use this representation in calculating the averagegations, and SHAR in extended systems, such as vortices and

Lagrangian. Then, eliminating all the slow variables, Ayt

and d=(6—t)/3, one again arrives at the system of varia-

tional evolution equations having the same form as Egjs.
but & replaced by @ and e by eqsi=(9€/8)3(92?/10

nonlinear waves.
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