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Relaxation oscillations and negative strain rate sensitivity in the PorteviaLe Chatelier effect
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A characteristic feature of the Portevin—Le Chatelier effect, or the jerky flow, is the stick-slip nature of
stress-strain curves which is believed to result from the negative strain rate dependence of the flow stress. The
latter is assumed to result from the competition of a few relevant time scales controlling the dynamics of jerky
flow. We address the issue of time scales and its connection to the negative strain rate sensitivity of the flow
stress within the framework of a model for the jerky flow, which is known to reproduce several experimentally
observed features, including the negative strain rate sensitivity of the flow stress. We attempt to understand the
above issues by analyzing the geometry of the slow manifold underlying the relaxational oscillations in the
model. We show that the nature of the relaxational oscillations is a result of the atypical bent geometry of the
slow manifold. The analysis of the slow manifold structure helps us to understand the time scales operating in
different regions of the slow manifold. Using this information we are able to establish connection with the
strain rate sensitivity of the flow stress. The analysis also helps us to provide a proper dynamical interpretation
for the negative branch of the strain rate sensitivity.

PACS numbds): 05.45-a, 83.50.By

[. INTRODUCTION tive SRS was shown to emerge naturally in the model, as a
result of nonlinear interaction of the participating defects. It
The Portevin—Le Chatelier effe¢l], or the jerky flow, also predicts the existence of chaotic stress drops in a range
has been an object of continued interest in materials sciena& strain rates, which has been recently verif[d@-15.
for quite some time. The phenomenon refers to an instabilitfeven the number of degrees of freedom estimated turn out to
seen in the form of repeated stress drops followed by periodse the same as in the model offering justification for ignoring
of reloading observed when tensile specimens are deformespatial degrees of freedofsee Ref[16] alsg. Further dy-
in a certain range of strain rates and temperat{ZésThe  namical analysis of the model for the creep case has shown
effect is seen in many interstitial and substitutional metallicthat the temperature dependence of the strain bursts is con-
alloys (commercial aluminum, brass, alloys of aluminum andsistent with experimental findind47,18.
magnesiuni3], etc). Each of the load drops is related to the  The study of the PLC effect from a dynamical angle has
formation and propagation of dislocation bar{@4]. The been useful in elucidating several features; but it has also
traditional picture of the instability is that it stems from dy- brought certain other issues into sharp focus which were
namic interaction of mobile dislocations with solute atomshitherto not investigated in depth. This paper is intended to
and is called dynamic strain ageing]. It is this that is address one such issue related to the time scales relevant to
expected to lead to negative strain rate sensitit®@RS of  the dynamics of the PLC effect within the framework of the
the flow stres§3-7]. above model. This is reflected in the two well known at-
Plastic flow is intrinsically nonlinear and therefore meth-tributes of the PLC effect, namely, the negative strain rate
ods of nonlinear dynamics have a natural role to play inbehavior of the flow stress and the stick-slip or relaxational
understanding plastic instabiliti€4,8—11. Use of these new nature of the dynamics reflected in the stress time series. In
techniques have led to insights which were hitherto not poserder to motivate, we will present arguments showing that
sible. The first attempt to look at the phenomenon from aconflicting conclusions can be arrived at when one analyzes
nonlinear dynamical angle was taken by Ananthakrishna anthis question starting from these two angles.
co-workers[8], which offers a natural basis for the descrip- We start with a discussion of the well accepted physical
tion of the time dependent aspects of the Portevin—Le Chapicture of the PLC effect, namely, dynamic strain ageing. At
elier (PLC) effect which were ignored in the earlier theories a qualitative level, theories of strain ageing already have an
[5-7]. Their model allows for explicit inclusion and inter- implicit suggestion that the occurrence of the negative SRS
play of different time scales inherent in the dynamics of dis-is related to the competition of diffusive time scale and the
locations. These authors show that the occurrence of the irwaiting time of dislocations at obstaclgs,6], even though
stability is a consequence of Hopf bifurcation as a functionthere is no dynamics involved in these theories. The physical
of the applied strain rate. Many known features of the PLCpicture of strain ageing is as follows. At small velocities,
effect such as the existence of a window of strain rates andolute atoms have enough time to diffuse to the temporarily
temperatures within which it occurs, etc., were correctly re-arrested dislocations thus providing additional pinning
produced. Most importantly, and for the first time, the negathereby impeding their breakaway from localized obstacles.
Due to the constant applied strain rate, the overall stress to
keep the dislocations moving increases bringing the stress to
*Electronic address: garani@mrc.iisc.ernet.in a threshold level beyond which dislocations break away
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8p formed at constant strain rate e-3.3x10 % s 1.
FIG. 1. Schematic plot of the SRS. BranBhD" shown by the To facilitate discussion of time scales involved in an ex-

