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Robust synchronization of chaotic systems
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The question of robustness of synchronization with respect to small arbitrary perturbations of the underlying
dynamical systems is addressed. We present examples of chaos synchronization demonstrating that normal
hyperbolicity is a necessary and sufficient condition for the synchronization manifold to be smooth and
persistent under small perturbations. The same examples, however, show that in real applications normal
hyperbolicity isnot sufficient to give quantitative bounds for deformations of the synchronization manifold,

i.e., even in the case of normal hyperbolicity two almost identical systems may cause large synchronization
errors.

PACS numbds): 05.45.Xt

Synchronization is a phenomenon of interest to fieldsexist a chaotic attractad and a functiorh: R"— R™, m<n,
ranging from celestial mechanics to laser physics, from elecsuch thatM ={(x,y):h(x,y) =0} is a stable(i.e., attracting
tronics to communications, and from biophysics to neuro-and smooth invariant manifold, and is a subset oM (in
sciencd1]. In particular, synchronization in chaotic dynam- other words, the restriction of the dynamics to the invariant
ics [2] has attracted much attention during the last few yearsnanifold is chaotit In particular, whenM ={(x,y):x=y},
because of its role in understanding the basic features délentical synchronizatiorilS) occurs between the two sub-
manmade and natural systems. For example, optical commsystems. This description of generalized synchronization
nication with chaotic wave forms demonstrated both experi{GS) is compatible with a recently proposed unified defini-
mentally[3] and theoretically4], is only possible because of tion of synchronization in dynamical systeifist] and it in-
chaos synchronization between receiver and transmitter. O¢gludes phenomena like subharmonic entrainni@mf15.
the other hand, the evidence of chaotic behavior in the brain

[5] and the importance of synchronization in perceptive pro- |, ROBUSTNESS AND NORMAL HYPERBOLICITY
cesses of mammal$§] indicate a possible role of chaos syn-
chronization in neural ensemblEg] as well. In order to be physically meaningful and experimentally

_Natural language for description of identical and generalypservable any synchronization phenomenon has to be ro-
ized chaos synchronizatid8—12 is in terms of invariant, pyst j.e., the synchronization manifod and its stability
stable, and robust manifolda3]. In other words, only syn-  properties have to be persistent with respedtstaal) arbi-
chronization phenomena that are described with stable aqq,lary perturbations of the dynamical systems involved.
robust manifolds can be observed in physical experimentsgnerefore, we not only have to ask “Under what condition is
The physical notion of a robust phenomenon contains tWqy 3 stable manifold?” but also “Under what conditioné
separate issues: persistence under small arbitrary perturbgersistent under perturbations?”
tions of the systeits) and persistence under small noise. In" | this paper we address the second question that may be
this paper we address only the question of synchronizatiognswered as follows. There are two linear mutually orthogo-
that is robust with respect to small perturbations of the dyng| spaces associated with each paietM: the tangent
namical systems involved. o __spaceT,M and the normal spach,M. Let P:T,M XN,M

We first repeat the definition of identical and generallzed_,NZM be the orthogonal projection to the normal subspace
chaos synchronization for arbitrary dynamical systems. CO”NZM. Now we consider the linear pai ¢,(2), of the flow

sider a flowe,(2) defined orR" (or a subset where the time #(2) at the invariant manifoldM. Let v (t)=D ¢,(2)v(0),
t may take values from the set of real numbe@nrsthis case v(0)e T,M, w(t)=PDd(2W(0), w(0)e N,M.

the flow is generated by a differential equadiam from the The invariant manifoldM is stableif
set of integergin this case the flow is generated by a map

Furthermore, assume that the full system consists of two lim |w(t)| =0
coupled(suby systems with variable&oordinatesx andy, oo

with z= (x,y), wherex andy are vectors that, in general, may
have different dimensions. We say that two coupled system#r all ze M and all vectorsw(0)e N,M. It is said to be
are in the state of generalized chaos synchronization if thereormally hyperbolicif
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lw(t)] other dynamical system. For example, similar results for the

nmm— Lorenz system are reported in RgL9].
t—oo

for all ze M and all nonzero vectons e N,M andv e T,M. IIl. NORMAL HYPERBOLICITY AND GS
In other words, the rate of normal contraction to the manifold  \ve now show, with an example, that the absence of nor-

