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Synchronization in a system of globally coupled oscillators with time delay
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We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the
coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the
amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transi-
tions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent
states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of
the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchro-
nization frequency is manifested. Numerical simulations are also performed to give consistent results.

PACS numbegps): 05.45~a, 02.30.Ks, 05.70.Fh, 87.10e

[. INTRODUCTION The system of nonidentical oscillators with delayed interac-
tions has been studied recenfly7]: In the case of a Loren-
When a large population of limit cycle oscillators with zian distribution of natural frequencies with a nonzero mean,
slightly different natural frequencies are coupled, they ofterthe stability boundary of the incoherent state has been ob-
come to oscillate with an identical frequency. Such collectivetained and coexistence of one or more coherent and/or inco-
synchronization phenomena have been observed in variolerent states has been observed in appropriate refidhs
oscillatory systems in physics, biology, chemistry, and otheHowever, detailed behaviors such as frequency suppression
sciences[1-4], attracting much interest in recent yearsand emergence of different coherent states have not been
[5—11]. In the Kuramoto model for those oscillator systems,addressed fully.
oscillators are coupled with each other via the interaction This paper investigates in detail the effects of time delay
which depends on the phase difference between each pair the interaction on collective synchronization of coupled
[5]. It describes the emergence of phase coherence with thascillators with different natural frequencies. For this pur-
increase of the coupling strength, elucidating interesting conpose, we derive the self-consistency equations for the order
nection between the collective synchronization and a phasgarameter and examine how the characteristic features of the
transition. collective synchronization change due to time delay. This
Here, as in the usual dynamics of many-particle systemggeveals a multitude of coherent states with nonzero synchro-
sufficient attention has not been paid to the effects of timenization frequencies, each separated from the incoherent
retardation in the oscillator system. In biological systemsstate by a discontinuous transition. In particular, we show
such as pacemaker cells and neurons, however, temporal dixat the system with a nonzero average frequency can be
lay is natural and the finite time interval required for the reduced to the system with the vanishing average natural
information transmission between two elements may be imfrequency, which allows us to focus on the latter system. As
portant[2,3]. Time delay in the interaction may modify dras- in the system without delay, there exists the critical coupling
tically dynamic behavior of the system, such as stability andstrength, at which the system undergoes the usual continuous
ergodicity[12]. In some types of a system of coupled oscil- transition from the incoherent state to the coherent state dis-
lators, retarded interactions have been found to result in mulslaying collective synchronizatiofwith zero synchroniza-
tistability and suppression of the collective frequeht—  tion frequency. In addition, at higher values of the coupling
16]. In a system of two coupled oscillators, it has been foundstrength (beyond the critical valye coherent states with
that the time delay induces a multitude of synchronized sotarger synchronization frequencies also appear via discon-
lutions. Namely, in the system with finite time delay, moretinuous transitions. Thus coherent states with different syn-
than one stable solution are possible at given couplinghronization frequencies in general coexist in the appropriate
strength. Among those, the most stable solution is the oneegions, leading to multistability. The synchronization fre-
with the largest synchronization frequency, as shown via thguency of the oscillators in a coherent state is observed to
linear stability analysi$13]. Similar behaviors including fre- decrease with the delay time, which is similar to the result of
guency suppression and multistability have been observed iother systems with time deldy4—16.
the neural network model, where peripheral oscillators with There are five sections in this paper. Section Il presents
identical natural frequencies are coupled only with a centrathe system of globally coupled oscillators with time delay, as
oscillator by forward and backward connections with timea generalization of the Kuramoto model. The stationary
delay[14]. The two-dimensional system of identical oscilla- probability distribution for the system is obtained, and the
tors with time-delayed nearest-neighbor coupling has alsself-consistency equations for the order parameter are de-
been considered to reveal similar frequency suppre$éidin  rived. Section Ill is devoted to the analysis of the self-
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consistency equations, which reveals the characteristic bgyhere 9= 69— QOt. Incidentally, the order parameter defined

havior of the system as the coupling strength or the delayn gq. (4) allows us to reduce Eq3) into a single decoupled
time is varied. In particular, the phase diagram is obtained ogquation with time delay

the plane of the coupling strength and the delay time, and

ubiquity of multistability as well as suppression of the syn-

chronization frequency is demonstrated. Numerical simula- Yo~ P

tions are also performed and the results, which are in general Yi= o~ KA sin(yi = o), ®)
consistent with the analytical ones, are presented in Sec. IV.