dashed line describes the negative strain rate sensitivity of the P'—ﬁerimental stress-time series. consider the so called machine
effect. Dotted lines represent the discontinuous strain rate jumpéquation written as

leading to serrations in the stress-strain curve.

. . o 7= K[ €a— €pl, (1)
[5,6]. At high velocities, such additional pinning due to sol-

ute atoms is not possible since the waiting time of dismca‘whereaa, e., and 'ep refer to the stress, applied strain rate,

tions at obstacles is too short for the diffusion to occur. Ayq plastic strain rate, respectively, ards the combined
schematic diagram of the SRS is shown in Fig. 1. In thégjastic constant of the machine and the sample. We note that
language of the stick-slip dynar,nlcs, the braictB’ corre- o1y stress is monitored by the load sensing device. Apart
sponds to the stick state aBIC" to the slip stat@Fig. 1).  from this, it is possible to measure the plastic strain rate
The slope of stress verses veloditjriction coefficient”) at ~ ysing strain gauges or using cinematographic techniques
low velocities is much higher than that corresponding to high26]"Using Eq.(1), we can now identify different time scales
velocities since in the former case, solute atoms have t0 by 4 experimental curve. Consider a typical stress-strain
dragged along with the dislocations, while in the latter casg,;rve for an applied strain rate of &30 5 s ! for the

there is no solute atmosphere. Based on physical consideg) ¢ effect in Cu—=10% Al is shown in Fig. 2.(For our
ations, these two stable branches @ssumedo be separated  ryose; we will ignore the nonperiodic natyrérom the

by an unstablebranch with a negative slope to reflect the g5toth shape of the stress-strain series, two points emerge:
nonaccessible nature. (a) the positive slope ofr,— €, curve is close to the elastic

The occurrence of the negative flow rate characteristic i . . . .
9 ?oadmg rate ke,), and(b) the duration of each stress drop is

not just limited to the PLC effecf19,20. With particular i
reference to the conceptual aspects of the negative branc}ﬁ?ry short. From Eq(1), we see that the stress drop duration

we cite two other mechanical systems, namely, the peeling d¢ the time interval during whicle,(t) larger thane,. We
an adhesive tape and frictional sliding of a block of material@/so note that the changes in slopes, when they occur, are
over anothef19,20) which shows the inaccessible nature of @brupt(within the recording accuracy of 0.05"§. Know-
the negative slope branch. However, in the case of the PL@g thate, is proportional to the mobile dislocation density
effect, there have been attempts to obtain experimentand using Eq.1), we can see that the mobile dislocation
points in this domain of strain rat¢21,22 which has led to  density should be nearly constant in the rising parteé,
some confusion about the measurability of the negative slopeurve and therefore correspond to the stick state. Further, the
branch of the SRS which will be discussed lat8ec. \).  short duration of the stress drop should be a result of rapid
Therefore, it is important to understand the meaning of thenultiplication of mobile dislocation and therefore corre-
negative branch of SRS from a dynamical point of view with sponds to the slip state. This must be followed by the process
reference to the PLC effect which hopefully will lead to a of immobilization of dislocations. However, the abrupt
better understanding of other stick-slip phenomenon. change in the slopérom negative to positivealso implies
Returning to the PLC effect, Pennipg3] was the first to that the immobilization time scale is also fast. Indeed, as is
recognize that the negative SRS could be used to explain thedear from Fig. 2, it is not possible to separate out these two
strain rate jumps observed in experiments. Subsequently, tHast time scales. Thus, from the stress-strain curve, we see
negative SRS feature has been used as an input into sevemally one slow time scalandtwo fast time scaleg/hich is in
theories[24,25. In particular, it has helped to successfully apparent conflict with what was argued from the schematic
explain the nature of yield drops occurring in different re-diagram of the orbitA’B’C’D’ in Fig. 1. This discussion
gimes of strain rate and temperaty&b]. Pertinent to our raises several questions relating to the origin of these time
discussion of time scales inherent to the PLC effect, we notecales causing jumps in dislocation densities which needs to
that in such theorieswo slow time scalesorresponding to be understood if the above inconsistency has to be resolved.
the two dissipative branche#y'B’ and C'D’, show up  Specifically, (i) What is the dynamical mechanism which
along withtwo fast time scalesorresponding to the jumps keeps the mobile dislocation density constant and in low
(B'C" andD'A’) in the strain rates. A more direct reflection levels for long intervals of time®i) What are the mecha-
of the time scales inherent to the dynamics of the PLC effechisms for rapid multiplication and immobilization of mobile
can be deduced from stress-strain curve. dislocations? As we shall see, resolving these issues will also
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help us to interpret the negative SRS in an appropriate waycation entirely. At this point, they are considered to have

