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Synchronization of chaotic structurally nonequivalent systems
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Synchronization features are explored for a pair of chaotic high-dimensional bidirectionally coupled struc-
turally nonequivalent systems. We find two regimes of synchronization in dependence on the coupling
strength: creation of a lower dimensional chaotic state, and for larger coupling a transition toward a stable
periodic motion. We characterize this new state, showing that it is associated with an abrupt transition in the
Lyapunov spectrum. The robustness of this state against noise is discussed, and the use of this dynamical
property as a possible approach for the control of chaos is outlined.

PACS numbd(s): 05.45.Xt, 05.45.Jn

In the last decade, synchronization of chaos has becomevwaith fractal dimensionD; and the second to a solutio
field of great interest. So far, four types of synchronizationwith fractal dimensiorD, (with a sufficient high difference
have been studied for chaotic concentrated systems, nameabetweenD; andD,). Synchronization is associated with the
complete synchronizatiofCS) [1], phase(PS [2], lag (LS)  building of some kind of dynamical relations between the
synchronization[3], and generalized synchronizatid®S) two signals. We show that synchronized states can be real-
[4]. CS implies a perfect linking of the chaotic trajectories,ized either in a chaotic manifold, which can be very low
so as they remain in step with each other in the course of theimensional if compared with the dimensionality of the two
time. This mechanism occurs when two identical chaotic systincoupled systems, or even in a periodic manifold. The tran-
tems evolving from different initial conditions are coupled sition between these two synchronization manifolds as a
through a signal, provided that the sub-Lyapunov exponentBinction of the coupling parameter is associated with a large
of the subsystem to be synchronized are all negdfiye change in the dimensionality of the system.

In fact, when one considers two nonidentical systems, one In the following, we will specialize our analysis to two
can reach a dynamical reginieS, wherein a perfect lock- delayed dynamical systems, since they constitute prototypic
ing of the phases of the two signals is realized already foexamples of high dimensional chaotic systems. Such sys-
small coupling, while the two amplitudes remain uncorre-tems, indeed, even provide a link with space extended sys-
lated[2]. tems by means of a two variable representation of the time

A third type of synchronization is LS, consisting of the [9], and the formation and propagation of space-time struc-
fact that the two signals become identical in phases and aniures, as defects and/or spatiotemporal intermittency has
plitudes, but shifted in time of a lag tin{&]. been here identified and controllgt0].

Finally, GS implies the hooking of the amplitude of one  Let us then make reference to symmetrically coupled
system to a given function of the amplitude of the otherMackey-Glass equations:
system[4].

Reference]3] describes the situation of two symmetri-
cally coupled nonidentical chaotic oscillators, wherein con-
secutive transitions between PS, LS, and CS are observed
when increasing the coupling strength. These transitions can +e[Xp1(t) =Xy A1) ], (1)
be identified in terms of changes in the Lyapunov spectrum.

Recently, experimental verifications of these theoreticaWhere the dot denotes the temporal derivativg, are real
findings have been offered, e.g., in the cardiorespiratory syssariables, T, , are distinct delay times, and<0e <1 is the
tem[5], in the human braif6], in the cells of paddlefisf], coupling strength. Synchronization features have been ex-
and in communication with chaotic lasdig. plored for identical delayed dynamical systenig€T,) in

Synchronization features in high dimensional systemdRef.[11], even in a high dimensional chaotic case. It is well
have been so far mostly limited to the case of structurallyknown that the fractal dimensions of systéin are propor-
equivalent systems, i.e., systems where the nonidenticity rdional to the delay timg12]. If so, selectingT,# T, and
sulted in a rather small parameter mismatch. choosingT , sufficiently large, implies that the two systems

In nature we cannot expect to have coupled low-generate high dimensional chaotic signals with quite differ-
dimensional systems which are structurally equivalentent fractal dimensions, thus confined within structurally dif-
Therefore, our intention in this paper is to study the couplingferent chaotic attractors.
of structurally nonequivalent systems, i.e., systems generat- The purpose of the present paper is studying the effect of
ing chaotic attractors with high and different fractal dimen-£#0 in Eqg. (1). Even though the scenario that we will de-
sions. As an example, let us consider the symmetric couplingcribe is a general feature of systdf), regardless of the
of two chaotic systems, the first giving rise to a solutign  particular choice of the delay times, for the sake of exempli-
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FIG. 1. (a),(c),(e) Time evolution of signalx; andx, for e=0
[(a), uncoupled cagee =0.3[(c), synchronized chaotic stdteand
£=0.65((e), synchronized periodic stdteln all cases, time is in
arbitrary units.(b),(d),(f) Projections of the attractor of the system
(1) on the planeX;,x,) for e=0 (b), e=0.3(d), ande=0.65(¢).

fication, in the following we will selecfT;=100 andT,
=90. This implies that, at =0, x4(t) [X,(t)] develops into
a chaotic attractor of fractal dimensiob;=12.2 [D,
=10.1]. Figure Xa) shows the two signabs,(t) andx,(t) at

£=0. The two signals are clearly uncorrelafédg. 1(b)].

