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Relaxation oscillations and negative strain rate sensitivity in the Portevin–Le Chatelier effect
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~Received 30 November 1998; revised manuscript received 22 November 1999!

A characteristic feature of the Portevin–Le Chatelier effect, or the jerky flow, is the stick-slip nature of
stress-strain curves which is believed to result from the negative strain rate dependence of the flow stress. The
latter is assumed to result from the competition of a few relevant time scales controlling the dynamics of jerky
flow. We address the issue of time scales and its connection to the negative strain rate sensitivity of the flow
stress within the framework of a model for the jerky flow, which is known to reproduce several experimentally
observed features, including the negative strain rate sensitivity of the flow stress. We attempt to understand the
above issues by analyzing the geometry of the slow manifold underlying the relaxational oscillations in the
model. We show that the nature of the relaxational oscillations is a result of the atypical bent geometry of the
slow manifold. The analysis of the slow manifold structure helps us to understand the time scales operating in
different regions of the slow manifold. Using this information we are able to establish connection with the
strain rate sensitivity of the flow stress. The analysis also helps us to provide a proper dynamical interpretation
for the negative branch of the strain rate sensitivity.

PACS number~s!: 05.45.2a, 83.50.By
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I. INTRODUCTION

The Portevin–Le Chatelier effect@1#, or the jerky flow,
has been an object of continued interest in materials scie
for quite some time. The phenomenon refers to an instab
seen in the form of repeated stress drops followed by per
of reloading observed when tensile specimens are defor
in a certain range of strain rates and temperatures@2#. The
effect is seen in many interstitial and substitutional meta
alloys~commercial aluminum, brass, alloys of aluminum a
magnesium@3#, etc.!. Each of the load drops is related to th
formation and propagation of dislocation bands@3,4#. The
traditional picture of the instability is that it stems from d
namic interaction of mobile dislocations with solute atom
and is called dynamic strain ageing@2#. It is this that is
expected to lead to negative strain rate sensitivity~SRS! of
the flow stress@3–7#.

Plastic flow is intrinsically nonlinear and therefore met
ods of nonlinear dynamics have a natural role to play
understanding plastic instabilities@4,8–11#. Use of these new
techniques have led to insights which were hitherto not p
sible. The first attempt to look at the phenomenon from
nonlinear dynamical angle was taken by Ananthakrishna
co-workers@8#, which offers a natural basis for the descri
tion of the time dependent aspects of the Portevin–Le C
elier ~PLC! effect which were ignored in the earlier theori
@5–7#. Their model allows for explicit inclusion and inter
play of different time scales inherent in the dynamics of d
locations. These authors show that the occurrence of the
stability is a consequence of Hopf bifurcation as a funct
of the applied strain rate. Many known features of the P
effect such as the existence of a window of strain rates
temperatures within which it occurs, etc., were correctly
produced. Most importantly, and for the first time, the neg
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tive SRS was shown to emerge naturally in the model, a
result of nonlinear interaction of the participating defects
also predicts the existence of chaotic stress drops in a ra
of strain rates, which has been recently verified@12–15#.
Even the number of degrees of freedom estimated turn ou
be the same as in the model offering justification for ignori
spatial degrees of freedom~see Ref.@16# also!. Further dy-
namical analysis of the model for the creep case has sh
that the temperature dependence of the strain bursts is
sistent with experimental findings@17,18#.

The study of the PLC effect from a dynamical angle h
been useful in elucidating several features; but it has a
brought certain other issues into sharp focus which w
hitherto not investigated in depth. This paper is intended
address one such issue related to the time scales releva
the dynamics of the PLC effect within the framework of th
above model. This is reflected in the two well known a
tributes of the PLC effect, namely, the negative strain r
behavior of the flow stress and the stick-slip or relaxatio
nature of the dynamics reflected in the stress time series
order to motivate, we will present arguments showing t
conflicting conclusions can be arrived at when one analy
this question starting from these two angles.

We start with a discussion of the well accepted physi
picture of the PLC effect, namely, dynamic strain ageing.
a qualitative level, theories of strain ageing already have
implicit suggestion that the occurrence of the negative S
is related to the competition of diffusive time scale and t
waiting time of dislocations at obstacles@5,6#, even though
there is no dynamics involved in these theories. The phys
picture of strain ageing is as follows. At small velocitie
solute atoms have enough time to diffuse to the tempora
arrested dislocations thus providing additional pinni
thereby impeding their breakaway from localized obstac
Due to the constant applied strain rate, the overall stres
keep the dislocations moving increases bringing the stres
a threshold level beyond which dislocations break aw
3664 © 2000 The American Physical Society
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PRE 61 3665RELAXATION OSCILLATIONS AND NEGATIVE STRAIN . . .
@5,6#. At high velocities, such additional pinning due to so
ute atoms is not possible since the waiting time of dislo
tions at obstacles is too short for the diffusion to occur.
schematic diagram of the SRS is shown in Fig. 1. In
language of the stick-slip dynamics, the branchA8B8 corre-
sponds to the stick state andB8C8 to the slip state~Fig. 1!.
The slope of stress verses velocity~‘‘friction coefficient’’ ! at
low velocities is much higher than that corresponding to h
velocities since in the former case, solute atoms have to
dragged along with the dislocations, while in the latter ca
there is no solute atmosphere. Based on physical cons
ations, these two stable branches areassumedto be separated
by an unstablebranch with a negative slope to reflect th
nonaccessible nature.

The occurrence of the negative flow rate characteristi
not just limited to the PLC effect@19,20#. With particular
reference to the conceptual aspects of the negative bra
we cite two other mechanical systems, namely, the peelin
an adhesive tape and frictional sliding of a block of mate
over another@19,20# which shows the inaccessible nature
the negative slope branch. However, in the case of the P
effect, there have been attempts to obtain experime
points in this domain of strain rates@21,22# which has led to
some confusion about the measurability of the negative s
branch of the SRS which will be discussed later~Sec. V!.
Therefore, it is important to understand the meaning of
negative branch of SRS from a dynamical point of view w
reference to the PLC effect which hopefully will lead to
better understanding of other stick-slip phenomenon.