Further, associating various time scales with differenttransformed ta\;,, [loss term in Eq(4) and a gain term in

branches of the SRS provides a better insight into the stickEg. (3)]. Indeed, the whole process can be mathematically

slip dynamics of the PLC effect. represented by defining N;= /" _K(t—t")Ny(t")dt’
Analysis of time scales can be best understood from a=q '  exf—a(t—t')]N(t')dt’, which represents the en-

dynamical point of view. It is well known that relaxation tjre process of slowing down &, in an exponential fashion

oscillations are at the root of stick-slip behavior. One of thewith a time constant;. (The choice ofK as having an

standard ways of understanding relaxation oscillations is byxponential form is obviously a simplification of the actual

analyzing the slow manifold geometf7-31 of the under-  process.

Iylng model. FOIIOWing thiS, we shall attempt to understand These equations should be dynamica"y Coup]ed to the

the above issues from the point of view of relaxation oscil-machine equation which now takes the form

lations. The paper is organized as follows. In Sec. II, we

briefly introduce the model along with the known results. In 0= k(€3—BoNy V), (5)

Sec. lll, we state some bifurcation features relevant for fur-

ther discussion. In Sec. IV, we show that the nature of relaxwhereV,, is the velocity of mobile dislocations ari}, is the

ation oscillation in the model iatypical and is due to the Burgers vector. A power law dependence of,,

bent nature of the slow manifold of the model. This analysis=Vy(o,/0)™ is used. These equations can be cast into a

further helps us to understand the dynamical basis of differdimensionless form by using scaled variabtesN,(3/y),

ent time scales relevant to the PLC effect. In Sec. V, wey=N,,(B/6V,), z=Ni(Ba;/ya,), 7=6Vot, and ¢

discuss the concept of negative SRS and its measurement #g,/ o:

some detail to highlight the meaning of the negative branch.

Using the geometry of the slow manifold, we calculate the X=¢™x—ax—box>—xy+y, (6)
dependence of stress on the plastic strain rate and show the

connection between the various branches of the SRS and the y=bo(bgx?—xy—y+az)), (7)
time scales operating in different regions of slow manifold

which in turn helps us to resolve the inconsistency of time 7=c(x—2), @)

scales. Section VI is devoted to discussion and conclusions.

p=d(e—¢™x). 9

. . . . . . Here a= amIGVO, b(): ’)//QVO, C=ai/0V0, K=(0B0'0d/

The model consists of mobile dislocations and immobile o .
dislocations and another type which mimics Cottrell's type,yBO)’ and e=(ea/BgVgy). For these sets of equations
which are dislocations with clouds of solute atof8§ Let there is only one steady state which is stable. _There is a
the corresponding densities &, N, andN;, respec- range of the parametees b, ¢, d, m, ande for which the

tively. The rate equations for the densities of dislocations argneanzed_equatmns are unstable. In this rargg, z, and
¢ are oscillatory.

