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Diffractive corrections in the trace formula for polygonal billiards
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We derive contributions to the trace formula for the spectral density accounting for the role of diffractive
orbits in two-dimensional polygonal billiards. In polygons, diffraction typically occurs at the boundary of a
family of trajectories. In this case the first diffractive correction to the contribution of the family to the periodic
orbit expansion is of order of that of an isolated orbit, and gives the fifstcorrection to the leading
semiclassical term. Keller's geometrical theory of diffraction is inadequate for treating these corrections and
we develop an alternative approximation based on Kirchhoff's theory. Numerical checks show that our pro-
cedure allows reduction of the typical semiclassical error by about two orders of magnitude. The method
permits treatment of the related problem of flux-line diffraction with the same degree of accuracy.

PACS numbegps): 05.45.Mt, 03.65.Sq, 42.25.Fx

[. INTRODUCTION diffractive orbits, but does not provide a uniform approxima-
tion. In the present paper we extend these approaches and
Two-dimensional billiards play a central role in the do- construct improvements to the geometrical theory of diffrac-
main of quantum chaos because of the simplicity of theirtion in polygonal billiards.
classical dynamics and the relatively easy determination of This type of correction is made necessary in polygons
their quantum spectrum. During the last 20 years they havbecause in these systems the spatial extension of a family of
been used as model systems for testing semiclassical tracgbits is often stopped by a singularity of the frontier of the
formulas (following Gutzwiller [1] and Balian and Bloch billiard; as a result, the generic situation is that a diffractive
[2]) and random matrix theorgsee, e.g.|3]). orbit appears on the boundary of each family. This trajectory
Among these systems, plane polygonal billiards haves on the verge of being allowed by classical mechanics and
been the subject of long lasting interésee, e.g., the review thus cannot be included in the trace formula in the frame-
[4]): they have zero metrif5] and topological6] entropy, work of the geometrical theory of diffraction. Hence in the
but their dynamical properties range from integrable to posfollowing we devote special care to the treatment of diffrac-
sibly ergodic and mixing[7], passing by the interesting tive periodic orbits lying on the boundary of a family and of
group of pseudointegrable systef&3. Level correlations of its repetitions. We give explicit formulas for the corrections
integrable polygonal billiards display interesting propertiesto the leading semiclassical term for thth iterate of a fam-
[9], not to speak of the case of pseudointegrable billiardsily of periodic orbits.
whose level statistics are intriguingly related to those of the We find in polygonal billiards a very rich variety of dif-
Anderson model at the metal-insulator pdih®,11]. fractive orbits. Their contributions givé% corrections to the
The present work is devoted to a detailed study of thdeading semiclassical term in the trace formula and allow
trace formula in polygonal billiards. Though the generalcomputation of the level density with great precision. Nu-
method of deriving the trace formula is well knoh], its  merical checks show that the typical semiclassical error is
application to polygonal plane billiards is not straightfor- reduced by one or two orders of magnitude.
ward. The main difficulty is the existence of important cor- The paper is organized as follows. In Sec. Il we briefly
rections due to diffraction on the corners of the billiard. Thispresent Keller's geometrical theory of diffraction and pro-
type of correction was treated in Ref§2-14 in the frame- pose an alternative approximation based on Kirchhoff's
work of Keller's geometrical theory of diffractiofiL5]. This  theory that is valid near the “optical boundarythe separa-
amounts to introducing in the trace formula new diffractivetion between allowed and forbidden classical trajectories,
orbits which obey the laws of classical mechanics everywhich occurs in optics on the line separating light and
where except on singularities of the potential, where they arghadow. The simplicity of the method permits a straightfor-
diffracted nonclassically. The result of the approach of Refsward generalization to the case of diffraction by a flux line.
[12-14 diverges when a diffractive orbit is close to being The approximation established in Sec. Il is used to treat a
allowed by classical mechanics; this deficiency was remiarge number of different types of diffractive periodic orbits.
edied in some special cases in Ré¢f6,17. Referencg17] We first consider corner diffraction. The contribution of a
studies corner diffraction in two-dimensional billiar@sot  diffractive orbit on the boundary of a periodic orbit family is
exclusively polygonk It gives uniform formulas but is lim- calculated in Sec. Ill. This is a typical situation for pseudo-
ited to single diffraction. Referendd 6] treats diffraction by integrable billiards. Special attention is given to the diffrac-
a circular disk inside a billiard. It considers up to doubly tive partner of then-fold repetition of a primitive periodic
orbit. Section IV is devoted to the study of diffractive orbits
that are simultaneously on the boundary of a family and on
*Unite Mixte de Recherche de I'Universitearis XI et du CNRS the frontier of the billiard. Another type of diffractive orbit
(UMR 8626. belonging to the boundaries of two different families of pe-
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riodic orbits is discussed in Sec. V. In addition to diffractive where

orbits lying exactly on an optical boundary, there exist orbits

that are so close to an optical boundary that the geometrical o1 on

theory of diffraction cannot be applied. Such orbits are stud- D,,,(0,0")= N tar{ (¢, + pm)/2N]’
ied in Secs. VI and VII. All these special cases are necessary

for a careful description of the quantum density of states invhereN= /7 and ¢,= 6’ — o0 (with 6 and ' in [0, y]).
pseudointegrable billiards. In Sec. VIII we illustrate the flex- Although formula(2) is attached to the name of Keller, the
ibility of our approach by presenting results for flux-line dif- idea of treating diffraction as arising from a kind of reflection
fraction in a rectangular billiard. In this case, solving theon the edge has a long history which goes back to Young
question of diffraction on the optical boundary amounts to(see Chap. 44 of18] and Sec. 8.9 of19]). We also note
treating the nontrivial problem of(multiple) forward  here that the repercussion of diffractive periodic orbits on the
Aharonov-Bohm scattering. Finally, we present our concluspectrum seems to have been first worked out within the
sions in Sec. IX. Some technical points are given in thegeometrical theory of diffraction by Durso in 19880].
appendixes. In Appendix A a concise discussion of improve- Formula(2) can be generalized to treat multiple diffrac-
ments to Keller's theory of diffraction is given. In Appendix tijon. One has then several diffraction coefficiePts D5, ...,

B we discuss the computation of certain trace integrals. Ibne for each diffractive bounce, and between each diffractive
Appendixes C and D we derive analytically explicit expres-pounce a semiclassical propagation described by a Green

()

sions for important-dimensional integrals. function of type(1). When diffractive trajectories are taken
into account in the trace formula, one is led to consider dif-
Il. DIFFRACTIVE GREEN FUNCTION fractive periodic orbits whose contributions to the level den-

sit E) are of the form[12-1
In this section we first present Keller's geometrical theory v p(E) m 4

of diffraction (putting the emphasis on corner diffractjon

n
and then propose an alternative approximation valid near the ;(g)— La ( 11 D )cos(de— vyl2—3nmld).
optical boundary(when Keller's approach failsfor corner 2k \ j=1 V8kl;
and flux-line diffraction. (4)

In Eq. (4) and in many instances below, when writing
explicitly the contribution of a periodic orbifclassical or

One considers the different approximate contributions tajiffractive) to the level density, we put an arrow in the di-
the Green functiorG(r,i",E) for two pointsi andf’ ina  rection of p(E) to indicate that this is one contribution
polygonal billiard. The first is the semiclassical contribution, among many others. In the above expresdipn, . | , are the

which is a sum over all possible classical trajectories goingengths along the orbit between two diffractive reflections.

A. Geometrical theory of diffraction

from i’ to r. Itis of the form l,+...+1,=Lq is the total length of the diffractive periodic
) orbit. v4 is the Maslov index of the diffractive orbit, i.e.,
Go(FF E)= S exdi(kL—vm/2—3m/4)] 0 twice the number of specular reflections. Repetitions of a
EARR b 8mkL ’ primitive diffractive orbit appear as a special case of &,
classical in this case, however, in the first factay/(27k) of the

. ) ) R . right-hand sidgrhs) of (4), Ly should be understood as the
whereL is the length of the classical path going frainto r primitive length of the orbit.

and v is twice the number of specular reflections along that \y/e recall that. in a polygon, the contribution of an iso-
path (we consider Dirichlet boundary conditionsNe use |5¢aq periodic orbit t(E) is of the form—1/(4mk)coskl)

units such that the energy is related to the wave VeCiOftyr 4 primitive orbit of length ). Thus Eq.(4) shows that the

— 12
throughE=k". contribution of a typical diffractive periodic orbit with dif-

There are other contributions ® that correspond to dif- ¢ tive bounces is of ordeéd(k~"2) compared to that of an

fractive orbits experiencing specular reflections on the fronigated periodic orbit. We will study below special configu-

tier of the billiard and also nonclassical bounces on the dify 405 where this is not the case and where diffractive orbits
fractive comer. In the framework of Keller's geometrical 56 the same weight as isolated periodic ones. We first need
theory of diffraction(see, e.9.[15]) such an orbit with @ 5 iscuss the range of validity of the geometrical theory of

si_ngle diffractive bounce contributes to the Green functionjiraction and to define approximations alternative to Eq.
with a term 2.

G14(F,F",E)=Go(Fo,I",E)D(8,0")Go(F,Fo,E), (2
B. In the vicinity of an optical boundary
where rfo is the _p(_)sition of thg diffractive. apex ard is a The approximation defined by Eq®) and(3) fails when
diffraction coefficient depending on the interior angleof  he diffractive bounce aft, is “almost allowed” by classical

the polygon at’y and on the incomingoutgoing angled’  mechanics. In that limit the trajectory lies on what is called
(6) of the diffractive trajectory with the boundary. The ex- jn the literature, an “optical boundary,” and the coefficient

plicit expression ofD for corner diffraction readfl15] D diverges. This failure of Keller's approximation can be
intuitively understood by noting that E¢R) gives a contri-
D(6,0')= 2 D,.,(0,6') put.ion to the Grgen fu.nction qf ord&(k 1), whereas in the

op=+1 limit that the diffractive orbit becomes allowed by clas-



PRE 61 DIFFRACTIVE CORRECTIONS IN THE TRAE . .. 3691

3T /B = — R ——————— (a)

n=—
FIG. 2. Graphical representation of the notations of Efsand
deme (6). (a) refers to corner diffraction an@) to flux-line diffraction.r
0 /8 /4 37/8 is the diffractive point. The dashed line issuing frégis the opti-

6 cal boundary on which the geometrical theory of diffraction fails. In
(a) the integration along is stopped on the apex 8§. This is not
the case in(b). There, however, near the optical boundd§e|
<7 and the integrand of E(6) contributes with a phase that is
approximately— a7 if s>0 andaar if s<O.

