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Synchronization of chaotic structurally nonequivalent systems
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Synchronization features are explored for a pair of chaotic high-dimensional bidirectionally coupled struc-
turally nonequivalent systems. We find two regimes of synchronization in dependence on the coupling
strength: creation of a lower dimensional chaotic state, and for larger coupling a transition toward a stable
periodic motion. We characterize this new state, showing that it is associated with an abrupt transition in the
Lyapunov spectrum. The robustness of this state against noise is discussed, and the use of this dynamical
property as a possible approach for the control of chaos is outlined.

PACS number~s!: 05.45.Xt, 05.45.Jn
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In the last decade, synchronization of chaos has becom
field of great interest. So far, four types of synchronizat
have been studied for chaotic concentrated systems, na
complete synchronization~CS! @1#, phase~PS! @2#, lag ~LS!
synchronization@3#, and generalized synchronization~GS!
@4#. CS implies a perfect linking of the chaotic trajectorie
so as they remain in step with each other in the course of
time. This mechanism occurs when two identical chaotic s
tems evolving from different initial conditions are couple
through a signal, provided that the sub-Lyapunov expone
of the subsystem to be synchronized are all negative@1#.

In fact, when one considers two nonidentical systems,
can reach a dynamical regime~PS!, wherein a perfect lock-
ing of the phases of the two signals is realized already
small coupling, while the two amplitudes remain uncor
lated @2#.

A third type of synchronization is LS, consisting of th
fact that the two signals become identical in phases and
plitudes, but shifted in time of a lag time@3#.

Finally, GS implies the hooking of the amplitude of on
system to a given function of the amplitude of the oth
system@4#.

Reference@3# describes the situation of two symmetr
cally coupled nonidentical chaotic oscillators, wherein co
secutive transitions between PS, LS, and CS are obse
when increasing the coupling strength. These transitions
be identified in terms of changes in the Lyapunov spectru

Recently, experimental verifications of these theoreti
findings have been offered, e.g., in the cardiorespiratory
tem @5#, in the human brain@6#, in the cells of paddlefish@7#,
and in communication with chaotic lasers@8#.

Synchronization features in high dimensional syste
have been so far mostly limited to the case of structura
equivalent systems, i.e., systems where the nonidenticity
sulted in a rather small parameter mismatch.

In nature we cannot expect to have coupled lo
dimensional systems which are structurally equivale
Therefore, our intention in this paper is to study the coupl
of structurally nonequivalent systems, i.e., systems gene
ing chaotic attractors with high and different fractal dime
sions. As an example, let us consider the symmetric coup
of two chaotic systems, the first giving rise to a solutionx1
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with fractal dimensionD1 and the second to a solutionx2
with fractal dimensionD2 ~with a sufficient high difference
betweenD1 andD2). Synchronization is associated with th
building of some kind of dynamical relations between t
two signals. We show that synchronized states can be r
ized either in a chaotic manifold, which can be very lo
dimensional if compared with the dimensionality of the tw
uncoupled systems, or even in a periodic manifold. The tr
sition between these two synchronization manifolds a
function of the coupling parameter is associated with a la
change in the dimensionality of the system.

In the following, we will specialize our analysis to tw
delayed dynamical systems, since they constitute prototy
examples of high dimensional chaotic systems. Such s
tems, indeed, even provide a link with space extended
tems by means of a two variable representation of the t
@9#, and the formation and propagation of space-time str
tures, as defects and/or spatiotemporal intermittency
been here identified and controlled@10#.

Let us then make reference to symmetrically coup
Mackey-Glass equations:

ẋ1,2520.1x1,2~ t !10.2
x1,2~ t2T1,2!

11x1,2~ t2T1,2!
10

1«@x2,1~ t !2x1,2~ t !#, ~1!

where the dot denotes the temporal derivative,x1,2 are real
variables,T1,2 are distinct delay times, and 0<«,1 is the
coupling strength. Synchronization features have been
plored for identical delayed dynamical systems (T15T2) in
Ref. @11#, even in a high dimensional chaotic case. It is w
known that the fractal dimensions of system~1! are propor-
tional to the delay time@12#. If so, selectingT1ÞT2 and
choosingT1,2 sufficiently large, implies that the two system
generate high dimensional chaotic signals with quite diff
ent fractal dimensions, thus confined within structurally d
ferent chaotic attractors.

The purpose of the present paper is studying the effec
«Þ0 in Eq. ~1!. Even though the scenario that we will de
scribe is a general feature of system~1!, regardless of the
particular choice of the delay times, for the sake of exem
3712 © 2000 The American Physical Society
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fication, in the following we will selectT15100 andT2
590. This implies that, at«50, x1(t) @x2(t)# develops into
a chaotic attractor of fractal dimensionD1.12.2 @D2
.10.1#. Figure 1~a! shows the two signalsx1(t) andx2(t) at
«50. The two signals are clearly uncorrelated@Fig. 1~b!#.