Finally, Sec. V summarizes the main results, while somg,pare 0,=6— Q. Although A, and 6, depend on the
details of the calculations are presented in Appendixes A anE]eIay timer, they are assumea tc’) be independent of time

B. which is possible due to the symmetry. Considering the re-
lation between the old order parameter and the new one
IIl. SYSTEM OF COUPLED OSCILLATORS WITH TIME
DELAY
The set of equations of motion f& coupled oscillators, W=we', ©®)
each described by its phage(i=1,2, ... N), is given by

we understand that the collective synchronization can be de-
. K<, . scribed in terms of a giant oscillator rotating with the fre-
$i()=wi— N 2 sin ¢i(H)— ¢j(t—=7)], 1) guency() which is in general nonzero. For finite delay time,
there exists a multitude of synchronized solutions with non-
zero values of); this is in contrast to system without delay,
where the prime restricts the summation such {kat. The  where the rotational symmetry of the system allows us to set
first term on the right-hand side represents the natural fre€2=0.
guency of thdth oscillator, which is distributed accordingto  Instead of Eq(5), which may be regarded as a Langevin
the distribution functiorg(w). Hereg(w) is assumed to be equation without noise, one may resort to the corresponding
smooth and symmetric abouty, which may be taken to be Fokker-Planck equation for the probability distribution
zero without loss of generalitgsee below, and also to be P(,t) at zero temperaturil8]:
concave atw=0, i.e.,g"(0)<0. The second term denotes
the global coupling of strengtk/N between oscillators, with
time delay, indicating that each oscillator interacts with other 7 = 7 N = 0) —
> deay, g o _ ; P(y,t)= ——[KAsin(y— o) —w]P(y,1).  (7)
oscillators only after the retardation time Without time at Y
delay, Eq.(1) exactly reduces to the Kuramoto model.
In order to describe collective synchronization of such an
N oscillator system, we define the complex order parameteiThe order parameter given by E@) then obtains the form
whose amplitude represents the degree of synchronization, to

be 1 N
A== gl¥j
13 e
T=_" edi=Ae 2 o~ o~ i
N =1 :J dog(w+Q)e) .5, (8)

Here it is convenient to introduce new variablgsdefined 5 _
by = ¢, — Qt, where() is a constant. Note the existence of wherew=w—Q has been noted, and the average'éfis to
physical invariance due to the rotational symmetry of thebe taken over the distributioR(¢,t—7) of Eq. (7) with
total system. In terms of the new variables, EY.reads givenw: (e'%)_,.2=/3"dyP(y,t—1)e".

In the stationary state, we take the average over the sta-

L K, tionary distributionP(®)(y; ) of Eq. (7). With the stationary

i= o= > siMyi(t)—y(t—7)+Q7],  (3)  solution
i

~ A S —6p—sin"Y(w/KA)] for |w|<KA
where w;=w;— Q. Multiplying Eq. (2) by e ', we also

obtain the corresponding order parameter for the new vari- POy )= Vo?—(KA)? otherwise
ables 27| w— KA sin(¢— 6p)| ’
9
1 .
T=—> e’i=Ae’, 4
N =1 it is easy to compute the average
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. 2m -
<e'”’>z;EJO dy POy w)e”

i((0/KA)—iV(0/KA)2—1, o>KA,
=e'%{ i(w/KA)+V1-(w/KA)?, —KA<w=KA, (10)
((W/KA)+iV(0/KA)2—1, o<-—KA.

It is thus natural to divide the system into two groups: onetion from the desynchronization group vanishes in the ab-
satisfying |w|<KA, which is called the synchronization Sence of time delayr=0). Recalling that in the presence of
group, and the othdrTu|>KA, the desynchronization group. time delay th‘? to'gal order parameter is given l.)y the sum of

; : the two contributions, one from the synchronization group
Accordingly, we write ) .
and the other from the desynchronization group, we finally
A=A +Ay, (11) obtain the self-consistency equations from E¢K3) and
(15):
where Ag4 is the contribution from the synchronization-
desynchronization group to the order parameter. The contri

1
- — 1 _ 2
bution from the synchronization group is given by A COSQT_KAf_ldX g+ KA VI=X,

i ! . 1 oo
Ase'“’=KAf71dX9(Q+KAX)N1—X2+'X], (12) AsinQr=KAJ dxg(Q+KAx)x+J dx g(Q +KAXx)
-1 1

where x=w/KA. Separating Eq(12) into the real and X (X—x?—1)
imaginary parts, we obtain the two coupled nonlinear equa- .
tions +f dx g(Q+KAX)(x+ yx?—1)|. (16)

1
AscosQrr= KAJfldX 9O +KAX) y1=x5, When the average natural frequency is not zesg#0),

we define the variableg,= ¢; — () + wy)t, and obtain ex-

) 1 actly Eq. (16) except forQ) replaced byQ=Q+ w,. For
AgsinQir= KAj_ldX 9(Q+KAX)X. (13)  example, the first equation is given by
1
Similarly, the desynchronization group leads to the equation A cosQ) 7= KAJ dx g(Q+KAX)V1—x2, (17
-1
iQ7r_; * 2 ~ ~
Age —'KAL dx g +KAX)(X— Vx*—1) where7 is the delay time and the distributi@({ ) is sym-
» metric about w=w,. Since the distributiong(w)=g(w
4 i N vy + wg) is symmetric aboui»=0, we rewrite the above equa-
|KAfiwdx g FKAN VX" 1) tion in the form