FIG. 1. Solid lines: location of the anglesand 8’ for which
expression(3) for D diverges wheny=3/8. Near each line are
indicated the values and 7 of the divergentD,, ,,. Dashed lines:
location of the angle® and ¢’ for which expressior(3) for D is

zero. These correspond t(or 8')=0 orvy. . ) )
Green function: far from the optical boundary characterized

sical mechanics it has to contribute at ord@¢k~Y?) like  PY o andz, ityields a result basically of the form of E®),

any classical trajectory. Hence in this limit E() cannot  Without, however, the correct form of the coefficient, ,
hold. We study below a triangle with a diffractive corner of (thiS is in accordance with the known aspects of the Kirch-
opening angley=3/8. In this case, one can easily check h_Off approximation; see, €.g18]). This should not be con-
geometrically that the diffractive orbit coincides with a clas- sidered as a I|m|tat|on_0_f the _approach. we show below
sical trajectory if the angleg and ¢’ lie on one of the lines (Secs. Vl.and VD that it is a simple matter to make the
of [0,y]? shown on Fig. 1. This can also be checked alge-reSUIt derived from Ea5) um_form when necessary. Com-
braically from formula(3): each of the four lines of Fig. 1 pared to the uniform .expressmﬁAl), Eq.(5) has the impor=
corresponds to divergence of one of the coefficiedys, . tant _advantage of be_lng easily extended to treat muItl_pIe dif-
For corner diffraction, after the work of PayR1], sev- fraction near the optical boundalq. (9)]. In the following

eral uniform approximations have been derived which Cor_sections approximatio(ﬁ) _will_allovy us to incorporate non-
rect the drawbacks of Eq2). We recall one of these in standard diffractive contributions in the trace formula.

Appendix Al. In this paper we use a simple approximationt. F%rmul?l(S) I(_:an t_l)_?].eXtenSFd t?‘ treat thetcatse.of_ldﬁ.ftr.ac-
to the exact formula valid only near the optical boundary. Let'oN Dy a flux fin€. ThiS probiem has important simrarities
ith corner diffraction. In some respects it can be considered

us consider that the trajectory lies near the optical boundary ™. . ~ X : )
s simpler, because for an initial poititthe diffractive point

defined by one of the four couplés,7); then our approxi- L X . :
mation for the total Green functiosemiclassical plus dif- (t.he Aharonov-Bohm flux lingis as.soc[ated W.'th. a single
fractive) reads diffractive boundary: the forward_ dlr(_act|on. This is the rea-
son why formula(6) below—which is the analog of Eq.
+oo . (5)—comprises only a Kirchhoff contribution and no Keller-
Gy(r, I, E)= —ZJ dsGy(S,1",E)Ns- VsGo(T,S,E) like correction.
0 We consider a particle of charggand a flux line located
+Go(Fo,7",E)Dred 0,0")Go(T,,E), (5 on pointfy such that the magnetic field §=CI>5(F— o) Z.
The only relevant parameter is the ratiof the flux ® with
where the locus of pointSis an arbitrary half-line separating the quantum of fluxe=q®/(27fic), and one can restrict
F" andi and issuing front, (ats=0); i is a vector normal oneself to G<a<1. The Kirchhoff approximation for the
to thes axis and oriented towarii[see Fig. 28)]. Dy is the total Green function igsee the derivation in Appendix A2
nondivergent part of the diffraction coefficiefite., the sum

of all the D, ,’s but the divergent one The diffractive +oo
Green functiorjanalogous to Eq2)] is defined from Eq(5) G(r,f" E)y=— ZJ dsGy(§,f',E)
by the differenceG,4=G;—Gg. ‘°°
Equation(5) is a simple Kirchhoff approximation to the Xﬁs~€§GO(F,§,E)ei adg(s). ©6)

Green functionwith Keller-type correctionswhich is to be

used within the semiclassical approximatithis is illus-

trated at length in the following sectiondVe show in Ap-  where the locus of pointS is an arbitrary line separatingy
pendix A how it can be derived starting from a more elabo-and i and going through’y (at s=0), and A ¢(s) is the
rate approach. Equatiofb) is exact in the limit that the angle covered by the path going frathto § and then ta".
classical path froni’ to f lies on an optical boundary. It is If 8¢ is the angle between—r, andry,—r"’ (i.e., the depar-
designed to remedy the divergence of the geometrical theoriyre from the optical boundary then A¢(s)= ¢

of diffraction and it is not a uniform approximation to the —# sgng). Of course, in this procedure, the orientation of
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being related to the Green function through the tra¢g)
= — (1/m)Im fd>G(F,F,E+i0"), the Green function is ap-

proximated in the vicinity of a periodic orbjihere it will be

done by using Eq(5) but other approximations will be used

below] and the trace integral is evaluated within a saddle

phase approximation near the saddle corresponding to the
h periodic orbit considered.

) e o The diffractive correction to the first iterate of a family is
FIG. 3. Representation of a periodic orbit which is part of ayary simple: the trace of the first diffractive contribution to
family in the triangle ¢r/2,7/8,3/8) (upper left trianglg and of 0" irchhoff Green function in EG5) is zero and only the
the diffractive orbit which is on the boundary of the familpwer term with a regular Keller-type diffraction appears. Hence, if
left triangle. The plot to the right represents the family after un- the family has a length | and occupies on the billiérd an a,rea

folding. The area occupied by the family is shaded and the diffrac : o . . . .
tive point on its boundary is marked with a black das in the A, then its total contributiorisemiclassical plus diffractiye

lower left triangle. The diffractive orbit in the lower left triangle 0 p(E) is simply
appears as the right boundary of the unfolded trajectory.

the axis €,,S) is not arbitrary. Our choice ok ¢(s) corre- A 1
sponds to an orientation such as that presented in Fiy. 2 p(E)Hﬂ 2 K cogkl—m/4)
Equation (6) has a simple physical interpretation: the
phase accumulated by a trajectory depends on the sense of | Dieg
rotation of the circuit around the flux line. Like E), it is + 77Kk cosdkl—vyml2—3xl4). (7)
only valid near the optical boundary, but it is easily general- K 8kl

ized to multiple diffraction in the forward direction, i.e., it
allows us to treat the problem of multiple forward Aharonov-
Bohm diffusion. We illustrate this property in Sec. VIII. The first part of the rhs of Eq7) is the usual contribution
of a family of periodic orbits in two dimensions. The second
part is of the form of Eq.4): it comes from the regular
Keller contribution in Eq(5).

In order to test the validity of our approach, we have

A typical occurrence of diffractive orbits is at the bound- compared our analytical results with the spectrum deter-
ary of a family of trajectories. The width of a beam of clas- mined numerically in a triangular billiard with angles
sical orbits is limited by a singularity of the frontier of the (7/2,7/8,37/8). Note that this is not a generic polygonal
billiard. Such a case is illustrated by the example shown irbilliard: its classical mechanics is pseudointegrable and, fur-
Fig. 3. Note that this is not the only possible type of bound-thermore, it belongs to the set of “Veech billiard§22]. We
ary of a family. It may happen that the family stops on achose these systems because they simplify the geometrical
nondiffractive corner(a corner with opening angle of the computations: Veech billiards have the amusing property
type «/n with ne IN). This is the case for one of the bound- that there exists only a finite number of possible areas occu-
aries of the family displayed in Fig. 3. The frontier of the pied by a family of periodic orbits. In the triangle we study,
fam"y may aISO be one Of the frontiel’S Of the b|”|ard, th|S iS one can ShOW that there are On|y three possib'e anéas:
iIIustrate_d in Fig. 7 below. We will also study belo(@ec. =1NZ, (V2+1)/2, or /Z—1)/2 (we take the hypotenuse of
IV) a mixed case where the boundary of the family onlyne triangle as the unit lengtiWe emphasize, however, that
partly coincides with the frontier of the billiard. _ the formulas obtained in the present paper are quite general.

In Fig. 3 we have_ represented the family by one OT S The numerical spectrum was obtained by expanding the
membergupper left triangl: The boundary of the family is wave function near the angte/8 in “partial waves,” which

shown in the lower left triangle. Also, to the right of the plot, : ) : . : )
) : . . are Bessel functions times a sinusoidal function of the angle:
instead of representing the orbit by a series of segments Mo

bouncing off the frontier of the billiard, we have represented?(r» ) =2 I Jgn(kr)sin(8mé). This automatically fulfills
it by a unique Straight segment where the reflection on eacthe Dirichlet conditions on the two faces of the billiard that
edge is replaced by continuing the path into a reflection ofmeet at the corner with opening angtg8. The boundary
the enclosure. This procedure is called “unfolding the trajeccondition on the remaining face is enforced in a manner
tory.” identical to the improved point matching method presented
The diffractive orbit on the boundary of a family appearsin [23]. This results in a secular equation whose solutions are
as a correction to the contribution of the family and of itsthe eigenlevels of the system. We have tested the numerical
repetitions. Its contribution to the trace formula cannot bestability of our procedure by varying the number,,,, of
evaluated from the geometrical theory of diffraction, becausgartial waves. We have computed the first 20 000 eigenlevels
its coefficientD is infinite. However, since the diffractive and we have checked that they were determined with an
orbit is exactly on an optical boundary, it can be describedaccuracy of the order of 1/1000 of the mean level spacing.
by using Eq.(5). The contribution of an orbit to the level The agreement with the numerically determined spectrum
density is evaluated in the framework of a semiclassical peean be checked by studying the regularized Fourier trans-
riodic expansion(see, e.g., Refd1], [2]); the level density form on the level density:

lll. A DIFFRACTIVE ORBIT ON THE FRONTIER
OF A FAMILY
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0.20 . . .
=== numerical
—— 8. Cl. + corrections
0.15 _
N | = —7 -
"R\ 0 ru
- 0.10 - 1 <—x e e —x —>
R
/
“x Zz
0.05 - ] FIG. 5. Schematic representation of the different contributions
to the Green functiorG, near a diffractive periodic orbit on the
boundary of the second iterate of a family. In this pland in the
following plots of the same typedhe trajectory is represented after
0.00 , ‘ ‘ unfolding and the shaded areas are zones forbidden by classical
.97 1.39 1.41 1.43 1.45 1.47 mechanics. The path represented by a solid line going froos, ,

X §,, andr contributes to the leading Kirchoff term in the first inte-
gral of the rhs of Eq(9). The dashed path contributes at next order
(it has one “Keller bounce” af, with diffraction coefficientD,e).

Its contribution to the Green function corresponds to the second
term in Eq.(14).

FIG. 4. Comparison of the numericgt(x)| (dashed lingwith
the result from Eq(7) (solid line). The two curves cannot be dis-
tinguished; this will also occur in all the following plots of the same
type. We have taken heg=>5, ki, andk,,, being respectively the
first and the 5000th level. The peak corresponds to the length of the
family shown in Fig. 3] =v2 (in all the text, the hypotenuse of the o e Lo I L.
triangle is chosen as the unit lengtiihe modulus of the difference Go(f,F,E) =~ 2fo dsG,(S,r",E)s- VeGo(r,S,E)
between the numerical and analytical value$ ¢%) is also plotted
in this figure, but is barely seen on this scéils largest value is +G1(Fo,7",E)Dred 0,0")Go(T,1o,E), (9)
5x 10" 4). The usual semiclassical contributipmith only the first

t f the rhs of Eq(7)] gives instead f about 1D : : . . :
erm of the rhs of Eq(7)] gives instead an error of abou whereG, is the total(semiclassical plus diffractiyeGreen

function.
[ B Kmax KX — B (K 2 When unfolding the trajectorfas was done, for instance
— = BlL(k—kg)/AK] . ) . - ' h &
F(0 m(Ak)? ‘fkmin dEp(E)e™e ' in Fig. 3) near the diffractive boundary of the family, one is

(8)  led to consider contributions such as those presented in Fig.
5. In that figure the position of a poinitin the vicinity of the
diffractive trajectory on the boundary of the family is defined
by coordinatex andy. x is a coordinate along the orbit (0
<x=I) andy is a transverse coordinate.