II. DYNAMICAL MODEL FOR JERKY FLOW

: 5 Among these physically relevant parameters, we study the
Nim= 6VimNm= BN = BNmNim+ YNim = amNm, - (2) behavior of the model as a function of the most important
parameters, namely, the applied strain msad the velocity
Nim:Bern_,BNimNm_ YNim+ a;iN;, (3) exponenim. The values of other parameters are kept fixed at
a=0.7, by=0.002, c=0.008, andd=0.0001. As can be
verified, these equations exhibit a strong volume contraction
in the four-dimensional phase space. We note that there are
) o _ widely differing time scales correspondingdo by, ¢, andd
The overdot, here, refers to the time derivative. The first tern(in decreasing ordgin the dynamics of the model. For this
in Eq. (2) is the rate of production of dislocations due 10 rga50n, the equations are stiff and the numerical integration
cross glide with a rate constaft Vy, is the velocity of the  yqoutines were designed specifically to solve this set of equa-
mobile dislocations which in general depends on somgjons. We have used a variable order Taylor series expansion

power of the applied stregs, . The second term refers to the pethod as the basic integration technique where the coeffi-

The third term also represents the annihilation of a mobile
dislocation with an immobile one. The fourth term represents
the remobilization of the immobile dislocations due to stress
or thermal activatior{see yN;,, in Eq. (3)]. The last term
represents the immobilization of mobile dislocations either The model exhibits a rich variety of dynamics such as
due to solute atoms or due to other pinning centegstefers  period bubbling, period doubling, and complex bifurcation
to the concentration of the solute atoms which participate irsequences referred to as mixed mode oscillations in litera-
slowing down the mobile dislocations. Once a mobile dislo-ture. Here, we will briefly recall only those aspects of the
cation starts acquiring solute atoms we regard it as a newifurcation diagram relevant for the discussion of relaxation
type of dislocation, namely, Cottrell's typ;, i.e, the in-  oscillations. The gross features of the phase diagram in the
coming term in Eq.(4). As they acquire more and more (m,e) plane are shown in Fig. 3. In our discussion, we ese
solute atoms they slow down and eventually stop the disloas the primary control parameter and as the unfolding

N;= amNp—aiN; . (4)

IIl. SUMMARY OF BIFURCATION EXHIBITED
THE MODEL
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FIG. 3. Phase diagram of the model im,€) plane. See text for FIG. 4. Evolution of a trajectorythin lines along with the

details. The broken line corresponds to the locus of Hopf bifurcaent-slow manifold §, and S, shown by thick lines structure in
tions and the dotted lines to the successive period doubling bifurthe X-é plane, form=1.2 ande=200. Inset shows the time series
cations. See text for details. of the x variable(continuous ling and z variable (dotted ling.

parameter. For values ofi>my~6.8, the equilibrium fixed ues for a short time after which it assumes small values of
point of the system of equations, denoted y,§/o,2o, o). the same order of magnitude as that of the slow variables.
is stable. Bothx, and z, are ~e/2 andy, and ¢, are inde- The time spent by the fast variable in the part of phase space
pendent ofe. At m=my, we have a degenerate Hopf bifur- where the amplitude is small is a substantial portion of the
cation as a function of. For values less tham, we have a  Period of the orbit. Typical plots ok(t) (continuous ling
back-to-back Hopf bifurcation, the first occurringete, ~ andz(t) (dotted ling are shown in the inset of Fig. 4 far

P . h =200.0 andn=1.2.
and the reverse ag¢=e. . The periodic orbit connectin . I
C2 P 9 To understand the nature of the relaxation oscillations, we

these back-to-back Hopf bifurcations s referred to as they.; study the structure of the slow manifol®)(and the
prlnc_:|pal periodic orbit. The dynamics .Of the_ System IS €S-anavior of the trajectories visiting different regions 9f
sentially bounded by these two Hopf bifurcations. In Fig. 3,1ha siow manifold of a multiple time scale dynamical sys-
the broken line represents the Hopf bifurcation and the dotzg . is given by the surface spanning the time invariant so-
ted lines correspond to the locus of the first three successi§tions of the fast variable. In our case, it is given by

period doubling bifurcations. The inner, continuous lines
represent the locus of saddle node bifurcations corresponding
to periods 3, 4, and 5 which are the first three dominant
periodic windows in the alternating periodic chaotic bifurca- , .