(14 ~ 1
A cog (Q+ wg)7]= KAJ dX g(Q +KAX) VI X2,
1

(18

or

Aq4cosQ =0, _
which, with the identification Q + wg) 7= 7, just repro-
. % duces the first equation in E@L6). Accordingly, the behav-
AgsinQQ7=KA L dx g(Q+KAX)(X—x“—1) ior of the system withw,# 0, which has been considered in
Ref.[17], can be obtained from that of the system with
-1 =0 via appropriate rescaling of parameters.
+f dx g(Q+KAX)(x+ yx°—1) . PPIOP gorp
. ANALYSIS OF THE SELF-CONSISTENCY
(15) EQUATIONS

Note that, unlike the Kuramoto model, the imaginary The nonvanishing imaginary part of the self-consistency
parts of Eqs(12) and(14) do not vanish, which arises from equation given by Eq16), arising from time delay, leads to
the fact that the nonzero collective frequency due to timea variety of behaviors which are not displayed by the system
delay breaks the symmetry of the integration interval of thewithout delay. In this section, we solve the two coupled
distributiong(w). It is obvious in Eq(15) that the contribu-  equations in Eq(16) to obtain the synchronization frequency
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FIG. 1. Synchronization frequenc (&) as functions of the FIG. 2. Phase diagram on tie r plane, displaying boundaries

delay timer at the coupling strength =10, where frequency sup-  petyween the incoherent and coherent states. Whenever each bound-
pression and multistability can be observé);as functions oK at ary in (a) is crossed from below, a new additional coherent state

7=5. For givenkK, the largest synchronization frequency belonging it a larger synchronization frequency emerges. Below the lowest
to the highest stair gives the most stable solution, but the corréxoundary, which is the straight ling=K,~1.596, only the inco-
sponding basin of attraction is small. herent state exists. Ifib) the boundaries are redrawn, with the hori-

) ~ zontal axis rescaledr in (b) corresponds td)7/(Q+3) in (a).
) and the order parameter. We take the Gaussian distri- pere displayed is only the envelope consisting of the curve seg-

bution with zero mean and unit variance for the natural fre'ments with lowest values d¢f at givenr, which describes the phase

. _ 2 . .
quenciesy(w) = (27) "%~ "2 and first compute numeri- boundary separating the incoherent state in the system agth
cally the synchronization frequency and the order paramete 3.

for various values of the coupling strengthand the delay | ) ) )
incoherent state exists; above it, the coherent state @With

time 7.

Fig]-ure 1 exhibits the dependence of the synchronization™ © alsodgxi_sts. ISimrilIarIy, above e."’;]Ch Iboundary inh Fig).2
frequency onk and 7, which maniests multistabilty. At ¢ 70 270 8 e e region of he existence
;m_ag \ellaluee;rsfngogli t(hf 1”232;"'2';.’2'?;:’2 As :;2]) V\./;Lho t of coherent states constitutes two-dimensidsami-infinite
d I_ Igp | %N .h h’ dl luti y .ﬂ;v' 0 U surfaces in the three-dimensiona ¢-,()) space. Whereas

elay. For larger, on the other hand, solutions with# Figs. 1@ and Xb) may be regarded as the cross-sections of
also emerge aK is increased further. In Fig.(@), where the a6 syrfaces at given valueslofand of 7, respectively,
synchronization frequency is plotted as a function of the deFig. 2(a) represents the projection of theundariesof these

lay time 7 at K=10, it is also observed that the synchroni- g, ifaces onto th&-r plane. In Fig. 2b) the curves of Fig.
zation frequency is suppressed as time delay is increaseg

o ) : (a) are redrawn, with the horizontal axis rescaledn (b)
This is expected since the delay tends to disturb synchroni- . ;
zation [14]. In Fig. 1(b), we plot the synchronization fre- corresponds td)7/(2+3) in (a@). In this new scale of the

quency as a function of the coupling strengthrat5. It hc_)nzontal axis, unlike in Fig. @), the boundanes |_ntersect
shows that at given values af the synchronization fre- with each other, and only the envelope consisting of the

quencyQ depends rather weakly df after synchronization CUrve segments with lowest values kéfat given 7 is dis-
sets in. Among those solutions at given coupling strefigth  Played in Fig. 2b). According to the discussion in Sec. I,
the most stable solution is the one with the largest valu@ of Fig- 2(b) describes the phase boundary below which only the
[13] although the basin of attraction in general shrinks withincoherent state exists in the system with=3. Above the
Q. boundary, the coherent state with the appropriatnzer9