The leading order contribution @, to the level density

In EQ. (8) Kmin andk,,, are the lower and upper bound-
aries of a window of the spectruftypically k., is the first
eigenlevel, and,,, the 5000th onk K,,= (Kmax+Kmin)/2 and

Ak= (Kmax—Kmin)/2. B is a dimensionless regularizing pa- is the usual contribution of the second repetition of a family

rameter(typically 8=5). If Kpin=0, Kmax—+, and 8=0, o . : . . . -
F(x) is a series of delta peaks centered on the lengths of th%];oz?r::gﬂg:ngfiéz gngt;:aiusng;j tﬁz fil:?nply making the ap

classical and diffractive periodic orbits.

A comparison of the result of Eq7) with the numerical
data is shown in Fig. 4 for the family of Fig. 3. The agree-
ment is excellent. Note that in this figufand in the follow- p(B)—o—
ing figures of the same typeve compare different estimates
for |[F(x)|, but we also plot thenodulus of the difference
between the numericaF(x) and our analytical formula, Here and in the rest of this sectidn=nl is the total
which is a strong test of accuracy. Note also that to avoidength of the trajectory, | is the primitive length, ands the
spurious sources of discrepancies with the numerical resufepetition numbefheren=2).
we compute the integraB) numerically even when we use  The diffractive corrections to Eq10) are included into
an analytical expression fqr(E) [this corresponds to what p(E) through the following trace:
we still call the analyticaF(x)].

We now concentrate on the second iterate of the family. 1
Its contribution is less trivial than Eq7) and more generic; p(E)e———1Im f d2r[G,(F,F,E)—Go(F,F,E)]. (11)
hence we will present the computation in some detail. One m
has here to consider double diffraction near the optical
boundary. Equation{5) is generalized to doubléand in a From the expressiof®) of G, one obtains the first order
similar fashion to multiplg diffraction: contribution toG,(f,f,E) — Gy(r,r,E) in the form

coskL— 7/4). 10
oL g ml4) (10)
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\/EeikL+3i7r/4

2(2)%2x1(1—x)

s 2 (sp—5y)? S,)
er dSlJ' dszexp{ 2(( 1XY) +( 2I 1 (yl_z )

* e k —v)2 _ 2 _ 2
_@(y)J':c dsifwdszexp{iz (s1—Y) +(Sz s (y sz)>

X | | —x

] . (12

This contribution corresponds to the main Kirchhoff term  In Eq. (15 v4 is the Maslov index of the orbit corre-
in Eq. (9) [i.e., to the solid path fromi to " in Fig. (5)]] from  sponding to the dashed path in Fig. 5.difis the relevant
which the semiclassical contribution has been removed wheimdex near the optical boundary considefed., the one for
it exists, i.e., whery>0 [this semiclassical contribution has which D, , in Eq. (3) diverge3, one can show that
been written as the double sufiiZds,[*Zds, in (12)]. In exp{—lvdw/Z} .
the expression(12) one has made the hypothesis—s/, There is a last correction to E@15), purely of Keller
|s1—sal, |y Sy|<x,I. Thus, for instance,|S,—Si|=|  type, giving a contribution of orde®(k2), but the contri-
+(s2/s1)?/(21). The above expression has to be insertedhutions(10), (13), and(15) already give a very good descrip-
into Eq.(11), i.e., integrated transverse to the ortallongy)  tion of the Fourier transform of the spectrum. This can be
and Iong|tud|nally(alongx) This is done in Appendix B and  checked in Fig. 6 for the second iterate of the family drawn

the resulting contribution to the level density is in Fig. 3.
| A simple remark is in order here: E¢LO) is actually the
p(E)e—— ﬂcos{kL). (13) first term of an expansion ik~! (or equivalently inz). The
o

magnitude of the next correction can be estimated by the
following argument: the exact Green function in an infinite
wedge can be expressed in terms of a Hankel fundiiotin
diffractive corrections unimportant for the present discus-

This shows that the main diffractive correction to the con-
tribution of the second iterate of a family is of order of that
of an isolated periodic orbit. Such nongeneric contributions
in the vicinity of a family have already been studied in a

slightly different context in Ref[16]. 0.15 ' '
For a better agreement with numerical data, one needs t ——= numerical
include also the next order correction to E&3) in the level — S.CL + corrections ,,"\

density. This is done by including mixed Kirchhoff-Keller P o
contributions in the Green functid®), such as described by s

the path represented in Fig. 5 by a dashed line. Along thal
path, the first diffraction afy is of Keller type(involving a 0.10 -
coefficientD,¢g), and the second one of Kirchhoff tyjpeith

an integral alongs,). One has two contributions, one for §
each possible location of Keller diffractida single one be- ~>
ing shown in Fig.(5)]. The relevant contributions 16, are 5
now of the form
0.05 | |
Dreg eikL+i wl4—ivyml2
4k(27)32x1(1 = x)
+oo s 2 52 2
x[f dslex;{ <( 1Y) —1+—y )
0 [—x
0.00 . ' ‘
2 2.78 2.80 2.82 2.84 2.86
X

f Y, S (s’

ds,exgiz| —+-—+——7— . . .

X I I—x FIG. 6. Same as Fig. 4 for the second iterate of the family. The

solid curve(labeled “S. Cl. + corrections’) corresponds to Egs.

_ _ o - (14 (10, (13 and (15 In this plot and in the following plots of the
The integral of this expression is computed in AppendiXsame type, we represent with a thin dashed (@enoted “S. CI.")

B [Eq. (B10)]. It yields the next correction to E¢13) which  the usual semiclassical result without diffractive correctimsich

is of the form corresponds here to E¢LO) along. The modulus of the difference

between the numerical and analytida{x) is also plotted in this

figure, but is barely seen on this scale; its largest value is 5

p(E)e— =— cogkL— vgm/2—3m/4). (15 %104, whereas the usual semiclassical approach gives an error of

2wk \[8 kL 1.4x10°2
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and (i) for long orbits(or large repetition numbgthe term
A/L? in Eq. (16) will be dominated byD,e,in Eq. (15).

The determination of the contribution of the next iterates
of a primitive family of periodic orbits with a diffractive
boundary is patterned on the above derivation. We just state

the results here.
The main contribution is the generic semiclassical one, of

FIG. 7. Representation of a family of periodic orbits in the tri- the form (10). The first correction is of a type similar to the
angle (/2,7/8,3m/8) by the technique of unfolding. The family contribution to the trace formula of an isolated periodic orbit:

has a lengtth=2 cos#/8. Its area is shaded and the diffractive point

on its boundary is marked with black dots.

sion) and this yields instead of Eq10) something like

p(E)<——I—Cncos(kL), 17

wk

where | is the primitive lengthn is the repetition number,
L=nl, andC, is a dimensionless parameter given by the

A
P(B) = g JolkL) formula C,=(1/8m)=4-3q(n—a)]~“2 We show how to
compute it in some special cases in Appendix B and in gen-
A1 coskL— m/d) eral in Appendix D. Its first values arec;=0, C,
27 2akL 1 & =1/(8m), C3=1/(4wv2),... and it has thdimiting value
C.=1/8.
| A/(8L?) The next correction to Eq17) is of the form(15). This is

(16) proven in special cases in Appendix [Egs. (B10) and

_|_ e —

2mk 87kl (B11)] and in general in Appendix C.

We have tested the excellent agreement of contributions

Equation(16) is the exact contribution of a family in an (10), (17), and (15) with the numerical spectrum.We illus-
integrable polygon. Therefore there are nondiffractive cor4rate this for the fifth iterate of the family shown in Fig. 7.
rections to the leading ord€t0) of the trace formula which  This family is particular in the sense that one of its bound-
are of the same order as E(.5). To D4 in Eq. (15 one aries is formed by an isolated orbit which has an extra
simply adds a factoD(.A/L?) [see the last term of the rhs of bounce compared to the family; it lies along the lower edge
Eq. (16)]. In all our numerical checks this correction ap- of the triangles in Fig. 7. The contribution of such an isolated
peared to be negligible. By comparing the diffractive correc-orbit has been known for some tii24,25 and is taken into
tions with Eq.(16) one can note that) the first diffractive  account in the comparison with numerical results displayed
term (13) is the leadingy/% correction in the trace formula in Fig. 8. The other boundary is a diffractive orbit of the type

sin(kL— 7r/4)+--- .

0.30 0.40 - : T
—=—= numerical —=—= numerical
—— 8. Cl. + corrections —— 8. Cl. + corrections
----s. CL | ---- 8. Cl.
0.30 SN
7/ A
i R / \
0.20 o AN K \
/ \
[ \
1 \
: II \\
lJ \
m ) \
— 1 \
) \
II
1
1
1
)
)
1
/
/
/
/l
0.00 e " 4 0.00 L .
9.220 9.230 9.240 9.250 9.260 9.220 9.230 9.240 9.250 9.260
X X

FIG. 8. Same as Fig. 4 for the fifth iterate of the family shown in FigL#0.239). The analytical result corresponds to E§), (17),
and (15 with n=>5. The modulus of the difference between the numerical and analf&icdl is represented by the shaded area. It is
important on the left plot, because of orbits in the vicinity of the peak that are not taken into account. This overlapping of peaks can be
suppressed by increasikg,,, [in order to decrease the width of the peak$riix)|]. This is done on the right plot, which is drawn fiog,.,
corresponding to the 20 000th level. Then the largest discrepancy with the numerical resultds“4whereas the error when employing

the usual semiclassical approach is 100 times larger.
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=l

'6 —x—*

FIG. 9. Representation of a family of periodic orbits in the tri- -5 -~
angle (r/2,7/8,3w/8) by the technique of unfolding. The family
has a lengthL = (4+2v2)Y?=2.613. Its area is shaded and the /é
diffractive points on its boundary are marked with black spots. The 4

boundary of the family partly coincides with the frontier of the
billiard. FIG. 10. Schematic representation of the different contributions

to the Green function near a diffractive periodic orbit on the bound-
we are interested in. Its contribution to the level density isary of a family. The boundary of the family coincides with that of
described by Eqg17) and (15). the billiard alopg a segment.of length. In thi; case, the main
The following diffractive corrections to the contributions Kirchhoff term in Eq.(9) contains two paths, which are represented
(10), (17), and(15) to thenth iterate of a family correspond PY solid lines in the figure.
to orbits havingn, Kirchhoff diffractions anchy Keller ones,
with  nc+ng,=n. They vyield corrections of order function to be incorporated in that formula has two contribu-
O(k~ (™12 compared to the leading terf0). One can tions: one from the “direct” path(we call this path “di-
show that their contribution to the level density is of the formrect,” but it may have bounces that are not shown by the
process of unfoldingand one from a path bouncing on the

-~

I Dreg "o (no) frontier of the billiard which is also the frontier of the family
P(E)Hm m Bn 9 COS{kL—3ng7T/4— vyml2). (see Fig. 1D

(18) In that figure one has represented a configuration where a
point in the vicinity of the diffractive periodic orbit lies
The Maslov indexvy in Eq. (18) is related to the indexr ~ @long the part of the boundary of the family which does not

of the optical boundary consideréie., the one for which ~coincide with one frontier of the billiardve denote by, the

. - : _ . length of this part, and by, the length of the part along a
D, , in Eq. (3) divergeg by exp{—ivym/2} = "9, B" is a . - 2 S
dirﬁgnsionless coefficienB(l)z{n‘l’g [in} agreemrént with frontier of the billiard,|; +1,=L). Then the main Kirchhoff

n

contribution toG, is of the form
Eq.(15)], BY==4219"¥4(n—q) "2 and the general form 2

is
Ng ikL +3i /4 . o
B; = H (Gis1—ai) 32 (19 vke [f+ dslfJr ds,
{a) i-1 2(2m)32xI5(I,—x)| Jo 0

with the conventionqng+1=n+ql. The sum is extended
over all possible sets af integers{qi}lsiSng with 1<q;
<Q2<<Qn <N.