Returning to the PLC effect, Penning@23# was the first to
recognize that the negative SRS could be used to explain
strain rate jumps observed in experiments. Subsequently
negative SRS feature has been used as an input into se
theories@24,25#. In particular, it has helped to successfu
explain the nature of yield drops occurring in different r
gimes of strain rate and temperature@25#. Pertinent to our
discussion of time scales inherent to the PLC effect, we n
that in such theories,two slow time scalescorresponding to
the two dissipative branches,A8B8 and C8D8, show up
along with two fast time scalescorresponding to the jump
(B8C8 andD8A8) in the strain rates. A more direct reflectio
of the time scales inherent to the dynamics of the PLC ef
can be deduced from stress-strain curve.

FIG. 1. Schematic plot of the SRS. BranchB8D8 shown by the
dashed line describes the negative strain rate sensitivity of the
effect. Dotted lines represent the discontinuous strain rate ju
leading to serrations in the stress-strain curve.
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To facilitate discussion of time scales involved in an e
perimental stress-time series, consider the so called mac
equation written as

ṡa5k@ėa2 ėp#, ~1!

wheresa , ėa , and ėp refer to the stress, applied strain rat
and plastic strain rate, respectively, andk is the combined
elastic constant of the machine and the sample. We note
only stress is monitored by the load sensing device. Ap
from this, it is possible to measure the plastic strain r
using strain gauges or using cinematographic techniq
@26#. Using Eq.~1!, we can now identify different time scale
in an experimental curve. Consider a typical stress-str
curve for an applied strain rate of 8.331025 s21 for the
PLC effect in Cu–10% Al is shown in Fig. 2.~For our
purpose, we will ignore the nonperiodic nature.! From the
sawtooth shape of the stress-strain series, two points eme
~a! the positive slope ofsa2ea curve is close to the elasti
loading rate (kėa), and~b! the duration of each stress drop
very short. From Eq.~1!, we see that the stress drop durati
is the time interval during whichėp(t) larger thanėa. We
also note that the changes in slopes, when they occur,
abrupt~within the recording accuracy of 0.05 s21). Know-
ing that ėp is proportional to the mobile dislocation densi
and using Eq.~1!, we can see that the mobile dislocatio
density should be nearly constant in the rising part ofs-ea
curve and therefore correspond to the stick state. Further
short duration of the stress drop should be a result of ra
multiplication of mobile dislocation and therefore corr
sponds to the slip state. This must be followed by the proc
of immobilization of dislocations. However, the abru
change in the slope~from negative to positive! also implies
that the immobilization time scale is also fast. Indeed, as
clear from Fig. 2, it is not possible to separate out these
fast time scales. Thus, from the stress-strain curve, we
only one slow time scaleandtwo fast time scaleswhich is in
apparent conflict with what was argued from the schem
diagram of the orbitA8B8C8D8 in Fig. 1. This discussion
raises several questions relating to the origin of these t
scales causing jumps in dislocation densities which need
be understood if the above inconsistency has to be resol
Specifically, ~i! What is the dynamical mechanism whic
keeps the mobile dislocation density constant and in l
levels for long intervals of time?~ii ! What are the mecha
nisms for rapid multiplication and immobilization of mobil
dislocations? As we shall see, resolving these issues will

C
ps

FIG. 2. Stress-time plot for single crystal ofCu210% Al de-

formed at constant strain rate ofė53.331026 s21.
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3666 PRE 61S. RAJESH AND G. ANANTHAKRISHNA
help us to interpret the negative SRS in an appropriate w
Further, associating various time scales with differe
branches of the SRS provides a better insight into the st
slip dynamics of the PLC effect.

Analysis of time scales can be best understood from
dynamical point of view. It is well known that relaxatio
oscillations are at the root of stick-slip behavior. One of t
standard ways of understanding relaxation oscillations is
analyzing the slow manifold geometry@27–31# of the under-
lying model. Following this, we shall attempt to understa
the above issues from the point of view of relaxation os
lations. The paper is organized as follows. In Sec. II,
briefly introduce the model along with the known results.
Sec. III, we state some bifurcation features relevant for f
ther discussion. In Sec. IV, we show that the nature of rel
ation oscillation in the model isatypical and is due to the
bent nature of the slow manifold of the model. This analy
further helps us to understand the dynamical basis of dif
ent time scales relevant to the PLC effect. In Sec. V,
discuss the concept of negative SRS and its measureme
some detail to highlight the meaning of the negative bran
Using the geometry of the slow manifold, we calculate t
dependence of stress on the plastic strain rate and show
connection between the various branches of the SRS an
time scales operating in different regions of slow manifo
which in turn helps us to resolve the inconsistency of ti
scales. Section VI is devoted to discussion and conclusi

II. DYNAMICAL MODEL FOR JERKY FLOW

The model consists of mobile dislocations and immob
dislocations and another type which mimics Cottrell’s typ
which are dislocations with clouds of solute atoms@8#. Let
the corresponding densities beNm , Nim , and Ni , respec-
tively. The rate equations for the densities of dislocations

Ṅm5uVmNm2bNm
2 2bNmNim1gNim2amNm , ~2!

Ṅim5bNm
2 2bNimNm2gNim1a iNi , ~3!

Ṅi5amNm2a iNi . ~4!

The overdot, here, refers to the time derivative. The first te
in Eq. ~2! is the rate of production of dislocations due
cross glide with a rate constantu. Vm is the velocity of the
mobile dislocations which in general depends on so
power of the applied stresssa . The second term refers to th
annihilation or immobilization of two mobile dislocations
The third term also represents the annihilation of a mob
dislocation with an immobile one. The fourth term represe
the remobilization of the immobile dislocations due to stre
or thermal activation@seegNim in Eq. ~3!#. The last term
represents the immobilization of mobile dislocations eith
due to solute atoms or due to other pinning centers.am refers
to the concentration of the solute atoms which participate
slowing down the mobile dislocations. Once a mobile dis
cation starts acquiring solute atoms we regard it as a
type of dislocation, namely, Cottrell’s typeNi , i.e, the in-
coming term in Eq.~4!. As they acquire more and mor
solute atoms they slow down and eventually stop the di
y.
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cation entirely. At this point, they are considered to ha
transformed toNim @loss term in Eq.~4! and a gain term in
Eq. ~3!#. Indeed, the whole process can be mathematic
represented by defining Ni5*2`

t K(t2t8)Nm(t8)dt8
5am*2`

t exp@2ai(t2t8)#Nm(t8)dt8, which represents the en
tire process of slowing down ofNm in an exponential fashion
with a time constanta i . ~The choice ofK as having an
exponential form is obviously a simplification of the actu
process.!