The phase boundaries separating the coherent stAtes @ynchronization frequency, depending grappears and can
#0) with various synchronization frequencies from the in-coexist with the incoherent state. Note that the lowest bound-
coherent state=0) are shown in Fig. 2, where data have ary (K=K.~1.596) in Fig. 2a) has no counterpart in Fig.
been taken with the step widibr=0.06. Below the lowest 2(b) since the zero synchronization frequen€y<0) corre-
boundary, which is the straight liné=K_ ~1.596, only the sponds to7=0. Similar boundaries have been obtained
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and expand Eq16) to the order of KA)?3, together withQ
also expanded accordingly:
0.8
Q=0+ O KA+Q,(KA)? (19
06
A We investigate two regimef)<KA and )>KA, which
04| exhibit phase transitions of different types with each other,
still taking the Gaussian distribution with zero mean and unit
02t variance forg(w).
For Q<KA(<1), the self-consistency equation for the
0 : : : : : : order parameter takes the form
0 1 2 3 4 5 8 7 8

K A=a;KA+b;(KA)?+cy (KA +O(KA)Y,  (20)

FIG. 3. Order parameteX as a function of the coupling strength \yhere the coefficienta;, b,, andc, depend onQ,, Q;

K at the time delayr=5. Each line describes the transition for each and Q, defined in Eq(19). Their specific forms as well as
synchronization frequency, and the critical coupling stredgths o qetails of the calculation are given in Appendix A. Since

shown to increase for larg@. The leftmost curve, which corre- e . . .
sponds toQ=0, givesK.~1.596; the next one, corresponding to the condition{)<KA implies {}o<1, we need to consider

_ 2

0~1.09, givesK ~1.97. The numerical results displayed by the EG. (A3) only for the range— m/2<tan ‘(\2/mQqe""?)

leftmost curve agree well with the analytical ones. < /2. Itis then obvious that the desired solution of E&3)
is simply Qy=Q,=Q,=0, regardless of. Inserting these

through numerical simulations for the Lorenzian as well asvalues into Eq(AS), we obtain the values of the coefficients

: P ; : =0.626, b;=0, andc,=—0.078. Figure 4 illustrates the
the delta-function distributionL7]. It is of interest to com- &1~ ©:949, D1=1, 1 . ) ~
pare Fig. 2b) with Fig. 4 in Ref.[17], which indicates that gr?pZ'i"’L' S}é’k‘“zof OfKAqu'(ZO)' dfr;laygg_B(A&j(atlth
the Gaussian distribution leads to smoother stability bound-_ ) . 1(KA) . C1(KA) Versusa forb, = . ote tha
aries than the Lorenzian distribution. the_ crm_cal coupling strength is given by.(=a; )~_1.595,

In Fig. 3, the obtained order parameteris depicted as a WhICh indeed agrees perfegtly _W|th th(=T numerical value
function ofK at 7=5. Each line describes the transition for 91Ven by the leftmost curve in Fig. 3. It is thus concluded
each synchronization frequency, and the critical couplingh@t the system displays a continuous phase transition with
strengthK . is shown to increase for the transition with larger <2 = 0. which is consistent with the result of the Kuramoto

Q. For example, the leftmost curve, which corresponds td"°d€! , , _
Q=0, givesK,~1.596, whereas the next one, correspond- N the opposite case d2>KA(<1), we can still obtain

ing to 1 ~1.09, givesk .~1.97. Note that a& approaches the self-consistency equation firup to the order of KA)?,
K(~1.596), the order parameter with=0 decreases con- in a manner similar to that for the previous sm@llease:
tinuously to zero, indicating that the leftmost curve describes _ 2 3 4

a COﬂtin)l/,IOUS transition a(f]. On the other hand, the rest of A=aKA+D(KA)T+ e (KA)T+OKA), — (2)
the curves with() >0 apparently display jumps in the order where the coefficientsa,, b,, and c, again depend on
parameter, indicating discontinuous transitions. AccordinglyQ,, Q,, andQ, (see Appendix B In this case, we need to
whereas the lowest boundary in FigaRdescribes a con- obtain larger solutions, considering the regiomst(1/2)m

tinuous transition, the others as well as the boundary in Fig<tan‘1(\/m(loeﬂg’2)<(n+3/2)ﬂ- with non-negative inte-

2(b) correspond to discontinuous transitions. _gern. Interestingly, this in general yields nonzero values of
To understand the nature of these transitions analytlcallyﬂ and accordingly, nonzero values bj, with which Eq
we assume&KA<1 near the transition to the coherent state(zol) displays a jump’ im atK= —4c2(b2’—4cza2)‘1 thus
= 2 ,

indicating a discontinuous transiti¢@]. Such discontinuous
1.0x10%1(4) transitions are ubiquitous for regions with higher values.of
Namely, the system with delay is in general characterized by
nonzero values of the synchronization frequency together

b) (@) 5.0x10> with discontinuous transitions, which is consistent with the
© numerical results displayed in Fig. 3. There the jumpdin
A displayed by the curves withh>0, associated with discon-
0'05 5 '5 tinuous transitions, may invalidate the assumptibh<<1,

and the expansion in E@21) is not expected to yield quan-
titatively accurate results. Nevertheless the appearance of

-5
-5.0x10% such discontinuous transitions has been revealed by the
above expansion, which is concluded to give a qualitatively
A correct description of the nature of transitions.
-1.0x =