_v)2 _ 2 _ 2
Xex%ig((sl Y, (s2ms)® (Y Sz))
2 X [, l,—X

+ oo +
IV. A DIFFRACTIVE ORBIT ON THE FRONTIER — f dslf ds,
OF BOTH A FAMILY AND THE BILLIARD 0 0

In the previous section we studied the case when a dif- K —y)2 +5,)?2 2
fractive periodic orbit lies on an optical boundary corre- xex;{i _((Sl y© (S2+1 + (Y=S2) ) . (20
sponding to the frontier of a family. There is a special con- 2 X P l1—x

figuration where such a diffractive orbit lies on two optical

boundaries. From Fig. 1 one sees that two optical boundaries

meet only on the edges defining the diffractive corfvenen

for =0 or y). Hence, in that case part of the diffractive =~ The second contribution ifR0) is obtained from the first

trajectory crawls along the frontier of the billiard. This hap- one by the method of images. It corresponds in Fig. 10 to the

pens, for instance, for the diffractive trajectory on the bound-path going froms; to S, with one bounce on the frontier of

ary of the family shown in Fig. 9. the billiard. If the pointr of Fig. 10 lies along the part of the
Although the diffractive periodic orbit considered boundsorbit coinciding with the frontier of the billiard, then the

the first iterate of a family, it is already doubly diffractive. main Kirchhoff contribution toG, is a sum of four terms

To incorporate such a configuration into the trace formula(this is detailed in Appendix B, cf. Fig. 24We will not give

one can still use Eq$5) and(9), but the semiclassical Green the explicit computation herésee Appendix B but after
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0.50 ‘ 5 =
0.40 |- 1 W B C
FIG. 12. Representation of a diffractive orbit that jumps from
0.30 |- J the boundary of one family to the boundary of another. The area
=~ occupied by each family is shaded. The first family transports tri-
33, angleA to positionB, and the second one transports triangléo
E positionC. The diffractive orbit is the thick solid line with its three
0.20 ) ——— numerical ] diffractive points marked by black dots. It has a lengtj= (10
. +7v2)Y2=4.461.
, —— 8. Cl. + corrections
---- 8 Cl . .
040 length of one of the families anlg+1; is the length of the
' second onel, being the length that corresponds to the part
of the boundary of the second family lying along the frontier
of the billiard.
0.00 . ‘ The diffractive Green function to be considered here is of
2.590 2,610 2,630

x the the type previously studied in Sec. IV, with an additional
diffractive bounce. Hence, one defines a Green funaBgn
FIG. 11. Comparison of the numerical evaluationFdf) with connected tds, in the same manner &3, is connected to
the result of Eqs(10) and (21) for x close to the length of the G, in Eq.(9). Due to the possible bounce along the frontier
family shown in Fig. 9. The modulus of the difference is also plot- of the billiard that coincides with the boundary of the family,
ted on the figure, but cannot be seféris lower than 10°%). the semiclassical Green function to be incorporated in this
formula has several contributions. This is illustrated in Fig.
transverse integration along the final result for the first 13 where there are two possible paths for going f&rto S,
diffractive correction to the contribution of a family such as (such a contribution was already present in Fig). 1Dthe
the one presented in Fig. 9 is initial point F were lying near the frontier of the billiarghext
to the part of the family of length,), one would have four
1 P different paths: two for going from to S, and two for going
p(BE)e—— m( o +L arctan\[l—1> cogkL). (21 from s, to f. After transverse integration of these four con-
tributions(along the variablg), one can verify that they lead
The next diffractive corrections to Eq21) are of the !0 the same contributions as the ones displayed in Fig. 13;
order of a doubly diffractive Keller correction, and we do not hence we will present here only the computation in the sim-
include them in our description of the family. As seen in Fig. Pler case shown in Fig. 13. . .
11, contributiong10) and(21) already give an excellent de-  For the configuration of Fig. 13, the Kirchhoff term in the
scription of the Fourier transform of the spectrum in the vi-€xpression ofG; reads
cinity of the length of the family drawn in Fig. 9.

V. A DIFFRACTIVE ORBIT JUMPING FROM THE
BOUNDARY OF ONE FAMILY TO THE BOUNDARY
OF ANOTHER

N
r

In the billiard we consider, an interesting combination of
orbits occurs. It is formed by the gathering of two diffractive
orbits, each being on the boundary of a family, and where the
total diffractive orbit is on the optical boundary, although the “q L [
two families have no overlap. An example of such a case is Z 2

]

given in Fig. 12.

As seen in Fig. 12, although the diffractive orbit lies on
the optical boundary, there is no allowed classical trajectory
nearby. This type of orbit might be a particularity of Veech
billiards, but it is nevertheless interesting to describe its con-  £,5 13 schematic representation of the contributions to the
tribution to the level density. The schematic representation 0feen function in the vicinity of a diffractive orbit that jumps from
the neighborhood of the orbit is displayed in Fig. 13.  the boundary of one family to the boundary of anotferch as the

In the cases we have studied, the problem is complicateghe shown in Fig. 12 I, corresponds to the length of the family
by the fact that one of the families considered has a boundarat maps trianglé8 onto triangleC in Fig. 12 andl,+I5 to the
that partially coincides with the frontier of the billiard, i.e., is length of the family that maps triangle onto B. For this last fam-
of the type studied in the previous section. Hence, there ar@, |, is the length of the part of its boundary that lies along the
three relevant lengths along the orbit we consideris the  frontier of the billiard.

-




3698 E. BOGOMOLNY, N. PAVLOFF, AND C. SCHMIT PRE 61

o oo 0 0.030 . . ;
(2ik)3D3(X,|1,|2,|3)[f dslf dSQJ d53 ——= numerical
0 0 o —— 8. CL +corrections
k((s;—Yy)? —5)°
exd i~ (s1—Y) +(52 S1)
2 X P
Sa—S 2 —s 2 too oo 0 0.020
+(3 2)+(y 3))_[ dslf dszf ds,
|3 Il_X 0 0 —» :
2 2 2 33’
K((s1— + -
Y exg it (s1—Y) +(52 S1) +(33 S7) Ry
2 X l» I3
( )2 0.010
y—S3

where the notatiol , is defined in Appendix B. I1{22), the

second term is obtained from the first one by the method of
images. It corresponds to a path going frémto S, with a 0.000
specular bounce off the frontier of the billiatdf. Fig. 13. 4.440 4.450 4.460 4.470 4.480
Note that there is no classical path contributing28@): it is _ X _ o

clear from Fig. 13 that there exists no classical trajectory FIG. 14. Same as Fig. 4 for the orbits shown in Fig. 12. The

from  to 7. The transverse and longitudinal integrations are>0lid ine corresponds to the results of Eq83) and (24). The
done in a manner similar to that shown in Appendix B for shaded area barely seen at the bottom corresponds to the modulus

o . o .. of the difference between the numerical and the analytical results
the similar case of an orbit whose boundary coincides WIth(Which is less than 210™%). Note that the standard semiclassical

the frontier of the billiard(cf. Sec. I\V). The contribution of approach completely misses this peal )|
the diffractive orbit to the level density is PP pietely P '

p(E)%—jrCOS(de) tive orbit occur, which do not stand right on the optical
8wk boundary, but close enough to prevent their description by

I 7] the geometrical theory of diffraction. Such an orbit is repre-
arctan\/—z— arctam/ ——2 sented in Fig. 15.
l3+1, Iy

X
In this figure, the upper left triangle and the lower right
I Tt ) () one are Conn_ected by a family. For legibility we do not rep-
+ arctarr\/ s _Ys1r 2 Vsl resent it and its area. We represent only the diffractive orbit
l1+12 Lg Lg on its boundary(the straight line between two black dpts
\/m This orbit is singly diffractive and its contribution corrects

, (23)  the one of the family as in Eq7). There is a diffractive orbit
Lq nearby, not exactly on the optical boundary, but very close to

whereLy4=1,+1,+15 is the length of the diffractive orbit. ~ being part of the family: it starts and ends at the same point

In order to have a good description of the contribution ofas the diffractive orbit on the boundary of the family, but it
the orbit we are considering here, one ne@dsin Sec. [l)to  has an extra diffractive bounce in betwdsee Fig. 15 This
incorporate next order corrections, i.e., mixed Kirchhoff-is the type of orbit we aim to describe in this section. Its
Keller terms. This corresponds in Fig. 13 to the path withdiffraction coefficient does not exactly diverge, but one of
one Keller bounce on the apex which is not on the frontier of
the billiard (dashed ling (Keller bounces on the other apexes
contribute to higher ordérWe do not detail the computation
here and just present the resulting correction to(E§). It is
of the form

p(E)— La harcta Lol
27K 8wkl L
XCOide_VdW/2_37/4). (24)

As one can see in Fig. 14, Eq&3) and (24) give an
excellent account of the contribution to the level density of
the orbit shown in Fig. 12.

FIG. 15. A diffractive orbit on the boundary of a familgtraight
VI. A DIFFRACTIVE ORBIT BOUNCING BETWEEN line between two black dotsThe family is not represented, but it

THE UPPER AND LOWER BOUNDARIES OF A FAMILY connects the upper left triangle to the lower right one. The other
orbit shown is typical of those studied in this section. It is a doubly

Up to now we have considered only diffractive orbits ly- diffractive orbit close to the family, represented by the segmented
ing exactly on the optical boundary. Other types of diffrac-line between three black dots.
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In Eq. (26), K is the modified Fresnel function defined in
Appendix A. We have denoted Hy the length of the dou-
bly diffractive orbit going from the upper corner to the lower
one (Lyg=\I?+72+ 12+ %), by A the length difference
Ly—L, and have made the approximatidn=Z2L/(2l4l,).

The first term of the rhs of Eq26) is the usual contribution
of a family. The second is a diffractive correction.

Two remarks are in order here. First, it may happen that
the upper corner of Fig. 16 does not provide the upper
boundary of the family because the family meets another
nondiffractive boundary between the two diffractive corners.
This is the case presented in Fig. 15. The family does not
occupy all the width between the two diffractive corners: it
=~ meets first a nondiffractiver/2 corner. In this case formula
. (26) remains valid, butd={L/2. Secondly, it is interesting

FIG. 16. Graphical representation of different diffractive contri- to check the behavior of Eq26) when the two wedges are
butions for a family limited by two opposite wedges. The leadingfar apart, i.e., in the limit/kA> 1. By using the asymptotic

term in Eq.(9) corresponds to the solid line. The dashed path is onexpansion(A3) of the modified Fresnel function one obtains
of the next order corrections, involving one Keller bourfaéth a

coefficientD,¢) on one of the apexeg.is the distance between the
two apexes measured transverse to the direction of the family.