i C lex bif i h tori wijth 5= ¢™M—y—a. Here, the slow variableg and ¢ (and
lon sequence. L.ompiex biiurcation sequences, characteriz erefored) are regarded as parameters. Further, as we will

by alternate periodic-chaotic sequences are seen in thseee below, it is simpler to deal with the structure of the slow

hatched region of the parameter space. A codimension WO o nifold in terms of thes instead of botty and . Then, the

bifurcation points in the form of a cusp a¢{,m.) formed : . PR
by the merging of the locus of two saddle node bifurcationsphysmaIIy allowed solution of the above equation is

X=0(X,Y,$)=—box?+x5+y=0 (10)

of the principal periodic orbitrepresented by bold lingss 2 A <

shown as a filled diamond in Fig. 3. Bifurcation diagrams X:w, (1)
have been obtained by plotting the maxima of any one of the 2bg

variablesx, y, zor ¢ as a function of the control parameters . )

(e,m). where § can take on both positive and negative values. Not-

ing that b, is small and therefores®>>4bgy, two distinct

cases arise corresponding &>0 and <0 for which x

~ 6/by and x~ —y/ 8, respectively. Further, since the slow
One characteristic feature of the dynamics of the systervariable ¢ andy take on values of the order of unity, the

is its strong relaxational nature. This feature persists even irange ofé= (y, ¢) is of the same order as that ¢f andy

regions of the n,e) plane wherein complex periodic-chaotic (as is evident from Figs. 4 and).5Thus, we see thax

oscillations are seefhatched region in Fig.)3The presence ~-—Y/é is small andx~ é/by is large. For values around

of relaxations oscillations and complex periodic chaotic os=0 and positive, we get~ (y/bg) Y2

cillations are interrelated and are a result of the geometry of The bent-slow manifold structure along with the two por-

the slow manifold.(For details see Ref.32].) Relaxation tions of the slow manifold, namel\§; (6>0) andS, (6

oscillations that manifest in the model are a type of relax-<0) are shown by bold lines in the(5) plane in Fig. 4. We

ation oscillation wherein the fast variable takes on large valhave also shown a trajectory corresponding to a monoperi-

IV. MECHANISM OF RELAXATION OSCILLATIONS
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FIG. 5. Evolution of the trajectory along with the bent-slow

manifold (S; andS,) structure in &,y,®) space indicated by the
gray plane, fom= 1.2 ande=200.0.

odic relaxation oscillationrhi= 1.2 ande=200.0) by a thin

line. As can be seen, the trajectory spends most of the time

on S; andS,. A local stability analysis for points 0§, and
S, shows thavg/ 9x= 6—2byx is negative implying that the
rate of growth ofx is damped. Hence these regioSs,and
S, will be referred to as attracting or “stable.” For points
below the line Dgx= 6§ (6>0), dg/ x>0 and hence we call
this region as “unstable’(shaded region of Fig.)4 Even
then, the trajectory starting d8 does continue in the direc-
tion of increasing’ beyonds= 0. We note that this region is

not a part of the slow manifold. Once the trajectory is in this

region, it moves up rapidly in the direction (due to the
“unstable” nature until it reachesx= 6/2b, line, thereafter,
the trajectory quickly settles down on to ti$g part of the
slow manifold as)g/dx becomes negative. As the trajectory
descends or$; approachingS,, we see that the trajectory
deviates away fron®,;. This happens when the value xfs
such that Dyx< 4, i.e., dg/9x>0. Thus, points or§,; satis-
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establish how the trajectorfyiz., X, y, z, and ¢) visits vari-

ous regions of the slow manifold in a sequential way. How-
ever, our emphasis is more on those aspects of relaxation
oscillation pertaining to the issue of time scales raised in the
Introduction, i.e., the time scales involved in the stress-time
curve (Fig. 1). (A detailed investigation on the behavior of
trajectories on this slow manifold has also been carried out.
See Ref[32].) However, to understand the dependence of
stressg(t), we would also require information gfwhich in

turn depends oa. In order to understand this, we shall ana-
lyze Egs.(7) and (9) by recasting them in terms af in
various regions o&. This will help to understand the general
features of the flow, viz., 08,, just outsideS, and onS;. In

the whole analysis, it would be helpful to keep in mind the
range of values oX, y, z, and¢, shown in Figs. 4 and 5, in
particular their values as the trajectory enters and le8yes

First, consider rewriting Eq(7) valid on the slow mani-
fold Sin terms of 6:
y= bo(x6—xy+az). (12
The presence of thevariable in Eq.(12) poses some prob-
lems. Using detailed arguments based on the knowledge of
the magnitude ok and z just inside, on, and outsids,, it
can be shown that the trajectory ent&sat small values of
y and leavesS, at relatively larger values. Further one can
show that there is a turning point fgron S, (see Fig. 5. For
details, see Ref32].