For more accurate results, we investigate these transition
FIG. 4. Graphical solutions of Eq(20), displaying f(A) phenomena by examining in detail the behaviors of the so-

=(a;K—1)A+b,(KA)?+c,(KA)® versusA, for b;=0 with (8  lutions of the self-consistency equations. Note thatO is

K=1.594(<K,.), (b) K=1.596(=K,), and (c) K=1.597(>K,). always a solution of Eq.16) for all values ofQ). To seek for

The negative solution appearing (o) is unphysical. other solutions, we divide Eq(16) by A and obtain
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FIG. 5. Synchronization frequendy versus the order param-
eter A obtained from Eq.(16) for 7=5 at (a) K=1.58, (b) K
=1.596,(c) K=1.60,(d) K=1.75. Solid and dotted lines represent
solutions of the first equation and the second equation of Hj.

A continuous transition fof2=0 can be observed #=1.596.

1
K~ lcosQ)r= f dx g(Q+KAX)V1—x2,
-1

K~ 1sinQr= J dx g(Q+KAX)x

- dex g Q+KAX) VX>—1
1

+J_1dx g(Q+KAx)\/x7—1, (22

0 02 04 06 08
(b) A

02 04
(d) A

06 08

FIG. 7. Synchronization frequend@ versus the order param-
eter A obtained from Eq.(16) for 7=5 at (a) K=3.30, (b) K
=3.46, (c) K=3.515,(d) K=4.00. A discontinuous transition for
~2.25 can be observed Kt=3.46.

ing point for K=1.58, which implies that synchronization
does not set in yet. In contrast, the meeting of the solid and
dotted lines is obvious fak =1.60 shown in(c); (b) reveals

a continuous transitioffor (1 =0) atK=K_ ~1.596, which
coincides with the previous result. The value ®fgrows
continuously ax is increased beyond, (see Fig. 6. When

K reaches the value 1.97, as displayed in Figh),6there
emerges via a tangent bifurcation an additional meeting point
at finite values ofA (=0.08) and()(~1.09), giving rise to a
discontinuous transition, in agreement with the result shown
in Fig. 3. As the coupling strength is increased further, there
appear two meeting points, giving two values of the order
parameter for the pair of the linése., with almost the same
value of ), as shown in Fig. ). Such a tangent bifurca-

which may be computed numerically. The resulting values ofion in general produces a pair of stable and unstable solu-
Q) versusA are plotted in Figs. 5—7 for=5. The solid and
the dotted lines represent solutions of the fireal parj and
the secondimaginary part equations of Eq(22), respec-
tively. In each figure, the point where the two lines meet withapproache¥ ,~3.515. Figure 7 also reveals the occurrence
each other provides the synchronization frequeficgnd the
order parameted. Figure Fa) shows the absence of a meet- nature as the second.

33

(a) A
R _

0 02 04 06 08

(c) A

(C)

02 04 06 08

A

FIG. 6. Synchronization frequend@ versus the order param-
eter A obtained from Eq.(16) for =5 at (a) K=1.89, (b) K
=1.97, (c) K=2.10, (d) K=3.00. A discontinuous transition for

~1.09 can be observed Kt=1.97.

tions; here the solution with the smaller valuefofdecreas-
ing with K, should be unstable. Figurdcj shows that the
unstable solution becomes nulA €0) at Q~1.257 asK

of the third transition atk.~3.46, which is of the same

The values oK .~1.596 andK,~3.515 can also be ob-
tained analytically since they are given by the solutions of
Eqg. (22) in the limit A—0. In this limit, the right-hand side
of the second equation vanishes, yieldilg=n7/7 with n
integer. The first one, which reduces tK lcosQr
=(m/2)g((1), then gives

2
K= wg(2nw/7)’ 23
where it has been noted th&t>0. Takingn=0 andn=1 in
Eq. (23), whereg(w) is given by the Gaussian distribution
with unit variance, we obtaik =K = /8/7~1.596 (with
0=0) and K=K,=8/me?(™)*°~3.515 (with Q=2m/r
~1.257) forr=5, respectively.

To examine how the stability changes at these bifurca-
tions, we now consider a small perturbation from the inco-
herent state, for which the stationary distribution in E9j.is
simply given by 1/2r, and write
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which in general possesses both discrete and continuous
spectra. To find out the discrete spectrum, we put

c(t;o)=b(w)eM, (28

where the eigenvalug is independent of», and obtain the
equation

K (= J(w)
-(N—iQ)7 _
€ 2J7xdw)\+i(w—ﬂ) L (29)

which has been examined for a Lorenzian distribufibn)].

(@) T Here we investigate Eq29) for a Gaussian distribution.