1 - =
- ;ImJ d?rG,(F,F,E)
the contributionsD,, ,, of Eq. (3) is large and does not allow
a proper description of the diffractive Green function by

means of Eq(2). For simplicity we will denote this part as A 1
the “divergent part” (the remaining being the “regular ~ o cogkL—m/4)
part”). a1 €T V2mkL
The configuration we just described is of the type repre-
sented schematically in Fig. 16. The projection of the upper n Lg <2|1|2) 1 cogkLy—37/2). (27)
diffractive corner onto the family separates it into two parts 27k |\ L4A | g 7Tk\/E d '

of lengthsl; andl,(l,+1,=L). Typically, the upper wedge
represented in that figure is the upper boundary of the family.
In that case, i denotes the distance from the upper wedge In Eq.(27), to the usual contribution of a family is added
to the lower extent of the family, the area occupied by thea term that can be matched with a contribution such as Eqg.
family is simply A=¢L (L being the length of the family; (4) with two diffractive bounces, provided some approxima-
see Fig. 16 tions are made. The terml2,/(L4A) stands where one
In this configuration the leading term in the Green func-would expect a product of two coefficienf2. Indeed, one
tion is obtained from the explicit expression®§ and reads can show that this term corresponds to the product of the two
o divergent partsD, , near the optical boundary. But it is not
Ga(F,M,E) of the form(3) which is the only one acceptable in the limit
JkekL+3imla where Eq.(27_) has been writterii.e., far from thg optical
d51J- ds, boundary. This is a well known drawback of Kirchhoff's
2(277 )¥2Yxl (11— x) ] = approximation already discussed in Sec. II B. It can be cured
F{ K ( (1~y)?  (Sp—5,)2 (y $) ) relatively easily: if the optical boundary close to the diffrac
Xexpiz + )
2 X [P l1—

tive orbit is characterized by the indicesand 7, one has to

multiply the second term of the rhs of E@6) by the factor

25  (1a5,ID5 ,)%/2 and to expresa as|aj ,|?11],/Lg (instead
of Ly—L). The terma,, , appearing in these expressions is

The above expression integrated transverdalpngy)  defined in Eq(A4). The upper indexl is meant to recall that
and longitudinally (along x) gives the contribution of the a, ,andD, . have to be evaluated on the diffractive peri-
family and of its corrections to the level density. The resultod|c orbit of lengthLy. This procedure allows recovery of

reads the correct limit in Eq(27). Moreover, it does not affect Eq.
1 ) (26) when the diffractive orbit is close to the familye., in
- ;Imf drGa(F.r,E) the limit \kA<1) since in this limit (a | DS, ,)%2=1 and
~|a.o_ 7I| |1|2/Ld'
A 1 Vil Equat|on(26) is not the final contribution from the con-

112
coskL—m/4)+ ;5 {cogkLy) figuration represented in Fig. 16. This is clear from Ey):

far from the optical boundary the asymptotic evaluation of

—2JmkA Re[eikl-d*iﬂMK(\/H)]} (26) Eq. (26) allows recovery only of the divergent part of the
diffraction coefficient. Hence one has to include other terms,

(the relevant integrals are given in Appendix B of mixed type Keller-Kirchhoff, as already encountered in

27 \2mkL
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Secs. Il and V. These involve the regular p@rt, of the 020 ' '
diffraction coefficients. We must be careful though, that we ——= numerical
have now two different diffraction coefficients: one for the —— 8. Cl. + corrections

orbit along the boundary of the familyve denote it byDIeg)
and another one for the orbit bouncing from the lower wedge (45
to the upper onéwe denote it byD?eg). The remaining con-
tribution to p(E) of the configuration considered in this sec-
tion is (we do not detail the derivation _
A
L Ieg L\:,, 0.10
p(E)— 27k WCOSKL vyml2—3ml4) =~

d

L Dy ) )
+ — ——=Rd ekt T 4K (KA 0.05
7K Bkl G (vkA)]
Ly (Dig?
+ — —————=co9kLy—37/2). (28)
27K 8k Il e
) ) - o O'Og.sgo 5.910 5.930
The term involving a modified Fresnel function in the X

above expression can be made uniform by a procedure simi- , . -

lar to the one devised for EG426). Note also that we have ~ FIG. 17. Same as Fig. 4 for the orbits shown in Fig. 15. The
added in Eq(29) a doubly diffractive term of purely Keller S°lid line corresponds to Eq&26) and (233' Here Onf,zha*:(l

type (last term of the rhs It is a small correction and such *"2) V6=5.9136 and Ly=(10+3v2)"%+ (6-v2)!%~5.9154,
terms were neglected in the preceding sections. We kept &‘he shaded area hardly seen at the bottom of the plot corresponds to

- - e modulus of the difference between the numerical and the ana-
here for consistency because far from the optical boundary ytical results(which is less than 14107%). The pure semiclassi-

IS (_)rfhsamer Or?nern?sv\}i?ﬁ tshec?]n(:nterrim |0f the t;hfnoif(Eﬁ))(.. len al estimatd Eq. (10)] gives an error of 4810 2. Taking into
€ agreeme € numerical spectrum 1S exce eagccount only the diffractive periodic orbit standing exactly on the

here also, as Shoyvn by Fig. 17. NOte that the ge_ometric oundary of the familyfas in Eq.(7)] gives an even larger error
theory of diffraction—although vyielding a nondivergent (5.3x10 2).

result—is completely inadequate in this case. It amounts here
to treating the isolated diffractive orbit as truly isolated from ra550n for the inversion in Fig. 19 of poifiwith respect to

the family; hence to describing the family of periodic orbits he axis of the isolated periodic orbit after the process of

in the usual wayi.e., using Eq(10)] and including a cor-  nfolding. In the figure( is the distance from the diffractive
rection of type(4) describing the contribution of the doubly apex to the periodic orbit.

diffractive orbit bouncing between the upper and lower |, the case of interest here, the Kirchhoff part of the total
boundaries of the family. This procedure gives an error ofgeen functionG, is [from Eq.(5) and Fig. 19
9.4x10 2 in Fig. 17.

eikL—ivm/2 o

—— | ds
VIl. A DIFFRACTIVE ORBIT NEAR AN ISOLATED ONE 47T\/m 0

In this section we will study, as in the previous one, a
diffractive orbit standing not exactly on the optical boundary, k
but close to an allowed periodic orbit. Here we consider the ><ex+ 2
case that the nearby orbit is an isolated ¢aed not part of
a family as in the previous sectiprSuch a configuration has where v is the Maslov index of the isolated orbit
already been studied in Rgfl7], and we will here rederive [exp(vm/2)=—1]. If v4 is that of the diffractive orbit and-
the result in a simpler mannébut with less generalify characterizes the nearby optical boundary, one has

A typical occurrence of the situation we are interested in
is shown in Fig. 18. The isolated orbit we consider is the
third iterate of the shortest classical periodic orbit of the
system. It has a length=3#2=2.121. The nearby singly
diffractive orbit has a length 4= (6 —v2)¥?=2.141.

The different contributions to the Green functiéy are
illustrated in Fig. 19. Note that for the phase-space coordi-
nate transverse to the direction of an orbit, a bounce on a
straight segment leads to an inversion. Hence, in a polygonal
enclosure, the transverse mapping near a periodic orbit is
either an inversiorffor an odd number of bounceand the FIG. 18. A diffractive orbit(straight line between two black
orbit is then isolated, or the identifyor an even number of pointg near an isolated orbistraight line connecting two corners
bounceg and the orbit is then part of a family. This is the with opening angler/2).

X L—x

_ 2 v 2
(y+i—sp) +(§ y 51)”’ 29
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A 0.060 .
N
r
yI\
L === pumerical
Y —— 8. Cl. + corrections
r
¢ L 0.040 | .
=
S| 8
ar, B
T L—ax—*™ Naj
=
“
g 0.020 - .
FIG. 19. In this figure the isolated periodic orbit connects the
two open circles. A nearby path fromto r is represented. There is
an inversion along the periodic orbit for the transverse coordipate
(see the text The diffractive periodic orbit goes from one open
circle to the apex af, and to the other open circle. It has a length
Lo=L+2Z%/L. 00%% %8 213 2.18

X

exp(rym2)= o exp(vml2). OnceGq has been removed, the k15 20, Same as Fig. 4 for the orbits shown in Fig. 18. The
above expression yields—after transverse and longitudinalyjig line corresponds to the contribution of the isolated diffractive
integration—the main contribution of the diffractive orbit to opit (which has a length = 3/2=2.121) plus the contribution of
the level density. There is also a corrective term containinghe nearby diffractive orbifLy=(6—v2)¥2~2.141]. The shaded
the regular part of the diffraction coefficient. Altogether onegarea at the bottom of the plot corresponds to the modulus of the
obtains the following contribution: difference between the numerical and the analytical regwisch

is less than 5% 10™4). We have used here the uniform version of

L Eq. (30) (see the teyf the use of the plain formula gives a twice

p(E)— Ik Re elkba=ivm2K \/H)] larger discrepancy with the numerical data.

(instead of the first 5000 levels as in Fig.)2flves for the
eometrical theory of diffraction an error 10 times larger
cogklyvqml2=3ml4), (30 '?han in cl)ur approgch. e | ’

Lq

La  Dreg
27K \[8mkLy

+

WhereA=Ld—L22§2/L. As in the previous section, we VIIl. A RECTANGULAR BILLIARD WITH A FLUX LINE

have used a representation of the Green function based on |n this section we depart from the previous examples,
Kirchhoff's approximation which does not yield a uniform which treat corner diffraction, and consider instead diffrac-
formula: Eq.(30) does not permit recovery of the result of tion by a flux line. We consider a rectangular billiaflith
the geometrical theory of diffraction far from the optical sides of lengtha and b) with a flux line located at point,
boundary, i.e., when the isolated and diffractive orbits are fajnside the billiard[cf. Fig. 21(@)].
apart. As in Sec. VI, one can easily remedy this deficiency. If e will not restart here a detailed study of a large number
the optical boundary to which the diffractive orbit is close is of different cases of diffraction in the Syste{as was done in
characterized by the indicesand », one multiplies the first Secs. I1-VvIl for a triangular billiary first, because
term of the rhs of Eq(30) by a(Lg4/L)|a, ,/D,,,/v2 and  Aharonov-Bohm diffraction is in a sense simpler than corner
replaces/A in the argument of the modified Fresnel function diffraction and leads to fewer exceptional cases and second,
by |ag‘n|\/L_d/2. This procedure does not affect EO) in because we chose this example merely to illustrate the flex-
the limit that the diffractive and isolated periodic orbits areibility of Kirchhoff's approach devised in Sec. Il. We will
close and it allows recovery of the result of the geometricashow that Eq(6) permits us to tackle the problem of mul-
theory of diffraction when these two orbits are well sepa-tiple forward Aharonov-Bohm scattering.
rated. This problem is encountered, for instance, when evaluat-
The agreement of formulé80) with the numerical result ing the contribution to the trace formula of the two families
is very good, as shown in Fig. 20. Note that the geometricatirawn in Fig. 21a). For each of these families the periodic
theory of diffraction is not totally inadequate heigs it was  orbit that encounters the poinf, twice on its way gives a
in the previous sectign It gives an error only four times doubly diffractive contribution. The schematic contribution
larger than our approach. The reason is that the classical and Eq. (6) for a nearby closed path is illustrated in Fig(81
diffractive orbits considered here are not very close to eacln this figure there is a reflection on the frontier of the bil-
other. Of course, the distance between two orbits must biard between the two flux lines and this has the effect of
measured relatively to the wavelength. As a result the accwehanging the sign of on the second flux lingequivalently,
racy of the geometrical theory of diffraction depends on theone could keep the sameand change the orientation of the
window of the spectrum chosen for evaluatifrgx). For  axis (F,S,)]. From Eq.(6) the diffractive Green function of
instance, evaluating (x) keeping only the first 500 levels the problem is written as
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(a) (b) 3.00 . .
=== numerical
N —— 8. Cl. + corrections
r -
< > yT\ro 2.00 - i
0 =
o~ =
rO sl N
R
*x £, b, —x™ 1.00 - |
FIG. 21. (a) The rectangular billiard and the two bouncing ball
orbits (the vertical and the horizontal oneThe flux line is located e TN .
at point fy, marked by an open circlgb) Representation of the 0.00 /o sl -~ ’ .
typical contribution to the Green functid) in the vicinity of the 550 6.50 7.50 8.50
doubly diffractive orbit belonging to one of the bouncing ball fami- X

lies. The path going from to §; andsS, and back ta” represented

in the figure accumulates a phase exi(ra) (see the text FIG. 22. Comparison of the numerid&(x)| (dashed lingwith

the result from Egs(10) and (33) (solid line). The large peaks
correspond to the lengths of the families shown in FigaR1n our

