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Subharmonic autoresonance

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 12 August 1999!

Adiabatic passage through higher order resonances in a perturbatively driven dynamical system with a slow
control parameter, yields persisting phase locking and a strong long time response. The phenomenon has a
sharp threshold on the driving amplitude, which scales with the control parameter chirp rateA and resonance
ordern, asA3/(4n).

PACS number~s!: 05.45.Xt, 05.45.Gg
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Many physical applications need a strong, controllable
sponse in a dynamical system by applying a weak pertu
tion. One can use a resonance for this purpose, i.e., tune
driving frequencyv0 to the system’s natural response fr
quencyv. Nevertheless, in most cases, the nonlinear
quency shift destroys the resonance, limiting the respo
amplitude toO(e1/2), wheree is the characteristic strength o
the drive @1#. This limitation can be removed by using
feedback. For example, one easily reaches large amplit
of a swing by subconsciously decreasing the driving f
quency, as the oscillation amplitude grows. There also ex
another way of obtaining a strong response to a weak pe
bation without the feedback and precise tuning. In this
proach, one passes through the resonance by slowly var
some control parameter,l(t). Then, at certain conditions, o
approaching the resonance, the system phase locks to
drive and enters anautoresonantevolution stage in which
the phase locking continues despite the variation ofl. Typi-
cally, this means a slow increase of the response amplit
which may become large over a long time. The system
be put back into a near equilibrium by reversing the direct
of variation ofl. This simple control of excitation by a wea
force is important in applications. The first known use
autoresonance was in particle accelerators@2#. Later, the idea
was implemented in other physical problems, ranging fr
atomic physics@3# through nonlinear waves@4#, and plasmas
@5# to fluid dynamics@6#. Recently, it was noticed that pas
sage through resonance yields autoresonance only if the
ing amplitude exceeds a sharp thresholde th depending on the
chirp rateA5dl/dt. For instance, when the control param
eter l(t) is the driving frequencyv0 itself, one findse th
;A3/4 @5,6#.

In this paper, we study a different type of autoresonan
taking place when one slowly passes a resonancev0'v/n
(n52,3, . . . ).This phenomenon will be referred to assub-
harmonic autoresonance~SHAR! in the following, in con-
trast to thefundamentalautoresonance~FAR!, corresponding
to the n51 case. The physical mechanism leading to
SHAR differs from that in the FAR, namely, the SHAR
due to the ability ofnth order nonlinearities in the drive
system to generate an effective drive at the fundamental
quency. This effective drive, in turn, plays a role of an ad
batic forcing in transition to autoresonance in the syste
Passage throughv0'v/n resonances is the only possibilit
for creating the internal forcing at fundamental frequency
the system, while other resonances~as in the second har
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monic driving, for example! do not necessarily lead to phas
locking and autoresonance in the system. We shall see be
that the SHAR theory becomes increasingly complex
larger n, so we shall studyn52 and 3 only. Nevertheless
recent experiments in driven pure electron plasmas@7# ex-
hibit the SHAR forn up to 5.

We focus our analysis on finding thresholds for enter
the SHAR in a simplest driven one-dimensional dynami
system with a slow parameter. Many other aspects, suc
the details of the advanced SHAR stage, the effect of a w
dissipation, higher dimensionality, etc., will be left for futu
studies. Our system is

xtt1L2~ t !x1ax21bx35e sin~ t/n!, ~1!

with L2[11l(t) a slow function of time~the variablesx, t
and parametersl, a, b, e!1, are set to be dimensionless!.
By starting in equilibriumx5xt50, one crosses the reso
nancev/n'v051/n when l(t) passes zero. We procee
from numerical illustrations of the FAR and SHAR in th
system. Figure 1 shows the evolution of the system’s ene
E5 1

2 xt
21 1

2 L2x21 1
3 ax31 1

4 bx42ex sin(t/n) for n51,2,3
and driving amplitudese51.0731023 @the upper curve in
Fig. 1~a!#, 0.05 and 0.12, respectively. We useda51, b
50 and initial conditionsx5xt50. The control paramete

FIG. 1. EnergyE versus time.~a! n51, e51.0731023 ~just
above the threshold, upper curve!, e51.0331023 ~just below the
threshold, lower curve!; ~b! n52, e50.05; ~c! n53, e50.12.
Small time scale structures~dark areas! are seen forn52, 3. The
mapping E(k2pn), k51,2, . . . at t.6000 ~dots! illustrates the
slow time scale phase locking in the system.
3732 © 2000 The American Physical Society
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PRE 61 3733SUBHARMONIC AUTORESONANCE
was varied asl(t)5D sin(1
2pt/T) ~with D50.7 and T