These equations should be dynamically coupled to
machine equation which now takes the form

ṡa5k~ėa2B0NmVm!, ~5!

whereVm is the velocity of mobile dislocations andB0 is the
Burgers vector. A power law dependence ofVm
5V0(sa /s0)m is used. These equations can be cast int
dimensionless form by using scaled variablesx5Nm(b/g),
y5Nim(b/uV0), z5Ni(ba i /gam), t5uV0t, and f
5sa /s0:

ẋ5fmx2ax2b0x22xy1y, ~6!

ẏ5b0~b0x22xy2y1az!, ~7!

ż5c~x2z!, ~8!

ḟ5d~e2fmx!. ~9!

Here a5am /uV0 , b05g/uV0 , c5a i /uV0 , k5(ubs0d/
gB0), and e5( ėab/B0V0g). For these sets of equation
there is only one steady state which is stable. There
range of the parametersa, b, c, d, m, ande for which the
linearized equations are unstable. In this rangex, y, z, and
f are oscillatory.

Among these physically relevant parameters, we study
behavior of the model as a function of the most importa
parameters, namely, the applied strain ratee and the velocity
exponentm. The values of other parameters are kept fixed
a50.7, b050.002, c50.008, andd50.0001. As can be
verified, these equations exhibit a strong volume contrac
in the four-dimensional phase space. We note that there
widely differing time scales corresponding toa, b0 , c, andd
~in decreasing order! in the dynamics of the model. For thi
reason, the equations are stiff and the numerical integra
routines were designed specifically to solve this set of eq
tions. We have used a variable order Taylor series expan
method as the basic integration technique where the co
cients are determined using a recursive algorithm.

III. SUMMARY OF BIFURCATION EXHIBITED
THE MODEL

The model exhibits a rich variety of dynamics such
period bubbling, period doubling, and complex bifurcati
sequences referred to as mixed mode oscillations in lite
ture. Here, we will briefly recall only those aspects of t
bifurcation diagram relevant for the discussion of relaxat
oscillations. The gross features of the phase diagram in
(m,e) plane are shown in Fig. 3. In our discussion, we use
as the primary control parameter andm as the unfolding
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PRE 61 3667RELAXATION OSCILLATIONS AND NEGATIVE STRAIN . . .
parameter. For values ofm.md;6.8, the equilibrium fixed
point of the system of equations, denoted by (x0 ,y0 ,z0 ,f0),
is stable. Bothx0 andz0 are;e/2 andy0 andf0 are inde-
pendent ofe. At m5md , we have a degenerate Hopf bifu
cation as a function ofe. For values less thanmd , we have a
back-to-back Hopf bifurcation, the first occurring ate5ec1

and the reverse ate5ec2
. The periodic orbit connecting

these back-to-back Hopf bifurcations is referred to as
principal periodic orbit. The dynamics of the system is e
sentially bounded by these two Hopf bifurcations. In Fig.
the broken line represents the Hopf bifurcation and the d
ted lines correspond to the locus of the first three succes
period doubling bifurcations. The inner, continuous lin
represent the locus of saddle node bifurcations correspon
to periods 3, 4, and 5 which are the first three domin
periodic windows in the alternating periodic chaotic bifurc
tion sequence. Complex bifurcation sequences, characte
by alternate periodic-chaotic sequences are seen in
hatched region of the parameter space. A codimension
bifurcation points in the form of a cusp at (ec ,mc) formed
by the merging of the locus of two saddle node bifurcatio
of the principal periodic orbit~represented by bold lines! is
shown as a filled diamond in Fig. 3. Bifurcation diagram
have been obtained by plotting the maxima of any one of
variablesx, y, z or f as a function of the control paramete
(e,m).

IV. MECHANISM OF RELAXATION OSCILLATIONS

One characteristic feature of the dynamics of the sys
is its strong relaxational nature. This feature persists eve
regions of the (m,e) plane wherein complex periodic-chaot
oscillations are seen~hatched region in Fig. 3!. The presence
of relaxations oscillations and complex periodic chaotic
cillations are interrelated and are a result of the geometr
the slow manifold.~For details see Ref.@32#.! Relaxation
oscillations that manifest in the model are a type of rel
ation oscillation wherein the fast variable takes on large v

FIG. 3. Phase diagram of the model in (m,e) plane. See text for
details. The broken line corresponds to the locus of Hopf bifur
tions and the dotted lines to the successive period doubling b
cations. See text for details.
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ues for a short time after which it assumes small values
the same order of magnitude as that of the slow variab
The time spent by the fast variable in the part of phase sp
where the amplitude is small is a substantial portion of
period of the orbit. Typical plots ofx(t) ~continuous line!
andz(t) ~dotted line! are shown in the inset of Fig. 4 fore
5200.0 andm51.2.

To understand the nature of the relaxation oscillations,
first study the structure of the slow manifold (S) and the
behavior of the trajectories visiting different regions ofS.
The slow manifold of a multiple time scale dynamical sy
tem is given by the surface spanning the time invariant
lutions of the fast variable. In our case, it is given by

ẋ5g~x,y,f!52b0x21xd1y50 ~10!

with d5fm2y2a. Here, the slow variablesy and f ~and
therefored) are regarded as parameters. Further, as we
see below, it is simpler to deal with the structure of the sl
manifold in terms of thed instead of bothy andf. Then, the
physically allowed solution of the above equation is

x5
d1Ad214b0y

2b0
, ~11!

whered can take on both positive and negative values. N
ing that b0 is small and therefored2@4b0y, two distinct
cases arise corresponding tod.0 and d,0 for which x
;d/b0 and x;2y/d, respectively. Further, since the slo
variablef and y take on values of the order of unity, th
range ofd5d(y,f) is of the same order as that off andy
~as is evident from Figs. 4 and 5!. Thus, we see thatx
;2y/d is small andx;d/b0 is large. For values aroundd
50 and positive, we getx;(y/b0)1/2.