Go(F.F.E) = \/Ee'(kl 2 computations we have taken the sides of the rectangle &b
2d\E T ZW\/W andb= 7 and the bouncing ball families then have lendths8 and
2. The shaded line barely seen at the bottom is the modulus of the
oo [ k (y—sl)2 difference between the numerical and analytiEgk). We also
Xf . f . ds,ds; eXF{' E(T show as a thin dashed line the value of this difference when the

contribution(33) is not included.

(S— 51)2 (y— 52)2
+ + IX. CONCLUSION

P l;—X

(31) In this paper we have studied diffractive corrections to the
semiclassical trace formula for the level density of polygonal

where | is the length of the periodic orbit. The flux line billiards. Special care has been devoted to the treatment of

(encountered twideseparates the orbit into three parts hav-diffractive periodic orbits lying or(or in the vicinity of) the

ing lengths denoted by, |,, andl;—x in Eq. (31) and Fig. optical boundary, i.e., on the verge of being allowed by clas-

x{exdima(sgns;—sgns,)]—1},

21(b) (1,+1,=1). Transverse integration yields sical mechanics. In particular, we derived a systematic ex-
pansion for the corner-diffractive corrections to thté iter-
+oo R Vialy ate of a family of periodic orbits.
J_w dyGu(F\FE) == 54 e "1 cog2ma) 1], The method employefbased on approximatiotb)] al-

(32) lows us to treat a rich variety of different cases with great
precision(Secs. [I-VI). This method is easily extended to
and this gives a contribution to the level density of similar diffraction problems. In particular, our approach to
the diffractive correction of thath iterate of a family allows
N treatment of the nontrivial problem of multiple forward
p(E)—— 2K sir’(ma)cogkl). (33 Aharonov-Bohm diffusionSec. V1.
The main purpose of our study was to establish the basis
We check in Fig. 22 the very good agreement with theof a trace formula in pseudointegrable systems, with contri-
Fourier transform of the spectrum in the vicinity of the butions from diffractive orbits. It seems that these diffractive
length of the families drawn in Fig. 24). In this figure, the corrections are responsible for particular forms of spectral
numericalF(x) is computed using Eq8) with 8=5, k,,,  Statistics observed in many such modelg]. Further inves-
andk,,,, being respectively the first and the 1400th level. Intigation will elucidate this relationship.
the numerical computation we toak=1/2 because in this
case the diffractive effects on the level density are at a maxi- ACKNOWLEDGMENT
mum [see Eq(33)]. The shaded area hardly seen at the bot-
tom of the plot is the modulus of the difference between the It is a pleasure to thank M. Sieber for fruitful comments
numerical and analyticaF(x). To obtain the excellent on the manuscript and for bringing R€20] to our attention.
agreement of Fig. 22 we have taken into account classical
isolated boundary orbit®f the type already encountered for
the family drawn in Fig. Y and simple nearby diffractive
periodic orbits which can be treated within the geometrical In this appendix we derive Kirchhoff-like formulas for the
theory of diffraction (the relevant formulas are given in Green function in the cases of corner and flux-line diffraction
[26]). Not taking into account the diffractive contribution [Eqgs.(5) and(6)]. Here we compare Eqé) and(6) with the
(33) would give a much larger error, which is represented byexact diffraction in the free plane: diffraction by an infinite
the thin dashed line. wedge(in Appendix A1) and by a flux line in the planén

APPENDIX A
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Appendix A 2. Adding boundaries to the problete.g., put- (a) (b)

ting the flux line in a billiard amounts—through the method Ao

of images—to adding other sources of diffraction. In this -

case we describe multiple diffraction by using a natural gen-_, I N S - N

eralization of Eqs(5) and(6) [see, e.g., Eq9)]. r r r
n0g, Y

1. Corner diffraction

A uniform approximation for diffraction on a single cor-
ner was first given by Pau[R1]. The subject was studied in
detail in the late 1960s and in the 1970s. We describe here

“ =

one possible uniform approximatiddetailed derivation and FIG. 23. Representation of a diffractive trajectory going frm
references can be found [&7]): to 7. (a) displays the notations of E¢A5) and (b) of Eq. (A7). In
. : the figure,nd¢,>0 (or equivalentlyy’/d’ +y/d>0) and the clas-
., 1 elkbatimia sical trajectory front”’ to r is allowed.
Gld(rvr ,E):Z— 2 |aa',7]|DU,7)
Vikly o.n==1 evaluated by keeping only the first term in expansiég),
kIl \ 12 and this giyes the' second pon;ribution in the rhs of &
X K||a, 77| _> , (A1) To obtain the first contribution of the rhs of E() one
7 Ly needs to make explicit computations. The configuration we

, . . . study has been represented in Fig. 23 for an orbit near the
wherg} and | are the lengths of t,he classical trajectoriesypiical houndanythe optical boundary for trajectories issu-
from 1" to Fy and fromry to F (Lyg=1"+1). ing from "’ is the dashed line of Fig. 28]. Note (from Ref.

K is a modified Fresnel function defined by [17]) that the classical orbit on the optical boundary has
1 properties depending oo and #. If o=1(—1) it has an
_ Lo * L it2 even (odd number of bounces near the corner; if
K(z)= \/—;exp{—m _'77/4}L dte =1(—1) it bounces first on the liné=y(0). If onewrites
b= ds0t 0d, (Where ¢,o=2n, ,y—nm is the value of
e iz ' ¢, on the optical boundajyby examining the four different
= erfqe™'™z), (A2)  configurations, one can convince oneself geometrically on
Fig. 23 that the oriented angle betweery{r’) and
and which has the following limiting propertiek:(0)=1/2 ~ ~To) IS 76¢,. If 75¢,<0, there is no classical orbit from
and r"tof. If né¢,>0, the classical orbit is allowed and it has
a Maslov indexv such that exgivn/2} = o. Since one is near
el 4 i 3 the optical boundary, the angép,, is small and in Eq(Al)
—(1——2——4"') one can make the approximatioms, ,~ nd¢,/v2, D,
27\ /7 2z° 4z 2ol S ; 7 77
~20nl 8¢, [compare W|t2h the exact formul#a4) and(3)].
. One has also+1"—|a, ,|°ll"/Lg~L, whereL is the length
when|z| -+ with — m/4<argz)<3w/4. (A3) of the classical path frnorm*’ to . Altogether one obtains
from Eq. (A1)

K(z)~

In Eq. (A1), a,,, is a kind of measure of the angular
distance from the trajectory to the optical boundary. On the elkL—ivml2 .
optical boundary characterized by and 7, a, ,=0. Far Gld(F-F',E)“SQ'"(mS%)—J elt’dt
from the optical boundary its precise value is irrelevant since 2m2kL Y Vk(Lg—L)
one can use Keller's approximatigwhich corresponds to o ) .
keeping only the first term in expansi¢A3)]. In the transi- +Go(F, 7o, E)Dred 0,6")Go(Mo, 1", E)
tion region one has to use a specific formayf ,,, which (A5)
characterizes the type of uniform approximation chosen. We
take here(see[17]) and
b G(F,F" ,E)=Gy4(F,F",E)+O(ndd,)Go(F,F',E),
a, ,=v2 CO{ 7‘7— ”a,ﬂ) (A4) (A6)
where® is the Heaviside function.

where n,, ,=nin{ (¢,+ nm)/2y]eZ, “nint” denoting the We will now show that this expression matches E5).

nearest integer angl,= 6’ — o6, whered’(6) is the incom-  For that purpose we will explicitly evaluate E&) by choos-
ing (outgoing angle of the diffractive trajectory with the ing a particular axis of coordinates, shown in Fig(%3In
boundary. that figure we have chosen the locus of pogisich that the

In the rest of this appendix, we will use the uniform ap- distance from” andf to its perpendicular is smalthis is
proximation(Al) to justify the approximatior{5), which is  consistent with the fact that the trajectory is near the optical
valid in the vicinity of an optical boundary. Let us consider boundary. If one denotes byl(d’) the distance betweery
that for one of the four couples of values(of, ) one is near and the projection of (') on the perpendicular and by
the optical boundary. In the contribution of the three othery(y') the algebraic distance frofi(f’) to the perpendicular
terms in Eg.(Al), the modified Fresnel function can be [see Fig. 2&)], one has
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2J+wd G (& i v.o (FS.E) glk(d+d)+iade o
_ S S,I'/, Ng- VsGo(T,S, G I?,I?’,E %_—f ds
: S T
ik(d+d ) —ivml2 k(s® (s—y)?
ype fo s X exd |sgr(s)7r]ex+ ART + . ”
k/(s=V’ 2 s— 2 (Ag)
xexp[iz(( R, ) ”/m
Using the facts that ~d+d’ + (1/2)y?/(d+d’) andLq4
gikb—ival2 o L ~d+d’+y?/(2d) this can be rewritten as
~—— e'"dt, (A7)
27\2KL J —sgr(58¢,) K(Lg—L)
gi(kL+asg)
G(F,F" E)~— ———
il ) o VekaLd)
where one has made the change of variable . o E
= Jk(d+d")/(2dd")[s— (dy’ +yd')/(d+d")] and one has x{e‘i’”f dtet+ eiMf dte“Z],
used the facts thaty—L~(dd'/2)(y’/d"+y/d)?/(d+d") —eVkd =
and sgny'/d’+y/d)=sgn(dp,). This expression inserted (A10)

into Eq. (5) is equivalent to expressiof6) for the Green
function. Hence, starting from the uniform approximation

whereA =Ly —L ande=sgn@¢$)=sgnf). Simple manipula-
(A1), we have proven the validity of E@5) near the optical ¢ €=sgné¢)=sgnd) . .