By gradually increasing«, the system begins to build u
correlations betweenx1 andx2. This result is consistent with
what was already observed in Ref.@2# in the case of a sym
metric coupling between a chaotic and a hypercha
Rössler system. At variance with what was previously
ported, there are no intermediate PS states, and phases
two signals adjust as the result of a gradual transition tow
a synchronized state@Fig. 1~c!, «50.3#, which is yet chaotic.

Finally, a transition is observed toward a periodic sta
which is reached for large« values@Fig. 1~e!, «50.65#. At
this stage, the coupled system of Eq.~1! realizes a simple
periodic attractor. Therefore, a large structural change in
tem ~1! is associated with the increasing of«, since the frac-
tal dimensions have passed fromD522.3 at«50 to D51
at «50.65.

To study the appearance of synchronization in system~1!
quantitatively, we make use of themutual false neares
neighbors~MFNN! parameter@4,13#. We consider three em
bedding spaces, namelyS1 , S2, andS3 . S1 is the embedding
space ofx1(t) at the fixed embedding dimensionm1 , S2 is
the embedding space ofx2(t) at variable embedding dimen

FIG. 1. ~a!,~c!,~e! Time evolution of signalsx1 andx2 for «50
@~a!, uncoupled case#, «50.3 @~c!, synchronized chaotic state#, and
«50.65 @~e!, synchronized periodic state#. In all cases, time is in
arbitrary units.~b!,~d!,~f! Projections of the attractor of the syste
~1! on the plane (x1 ,x2) for «50 ~b!, «50.3 ~d!, and«50.65 ~e!.
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sionm2, andS3 is the embedding space ofx2(t) at the fixed
embedding dimensionm1. We then pick up randomlyn state
vectorsx1

n in S1 and consider the corresponding imagesx2
n

and x3
n in S2 and S3. We call x1,NN1

n (x3,NN3
n ) the nearest

neighbor tox1
n (x3

n) in S1 (S3). In the same way, we conside
the nearest neighborx2,NN2

n to x2
n in S2, and we callx1,NN2

n

(x3,NN2
n ) the image ofx2,NN2

n in S1 (S3). The MFNN param-
eter is then defined as@4,13#

r 5K ux1
n2x1,NN2

n u2

ux1
n2x1,NN1

n u2

ux3
n2x3,NN3

n u2

ux3
n2x3,NN2

n u2L
n

, ~2!

where^•••&n denotes averaging overn. It has been shown
that r[1 for systems showing GS, whereasrÞ1 when the
systems are not synchronized~for more details, see Ref
@4,13#!.

Figure 2~a! shows the dependence ofr uponm2, by fixing
m1525 for «<0.1, andm1515 for «.0.1. Figure 2~b! re-
ports r as a function of« for m2535, and m1525 («
<0.1), m1515 («.0.1). The primer of a synchronized sta
appears evident at«.0.15.

FIG. 2. ~a! MFNN parameter@4,13# ~dimensionless quantity, se
text for definition! as a function ofm2 ~dimensionless quantity! for
«50 ~upper triangles!, «50.05 ~circles!, «50.1 ~lower triangles!,
«50.2 ~squares!, and «50.5 ~diamonds!. The calculations have
been done with 500 000 data points from the solution of system~1!,
and takingn55000 randomly selected state vectors for the aver
ing process ofr. m1525 for «<0.1. m1515 for «.0.1.~b! MFNN
parameter as a function of« for a fixed m2535, and the other
parameters as above.
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3714 PRE 61S. BOCCALETTIet al.
The occurrence of the periodic synchronized state is a
ciated with a transition in the Lyapunov spectrum, wher
many positive Lyapunov exponents passes to negative va
at once. Figure 3 reports the measurement of the Kap
Yorke or Lyapunov dimension of Eq.~1! @Fig. 3~a!# as well
as the number of positive Lyapunov exponents@Fig. 3~b!#, as
functions of«. For small«, one observes a slow continuou
decreasing process of the Lyapunov dimension driving
quentially positive Lyapunov exponents from positive
negative values, consistent with what was already descr
for structurally equivalent systems. Indeed, a slow conti
ous variation in the Lyapunov dimension is signature o
slow continuous variation in the Lyapunov spectrum.

At larger couplings, two different dynamical regimes c
be isolated. This first corresponds to the appearance of
(0.15,«). At the beginning of GS, a plateau in th
Lyapunov dimension aroundD.7.2–7.5 sets in for 0.15
,«,0.6. This situation indicates that GS is initially realize
over a high dimensional chaotic state. Correspondingly,
number of positive Lyapunov exponents does not chang

Finally, a second regime is encountered (0.6,«). Here,
we find a transition in the Lyapunov dimension, leading
the stabilization of a final periodic state. Around such a tr
sition point we observe a sudden change in the Lyapu
spectrum, wherein all residual positive Lyapunov expone
suddenly jump to negative values at once@Fig. 3~c!#. This
phenomenon constitutes a remarkable difference with
synchronization features studied so far in the literature.