The bent-slow manifold structure along with the two po
tions of the slow manifold, namely,S1 (d.0) and S2 (d
,0) are shown by bold lines in the (x,d) plane in Fig. 4. We
have also shown a trajectory corresponding to a monop

-
r-

FIG. 4. Evolution of a trajectory~thin lines! along with the
bent-slow manifold (S1 and S2 shown by thick lines! structure in
the x-d plane, form51.2 ande5200. Inset shows the time serie
of the x variable~continuous line! andz variable~dotted line!.
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3668 PRE 61S. RAJESH AND G. ANANTHAKRISHNA
odic relaxation oscillation (m51.2 ande5200.0) by a thin
line. As can be seen, the trajectory spends most of the
on S1 andS2. A local stability analysis for points onS1 and
S2 shows that]g/]x5d22b0x is negative implying that the
rate of growth ofx is damped. Hence these regions,S1 and
S2 will be referred to as attracting or ‘‘stable.’’ For point
below the line 2b0x5d (d.0), ]g/]x.0 and hence we cal
this region as ‘‘unstable’’~shaded region of Fig. 4!. Even
then, the trajectory starting onS2 does continue in the direc
tion of increasingd beyondd50. We note that this region is
not a part of the slow manifold. Once the trajectory is in th
region, it moves up rapidly in thex direction ~due to the
‘‘unstable’’ nature! until it reachesx5d/2b0 line, thereafter,
the trajectory quickly settles down on to theS1 part of the
slow manifold as]g/]x becomes negative. As the trajecto
descends onS1 approachingS2, we see that the trajector
deviates away fromS1. This happens when the value ofx is
such that 2b0x,d, i.e., ]g/]x.0. Thus, points onS1 satis-
fying this condition are locally unstable. Thus, the trajecto
makes a jump fromS1 to S2 in a short time. This roughly
explains the origin of the relaxation oscillation in terms
the reduced variablesd andx.

The actual dynamics is in a higher dimensional space
a proper understanding will involve analysis of the mov
ment of the trajectory in the appropriate space. Moreov
unlike the standardS-shaped manifold with upper and lowe
attracting pleats with the repulsive~unstable! branch@33#, in
our model, both branches of the bent-slow manifold are c
nected, and there is no repulsive branch of the slow m
fold. Thus,the mechanism of jumping of the orbit from S2 to
S1 is not clear. In order to understand this, consider a thr
dimensional plot of the trajectory shown in Fig. 5. The r
gion S2 corresponding to small values ofx lies more or less
on they-f plane and the regionS1 corresponding to large
values ofx is nearly normal to they-f plane due to the large
b0

21 factor. RegionsS1 andS2 are demarcated by the ‘‘fold
curve’’ given byd5fm2y2a50 which dominantly lies in
the y-f plane. The rapidly growing nature of the trajecto
lying to right of the ‘‘fold curve’’ is due to]g/]x.0.

The principal features of the relaxation oscillations th
we need to explain are~a! the very slow time scale for evo
lution on S2, ~b! fast transition fromS2 to S1, and ~c! evo-
lution on S1. In order to understand this, it is necessary

FIG. 5. Evolution of the trajectory along with the bent-slo
manifold (S1 and S2) structure in (x,y,f) space indicated by the
gray plane, form51.2 ande5200.0.
e
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establish how the trajectory~viz., x, y, z, andf) visits vari-
ous regions of the slow manifold in a sequential way. Ho
ever, our emphasis is more on those aspects of relaxa
oscillation pertaining to the issue of time scales raised in
Introduction, i.e., the time scales involved in the stress-ti
curve ~Fig. 1!. ~A detailed investigation on the behavior o
trajectories on this slow manifold has also been carried o
See Ref.@32#.! However, to understand the dependence
stressf(t), we would also require information ofy which in
turn depends onz. In order to understand this, we shall an
lyze Eqs. ~7! and ~9! by recasting them in terms ofd in
various regions ofS. This will help to understand the gener
features of the flow, viz., onS2, just outsideS2 and onS1. In
the whole analysis, it would be helpful to keep in mind t
range of values ofx, y, z, andf, shown in Figs. 4 and 5, in
particular their values as the trajectory enters and leavesS1.

First, consider rewriting Eq.~7! valid on the slow mani-
fold S in terms ofd:

ẏ5b0~xd2xy1az!. ~12!

The presence of thez variable in Eq.~12! poses some prob
lems. Using detailed arguments based on the knowledg
the magnitude ofx and z just inside, on, and outsideS2, it
can be shown that the trajectory entersS2 at small values of
y and leavesS2 at relatively larger values. Further one ca
show that there is a turning point fory on S2 ~see Fig. 5!. For
details, see Ref.@32#.

With this information on the evolution ofy on S2, we now
consider the changes inf as the trajectory enters and leav
S2. From Eq.~9!, it is clear that a yield drop starts whenx is
large~i.e., whenx;d/b0 on S1) and ends whenx is close to
minimum, when the trajectory is onS2, which implies thatf
is small when the trajectory entersS2. Using the value ofx
5y/udu on S2 in Eq. ~9!, we find thate@fmy/udu, sincey is
near its minimum value as the trajectory entersS2. Thus,f
increases linearly from small values off at a rate close to
de!1. We recall that the loading rate in the experimen
stress-strain curve waskėa(de in scaled variables!, which
now can be understood as due to the structure of the s
manifold. This is a direct consequence of the fact that
magnitude ofx remains constant asẋ;0 for the entire inter-
val the trajectory onS2. This is consistent with what we
argued from the stress-time plot~Fig. 2!, namely, the mobile
dislocation density should be constant during the loading
riod. As the trajectory moves intoS2 , y goes through a maxi-
mum whereasf continues to increase sincex;y/udu re-
mains small. However, as the trajectory is just outsideS2 for
which x;(y/b0)1/2 for d.0 and small,fm(y/b0)1/2;e,
since f and y are relatively large which implies thatf is
about to decrease. The above discussion onẏ and ḟ for
region just outside and inside the fold curve also gives us
direction of movement of the trajectory in this regio
namely, it entersS2 in the region corresponding to sma
values ofy and f, and makes an exit for relatively large
values off andy ~compared to their values as the trajecto
entersS2). Further, asẋ;0, we see that the dynamics onS2
is controlled by the slow variables.