is larger than the tangential one. Normal hyperbolicity is ama| hyperbolicity leads to a loss of smoothness for GS mani-

necessary and sufficient condition for persistence of the info|ds. To do this, we consider the baker map that drives a
variant manifold under small arbitrary perturbations of thejinear system,

system. The result we have just described is essentially due

to Hirsch and Pugil16-20. x(n+1)=f(x(n)),
The conditions for stability and normal hyperbolicity can (4
be expressed in terms of Lyapunov exponents. hebe y(n+1)=ay(n)+e cog2mx.(n)],

an ergodic invariant measure supportedAn Then there . )

exist m tangential Lyapunov exponentsE’s) (equal to the Where >0 is the coupling parameter. Fer=0 and|a|

LE’s of A considered as an attractor of a dynamical systent~1 the full system possesses an attracting invariant manifold
restricted toM) andn—m normal LE’s. We writek a(p) M ={(x,y):y=0}. If the coupling is switched one(>0) the

for the largest normal LE ange,(p) for the smallest full system and this man_lfold are perturbed. For this e>_(ample
tangential LE. We define\ na,=SUpU ,c eXmax(p)s Mmin th.e new (perturbed manifold can pe cqmputed analyuqajly
=inf U, cehmadp)s  Mmax=SUPU , ceftmin(p), and amin with _the state of the responsebeing given by an explicit
=inf U, . emin(p), WhereE is the set of all ergodic invari- function

ant probability measures supported4n The invariant mani-

fold is stable iff y:‘gjzl aj_lcOS{Z’ﬂij(Xl,Xz)]:b‘jZl gj(x) (5)

Amax<0, ()
) ) o of the state variableg; andx, of the drive[20]. Since for
and the stable manifold is normally hyperbolic if la|<1 the functiongy; are bounded and continuous, the sum
N @) converges uniformly and functio(b) is therefore properly
max~ Hmin- defined, continuous, and its graph is a globally attracting

If the contraction towards the synchronization manifold isinvariant manifold of Eq.(4). For the baker mag3) the

sufficiently strong and if this is true for all trajectories em- inversef;’ depends ox, only and therefore the functia(s)
bedded in the chaotic attractet, the manifold is persistent @nd the resulting graph are independentxgfin this case.
under perturbations. Furthermore, the size of the perturbati@e., the value ot)
We now illustrate the importance of normal hyperbolicity is in this case arbitrary, because the response system is linear
for chaos synchronization using two examples that are botANd & can without loss of generality be chosen to be unit.

based on the baker map, The LE describing the conFraction normal to this manifold
equals Im and the tangential LE’'s are those of the baker
. axq if x,<a; map. We now want to address the question of whether func-
X1 %)= _ . ) ) . .
1(X1,X2) atBx, it x=ay tion (5) and the corresponding manifold are differentiable or

not. From the numerical experiment of Huettal. [10] we

X,la, it x,<a, 3) know that the function5) is differentiable fom<«, and it is
fo(Xq,Xp) = [ , not differentiable form> 3. We now give a heuristical expla-
(xp—ay)la, if X=a;. nation for this behavior.

As we shall see below, the dynamics restricted to the invari- From Eq.(3) it follows that Eq.(5) can be rewritten as

ant manifold is governed by=(f,,f,), and therefore we %

denote the LE’s of with  (tangential LE’$. For the baker y=e2, al tcog2mla 1B I2x+ @), (6)
map,a,, a,, «, and B are positive real numbergaram- =1

eterg such thata<pg, a+ =1, anda;+a,=1. The cha- o . , .
otic attractor of the baker map has a natural invariant meat\g;/]herejﬁjﬁ—] imd C_}H] IS aEreaI nbumber. We first consider
sure that is uniform inx, and varies wildly in thex; e case whew = 5. Then Eq.(6) becomes
direction. It is easy to see that the LE’s of this attractor with o
respect to the natural measure aqug(p,a)=2a;In(1/a,) y:f 2 al cog27h~ix, + ®), (7)
+a,In(1l/ay)>0 and uy(ppa) =as In at+a,In B<0 [21]. In aj=1

addition one can show that for all ergodic measyre$na ) _ _
where b=a= 8. Equation (7) is the famous Weierstrass