1 . . . . . . . The stability of the incoherent state depends on whether all

roots of EQ.(29) possess negative real parts, i.e.,\Re0.

os | 1 This is the case foK less thanKg, where the incoherent

state is neutrally stablésince the continuous spectrum is

pure imaginary. BeyondKg, there appears an eigenvalue

with a positive real part, giving rise to instability. The value

of K can be computed from E¢R9) with Rex =0 imposed;
this yields the coupled equations fir and ImA

T 2
- -’12
0 A A cosw—Ks\[Be v
o 18 14 15 16 17 18 19 2 21

K © 2k

. s _.2 Y

FIG. 8. Results of numerical simulations on 5000 coupled os- sinyr=——="7¢ 7 /2k70 Kokt 1K
cillators: (a) Synchronization frequency versus the delay time. - ( )kl
Crosses are results of numerical simulations and solid lines reprgyhere y=0 —Im\. Unlike the system without delay, Eq.
sent the solutions of Eq16), displaying perfect agreement with (30) has an infinite number of solutions, among which the
each other(b) Order parameter versus the coupling strength, dis1owest value oK should be taken. It is obvious that=0 is
playing continuous transitiongwith zero synchronization fre- the desired solutiofregardless of time delayleading to the
quency for 7=0 (plus signs and 7=5 (crosses The solid line 0t ) ek = J8/m~1.596. Note also that this value of
represents analytic results fer=5, displaying reasonable agree- K. coincides éxactly With. that. oK., implying that the in-

-'S ’

ment with the numerical ones. Slight suppression of synchroniza h b ble simul v with th
tion by time delay can be observed near the transition region. Th&° erent state becomes unstable simultaneously with the ap-

size of the error bars estimated by the standard deviation is abofearance of théstablg coherent state witl)=0.

06

04 |

02

X+

(30

that of the symbols and lines are merely guides to the eye. Thesg resu]ts reyeal that the order parameter exhibits a
supercritical bifurcation aKk =K, along the leftmost curve
1 (2=0) in Fig. 3. Namely, the emergence of a nontrivial
P(,t)= 2—+677( ), (24)  solution (A>0) is accompanied by the loss of stability of
77 the null solution A =0) atK (Q2=0)~1.596. For the rest

(2>0), on the other hand, the unstable solution, generated

where e<1. Upon substitution into Eq(7) and with A qgether with the stable one by a tangent bifurcation at

— 2 H H

=A,e+0(€%), we obtain, to the lowest order iy K.(Q), decreases & is raised further and vanishes to zero
5 5 K at a larger valueK=Ky(Q). For example, the unstable so-
o ~07 +——A,cod y— 6,) (25) lution for Q~1.09, emerging aK~1.97, decreases to zero

a Yoy 2n at K~3.515[see Fig. 70)]. It is thus concluded that fof

>0 the bifurcation aK, is subcritical: Betweelk . andK,

and seek solutions of the form there exist an unstable coherent state in addition to the stable
coherent statesand the incoherent ohelthough the un-
7( l/,,t)zc(t;z,)eiw+ c*(tw)e Y, (26) stable states have not been displayed in Fig. 3.

The general features of the synchronization behavior ob-

where h|gher harmonics have been neg'ected. EqumS tained here are similar to those in REI.?], and it is thus

and (26), together with Eq(8), lead to the amplitude equa- concluded that the difference in the distribution of natural
tion for c(t;®): frequencies does not change results qualitatively. On the

other hand, we have examined additional interesting phe-
~ nomena such as frequency suppression and details of multi-
Jge(t,0) = —iwc(t,®)+ Eeim stability. In particular, unlike in the system withy# 0 con-
at ' 2 sidered mostly in Refl17], here the phase boundaries with
. different values of the synchronization frequency do not in-
X f de g(@+Q)c(t—7,0), (27)  tersect with each other on tie 7 plane [Compare Figs. @)
o and 2b).] Accordingly, the system witlw,=0 does not un-
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dergo a discontinuous transition directly from tstablein- V. SUMMARY
coherent state and the coherent one with a nonzero synchro-
nization frequency, .and the assomgted hysteresis may not lfﬁ/e synchronization phenomena in a set of globally coupled
observed. Further, in order to confirm these results, we havgS

also performed numerical simulations. the results of which cillators with time retarded interaction. In order to under-
P ) : ' stand the effects of time delay on the synchronization, we
are presented in the next section.

have derived the self-consistency equations for the order pa-
rameter, which describe synchronization in the system. The
IV. NUMERICAL SIMULATIONS detailed analysis of the self-consistency equations has re-
We have studied directly the equations of motion givenvealed a multitude of coherent states with nonzero synchro-
by Eq. (1) via numerical simulations. The globally coupled Nization frequencies, each separated from the incoherent
system of sizeN=5000, where natural frequencies are dis-State by a discontinuous transition. At the critical coupling
tributed according to the Gaussian distribution with unit vari-Strength, the system exhibits the usual continuous transition
ance, has been considered, and the Euler method with di§om the incoherent state to the coherent one, displaying col-
crete time steps aft=0.01 has been employed. At each run lective synchronization with zero synchronization frequency.
we have discarded the first 3ime steps per oscillator to As the coupling strength is increased further, coherent states
eliminate transient effects and taken the next e steps With larger synchronization frequencies have also been
per oscillator to investigate synchronized solutions. Finally SNOWn to appear via discontinuous transitions from the inco-
independent runs with 30 different realizations of the naturaf'€Tent state. Thus a multitude of coherent states with differ-
frequency distribution and initial conditions have been per-€Nt Synchronization frequencies have been found to coexist
formed, over which the averages have been taken. In th& the appropriate regions, leading to multistability. The syn-
simulations, the synchronization frequency is given by thechronization frequency of the oscillators in a coherent state

average phase speed, i.e., the average rate of the phd¥eS Peen observed to decrease with the delay time.
change, and the obtained data at the coupling streKgth To confirm the analytical results, we have also performed