tions show that

boundary.
Gy(F,F",E)=Gy(F'F" ,E)e'*(?¢~ ™)
2. Flux-line diffraction 1l ) ol )
In the case of diffraction by a flux line, a uniform solution n sin(a) gl (kLg+ mia—emD K (iR
has been worked out by Aharonov and Bof®i]. The cor- v2mkLy ’
responding expression for the Green function, as given by (A11)
Sieber[26], reads

Gy(FF E)= Go(F.7" E)eled—4" and this expression matches E48) when|d¢|<.
1 1r ’ = 0 ryr ’ e

eikLati(¢—¢")2+imi4

+sin(am) APPENDIX B
v2mkLgy In this appendix we give some useful formulas that cor-
Kl b=’ respond to .transverse !ntegration of_ the different types of
K[ N Cos( _” (Ag)  Green functions appearing in the main text.
Lg 2 Let us first define~(x,y,s;,...,S,) by
where ¢ and ¢’ are here the angular coordinates of a polar ik ((s;—Yy)? (S,—51)2
system with origin on the flux ling,. They have to be F(x,y,sl,...,sn)=ex;{5( x T +
2
chosen such thaw’ — ¢| <. The other notations are iden- 5 )
tical to those of Eq(A1). In the configuration illustrated in n (Sh—Sn-1) N (Y—Sn) ) (B1)
Fig. 2 this means that if¢ is the angle between—r, and In [i—x ||
ro—r' [8¢ is the analog ofpd¢, of Fig. 23@)], one has
¢—¢'=06¢—msgn(E¢). Note also that as in Ref26] we  andp, (x,14,...,) by
restrict ourself to the case of nonsingular behavior near the
flux line (i.e., vanishing wave functions
We will now follow the same procedure as in Appendix elkL—3(n+1)im/4

A1 and show that Eq96) and (A8) are equivalent in the Da(X,l1,...01)= ,
limit of small 6. In this limit the i (87k) M V2Vl =x) 15|

: geometrical theory of 1 2 n
diffraction fails, and indeed it is well known that the (B2)

Aharonov-Bohm scattering amplitude diverges in the for-

ward direction. The computations are very similar and forwhereL=1,+---+1,, and O=x=<lI;.

simplicity we choose here the arbitrary locus of poists In Sec. lll, for treating the first order diffractive correction
perpendicular to the optical boundary that is the line goingo the nth repetition of a family, one needs to compute the
from F’ to Iy; theny’ =0 [the notations are defined in Fig. following integral[cf., e.g., Eq.(12), which after transverse
23(b)]. In the semiclassical limit, Eq6) reads integration yields the expression bf(l,1)]:
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. (B3)

It is easy to see that thedependence disappears in expres$B®) after integration ovey. This is the reason why we did
not includex in the list of arguments of,, .

We obtain
ikL+im/2
l2(11.12)= — = Vil (B4)
ikL+im/2
I3(l1,02,13)= W[\/H('z""s)*'\/'z('g""l)*' Vsl +1,)], (B5)

ikL +i /2
|4(|1a|2,|3:|4)=m( Vil + 13+ 1)+ V(31 4+ 10) +\Ig(l+H T+ 1) + Vgl + o+ 1)+ V(L + 1) (13+1,)

T+ 2T, Ta T2 arctam—— 24

(Ip+1) I+ 13) P 1(I2+13+1y) arcta (It 13+ 1,)

NN '3l +2\/| PENPEN m/ lal2

o WlalsF et ly arctamy ooy s 2 Vlslat Lokl arctamy s

FIE
Lo(1+15+13)

(B6)

2
+; l[4(1,+1,+15) arcta

and
215(11,15,05,14,15) =14(l1+ 15,15, 15,14) +1a(11+15,15,04,15) +14(11, 1o+ 13,14,15) +14(11,15,15
Flg.05) + 1401105, 05,04+ 15) =131+ 15+15,15,14) = 13(11, 12+ 153+ 14,15)
=3l I+ 15,04+ 15) = 13(l1, 15,05+ 14+ 1)+ (1 1o+ 15+ 14+ 15). (B7)

Although this is not apparent in the above expression, explicit computation shows that f@Biulis—Ilike Egs.(B4),
(B5), and(B6)—invariant under cyclic permutation of the indices.
ExpressiongB4) to (B7) greatly simplify when all the I's are equal. One obtains

Co it ui
lo(l,. )= e, (B9)

with C;=0, C,=1/(87), C3=1/(4mv2), C,=(1+4N3)/(16m), and Cs=(1+6/3)/(87). A general formula forC, is
given in Appendix D. From Eq(B8) the contribution(17) to the level density follows directly.
The next order correction to EB3) requires the computation of the following integral:

+ + +
Jn(l1,...,|n)=(2ik)"—1an dy(pﬁygf f ds,- - ds,F(x,y,08;,....5)

+ o + oo
+DE§)gf0 ---jo ds;ds; - ds,F(X,y,51,083,...,57) + -

+ o0 + o
+D§2)gj0 ---jo dsl---dsn_lF(x,y,sl,...,sn_l,O)). (B9)

This expression corresponds to a sumndfajectories; thgth trajectory having one Keller bounce on agetwith the
regular part of the diffraction coefficient denot@jgg,j =1,...n) and Kirchhoff contributions from the other apexder
instance, Eq(14) corresponds after transverse integratiod@,1)].

We obtain
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eikL+3im/4 with the frontier of the billiard, the Green function has four
Jo(I4,1)=(DE) +D2y — (B10)  contributions which, after integration ovgr give the same
€9 T 4k 8 mkL contributions as EqB15).
If one defines
and
ikL+3im/4 hl(X,y,Sl,Sz)
Jallulale) =0 === _oxd (Y () (yms)?)]
2 X |1 |2_X ’
2 [, )
(1) 1'2
X + — —
Dieg| 1 7_rarcta |3L) h2(x.y,5;.5,)
2 Il [k [(s2+y)?  (s1-5)°  (y—s1)?|]
(2) z 23 —exg —
+Dieg| 1+ —arcta IlL) e [ ey P o
2 Il 3
+Dig| 1+ —arcta %) (B11) h7(x.y,$1,52)
2 . B
ik [(s2ty)? N (81—52)° N (y+s1)?
The expression fod,, when all the I's are equal is —exp-? X Iy l,b—x ||
kL —inm/4 B (B16)
Jo(l,...)=— ——nD,egdy_1, (B12)
" A2kl e h4(x,y,S1,55)
where F{ik((sz—y)2 (s1—5,)? (y+sl)2>
=exp = + +
_ +oo +oo 2 X Iy l,—x
Jn:f f Xm"'an
0 0 then, for a point” near the boundary of the orbit that coin-
D+ (X xg) 2+ (k=% 1)2+%2] cides with the frontier of the billiard, the four contributions
xeltfiriemi el (B13) to the Green function integrated transversely to the direction

~ : of the orbit read

It is shown in Appendix C thatd,= (e ™*/m)"(n
+1)~%2 From this result and EqB12), formula (15) fol- +o
lows immediately. M%(X)Z(Zik)zDz(Xylle)I dy
In Sec. IV, in order to compute the first order correction 0
to the contribution of a family whose boundary partly coin-

+ +
cides with the frontier of the billiard, one needs to compute X f d%f ds;ht(x,y,81,87)
the following integral: 0 0
+ o0 + oo
. + 0 + o + o
“1d0) -2k, [ ay [ Tas [ as, and

Mb(x)= (= 1)1 " H(2ik)2D (X, 5,11)

. Y 2 a2
XGX%K((S:L y) +(52+31) +(y S2) ) _

2 X I5 l,—X

J‘+oc + oo + o0 X
X d j d f ds,h!(x,y,s:,S
(814) 0 y o $1 0 S ( Y,S1 2)

This equation corresponds to the transverse integration of
Eq. (20) after removing the contribution of the direct path
(i.e., of Gy). The last integral in the rhs of E¢B14) corre-
sponds to the orbit going from to r and bouncing on the
boundary of the family that is also a frontier of the billiard.
The terml,(I1,l,) corresponds to the direct diffractive tra-
jectory. One obtains

for j=2,3,4. (B18)

Note that the transverse integrati@ver the variablg) is
only possible here from 0 te- because one is near the
frontier of the billiard(see Fig. 24 The four contributions
(B17) and (B18) correspond to different paths going fram
to f: M3 corresponds to a path going framo S,, to §;, and
kL +imf2 l, back tor” (for this part one has to withdraw the semiclassical

Ma(ly,12)= m( Vil +L arctan\ﬁ : Green functioly M3 corresponds to the path going frafio
(B15) S, with a reflection on the boundary of the orbit that coin-
cides with the frontier of the billiard, then going frog to

Here we want to develop a point stated in the main text: ifS; and back ta™ etc. This is illustrated in Figure 24.

I lies near the part of the optical boundary that coincides The M)'s separately depend o but one obtains



o
l_') s: Ed ;) l_') ;; - l_')
8
Kj K} Yy Y
- ~ P -
«xa—ﬂifz — > - Z1fz ~— x>
{ -
(1) (4)

FIG. 24. Schematic representation of the path encompassed

the contributionMj2 [Egs.(B17) and(B18)] to the transverse inte-
gration of the Green functionj € 1,...,4). The plot labeled) cor-

responds taVl,(x). One has here four different contributions be-

cause the initial poinf lies along the part of the boundary of the

family that coincides with the frontier of the billiard. The simpler

case that” is not in the vicinity of the frontier of the billiard is
represented in Fig. 10.

ikL+im/2
M3(x) +M3(x)= 2kl V2

and

M5(x) +M3(x) (B19)

eikL+i77/2 . n\/E
———FalCla .
47Tk Il

Hence, wherr lies near the frontier of the billiard, one
obtains M3(x) + M3(x) + M3(x) + M3(x)=M,, where M,

DIFFRACTIVE CORRECTIONS IN THE TRAE . ..

3707
_eikL
No(l1,l5)= ——
2( 1 2) 4#\/@
+ oo + oo . 2
XJ dulf duzelkL(ulJruzf{) 1(21115)
0 0
4imkL V8m2kL J - k&
\/E ) é«eikL+i7r/4 )
Ve qkbg_ 2T rq_ kA
pInal N [1- ek K(VKA)],

(B21)

where L, is the length of the diffractive orbit close to the
family of lengthL andA=Ly—L[A=/%L/(2l41,)]. In the
above expression, the last term simply reexpresses the previ-
ous one using the modified Fresnel integral defined in Eq.
{h2). The longitudinal integratiowhich simply amounts to

a multiplication byL) of Eq. (B21) yields the contribution to
p(E) of the configuration studied in Sec. VI. More precisely,
this contribution reads- (L/#)Im Ny(I,,l5). This results in
Eq. (26).

APPENDIX C

The purpose of this appendix is the explicit computation
of the integral(B13):

f+oc
0

where® (x) is the following quadratic form:

Jo= f dx;- - -dx,e' Pn®), (C1
0

D (X) =X+ (Xg—Xg) 2+ + (Xp_1—X) 2+ X2, (C2)

Note that throughout this appendix we denote
n-dimensional vectors by=(X4,...,X,). A key point in the
evaluation of integralC1) the existence of a group generated

is given by Eq.(B15) and corresponds to transverse integra-by @ set of transformationsT }, <<, which leaves the qua-

tion whenf is not in the vicinity of the frontier of the bil-

dratic form invariant:

liard. Thus the result of the transverse integration of the

Green function does not depend on the posikiarf the point
r along the orbit. This leads directly to formu(al).
In Sec. VI, for evaluating the contribution of a diffractive

!