By gradually increasing, the system begins to build up
correlations betweer; andx,. This result is consistent with
what was already observed in REZ] in the case of a sym-
metric coupling between a chaotic and a hyperchaoti
Rossler system. At variance with what was previously re-
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FIG. 2. (a) MFNN parametef4,13] (dimensionless quantity, see
text for definition) as a function ofn, (dimensionless quantixyfor
£=0 (upper triangles € =0.05 (circles, £ =0.1 (lower triangles,
£=0.2 (squarel and £=0.5 (diamond$. The calculations have
been done with 500 000 data points from the solution of sysfigm
and takingn=5000 randomly selected state vectors for the averag-
ing process of. m; =25 fore<0.1. m; =15 fore>0.1.(b) MFNN
parameter as a function ef for a fixed m,=35, and the other
parameters as above.

sionm,, andS; is the embedding space ®j(t) at the fixed
embedding dimensiom;. We then pick up randomlyg state
vectorsx] in S; and consider the corresponding imaggs
and x3 in S, and S;. We call Xy, (X3yng) the nearest

Qeighbor tox] (x3) in S; (S3). In the same way, we consider

H n ; n
the nearest neighbot;\, t0 X5 in S,, and we callx} yy,

ported, there are no intermediate PS states, and phases of fignn2) the image oGy, in S, (S;). The MFNN param-
two signals adjust as the result of a gradual transition towargter is then defined d4,13]

a synchronized stafé€ig. 1(c), ¢ =0.3], which is yet chaotic.
Finally, a transition is observed toward a periodic state,

which is reached for large values[Fig. 1(e), e =0.65]. At

this stage, the coupled system of Ef) realizes a simple

B |X7 = X1 izl ® (%3 — X3 sl

X = XT nnl? 1XG— X3 el n,

)

periodic attractor. Therefore, a large structural change in sys-

tem (1) is associated with the increasing afsince the frac-
tal dimensions have passed frdin=22.3 ate=0 toD=1

ate=0.65.

To study the appearance of synchronization in systBm
guantitatively, we make use of theutual false nearest
neighbors(MFNN) parametef4,13]. We consider three em-
bedding spaces, name${, S,, andS;. S; is the embedding
space ofx,(t) at the fixed embedding dimension,, S, is
the embedding space &§(t) at variable embedding dimen-

where(- - -}, denotes averaging over It has been shown
thatr=1 for systems showing GS, whereiag 1 when the

systems are not synchronizétbr more details, see Ref.
[4,13)).

Figure Za) shows the dependenceofiponms,, by fixing
m,; =25 for £<0.1, andm; =15 for e>0.1. Figure 2b) re-
ports r as a function ofe for m,=35, andm;=25 (e
=<0.1), m;=15 (¢>0.1). The primer of a synchronized state
appears evident at=0.15.
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FIG. 3. (a) Kaplan-Yorke dimension of Eq1) as a function of
the coupling strengtle. (b) Number of positive exponents in the 14
Lyapunov spectrum vse. (c) Largest ten exponents in the
Lyapunov spectrum vs. In all cases the calculations have been
performed over a timé=1 000 000, corresponding to 10 000 delay

units of the system with larger delay. The transition toward a peri-

odic synchronized state arourg=0.6 is marked by a sudden

change in the Kaplan-Yorke dimensida) and by the fact that 0

many positive Lyapunov exponents goes to negative value at once 1 :