<uy(p)<In B. Hence, the smallest negative LE of the baker ) P _ _
map only is given byuin=Ina, and the largest negative LE function, which is known to be nowhere differentiable for
min l

by sma=InB. We stress that here we consider the bake <2 [22]. This is essentially due to the fact that the infinite
N )

map because it offers the possibility of graphical illustrations>U™M

of the synchronization manifold and some of the results can o J.
be obtained analytically. However, the main results of this 5_3’5_82_77 2 (E) sin(27b~ix,+ ®) @)
paper are not restriced to the baker map but hold for any Xy a =1\b !
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is divergent for allx, if b<<a. Therefore, fore= 3, we have example, that slight mismatch of the parameters in the case
a sharp transition from a differentiable manifoléh< « Amax> Mmin May cause the invariant manifold to lose its
= B) to a nowhere differentiable manifold>a=8) at the  smoothness and become a fractal set. For our example,
critical point (@a=a=p).

However, in generakv# 8 and we shall assume in the x(n+1)=f(x(n)), ©)
following «<B. Then, there exist two problems concerning _
a rigorous treatment of E@6). The first one is that Eq6) y(n+1)=f[y(n)]+h(x(n),y(n)),

can be rewritten as Eq7) only approximatively. If the driv- _
ing trajectory is periodic, then the termi /18 )2 is for large ~ we usef andf to be the baker maf8) with different param-
j proportional tob™) with b=[a*1p*2]7k where k=k,  eters, and the feedback linearization coupling
+k, is the period of the driving trajectork, is the number - -
of points with slopex, andk; is the number of points with h(x,y)=f(x) = f(y) + A(y—x),
slope 8. Thus for example, fok;=k,=1, o™ '137/2 may
alternate between two values 'b~) and b~!/, whereb
= aB. For chaotic driving trajectories, the tera1 11872 is
for largej proportional to the Lyapunov number of the driv-
ing trajectory, that is, tb ! =[ «®18%2] ! (this follows from
the existence of Lyapunov exponents of the baker)map ~ ©nal elements. We also assume thatd},;<az,<1. If we
The second problem results from the fact that periodicl€finez=y—x, then the dynamics of E¢9) can be rewritten
points of the baker mafuirive systemare dense. This means 25
that in a neighborhood of any point there exists an infinite
number of points with different values of the asymptotic con-
stantb. In particular, fore<a< we can always find close
to a point witha<b another one witta>b. This raises the
guestion of what we mean exactly by differentiabilityr ~ o~ L~ . .~
smoothnessof a function ¢: A—[0,1] for an arbitrary set whereg=f—T. Smce~g is a bounded function, we writg
A C[0,1], which is beyond the scope of this paper. =g, wheres=maxg. Normal LE’s are Ira;; and Inay,,
The above discussion shows that in gendral[ a,3]. while tangentlall LE’s are those of the baker map. Condition
Thus, fora< a it follows thata<b for all trajectories of the ~ (2) can be rewritten aa,<a. _
baker map and the synchronization manifold & ‘afunction In the ideal case, when the parameters of drive and re-
for all x;. Note thata<a coincides with condition2) for ~ SPONse are the same the synchromza’gon manifel@ (or
normal hyperbolicity. In the casa> 3, condition (2) for ~ X=Y) is globally stable. We shall consider now a perturba-
normal hyperbolicity is violated everywhere on the manifoldtion of the full coupled systems and its synchronization
which is then likely to be the graph of a continuous putManifold in terms of p_argmeter mismatch between both
nowhere differentiable function. We conjecture that this isPaker maps. By resubstitution of Ed.0), one can show that
indeed the case, because fr@iw a it follows thatb<a for ~ the GS manifold is in this case given by the function
all trajectories of the baker map and this suggests that@tq. "
is a nowhere differentiable function. What happens dor _.p-1 i—1 —j
<a< B? The answer to this question is left to future inves- z=eB 121 C By (), D
tigations, although our numerical experiments indicate that
asa increases, the invariant manifold looses smoothness firsthereB and C=diag (@;1,a,,) are 2<2 matrices withb,4
at individual periodic orbitffor a<a<a®3%2). Then, for =by=1, b;,=0, andb,;=a,,/(a,,—a;;). Following simi-
a®1B%2<as< g, the invariant manifold looses smoothness atlar arguments as above we may conclude thaafer « Eq.
chaotic orbits and finally foa> 3 the invariant manifold is  (11) describes a smooth manifold and we observe robust syn-
nowhere differentiable function for atl,. We conjecture that chronization[see Fig. 18)]. On the other hand, foa,;> 3
the transition from aC! to a C° manifold is typically not the manifold(11) has a fractal structure, as can be seen in the
abrupt, but that the invariant manifold locally loses its Fig. 1(b).
smoothness wheaincreases fronw to 5. Note that one can We now ask the question, “How small should the pertur-
generalize this concept ©X manifolds and in this case Eq. bation(mismatch of the parameterse so that the perturbed
(2) has to be replaced by a similar relation. The couplednanifold is close to the originafunperturbeg?” Normal
system(4), for example, possess€& synchronization mani- hyperbolicity guarantees only persistence and smoothness,
folds for a<aX. We also note that since<1 the synchro- but says nothing about the actual deformation of the mani-
nization manifold for our example is never”. fold due to a perturbation. Using exampl€)) we shall dem-
onstrate that even for fixed, small normal LE’s this deforma-
tion may become arbitrary large depending on the coupling.
The unperturbed manifold B=0. In order to study the de-
In the literature on identical chaos synchronization, stabilformation of this manifold we estimate maxfor a,;>1 to
ity of the invariant manifold is the only requirement for syn- be majz ~ea,;. The parametet is a measure of the pa-
chronization. This is due to the fact that for identical syn-rameter mismatch or perturbation and we assume that it is
chronization, the synchronization manifoltsy, is smooth  small (but not arbitrary small, because we want to apply this
even when it is not stable. We show now, by means of ameasoning also to experimental system$ the parameter