Finally, just to the right ofd50 line, ẋ;xd, with d very
small, which suggests that the time constant is small. Th
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the growth ofx is slow in the neighborhood ofd50, and is
tangential to theS2 plane even in the ‘‘unstable’’ region
However, once the trajectory moves away fromd50, the
growth of the trajectory is controlled by]g/]x and hence the
time scale of growth ofx is of the order ofd21 which is of
the order of unity explaining the short time span of the str
drop seen in Fig. 2. This also explains why the traject
tends to leave stable portion of the slow manifoldS2 and
move into the ‘‘unstable’’ region.

Once in the unstable region, the value ofx continues to
grow in this region of the phase space as can be seen
Eq. ~9! until the value ofx is such thatfmx5e is satisfied.
Beyond this value off, ḟ is negative. Thus, the trajector
leavingS2 eventually falls onto theS1 part of the slow mani-
fold. We can again evaluateẏ and ḟ just as the trajectory
reachesS1. Usingx;d/b0 in Eq. ~7!, it can be shown thaty
decreases. Now, consider the equation forf. Using x

;d/b0 on S1, we see thatfmd/b0.e. Thusḟ,0 when the
trajectory reachesS1 with a time constant;d/b0, which is
relatively fast.~These statements are true only as the tra
tory hits S1.! We recall here that in the experimental tim
series, the stress drops from a peak value to its minimum
a very short time span. Further, we have argued that
should be the sum of contributions arising from fast mu
plication of dislocations~which we have already argued ha
a time scale ofd21) and subsequent immobilization. Th
latter is reflected in another rapid time scale;d/b0. This
explains the difficulty in separating the contributions arisi
from the two processes in the experimental time ser
Moreover, sincex is a fast variable, the changes in thex
component dominates the descent of the trajectory. Fina
as the trajectory approachesS2 , ]g/]x becomes positive and
the trajectory jumps fromS1 to S2. Combining these results
we see that the trajectory moves towards the region
smaller values ofy and f enteringS2 in a region of small
values ofy andf.

In summary, the sequential way the orbit visits vario
parts of the phase space is as follows. The trajectory en
S2 part of the slow manifold in regions of smally and f
making an exit alongS2 for relatively largef andy. There-
after, the trajectory moves through the unstable part of
phase space before falling onto theS1 and quickly descends
on S1. This completes the cyclic movement of the trajecto
and explains the geometrical feature of the trajectory sh
tling between these two parts of the manifold and the as
ciated time scales.

Now, the question that remains to be answered is, do
trajectories always visit bothS1 and S2 or is there a possi-
bility that the trajectory remains confined toS1? It is clear
that if the former is true, relaxation oscillations with larg
amplitude will occur and if the latter is true, these are like
to be nearly sinusoidal small amplitude oscillations. He
we recall that the coordinates of the saddle focus fixed p
are x05z0;e/2 which is much larger than the value ofx
;y/udu on S2. Thus, the fixed point located on theS1 will be
close to the ‘‘fold’’ at the first Hopf bifurcation which occur
at small values ofe5ec1

;5. Due to the unstable nature o
the fixed point, the trajectories spiralling out are forced o
theS2 part of the manifold resulting in relaxation oscillatio
This point has been illustrated by considering the exampl
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a period eleven orbit form51.2 ande5267.0 shown in Fig.
6. As is clear from this diagram, the small amplitude osc
lations are located on theS1. As e is further varied, the smal
amplitude oscillations grow withe, but the relaxation nature
does not manifest until the orbit crosses over toS2. To the
best of the authors’ knowledge the mechanism sugge
here for pulsed type relaxation oscillations is new.

As we will see, the analysis of the slow manifold and t
time scales operating in different parts of the phase sp
will be useful in providing an appropriate interpretation
the various branches of the SRS.

V. NEGATIVE STRAIN RATE SENSITIVITY

At the outset, we stress that it has been recognized tha
negative unstable branch is not accessible to the dynamic
the PLC effect. Even so, early formulations and the w
experimental measurements have been carried out has g
rise to considerable confusion. The purpose of the mate
presented below is to briefly discuss the concept of nega
SRS and working methods adopted in the literature, and
to clear some misconceptions.

Theories of dynamic strain ageing assume that the in
action of dislocations with solute atoms when averaged o
the specimen dimensions can be represented by a con
tive relation connecting stress, strain, and strain rate whic
conventionally written as@34#

s5he1F~ ė !. ~13!

The basic assumption inherent in Eq.~13! is that stress can
be split into a function ofe and another ofė alone. Then, the
SRS is defined as

S5
]s

] ln ė
U

e

5 ė
ds

dė
. ~14!

Clearly, this definition usese as a state variable. This unfor
tunately is not correct since strain is history dependent
spite of this, conventionally, strain is fixed at a small nom
nal value and the flow stress at that value is used to ob
the SRS. It is interesting to note that the existence of criti
strain for the onset of the PLC effect implies that when t

FIG. 6. Evolution of the trajectory along the bent-slow manifo
(S1 andS2) structure form51.2 ande5267.0.
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3670 PRE 61S. RAJESH AND G. ANANTHAKRISHNA
nominal strain value is lower thanec , there are no serration
even when the applied strain rate value is in the domain
the PLC effect (ec1

,e,ec2
). Yet, the onset of serrations fo

higher strains is somehow reflected in the measured n
monotonic behavior of the flow stress@21#. In experiments,
by fixing e at some nominal value less thanec , the flow
stress~at the fixed strain! is found to increase as a function o
applied strain ratee for e,ec1

, shows a decreasing trend fo

ec1
,e,ec2

, and again reverts to an increasing trend foe

.ec2
@21#. Thus, the flow stress has the form shown in F

1. No explanation has been offered in the literature as to w
this nonmonotonic behavior should be seen. However, ex
nation from the dynamical point of view is fairly straightfo
ward and is as follows. We recall here that the model p
dicts the existence of the critical strainec , and also the
existence of a window of strain ratesec1,e,ec2 within
which serration can occur. Thus, from Eq.~9! it is easy to
understand the increasing order in which the stress-st
curves are placed for increasing values ofe whene,ec1

and

e.ec2
. In this range ofe, the fixed point is stable and thus a

trajectories converge to the fixed point. However, forec1

,e,ec2
, we note that serrations result only for large enou

strains, i.e., once the time of deformation is such that st
crossesec . In our theory, serrations are equated with t
existence of periodic~or aperiodic! solutions whenec1