(©. ' i
6=0.7% c=2%

The occurrence of the periodic synchronized state is asso-
ciated with a transition in the Lyapunov spectrum, wherein FIG. 4. Dynamical effect of noise in E@l). ¢ =0.65. Horizon-
many positive Lyapunov exponents passes to negative valuéal axis reports time in arbitrary units, vertical axis reports the two
at once. Figure 3 reports the measurement of the Kaplarsignalsx,,. The signalx, is vertically shifted of 1.5. The noise
Yorke or Lyapunov dimension of Eql) [Fig. 3(@] as well  amplitudeo is measured in percent of the rms of the signal oscil-
as the number of positive Lyapunov expondifiig. 3b)], as  lations. Three different situations are shovare=0% (first part of
functions ofs. For smalle, one observes a slow continuous the plod, o=0.7% (middle part of the plgt ando=2% (last part
decreasing process of the Lyapunov dimension driving seof the plod. Therefo_re, the s_calfe for the_ horizontal ax_is is not _set.
quentially positive Lyapunov exponents from positive toWhlIe thg synchrlonlzed perlodlc.state |s.robust against relatlvely
negative values, consistent with what was already describesna! noise amplitudes, larger noise amplitudes recover the chaotic
for structurally equivalent systems. Indeed, a slow continuSYnchronized state.
ous variation in the Lyapunov dimension is signature of a . _ _ .
slow continuous variation in the Lyapunov spectrum. A heuristic argument for this dynamical transition can be
At larger couplings, two different dynamical regimes can©ffered. From Fig. {d) one can easily realize that the cou-
be isolated. This first corresponds to the appearance of GBJiNg is strongly reduced in the synchronized state, since
(0.15<¢). At the beginning of GS, a plateau in the X1(t)=Xa(t). Therefore, the two systems should adjust
Lyapunov dimension aroun®=7.2-7.5 sets in for 0.15 themselves in some dynamical solution compatible with both
<&<0.6. This situation indicates that GS is initially realized &ttractors, that is they must adjust onto a trajectory contained
over a high dimensional chaotic state. Correspondingly, thavithin the intersection of the two mdependem chaotic attrac-
number of positive Lyapunov exponents does not change. ©OrS: Now, itis a well knpwn property of chaotic systems that
Finally, a second regime is encountered (0. Here, the.trajectory moves within the att'raqtor such as to shadow
we find a transition in the Lyapunov dimension, leading to@" infinite number of unstable periodic orb{tsPO’s) [14].
the stabilization of a final periodic state. Around such a tran-1N€ global Lyapunov exponents\(s) are the average over
sition point we observe a sudden change in the Lyapunoth® trajectory of the local Lyapunov exponeniss). Ergod-
spectrum, wherein all residual positive Lyapunov exponentdCity of chaos allows one to calculate such average over all
suddenly jump to negative values at ori€gg. 3(c)]. This \’s corresponding _to the different UPO’s. Now, different
phenomenon constitutes a remarkable difference with th&/PO’s may have differenk’s. Therefore, even though the
synchronization features studied so far in the literature. ~ SPectrum is composed by many positides, it can occur
These findings are further confirmed by looking at the terfhat a given UPO possesses a single positive Lyapunov ex-
largest Lyapunov exponents of El) as functions of the ponent\. From the other side, the coupling strength gradu-

coupling parametet [Fig. 3(c)]. All calculations have been ally reduces all\’s. Therefore, where is such that\ be-
performed over a timet=1 000000, corresponding to comes negative, the corresponding periodic orbit becomes
10000 delay units of the system with larger delay. linearly stable. In this case, the attractor contains a linearly
Focusing on the transition from a hyperchaotic state to stable orbit embedded within an infinity of other UPO’s.
periodic orbit near ~0.6, we find an intermittent behavior. Then, apart for the transient time needed by the natural evo-
The system switches in time between two qualitative differ-lution for shadowing that particular orliithe so called target
ent types of dynamics: a motion close to the periodic orbittime), the system is asymptotically trapped on this orbit.
and a vastly irregular motion far away from the periodic  This qualitative picture is confirmed by the measurement
orhit. A similar desynchronization scenario has been charaf the robustness of the periodic synchronized state against
terized as on-off intermittency in the case of identical DDSnoise, performed by adding a noisy sourég,t) to the
[11]. right-hand side of Eq(1). The noisy perturbation has zero
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average, and it i correlated in time. The results are re- but it is not generated by external perturbatiores in the
ported in Fig. 4. After setting =0.65 such as the original case of the usual chaos control the¢iyp]. Therefore, the
system(1) realizes the synchronized periodic state, we sepresented mechanism can be used as an alternative approach
different noise amplitudes. A relevant result is that there exfor theinternal stabilization of unstable periodic orbits, in all

ists a critical noise amplitude above which the modified syscases in which external interventions would be not desirable,
tem recovers the same chaotic synchronized state naturalfjor possible.

occurring at smallee (see the last part of the plot in Fig).4 . )
This feature is consistent with what was discussed above. The authors acknowledge Martin Buer for help in cal-
Indeed, when the noisy perturbation is sufficiently large, sg-ulating the Lyapunov exponents, and Santiago de San Ro-
as to lead the trajectory outside the phase-space region whef@n, Ying Chen Lai, Celso Grebogi, Antonio Politi, and
linear properties hold, the trajectory gets recaptured in thélolger Kantz for fruitful discussions. This work was partly
infinity of other UPQO’s, and therefore the motion becomessupported by the Ministerio de Educacion y Ciencia, Spain
again chaotic, but still preserving the synchronization fea{Grant No. PB95-0578 Universidad de Navarra, Spain
tures. (PIUNA), and Integrated Action Italy-Spain HI97-30. S.B.
Finally, let us briefly discuss the relevance of the de-acknowledges financial support from EU Contract No.
scribed phenomenon. The stabilization process of a prevERBFM-BICT983466. D.L.V. acknowledges financial sup-
ously unstable periodic motion is a consequence here of port from an AECI grant. J.K. acknowledges financial sup-
sufficiently large coupling strength between the two systemsport from the SFB(Contract No. SFB555
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