With this information on the evolution gfon S,, we now
consider the changes i as the trajectory enters and leaves
S,. From Eq.(9), it is clear that a yield drop starts whens
large(i.e., whenx~ 6/by on S;) and ends wher is close to
minimum, when the trajectory is d8, which implies thaip
is small when the trajectory ente8. Using the value ok
=y/|8] on'S, in Eq. (9), we find thate> ¢™y/| §|, sincey is
near its minimum value as the trajectory ent8s Thus, ¢

fying this condition are locally unstable. Thus, the trajectoryincreases linearly from small values ¢f at a rate close to

makes a jump fronB; to S, in a short time. This roughly
explains the origin of the relaxation oscillation in terms of
the reduced variable§ and x.

de<1. We recall that the loading rate in the experimental

stress-strain curve wase,(de in scaled variables which
now can be understood as due to the structure of the slow

The actual dynamics is in a higher dimensional space anghanifold. This is a direct consequence of the fact that the

a proper understanding will involve analysis of the move-
ment of the trajectory in the appropriate space. Moreover

unlike the standar&-shaped manifold with upper and lower
attracting pleats with the repulsivanstable branch[33], in

our model, both branches of the bent-slow manifold are CONZ 4 As the traiectory mMoves in®, oes throuah a maxi-
nected, and there is no repulsive branch of the slow mani- """ ! y Y9 9

fold. Thus,the mechanism of jumping of the orbit fror 8

S, is not clear In order to understand this, consider a three

dimensional plot of the trajectory shown in Fig. 5. The re-
gion S, corresponding to small values wflies more or less
on they-¢ plane and the regiof$; corresponding to large
values ofx is nearly normal to thg-¢ plane due to the large
by ! factor. RegionsS; andS, are demarcated by the “fold
curve” given by §= ¢™—y—a=0 which dominantly lies in
the y-¢ plane. The rapidly growing nature of the trajectory
lying to right of the “fold curve” is due todg/dx>0.

maghitude ofk remains constant as~0 for the entire inter-

val the trajectory onS,. This is consistent with what we
argued from the stress-time pl@tig. 2), namely, the mobile
dislocation density should be constant during the loading pe-

mum whereasp continues to increase since~-y/|d| re-
mains small. However, as the trajectory is just out$Sgléor
which x~(y/bg)¥? for 6>0 and small, ™(y/by)**~e,
since ¢ andy are relatively large which implies thap is

about to decrease. The above discussionyoand ¢ for
region just outside and inside the fold curve also gives us the
direction of movement of the trajectory in this region,
namely, it entersS, in the region corresponding to small
values ofy and ¢, and makes an exit for relatively larger
values of¢ andy (compared to their values as the trajectory

The principal features of the relaxation oscillations thatentersS,). Further, ax~0, we see that the dynamics &

we need to explain ar@) the very slow time scale for evo-
lution on S,, (b) fast transition fromS, to S;, and(c) evo-

is controlled by the slow variables.
Finally, just to the right of5=0 line, x~x3, with & very

lution on S;. In order to understand this, it is necessary tosmall, which suggests that the time constant is small. Thus,
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the growth ofx is slow in the neighborhood af=0, and is

tangential to theS, plane even in the “unstable” region.