57500) between the initialt0521000 and finalt157500
integration times, so the desired resonances were enc
tered att50. One can see in the figure that, in all cases,
efficient excitation proceeds just beyondt50 and the final
energy reaches a substantial value of;0.7, despite the rela
tive smallness of the driving amplitudee. In addition to the
smooth averaged growth, the energy curves haveslow ~au-
toresonant! modulations, as well as, fast time scale stru
tures, seen best forn52 and 3@dark areas in Figs. 1~b! and
1~c!#. Nevertheless, these structures disappear if one m
the energy at equal time intervals 2pn ~the mapping is
shown by dots in Fig. 1 fort.6000), demonstrating the
continuing phase locking in the system on the slow ti
scale. Because of the phase locking, the energy is ne
2pn periodic at all times. The phase locking of ener
curves reflects the phase locking of autoresonant soluti
The latter are shown forn52, 3 in Fig. 2, as portraits in the
phase space in the vicinity (Dt575) of three times beyond
the linear resonance,t5360,2400, and 7400~lines 1, 2, and
3 in the figure!. We see that the portraits comprise a nes
set of almost closed trajectories, each depending onn, and
making two or three turns around the origin before nea
closing on itself. It takes a period of nearly 2pn to complete
the closure, while fast rotations within this period yield t
small time scale structures in Fig. 1. The slow expansion
the orbit itself~as moving from curves 1 to 2 and 3 in Fig. 2!
reflects the slow time scale excitation to higher energ
necessary to preserve the phase locking with variation ol.
Note that, in all the examples, we closely approach the se
ratrix for L511D ~dashed lines in Fig. 2!. If one further
increasesl, the autoresonance is destroyed by overlap w
other resonances, followed by stochastic escape from the
tential well. The stochastic ionization of atoms or dissoc
tion of molecules after a stage of autoresonant excitation@3#
are among potential applications of this effect.

Next, we proceed to the problem of thresholds. Nume
cally, for entering autoresonances in Fig. 1, the driving a
plitudes must exceed certain thresholds. We illustrate
phenomenon in Fig. 1~a!, where the upper curve correspon
to e51.0731023 just above the threshold (e th51.05
31023, in this case!, while the lower curve shows the resu

FIG. 2. Phase space portraits in autoresonance.~a! n52; ~b! n
53. Lines 1, 2, and 3 represent solutions in intervalsDt575 in the
vicinity of t5360, 2400, and 7400. The separatrix is shown by
dashed lines.
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for e51.0331023 just below the threshold. We see that f
e,e th , the phase locking is destroyed after passingt50 and
the final excitation energy is small. We have studied t
threshold phenomenon numerically for other conditions a
summarize our results in Fig. 3. The figure shows the dep
dence of the threshold drive amplitude on the chirp rateA
5 1

2 uDup/T of the control parameter att50 for different n
and two setsa51, b50 ~circles! and a50, b51 ~tri-
angles!. One finds, that for the second set,l must decrease a
t50 for entering autoresonance, soD is negative. Further-
more, there is non52 autoresonance for this set. For
smooth initial phase locking in these calculations we us
e5e0f (t), where the slow switching on function wasf (t)
50.5$11tanh@(t12T0)/T0#% and T05T/25. Thus,e almost
reached its constant valuee0 at the resonance (t50). For
each set of parameters, we have taken 20 equally spaced
@0,2p# values of the initial phase of the drive. The numeric
thresholde th was defined as the average between two val
of e for which one obtains autoresonance for all (e5e1) or
none (e5e2) of the initial driving phases. The width of th
threshold, (e12e2)/e th , was typically less than 3%. One ca
see in Fig. 3 that our calculations yield the scalinge th
;A3/(4n) in agreement with the predictions of the theory~see
below!, shown by solid (a51, b50) and dashed (a50,
b51) lines. Before proceeding to the theory, we give
qualitative explanation of the threshold scaling phenome
in slow passage through higher order resonances. Sup
n52. We drive the system atv051/2 in this case, yielding
a nonresonant, O(e) linear response at this frequency. A
the result, the quadratic nonlinearity of the oscillator yield
driven response of amplitudeee f f;O(e2) at frequency
ve f f52v051. This nonlinear excitation plays a role of a
effectivedrive, which passes the linear resonance, as the c
trol parameterl varies in time. This passage yields pha
locking, and later the SHAR, as in the FAR case, but w
the driving amplitude replaced byee f f . If the FAR threshold
scales ase th

n51;A3/4, then then52 SHAR threshold scales
as (ee f f) th;A3/4, or e th

n52;A3/8. For n53, the third order
nonlinearity yieldsee f f;e3 and the corresponding thresho
e th

n53;A1/4. Finally, if a vanishes in Eq.~1!, then there is no

e

FIG. 3. Threshold drive amplitudese th versus chirp rateA of the
control parameter fora51, b50 @numerical simulations~o!,
theory ~full lines!# and a50, b51 @numerical simulations (¹),
theory~dashed lines!#. There is no trapping inton52 SHAR in the
latter case.
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3734 PRE 61L. FRIEDLAND
second order response in the system, so the trapping inn
52 SHAR is impossible. In order to confirm these quali
tive predictions and find the proportionalities in the scali
relations, we develop the theory ofadiabatic passage
through higher order resonances.