These findings are further confirmed by looking at the
largest Lyapunov exponents of Eq.~1! as functions of the
coupling parameter« @Fig. 3~c!#. All calculations have been
performed over a timet̄ 51 000 000, corresponding t
10 000 delay units of the system with larger delay.

Focusing on the transition from a hyperchaotic state t
periodic orbit near«'0.6, we find an intermittent behavio
The system switches in time between two qualitative diff
ent types of dynamics: a motion close to the periodic or
and a vastly irregular motion far away from the period
orbit. A similar desynchronization scenario has been cha
terized as on-off intermittency in the case of identical DD
@11#.

FIG. 3. ~a! Kaplan-Yorke dimension of Eq.~1! as a function of
the coupling strength«. ~b! Number of positive exponents in th
Lyapunov spectrum vs«. ~c! Largest ten exponents in th
Lyapunov spectrum vs«. In all cases the calculations have be

performed over a timet̄ 51 000 000, corresponding to 10 000 dela
units of the system with larger delay. The transition toward a p
odic synchronized state around«.0.6 is marked by a sudde
change in the Kaplan-Yorke dimension~a! and by the fact that
many positive Lyapunov exponents goes to negative value at o
~c!.
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A heuristic argument for this dynamical transition can
offered. From Fig. 1~d! one can easily realize that the co
pling is strongly reduced in the synchronized state, sin
x1(t).x2(t). Therefore, the two systems should adju
themselves in some dynamical solution compatible with b
attractors, that is they must adjust onto a trajectory contai
within the intersection of the two independent chaotic attr
tors. Now, it is a well known property of chaotic systems th
the trajectory moves within the attractor such as to shad
an infinite number of unstable periodic orbits~UPO’s! @14#.
The global Lyapunov exponents (L ’s! are the average ove
the trajectory of the local Lyapunov exponents (l ’s!. Ergod-
icity of chaos allows one to calculate such average over
l ’s corresponding to the different UPO’s. Now, differe
UPO’s may have differentl ’s. Therefore, even though th
spectrum is composed by many positiveL ’s, it can occur
that a given UPO possesses a single positive Lyapunov
ponentl̄. From the other side, the coupling strength grad
ally reduces alll ’s. Therefore, when« is such thatl̄ be-
comes negative, the corresponding periodic orbit becom
linearly stable. In this case, the attractor contains a linea
stable orbit embedded within an infinity of other UPO’
Then, apart for the transient time needed by the natural e
lution for shadowing that particular orbit~the so called targe
time!, the system is asymptotically trapped on this orbit.

This qualitative picture is confirmed by the measurem
of the robustness of the periodic synchronized state aga
noise, performed by adding a noisy sourcej1,2(t) to the
right-hand side of Eq.~1!. The noisy perturbation has zer

FIG. 4. Dynamical effect of noise in Eq.~1!. «50.65. Horizon-
tal axis reports time in arbitrary units, vertical axis reports the t
signalsx1,2. The signalx2 is vertically shifted of 1.5. The noise
amplitudes is measured in percent of the rms of the signal os
lations. Three different situations are shown:s50% ~first part of
the plot!, s50.7% ~middle part of the plot!, ands52% ~last part
of the plot!. Therefore, the scale for the horizontal axis is not s
While the synchronized periodic state is robust against relativ
small noise amplitudes, larger noise amplitudes recover the cha
synchronized state.
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average, and it isd correlated in time. The results are r
ported in Fig. 4. After setting«50.65 such as the origina
system~1! realizes the synchronized periodic state, we
different noise amplitudes. A relevant result is that there
ists a critical noise amplitude above which the modified s
tem recovers the same chaotic synchronized state natu
occurring at smaller« ~see the last part of the plot in Fig. 4!.
This feature is consistent with what was discussed abo
Indeed, when the noisy perturbation is sufficiently large,
as to lead the trajectory outside the phase-space region w
linear properties hold, the trajectory gets recaptured in
infinity of other UPO’s, and therefore the motion becom
again chaotic, but still preserving the synchronization f
tures.

Finally, let us briefly discuss the relevance of the d
scribed phenomenon. The stabilization process of a pr
ously unstable periodic motion is a consequence here
sufficiently large coupling strength between the two syste
ev
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but it is not generated by external perturbations, as in the
case of the usual chaos control theory@15#. Therefore, the
presented mechanism can be used as an alternative app
for the internal stabilization of unstable periodic orbits, in a
cases in which external interventions would be not desira
nor possible.
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