,e

,ec2
. These steady state solutions are usually reached

after transients die down. Thus, low value of nominal str
implies short evolution timewhich in turn implies that the
stress is being monitored at a transient state. Thus, the de-
creasing trend of the flow stress forec1

,e,ec2
is a reflec-

tion of the impending periodic~aperiodic! steady state tha
will be reached eventually. Indeed, this was the method
lowed in our earlier calculation since the procedure was e
to implement numerically@8#. However, in many experimen
tal situations, it is not possible to choose a nominal str
value low enough that it is less thanec for the entire range of
strain rate values. In such a case, since the stress-s
curves are serrated, there is an ambiguity in the value
stress to be used. A working method adopted is to us
stress value as the mean value of the upper and lower s
values@22#. Then, the flow stress appears to decrease for
domain of applied strain rate values where the PLC eff
manifests. Thus, this method gives the impression of actu
measuring the unstable branch.

The above methods are not suitable for adoption si
they do not permit the use of the knowledge of the sl
manifold. There is an alternate method which uses the re
ation oscillations inherent to the dynamics of the PLC effe
In this method, by analogy with electrical analogs, one
sumes that there exists a family of curvesF( ėp) for eache of
the form shown in Fig. 1 which triggers relaxation oscill
tions in the form of plastic strain rate bursts and stress dro
By comparing the measured stress drops and strain bu
one concludes the existence of the unstable branch, but
never records any points in this region. This method is s
able for our study since we will use relaxation oscillatio
arising in the model.
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In the following we shall argue that the two slow tim
scales in the dynamics actually translate into the two sta
dissipative branches of the SRS and the two fast time sc
to jumps in plastic strain rate across the stable branche
the negative SRS. Since SRS representsf as a function of
the plastic strain rateėp5fmx, in Fig. 7, we have shown a
projection of the phase space trajectory on thes-ėp plane
~instead off-x) corresponding to a monoperiodic relaxatio
oscillation.~Here, we have retained the same notation for
scaled plastic strain rate and stress as for the unscaled o!
The unstable fixed point is also shown. Starting from a
initial value around the unstable focus, trajectories spiral
converging onto the limit cycle. In Fig. 7, we have identifie
different regions of the phase space with different regions
the slow manifold,S1 and S2. We first note that there is a
considerable similarity between Fig. 7 and the schematic r
resentation of the relaxational oscillation obtained using
negative SRS shown in Fig. 1. Note also that in contras
the artificial flat partsB8C8 andC8D8 of Fig. 1, the equiva-
lent parts in Fig. 7 have a finite negative slope. Last, as
experiments, the strain rate jump fromB to C is over two
orders of magnitude.

Here, we set up a correspondence between the dyna
in the phase space~Fig. 7! and the slow manifold~Figs. 4
and 5!. From our earlier discussion, we know that when t
trajectory is onS2 , x is constant and small in magnitude
Consequently, according to Eq.~9!, f should increase lin-
early and hence this corresponds the rising branchAB in Fig.
7. Further, noting thatẋ;0 for the entire interval of time
spent by the trajectory onS2 ~see Fig. 4!, the branchAB of
Fig. 7 corresponds to the pinned state of dislocations.
this branch, one can easily see that the~mean! value of S
;3.5 using Eq.~14!. Further, as we move up on this branc
towardsB ~Fig. 4!, the value ofd approaches zero, andf
reaches its maximum value. Onced becomes positive, the
trajectory leavesS2, and thus, the strain rate jump fromB to
C in Fig. 7, and corresponds to the trajectory jumping fro

FIG. 7. Empty circles show the phase space projection ofs vs

ėp corresponding to a relaxation oscillation. The unstable fix
point is shown by a filled diamond. The dotted line through t
fixed point represents the apparent negative SRS region. The
lines are analytical approximations of corresponding regions.
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S2 to S1 in Figs. 4 and 5. Note that the slope]f/]ėp for this
portion of the orbit is quite small and negative unlike t
zero value for the equivalent part in Fig. 1. Further, we kn
from Fig. 4, once the trajectory reachesS1, the value ofx
decreases rapidly resulting in the decrease ofėp . Thus, the
region CD in Fig. 7 corresponds to the movement of
trajectory onS1 ~in Fig. 4 for whichd.0). For this branch,
one can quickly check that the strain rate sensitivityS is
positive, having a mean value (;1.5) which is a factor of 2
less than that for the branchAB, implying that the nature of
dissipation is quite different from that operating onAB. This
is consistent with known facts about the two branches
mentioned in the Introduction. Combining this with the fa
that ẋ is decreasing, the branchCD in Fig. 7 mimics the
equivalent branchC8D8 in Fig. 1, which is identified with
the slowing down of the mobile dislocations without solu
atmosphere.

We recall that the stress drop duration has contributi
from two fast processes, namely, dislocation multiplicat
and its subsequent immobilization. But, these two ti
scales could not be separated in the stress-strain curve. H
ever, in the present phase plot representation~Fig. 7!, we see
that the fast multiplication of dislocations correspond toBC
and that of immobilization toCD. This correspondence ha
been possible due to the mapping of the relevant time sc
in the dynamics of the dislocations obtained from the ana
sis of the slow manifold to the various regions in the pha
plot thereby allowing us to identify the individual contribu
tions. ~Note also that in Fig. 7, we have plotted points of t
trajectory at equal intervals of time which shows that t
time interval corresponding toBD is small.! From Figs. 4
and 5, we see that as the trajectory descends on theS1 part of
the slow manifold and gets close toS2, it leavesS1, since
]g/]x becomes positive (x;50). Further, the strain rate sen
sitivity parameterS changes sign atD. For the corresponding
DA part in Fig. 7, the slope is small and negative as for
partBC. Noting thatB andD are the points at whichS turns
negative, and noting that the fixed point is unstable,the so
called ‘‘unstable branch’’ of the SRS, not accessible to
dynamics, can be inferred by drawing a (dotted) line co
necting the maximum and the minimum of the stress
passing it through the unstable fixed point~Fig. 7!.