=10 are represented by crosses in Fig)8Note that both num.ericall'simulations, the _results of which indeed_display
the incoherent state and the coherent one are found to HBultistability and suppression of the synchronization fre-
stable at the same value of indicating multistability; fre- duéncy. For detailed comparison, however, one should
guency suppression with increasing delay is also manifeste&.ear(.:h the 50'““00 space exten;wely, .W'th varying initial
For comparison, the results shown in Figa)l obtained condmon_s, to obtain solutions .Wlth various values of the
from Eq. (16), are also displayed, and perfect agreement iSynchronization frequency. This requires more extensive

observed. Notice here that the basin of attraction shrinks rapzimulations, which is left for future study. Finally, one may
idly with the synchronization frequend§, which makes it also include stochast]c NOISE In the syste_m and stu_dy its ef-
quite difficult in numerical simulations to find the coherent- [€CtS 0n synchronization behavior. In particular, the interplay
state solutions with large values 9f. Figure §b) shows the between th_e external driving an.d.n0|s<.a poses the pos§|b|llty
behavior of the order parametaras a function of the cou- of stochastic respnancﬁéQ], ar_1d 't. is of interest t9 examine
pling strengthK for 7=0 (plus signs and 7=5 (crosses In how the collective synchronization together with the time

both cases the system displays a continuous transition to tr%elay affects the possible resonance phenomena.
coherent statéwith zero synchronization frequencySlight
suppression of synchronization by time delay can be ob-
served. The error bars have been estimated by the standard We thank G. S. Jeon, M.-S. Choi, and K. Park for illumi-
deviation and the lines are guides to the eye. To make commating discussions and C. W. Kim for the hospitality during
parison of the analytical results obtained from ELG) and  our stay at Korea Institute for Advanced Study, where part of
the simulation results, we have also included in Fidp) 8he  this work was accomplished. This work was supported in
analytical results forr=5, which are represented by the part by the SNU Research Fund, by the Korea Research
solid line. Good overall agreement between the two can b&oundation, and by the Korea Science and Engineering
observed. Foundation.

We have studied analytically and numerically the collec-
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APPENDIX A

In the case) <KA(<1), we approximate the integral appearing in Etf):

dex g Q+KAX)(x—Vx2—1)+ fﬁldx g Q+KAX)(x+x2—1)

1 — o0

= fxdx[g(QwLKAx)—g(Q—KAx)](x—\/xz—l)
1

%fdeZQg’(KAx)(x— yx°—1), (A1)
1

and expand Eq(16) to the order KA)3. This yields
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A cod[(Qo+ Q1 (KA)+Qy(KA)?] 7}
1 |m
= —\@eﬂﬁ’z[ KA—Q0,(KA)?+

A sin{[(Qo+ Q1 (KA)+Q,(KA)?] 7}

Q\F 2. Q
°-o N Bl B 0 /7N
7 KAT |5\ (1-e o)~

where Egs(19) and the Gaussian distributia{w) have been used. After a tedious calculation, we obtain from(£&2).

2
Qgr= —tanl( \ﬁﬂoeng’z
aa
8 2 2 7Y [2 a0, 020,
Q7= \/;e%’2 1+ ;Qge%) { g-Q(1-e Q0’2)—7— 5|

2 _ .2
Q,7= \ﬁe%’2
v

8 2
+ —Qqe0?
o

1
a _9092}(KA)S],

%,
2 8

Q-1

QO Ql\/E 2 _ S QZ 3
(KA)2+[?+? ;[1+(Qo—1)e 9’2]—7}(KA), (A2)

’

9
B 2

2 -1
1+;Q§eﬂ§ [(1+Qg)

-1 2 2
) [2 . Q, 020,
_ _aQp2y _ 7L

[ g to(lme T = 5 =5

2
1+ —Q2e
o

1 8
— 50007(05+3)+ \/%Ql(lJrQS—ng’z)’ (A3)
together with
A=a;KA+b(KA)2+c (KA)S+O(KA)?, (A4)

which is just Eq.(20). The coefficients depend dn,, 4, and(), according to

_+_ -
2 T8¢

—1/2
T 52 2 02 004 T2
b1=(QS+Ee “o) {—\/%93(1—e h+ —— (1—5e Qo”,
T2 1 Q0 0 2
2, T g2 T P -l akct Wt T 2
Q5+ e % ‘(977 8)90+ >t 5 Q0Q1(2+0Q)
-1
™52 2 02 QOQJ_ T 52
Q5+ >e R0 [\/ﬁﬂﬁ(l—e Q0’2)——2 (1—§e %o
4 8
- ﬁQO_ ﬁﬂoﬂl