Our theory uses Whitham’s averaged variational princi
@8# as a convenient tool in studying slow modulations in t
system. We write the Lagrangian of the problem

L5
1

2
xt

22
1

2
L2x22

1

3
ax32

1

4
bx41ex sin~ t/n! ~2!

and seek solutionx5u(u,t), which is 2pn periodic inu and
evolves on both slow and fast temporal scales. The exp
time dependence inu(u,t) is assumed to be slow, butu(t) is
the fast angle variable, while the angular frequencyV(t)
5u t is viewed as a slow function of time. We also assum
continuing phase locking in the system on the slow ti
scale, i.e., that the phase mismatchF[(u2t)/n between the
oscillator and the drive is bounded and slow. The Whitham
method allows to take advantage of a large difference
tween the time scales in the problem and, essentially, a
age out the fast scale. The analysis is greatly simplified
studying the threshold conditions, since the threshold i
weaklynonlinear effect. Indeed, in studying the threshold
the FAR case, one needs to consider oscillation amplitu
of O(e1/3) ~see below!. Thus, as conjectured above, for fin
ing the n52 or 3 SHAR thresholds, one must deal wi
excitation amplitudes ofO(e2/3) or O(e), respectively.

We proceed by constructing Whitham’s averaged va
tional principle for the FAR case in our system. The soluti
is represented asx5a01a1cosu1a2cos(2u1h2), where
a1(t) is slow andO(e1/3) by assumption, whilea0,2(t) are
also slow, but scale~see below! as a0,2;a1

2;O(e2/3). All
higher harmonics inx are neglected to desired order. Th
amplitudesai and the phaseh2 are viewed as new unknow
slow dependent variables. Next, we write the interact
term in the Lagrangian asex sin(u2F) and averageL over
the fast angular variable, i.e., calculateL1

5(2p)21*0
2pL(u,t)du. Here, the slow time is fixed an

L(u,t) is evaluated by substituting our three-term repres
tation for x into Eq. ~2 ! and neglecting the time derivative
~such asait andh2t) of all slow objects. Formally, the aver
aged Lagrangian is a function of slow variables andl(t)
only, L15L1@a1 ,a2 ,a3 ,h2 ,F,F t ;l(t)# ~recall that F(t)
[u2t is the phase mismatch, so the dependence onF t en-
ters L1 via V[du/dt511dF/dt). The main step of the
Whitham’s approach is to replace the variational princi
d*L(x,xt)dt50 in the original problem by the average
variational principled*L1@a1 ,a2 ,a3 ,h2 ,F,F t ;l(t)#dt50.
Then, variations with respect toai , h2, and F yield the
desired slow evolution equations in the problem. In our ca
L15L02(e/2)a1sinF, where near the resonance (V'L
'1), L05 1

4 (V22L2)a1
22 1

2 a0
21 3

4 a2
22 1

2 aa0a1
22 3

32 ba1
4

2 a
4 a2a1

2cosh2. Then, the variation with respect toa0 yields
a052 1

2 aa1
2. Similarly, the variations with respect toa2 and

h2, yield a25 1
6 aa1

2cosh2 andh250, respectively. The sub
stitution of these results back intoL1 gives the following
reduced, weakly nonlinear averaged Lagrangian: 4L15(V2

2L2)a1
21ga1

422ea1sinF, whereg5(5a2/12)2 3
8 b. Now,
-
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L1 is used to write the variational evolution equations for t
remaining slow variablesa1 and F ~recall that V51
1dF/dt):

~Va1
2! t1ea1cosF50, ~3!

~V22L2!a112ga1
32e sinF50. ~4!

In the vicinity of the resonance,L'11 1
2 l(t), so to lowest

order, Eqs.~3! and ~4! yield

a1t52
1

2
e cos,F, F t5

1

2
l~ t !2ga1

21
e

2a1
sinF. ~5!