We will now attempt to use the results of our analysis
time scales in different regions of the slow manifold to o
tain the dependence ofėp as a function off. The equation
for ėp is

dėp

dt
5xmfm21ḟ1fmẋ, ~15!

which on using Eqs.~6! and ~9! gives

dėp

df
5

ėpS mde

f
1d D2 ėp

2S md

f
1

b

fmD 1yfm

d~e2 ėp!
. ~16!

Here we note that in the slow manifold description, all slo
variables appear as parameters. However, since SRS
scribes the dependence of the slow variablef as a function
e
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of the ~derived! fast variableėp , we will consider the other
two variablesy or d or both as parameters. Numerical sol
tion of Eq. ~16! has been attempted usingy andd as param-
eters. Good numerical approximation is obtained by not
thaty and henced is periodic. Thus, any reasonable appro
mation for the periodicity ofy, for example, sine function
with a proper amplitude and phase, gives a good fit with
phase plot. However, our interest here is to obtain appro
mate expressions forėp(f) on different branches. For thi
reason, we will use typical values ofd andy for the interval
under question. From Sec. IV, the trajectory has differ
dynamics in different regions of the slow manifold. The
are~1! on S2 whereẋ is nearly zero for the entire time spen
by the trajectory onS2, ~2! just outsideS2 whereẋ;xd, ~3!

on S1 wherex;d/b0 for ėp.e, and~4! when the trajectory
jumps from S1 to S2. Approximate solutions obtained fo
these cases are shown in the phase plot by solid lines. De
are given in the Appendix. It is clear that these solid lin
reproduce the general features of the phase plot quite w
We stress here that these lines correspond to the sim
approximation.

The above analysis refers to a fixed value ofe. As a
function ofe, we find that the magnitude of the stress dro
increases initially, and then decreases. This feature is a d
result of the existence of back-to-back Hopf bifurcations
the model. On the other hand, experimentally one sees on
decreasing trend. While the decreasing trend is consis
the increasing trend seen in the model for low strain val
can be traced to the effect of another crucial parameter in
model, namely,b0. We recall that this parameter correspon
to the remobilization of immobile dislocations. For the val
of b0 used in the present calculation, the bifurcation from t
steady state is a mildly subcritical Hopf bifurcation, i.e
across the transition the amplitude of the stress chang
abrupt but the magnitude is small. However, for smaller v
ues ofb0, this jump can be made sufficiently large in whic
case the amplitude of the stress drops can be made to
crease withe right from the onset of the PLC effect.

VI. DISCUSSION AND CONCLUSIONS

The study of the relaxation oscillations in the model w
motivated by the need to explain the apparent inconsiste
between the time scales observed in experimental stress-
series and those that could be argued on the basis of
negative SRS feature commonly used in the literature. T
study of relaxation oscillations using the geometry of t
slow manifold has helped us to identify different time sca
operating in different regions of the phase space, apart f
showing that the nature of the relaxation in the model is d
to the atypical bent geometry of the slow manifold. Th
geometry is very different from the standardS-shaped mani-
fold and hence the relaxation oscillations seen here di
qualitatively from those seen in systems withS-shaped slow
manifold. Some comparative comments between these
types of manifolds may be in order here. As in theS-shaped
manifold, there are two attracting branches in our case a
namely, S1 and S2. The dynamics onS2 is slow as it is
controlled by the slow variablesy andf. On the other hand
on S1, the time dependence of the trajectory is largely co
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3672 PRE 61S. RAJESH AND G. ANANTHAKRISHNA
trolled by the fast variablex. In this sense, the dynamics o
S2 is slow and that onS1 is fast. Though there are two fas
jumps as in theS-shaped manifold, in our case, there is
equivalent unstable part of the slow manifold which cau
these jumps.

The analysis of the time scales controlling the relaxat
oscillations has been directly used to reconstruct the re

ation oscillation in thef- ėp plane which bears a strong re
semblance to the relaxation oscillations resulting from
assumed form of the negative SRS. The information on
ferent time scales operating in different regions of the sl
manifold has been used to calculate the dependence off on

ėp for the two dissipative branches and the associated s
rate jumps between them. This has helped to identify
various regions of the slow manifold with the stick state a
the slip state of dislocations. It has also helped us to cla
the inconsistency in the time scales of the dynamics. Furt
several important features of the SRS derived from
model compare well with those reported in the literature.
particular, we note that the slope of the first dissipat
branchAB is larger than that of the second branchCD ~Fig.
7!. Further, we recall that2d52fm1y1a which is posi-
tive for AB, gradually approaches zero asB is reached fol-
lowed by strain rate jump. Similarly, for the branchCD, d
approaches zero as we approachD followed by a jump in the
strain rate. Thus, vanishing ofd is indicative of strain rate
jumps just as the strain rate sensitivity also vanishes. No
that y is the immobile dislocation density, it is tempting
interpretd as being related to some kind of effective stre
~Recall that the effective stress iss* 5sa2HNim

1/2, whereH
is the work hardening coefficient.! Thus, the points at which
strain rate jumps occur correspond to points at which
effective stress vanishes which is very much like the cla
cal explanation. Since the definition of strain rate sensitiv
assumes strain as a state variable which is not true,d may be
an effective alternate parameter for defining strain rate s
sitivity. Thus, it is nice to see that we can attribute a physi
meaning to this parameter.

The analysis has also helped us to provide a dynam
interpretation of the negative SRS. The analysis also sh
that the large jumps in the strain rate across the sta
branches are due to the relaxational nature of the dynam
which in turn is a result of the bent nature of the slow ma
fold and the fact that the bifurcation is of the Hopf typ
Using this, we have inferred the existence of the unsta
branch as containing the two points,B and D, where strain
rate jumps~whered and S are zero! and the unstable fixed
point is located. In this sense, Hopf bifurcation is at the r
of the ‘‘negative’’ SRS. Similar features of SRS were fou
to operate in a model designed to mimic stick-slip dynam
of tectonic faults@35#. There are other studies on stick-sl
dynamics, both experimental@36# and theoretical@37#, which
support the view that Hopf bifurcation was found to be
sponsible for the instability. Thus, it is likely that Hopf b
furcation is relevant to situations where stick-slip dynam
operates and wherever one measures the two stable bra
and the jumps across the branches@38#.