with a stable 22 matrix A. Using this active passive de-
composition[23] of the drive system we obtain a response
system that synchronizes globally with the drive. We further
assume that;,=0 so that the eigenvalues éfare its diag-

x(n+1)=f(x(n)),
~ (10
zZ(n+1)=Az+g(x(n)),

IIl. NORMAL HYPERBOLICITY AND IS
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FIG. 2. Graphy, vs (Xq,X,) of the synchronization manifold of
the system(9) of two coupled baker map8). Parameter values are
«=0.5, B=05, a,=0.45, a,=0.55, «=0.49, =051, a;;
=0.1, ay»=0.12, anda,;=50. The manifold is smooth due to nor-
mal hyperbolicity but deviates strongly from the identical synchro-
nization manifoldx=y [compare Fig. (a)].

again and this mechanism is the deeper reason for the strong
sensitivity of the synchronization manifold on perturbations
of the coupled systems.

In this paper we have addressed the problem of robustness
of synchronization(manifold9 with respect to(smal) per-
turbations of the underlying dynamical systems. It turns out
that two different aspects have to be distinguish@dper-
sistence of qualititive features such as the existence or
smoothness of the manifold affid) boundedness dfjuanti-
tative) deformations of the manifold. Both robustness fea-
* tures have been found to be independent from each other.

FIG. 1. Graphy, Vs (x;,X,) of the synchronization manifold of Robustness in the first sense is guaranteed for normally hy-
the systen(9) of two coupled baker map@). Parameter values are perbolic systems and depends on normal contraction rates
a=0.5, =0.5, a,=0.45, a,=0.55, «=0.49, =051, anda,,  that can be measured in terms of normal and tangential
=1. (@) Smooth manifold fora;;=0.1 anda,,=0.12.(b) Fractal  Lyapunov exponents. Th@on) boundedness of deforma-
manifold fora;;=0.8 anda,,=0.82. tions of the manifold does not depend on the contraction

rates but is related to contractiéand expansiondirections.
a,, becomes large, the GS manifold1) deviates signifi- Since for many physical systems and applications not only
cantly from the 1S manifold and we observe large synchro-smoothness of the synchronization manifold but also quanti-
nization errorgfor our system this error grows linearly with tative deviations and differences are of importance normal
a,,) althougha,, does notinfluence the normal contraction hyperbolicity seems in this sense not to be a sufficient con-
rates(and LE’S ! Therefore, even in the case when the syn-dition for robust synchronization.
chronization manifold is normally hyperbolic, the systems
may possess a parameter that influences very strongly the

o=z O#
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