However, once the trajectory moves away fraw 0, the 1500

growth of the trajectory is controlled byg/dx and hence the

time scale of growth ok is of the order ofs* which is of

the order of unity explaining the short time span of the stress . 1000

drop seen in Fig. 2. This also explains why the trajectory

tends to leave stable portion of the slow manif&@g and

move into the “unstable” region. 500
Once in the unstable region, the valuex€tontinues to

grow in this region of the phase space as can be seen from

Eq. (9) until the value ofx is such thatp™x=e is satisfied. 0

Beyond this value ofp, ¢ is negative. Thus, the trajectory

leavingS, eventually falls onto th&, part of the slow mani-

fold. We can again evaluatg and ¢ just as the trajectory

reachesS;. Usingx~ &/bg in Eq. (7), it can be shown that FIG. 6. Evolution of the trajectory along the bent-slow manifold

decreases. Now, consider the equation fbr Using x  (S1@ndS) structure form=1.2 ande=267.0.

~8lbg on'S;, we see thatp™s/by>e. Thus$<0 when the

trajectory reache$; with a time constant-d/b,, which is

relatively fast.(These statements are true only as the trajec

a period eleven orbit fom= 1.2 ande=267.0 shown in Fig.
6. As is clear from this diagram, the small amplitude oscil-
Tations are located on tH®. As eis further varied, the small
. o .amplitude oscillations grow witle, but the relaxation nature
series, the stress drops from a peak value to its minimum ifoes not manifest until the orbit crosses overSio To the

a very short time span. Fu_rthe_r, we _hgve argued that th'ﬁest of the authors’ knowledge the mechanism suggested
should be the sum of contributions arising from fast muItl—here for pulsed type relaxation oscillations is new

plication of dislocationgwhich we have already argued has As we will see, the analysis of the slow manifold and the

. _1 . g B
a time scale of6" ") and subsequent immobilization. The o gcales operating in different parts of the phase space

Iatter'is reflecf[e.d in ?”Othef rapid time SC&.‘“”F’O- Thi§ . will be useful in providing an appropriate interpretation of
explains the difficulty in separating the contributions arisingihe various branches of the SRS.

from the two processes in the experimental time series.
Moreover, sincex is a fast variable, the changes in tke
component dominates the descent of the trajectory. Finally,
as the trajectory approach8g, dg/dx becomes positive and At the outset, we stress that it has been recognized that the
the trajectory jumps fron$, to S,. Combining these results, negative unstable branch is not accessible to the dynamics of
we see that the trajectory moves towards the region ofhe PLC effect. Even so, early formulations and the way
smaller values off and ¢ enteringS; in a region of small experimental measurements have been carried out has given
values ofy and ¢. rise to considerable confusion. The purpose of the material

In summary, the sequential way the orbit visits variouspresented below is to briefly discuss the concept of negative
parts of the phase space is as follows. The trajectory enteiSRS and working methods adopted in the literature, and also
S, part of the slow manifold in regions of smalland ¢  to clear some misconceptions.
making an exit along, for relatively large¢ andy. There- Theories of dynamic strain ageing assume that the inter-
after, the trajectory moves through the unstable part of thaction of dislocations with solute atoms when averaged over
phase space before falling onto t8gand quickly descends the specimen dimensions can be represented by a constitu-
on S;. This completes the cyclic movement of the trajectorytive relation connecting stress, strain, and strain rate which is
and explains the geometrical feature of the trajectory shuteonventionally written a$34]
tling between these two parts of the manifold and the asso- )
ciated time scales. o=he+F(e). (13

Now, the question that remains to be answered is, do the . o ) )
trajectories always visit bot§, andS, or is there a possi- The basic assumption inherent in E(d|3)_|s that stress can
bility that the trajectory remains confined &? It is clear  be splitinto a function o and another o€ alone. Then, the
that if the former is true, relaxation oscillations with large SRS is defined as
amplitude will occur and if the latter is true, these are likely
to be nearly sinusoidal small amplitude oscillations. Here, S= do | .do
we recall that the coordinates of the saddle focus fixed point Cdlnel 6&' (14
are Xo=2z9~e€/2 which is much larger than the value »f €
~YI|8| onS,. Thus, the fixed point located on tg willbe  Clearly, this definition uses as a state variable. This unfor-
close to the “fold” at the first Hopf bifurcation which occurs tnately is not correct since strain is history dependent. In
at small values ob=e., ~5. Due to the unstable nature of spite of this, conventionally, strain is fixed at a small nomi-
the fixed point, the trajectories spiralling out are forced ontonal value and the flow stress at that value is used to obtain
the S, part of the manifold resulting in relaxation oscillation. the SRS. It is interesting to note that the existence of critical
This point has been illustrated by considering the example oftrain for the onset of the PLC effect implies that when the