X :_Xj+Xj+1+Xj_1

. — ! : ]
Ti(x)=x" with X=Xy for k#j, €3

orbit jumping from one boundary of a family to another, onéyhere j=1,...n and we have adopted the convention,

needs to compute the following integfavhich is the trans-
verse integration of Eq25)]:

N2(|1,|2):(2ik)2D2(X,|1,|2)
+o I4 +o0
XJ dyf dslf dSZF(XIyISllsz)'
— o0 —o0 0

(B20)

They integration is trivial andas is now usualremoves
the x dependence. One obtains

=Xn+1=0.

These transformations are inversionﬁf{: 1) and they
generate a finite groufof the A, type; see, e.g[,28]). We
give below a method of calculation of E¢C1) that does not
require knowledge of the theory of finite groups.

The quadratic form{C2) can be naturally rewritten in the
form

qzn(pzzi; MijXiX; , (C4)

where thenxn matrix M is the following:
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1 -1/2 0 0o - 0

-2 1 =12 0 - 0 0 0
0 =12 1 =12 -- 0 0 0

M= : (CH
o - =12 1 -1
0 0 0 0o - 0 -1/2 1
|
Due to the simple tridiagonal structure bf, it easy to Using the vector:k_/j it is possible to define new coordi-

perform a Gaussian decomposition of the quadratic férm  nates §;) from the relation

recursively. This results in .

n-1 2 y=> x:Vi. (C11)

X Y= 2 XV

L0,0= 2 M X~ 5| A3 (CH) =1
k=1 2Nk
Note that
where
n

k+1 y-y= 2 XxV-Vi=d (x)/2. (C12

AKZW’ k=1,...,n. (C7) - T =1 -

o ) The Jacobian of the transformatio@11) is
From Eqs(C6) and(C7) it is clear that the determinant of

Mis Wk -
J= detﬁz detV}. (C13
n+1 ]
detM=N\{" " Ny=—F%7—- (CY )
- 2 It can be computed from Eq$C10 or by taking the
. . square of expressiofC13. This yields.7?=detM. There-
Let us now introducen vectorsV! such that fore -
M=V Vi, (C9) o
e e i P p(x)
From Eq.(C5) it is clear that(if these vectors existhey f 0 f 0 dxy - dxqe
are of unit length and that the angle between different vectors
equals eithern/2 or 27/3 (the cosines being either 0 or 1 J J dvae gy 22D
—1/2). One possible solution of Eq&C9) can be written in - |detM |12 o Y1 o-dy,e” 1 n’,
the following form: —
(C14
Vi=(\14,0,...,0,

where the integration is taken over the inteffdrof the hy-

1 perspherical simplex defined by thevectorsyj,
V2= V2,0,...,0/, ]
-2y | .
Q= y=2 x;VI and x;=0;j=1,..n|. (C19
L= g Nt
The next and final step of the computation of EQ1) is
-1 to show that the integration domai in Eqg. (C14) is a
yk= 0,....0———,V\,0,.. ,O) , relatively simple subpart of the wholedimensional space.
2\ N1 To understand geometrically the structure of this region it is
convenient to add a new vectgl‘”1 to the list(C10) such
that
B ViV vnti=o, (C16
V'=10,...,.0———,V\, |, C10 . - .
- 2N -1 \/—”) (C10 Angles formed by"*?1 with the otherV!’s are straight-

forwardly obtained from the expressiofC5): V"*1.V?
where then,’s are defined in Egs(C6) and (C7). From  =V"*l.v"'=—1/2, v"*1.vi=0 for j=2,.n-1 and
geometrical considerations it is clear that all other solutiong/"™*. V™ 1=3, V. Vi=1.
can be obtained from EGC10) by applying overall rotations From the fi+1) vectorsyl,...,y”+l one can definer(
(and inversions +1) regions(};:
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n
Qj=|y=> W and x;=0;j=1,..n|, (C19
Y=o Ml

where then vectorswW! include all (1+ 1) vectorsv® but the
vectorV!. In these notations the regida in Eq. (C15 co-
incides withQ . 1.

It is almost evident that thesen{-1) regions cover the

wholey space without common intersection points. A formal

proof of this statement can be the following.
An arbitrary pointy of the n-dimensional space has a

uniqgue decomposition on the nonorthogonal basis of the

VI's(j=1,..n) as given by Eq(C11). If all x;=0 theny
€1, otherwise the set of coordinates is divided into
two setsx,, and xj; of positive (x,=0) and negative X
<0) coordinates. Denotingz=—x,; and byz, the maxi-
mum of thez,’s we get
Y= X V= D zgVF—2z V7.
- a - B#*y - -

(C19

Using the definition(C16) one can expresg” as a func-
tion of the othe’V’s and rewrite the above expression as

y= Ea: (Xo+2Z,)Vit ;y (z,~zg)VF+2Z, V"1,
(c19

As z,=z7; all coefficients in this sum are non-negative

and the pointy hence belongs t6), . It is thus clear that
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Combining this result with Eqs(C14) and (C8) one
obtains

(eivr/4\/;)n
(n+1)%"
(€22

~ +o +o .
Jn=J ...J dxl...dxnelq)n(x)z
0 0

which is the result needed for the explicit computation of
expressionB12). From the approach shown in this appen-
dix, one can state the more general result

f;m---ﬁ:mdxl---dxn f(@ (X))

27Tn/2 +

= I ), 9T f(r). (€23

APPENDIX D

In this appendix we derive the explicit form of(l,...,l)
defined in Eq(B3), or equivalently we give the value of the
coefficientsC,, appearing in Eq(B8). These computations
extend the results of Appendix [Eqs.(B4) to (B7)] and are
valid for any n. However, they are restricted to the cdge

==l

To evaluate the integraB3) it is customary to make sev-
eral manipulations: One performs théntegration in the first
term of the rhs. In the second term, one can decrease by 1 the
number of variables of integration easily, since this term is

simply an elaborate manner of writif@(y) Gq(f,f,E). Af-

regions{}; have no common points except on boundarieser 5 scaling on the variabléy; =s; Vk/(21)] one obtains a
where somex;=0. It is also clear that the union of all the agyit that can be cast in the form

Q;'s(j=1,..n+1) covers all space since, given an arbitrary

pointy, one can assert unambiguously from the above pro- ikL+im/2=inml4

cedure to which of thé);’'s it belongs. Ln(l,. D)= 2kr2 ln-1, (D1)

Each region(}; is defined byn vectorsW' obtained from
the (n+1) vectorsyk by ignoringV’. The convenient rear- where
rangement of vectorg/ is the following:

_ 4o +oo +oo .
(Wj)1>j>n=(Vj+l,Vj+2,...,Vn,Vn+1,V1,V2,...,Vj_l). |n:f dx(j J dyl...dynelq’(X|Y)
— 7= —_ —_ —_—— —_— — 0 —© —©
(C20
+ + o

Let us now _construct the matrix of_mutual_ proj_ect_ions _f J dy; - -dy,e " >*Y || (D2)

N;j=W'-W!. It is easy to check that this matrix coincides 0 0

with the matrixM defined in Eq(C5). Therefore, the vectors . . )
Wi(j=1,..n) will have the same mutual positions as our @nd W(x,y) is the following quadratic formfwe denote
initial vectorsV's. As we noted above, this means that re-n-dimensional vectorg=(yi,...,y,):

gion (; for all j(j=1,..n+1) can be obtained from the
initial region (=, ,,) by overalln-dimensional rotations
(and possibly by inversionsBut the integrand in the rhs of
Eq. (C19) is invariant under such transformations; therefore
its integration over any of th€;’s is the same and

‘I’(X,Y):(X_h)z"'(Y1_y2)2+'“

+(ynfl_yn)2+(yn_x)2- (D3)

I, in Eq. (D2) can be expressed simply in terms of the

(V22 function X) defined b
f ...fﬂdyl...dyn62|(yl+ +yn) ‘//n( ) y

o o D4
1 er er dyl...dyneZi(Yer"'*yﬁ) 4

+ 00 + o i
wn(x):f f dyl...dyne|q’(xvY).
0 0

Tntl
i . One first notices that fok large and positive, one can
_ (e 7/2) (C21) neglect the boundary effects in the integt@l4) defining
n+1 ° ¥n(X), and thus
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lﬂn(x) — lﬂn(+°°) = _4i<ym>+2i<ym+l>+2i<ym—l>i (D].O)
X— +®
e . with the convention thaty_,)=(y,;1)=0. The integrals
f f dy;---dy, ey P, are easily calculated using the results of Appendix C and

noticing thathn(y)|ym:0 is the sum of two independent qua-
dratic forms®,_1(Y1,---Ym-1) and @, (Yme1,---Yn)-

=(é 77/4\/;)n ) (D5) Therefore the integral of the rhs of E@9) is the product of
vn+1 two integrals of typg(C1) [whose explicit form is given in
) Eqg. (C22]:
Hence Eq(D2) can be written as
. . - - ei7T/4 n—-1
T = . d +00)— = ’ d ! szJmflJnfmz%- (D1Y
n 0 X[ hn( )= n(X)] 0 X Xih(X). [M(n—m+1)]
(D6) Then it is a simple matter to solve recursively the system
The functiony/, in Eq. (D6) can be cast in the form of equations formed by EGD10) and to express thgy,)’'s
in term of theP,,’s. This yields
n + + .
VAEDY f f dyy -+ dy,8(ym)e v, md™2 gim2 M1
m=1 JO 0 — _ _ _
(D?) <ym>_ 2(n+1) qzl (n+1 Q)Pq 2 qgl (m q)Pq
. . . . . (D12
This is done by first changing variables in E®4) (y;=x
+1;), then deriving with respect tg and finally coming gng
back to the original variableg; .
Inserting this expression in E¢D6) and renumbering the N n glm2 N
variables in the integral, one obtain the following expression I“:le (Ymd=—7— 21 [a(n—q+1)]P,. (D13
for T,,: a
n Using Eq.(D11) one obtains the final formula,
In= E <ym>
m=1 _ emlz /4\/_ 12 1
la=——(e" n- Tt D14
where ) 1ygq(n—g+1) (019
(ym) = JM-"JMdyl-”dy Y@ Pn) (D8) From Egs.(B8), (D1), and (D14), the coefficientC,, ap-
" Jo 0 nom ’ pearing in Eq(17) reads
and the quadratic forneb, is defined in Eq.(C2). The n 1 2 1
integrals{y,) are computed by means of the auxiliary inte- C.=—— —_— (D15)
gral P, defined as " 87 ¢=1 \Jg(n—q)

e Pnly) which coincides with the results obtained for=2,3,4,5 in

Pm:_J J dyy--dyn—r— Ym Appendix B by a different method. Whem—oo the sum
over g can be substituted by an integral and

+ o0 + oo B
:fo ...fo dyl“.dymfldym#»l.“dyn e|q9n(¥)|ym=0

limC,= " dX ! (D16)
im :
(D9) e " 87 Jo Jx(n—x) 8
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