Now, we assumeg.0 and seek solutions of Eq.~5! in the
form a15ā1p and F5p/21j, where ā is defined via
1
2 l(t)2gā21(e/2ā)[0, while up/āu!1 anduju!p. Then,
on linearization, Eqs.~5! yield pt52(A/2G)1 1

2 e sinj, and
j t52Gp, where A5l t.0 is the chirp rate andG[2g

1e/(2ā2). The Hamiltonian for this system isH(p,j)5
2Gp2/21V(j), where V(j)[(A/2G)j1(e/2)cosj is a
tilted cosine potential. Only when the tilting is small enoug
i.e., A/G,e does this potential have equilibrium points, an
we can have trapped solutions and phase locking in our
tem. But G has a minimumGm53(2/e)1/3g22/3 at ām
5(e/2g)1/3, where the small tilting condition is most difficul
to satisfy. This yields the threshold for FAR in our system

e th
n5152ugu21/2~A/6!3/4. ~6!

Here, we include the possibility ofg,0, in which casel t
must be negative andA[ul tu. We find Eq.~6! in excellent
agreement with our numerical results~see theA3/4 depen-
dence forn51 in Fig. 3!. Note that these developmen
show that the critical amplitudea1'ām for having a continu-
ing phase locking is ofO(e1/3), justifying the truncation of
the series representation of our solution in calculating
averaged Lagrangian.

The threshold for entering the SHAR atn52 can be also
treated by using the averaged variational principle. O
needs to choose a different lowest order representation o
solution, since we must extend the theory toa1;O(e2/3).
The desired form is x5a01a1 cosu1a2 cos(2u1h2)
1bcos(u/21m), while the interaction term in the Lagrang
ian ~2! for this problem isex sin(u/22F), where F[(u
2t)/2 is the phase mismatch. Next, we averageL over 4p,
and arrive at the averaged LagrangianL2 depending on the
slow variablesai , b, h2 , m, andF:

L25L02
a

4
a1b2cos~2m!2

3

16
b22

eb

2
sin~F1m!, ~7!

where we approximateL'V'1 in L0 and in the third term
in the right hand side. Furthermore, one can again elimin
the slow variablesa0,2 andh2 in L0, and obtain the expres
sion, 4L05(V22L2)a1

21ga1
4, used already in deriving

Eqs.~3! and ~4!. Next, we take variations with respect toF
anda1, yielding

~Va1
2! t1eb cos~F1m!50, ~8!
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~V22L2!a112ga1
32

a

2
b2 cos~2m!50. ~9!

Finally, the variations with respect tom, and b, yield
e cos(F1m)'(2aba1/3)sin(2m), ubu'4e/3 and uF1mu
'p/2. Then, near the resonance, Eqs.~8! and ~9! become

a1t52
4e2a

9
sin~2F!, ~10!

~2F! t5
1

2
l~ t !2ga1

22
4e2a

9a1
cos~2F!. ~11!

But this system is the same as Eqs.~5! for the FAR, withF
replaced by 2F2p/2 ande by ee f f58e2a/9. This replace-
ment yields the desiredn52 SHAR threshold~see theA3/8

dependence in Fig. 3!:

e th
n5251.5ua2gu21/4~A/6!3/8. ~12!

Finally, we consider then53 SHAR case. We seek 6p-
periodic solutions inu, write, to desired order,x5a0
1a1cosu1 a2 cos (2u1h2)1c1 cos(u/31k1)1c1 cos(2u/3
1k2), and use this representation in calculating the avera
Lagrangian. Then, eliminating all the slow variables, buta1
and F[(u2t)/3, one again arrives at the system of var
tional evolution equations having the same form as Eqs.~5!,
but F replaced by 3F and e by ee f f5(9e/8)3(9a2/10
ed

-

2b/4). This similarity yields the following threshold for en
tering SHARatn53 ~see theA1/4 dependence in Fig. 3!:

e th
n535~8/9!u9a2/202b/8u21/3ugu21/6~A/6!1/4. ~13!

In conclusion, we have studied the adiabatic pass
through subharmonic resonances in a driven nonlinear
namical system. It was shown that, after starting in equi
rium, the system phase locks to the drive as one approa
the resonance by slowly varying the control parame
Later, at certain conditions, the system enters the SHAR
gime, where it self-adjusts its response continuously, to s
in resonance with the drive. The SHAR mechanism involv
a different path to synchronization in driven systems w
slow parameters via generatingnth order driven response a
the fundamental frequency, which, in turn, leads to ph
locking and autoresonance in the system. By using a w
drive at a 1/n fraction of the fundamental resonant fre
quency, in SHAR, one reaches and controls large excitat
in the system. The phenomenon has a sharp threshold o
drive’s amplitude, which scales with the chirp rate of t
control parameter ase th;A3/(4n). While first experiments on
the SHAR in pure electron plasmas demonstrate the ef
for n52, 3, 4, and 5@7#, the theoretical challenge remains
describen.3 cases, multidimensional dynamical genera
zations, and SHAR in extended systems, such as vortices
nonlinear waves.
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