The relaxation oscillations in the model are reminiscen
thecanardtype of oscillations in multiple type scale dynam
s
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cal systems@39,40#. The latter type of oscillations resu
from ‘‘sticking’’ of the trajectory to the repelling part of the
S-shaped slow manifold before jumping to the attracti
pleat of the slow manifold. In our case, although these os
lations have a similarity with canard type of solutions, t
repelling part of slow manifold does not exist. Instead, t
trajectories stick to the unstable part of the phase sp
where the dynamics is accelerated once the trajectory mo
well into this region. This aspect coupled to the fact th
there is no inherent constraint on the manifold structure le
to oscillations of all sizes. It is clear that such oscillatio
result from the trajectory sticking to the direction of theS2
plane and moving into the unstable part of the phase sp
by varying amounts each time the trajectory visitsS2. These
jumps translate into stress drops of varying sizes which
generally seen in experimental time series~Fig. 2!. This also
means thatėp2f is not a simple limit cycle, and the sim
plistic approach of inferring the ‘‘negative’’ SRS should b
given up. The present analysis stresses the importanc
using sound dynamical tools such as the slow manifold
the basis for studying more complex oscillations rather th
phenomenological concepts such as the negative SRS.

APPENDIX

Here we obtain approximate analytical expressions
ėp(f) for different regions of thef- ėp phase plot~Fig. 7!
using the knowledge of time scales obtained from the an
sis of relaxation oscillations. For the numerical evaluatio
the values of control parameters have been chosen ae
5200, m51.2, b050.002, andd50.0001.

RegionAB: When the trajectory is onS2 , ẋ;0, for the
entire interval of time. Usingx52y/d in Eq. ~15!, we get

dėp

df
52

fm21my

d
. ~A1!

Noting that d5fm2y2a, this equation can be integrate
thereby reducing the number of parameters to one, nam
y. Integrating, we get

ėp52y lnS fm2~y1a!

fm~0!2~y1a!
D 1 ėp~0!, ~A2!

whereėp(0) andf(0) refer to their respective values as th
trajectory entersS2. In Fig. 7, we have usedėp(0)54.7,
f(0)52.2, andy56.15.

RegionBC: This region corresponds to the jump fromS2
to S1. This happens when the trajectory is just outsideS2.
For this region,f is nearfmax, and sincex;(y/b0)1/2, the
evolution ofx is well described byẋ;xd, implying that the
time of evolution is very short. Thus, we can regard t
evolution off as being mainly determined by that ofx. ~This
region also corresponds tod.0 and small;0.2.! Thus, we
usef5fmax on the right-hand side of Eq.~9!. Then,

df

dt
5d~e2fmax

m xs2
edt!, ~A3!
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wherexs2
is the value ofx at the time of leavingS2. Inte-

grating this equation with initial conditions att50, f
5f(0)5fmax, we get

edt5
ted

xs2
fmax

m
2

~f~ t !2fmax!d

xs2
fmax

m d
11. ~A4!

Clearly, the first term is small since the time span of evo
tion that we are interested in is also;d. Now consider Eq.
~15!. Using ẋ;xd, we get

dėp

dt
5 ėpS med

fmax
1d D2

mėp
2d

fmax
. ~A5!

Sincemed/fmax!d, we drop the first term. Integrating th
above equation with the initial valueėp(0)5e, leads to

ėp5
fmaxe@fmax2f~ t !#d

md2fmax
m xs2

~fmaxd/md2e!2@f~ t !2fmax#emd
.

~A6!

In Fig. 7, we have used the valuesd50.021, fmax54.98,
andxs2

51.7.

RegionCD: Consider the trajectory onS1 with x;d/b0

and ėp@e. Then, Eq.~16! reads,

dėp

df
52

ėpS med

f
1d D2 ėp

2S md

f
1

b0

fmD 1yfm

dėpS 12
e

ėp
D . ~A7!

Since e/ ėp,1.0, we expand the denominator and reta
terms uptoėp

21 . We note here that onS1 , x is rapidly de-
creasing and therefore, using slow manifold values is no
good approximation. Even so, as a simplest approxima
we usex;d/b0. Then, we get

dėp

df
52

me2b0

fm11d
2

eb0
2y

fmdd2
1

mfm21d

b0
2

b0y

dd
. ~A8!

In this equation, bothy and d appear as parameters who
values are chosen appropriate to this region. Integrating
above equation with the initial values off(0) andėp(0), we
get
t
is.
-

a
n

he

ėp5
eb0

2y

~m21!dd2
@f12m2f12m~0!#

1
e2b0

d
@f2m2f2m~0!#1

d

b0
@fm2fm~0!#

2
b0y

dd
@f2f~0!#1 ėp~0!. ~A9!

In Fig. 7, we have used the values ofd53.57, y51.0 with
f(0)54.3 andėp(0)57460.0.

RegionDA: This region again corresponds to the traje
tory descending onS1 but ėp,e. Then, Eq.~16! can be writ-
ten in the form

dėp

df
52

ėpS med

f
1d D2 ėp

2S md

f
1

b0

fmD 1yfm

edS 12
ėp

e
D .

~A10!

In this region, the value off is slowly varying with its value
near the minimum for whichd;20.15. Sincef is near
fmin , we usef5fmin and regard the variation as large
arising due to the changes inėp . Using (12 ėp /e)21'(1
1 ėp /e), we have

dėp

df
52~A1ėp1B1ėp

22C1ėp
3!, ~A11!

where A15(m/fmin)2(udu/ed), and B152(udu/e2d)
2(b0 /efmin

m d) and C15(m/fmine
2)1(b0 /e2dfmin

m ).
SinceC1!A1 andB1, we drop the last term. Integrating th
above equation with the initial conditions,f(0)5fmin and
ėp5e, we get

ėp5
eA1eA1(f2fmin)

A11eB1~12eA1(f2fmin)!
. ~A12!

In Fig. 7, we have usedfmin51.55.
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