In the casel>KA(<1), we approximate the integral in E(L6) as follows:

fxdx 9Q+KAX) (Xx— 2= 1)+ jildx 9O +KAX) (x+ X2—1)
1 — o0

QZ - 5 -1/2
0 Qd ,

a]_:

Clz

2 (2 1 02
oo+ —(—O— g H 80— 5~ Q0

-0212
e o+
4\ 8

e“ﬁ] . (A5)

APPENDIX B

= fwdx[g(QJr KAX)—g(Q—KAX)](x— yx°—1)
1

%—fwdx g(Q—KAX)(x— yx°—1), (B1)
1
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which, upon expansion to the ordef4)3, gives Eq.(16) in the form

0% 1) :
(Q5-1) > 0oQ5 [(KA)Z Y,

8

2 :E o —02p _ 2
A 008 [0+ 03(KA) +0,(KA)2] 7= 51 7€ U2 KA— 000, (KA)2+

Asin{[Qo+ Q1 (KA)+Q,(KA)?Z] 7}

1 2
_a4 PR 0)[1+<I>(Q 20 [— \/;e93/2(493+3Qg+39091)+3Ql(3+93)[1+c1>(90/¢§)]}(KA)Z
0
1 2 -Q /2 7 4 2 2
+4895 0116000, +203(3—140,+303) — 12030, +60Q3(—1—20,+302)+90,(1+40Q3)
—12020,]-3[6+ 2402+ Q2(1+402) - 12000, 4030, ][ 1+ D(Qo/2) ] { (KA)® (B2)

with the error functiorrI)(y)E(Zl\/?)f%dz e 2. After a tedious calculation, we obtain from E®§2)

1 l+Q§ 2

Qor=—tan Yy — e 1+ d(Qy/\2)] |+,

oT {\/Z Qg [ ( 0 \/—)] m
Qpr={ 14 = ﬂ—(lﬂlg)z U1+ D (Q/y2) 2 Tl 40 041 0 1 3-08)e 0 1+d(Q0/\2

1T= 2 Qf el (Qo/V2)] 3m wQy w03 \/_94( 0e" (RN

1 (1402 1 (1+09)? -
_ 0312 — e

927_{_% @ [1+<1>(90/f)]“1+277 ot TL1+D(Q0/\2)]2

490 Ql_l Ql 1 Ql 2
Tty 9—3(3—Qg)e90’2[1+fb(90/\/§)]

1 0f
5100~ 5 (5-08) +QoQ5(1+03) |

1
‘lmns 8

1
- W[lmgﬂﬁ 205(3-140,+303) - 12030,— 60Q3(1+2Q,—30%) - 120,0,+9(1+407)]
ma50

01+ D(Q0/\2)]

[6+2402+Q2(1+402)—120,0,— 49392]e95’2[1+ D(Qy/ ﬁ)]] (B3)

1
N 4\/27798

and
A=a,KA+by(KA)?+cy(KA)S+O(KA)4, (B4)

which is Eq.(21). Again the coefficients depend db,, 4, and(}, via

T 2 (14082 e
a,= ge*90+ 1608 {1+ D0 2) 13,

1+
bzz{zeﬂg‘f' ( )

5 2 -12
> 208 [H@(Wﬂ]}

1+02 2 4
x[—;ﬂoﬂle‘“ng 8960[1+<1>(QO/J§)] ;e—"3/2<§ﬂg+93(91—1)+91 —(3+Q§)Ql[l+d>(90/\/§)]H,
0
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(1+QZ)2 —3/2
o= | me Ut U 14D (Qg/2)]2
2 408

m ~0? 1495 2 02?4 02
x| = 7 Qo8 "o+ 80 [1+D(Q0/V2)] —e 7 205+ 050, -1+ 0y
2 2\2 —-1/2
(1+03)
—(3+02)Q[1+D(Q/V2)]|{ + gefﬂﬁvﬁo[ucb(no/ﬁ)ﬁ
0

T _—0? 22 03 2 1
X §e 0 ZQOQl+T_Ql_ZQOQZ_Z

1 \F 020l A
+14405{ = 13

2 2 1+QC2> 6 4 2 3 2 2 2
- ;e’QO’ZW[lmoﬂlJr 204(3-140,+307) - 12050, 6Q5(1+2Q,—307) —120,0,+9(1+407)]
0

2
Q3+ Q5(Q-1)+ Q4 —<3+93>01[1+¢(90/ﬁ>]}

1
X[1+®(Qo/V2)]- —=—==[6+240+05(1+40%) - 120,0,-4030,] ;. (B5)
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