V. NEGATIVE STRAIN RATE SENSITIVITY
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nominal strain value is lower thad¢},, there are no serrations
even when the applied strain rate value is in the domain of
the PLC effect (acl< e< ecz). Yet, the onset of serrations for
higher strains is somehow reflected in the measured non-
monotonic behavior of the flow stre§21]. In experiments,

by fixing € at some nominal value less than, the flow
stresqat the fixed strainis found to increase as a function of ©
applied strain rate for e< e, shows a decreasing trend for
e, <e<e,, and again reverts to an increasing trend dor
>e, [21]. Thus, the flow stress has the form shown in Fig.
1. No explanation has been offered in the literature as to why
this nonmonotonic behavior should be seen. However, expla-

‘

nation from the dynamical point of view is fairly straightfor- 161 162 163 10*
ward and is as follows. We recall here that the model pre- .
dicts the existence of the critical strai#, and also the &

\?v);:isfncerrori anWInndow 0: i_trr]aln ;?tﬁ%g ()aTteiCZ Wlth"t] FIG. 7. Empty circles show the phase space projection o6
dC fe ;tﬂ c.:a occ.u ) (;’IS’ .0 h'q:l th S etasy ot € corresponding to a relaxation oscillation. The unstable fixed
unhderstan € Increasing order in whic € Stress-s ralch))int is shown by a filled diamond. The dotted line through the

curves are placed for increasing valuesoihene< €, and fixed point represents the apparent negative SRS region. The thick
e>eg,. In this range of, the fixed point is stable and thus all lines are analytical approximations of corresponding regions.

trajectories converge to the fixed point. However, {Q[

<e<e,, We note that serrations result only for large enough In the following we shall argue that the two slow time

strains, i.e., once the time of deformation is such that strai$cales in the dynamics actually translate into the two stable
crossese.. In our theory, serrations are equated with thedissipative branches of the SRS and the two fast time scales
to jumps in plastic strain rate across the stable branches of

existence of periodidor aperiodi¢ solutions whene, <e X : §
. ! fhe negative SRS. Since SRS represeMtas a function of
<e... These steady state solutions are usually reached on ) ) . e
2 the plastic strain rate,= ¢, in Fig. 7, we have shown a

after transients die down. Thus, low value of nominal strain® ~." . :
projection of the phase space trajectory on the, plane

implies short evolution timewhich in turn implies that the " : o .
stress is being monitored at a transient statéus, the de- (ms_teaq of¢-x) corresponding foa monoperiodic rglaxanon
. . oscillation.(Here, we have retained the same notation for the

creasing trend of the flow stress fef <e<e._ is a reflec- . :
i i . T “1 2 scaled plastic strain rate and stress as for the unscaled ones.
tion of the impending periodi¢aperiodig steady state that The unstable fixed point is also shown. Starting from any
will be reached eventually. Indeed, this was the method folinjtial value around the unstable focus, trajectories spiral out
lowed in our earlier calculation since the procedure was easyonverging onto the limit cycle. In Fig. 7, we have identified
to implement numerically8]. However, in many experimen- different regions of the phase space with different regions of
tal situations, it is not possible to choose a nominal strairthe slow manifold,S; andS,. We first note that there is a
value low enough that it is less thap for the entire range of considerable similarity between Fig. 7 and the schematic rep-
strain rate values. In such a case, since the stress-straiasentation of the relaxational oscillation obtained using the
curves are serrated, there is an ambiguity in the value ofiegative SRS shown in Fig. 1. Note also that in contrast to
stress to be used. A working method adopted is to use the artificial flat parts8’'C" andC'D’ of Fig. 1, the equiva-
stress value as the mean value of the upper and lower strelsiit parts in Fig. 7 have a finite negative slope. Last, as in
values[22]. Then, the flow stress appears to decrease for thexperiments, the strain rate jump fronto C is over two
domain of applied strain rate values where the PLC effecerders of magnitude.
manifests. Thus, this method gives the impression of actually Here, we set up a correspondence between the dynamics
measuring the unstable branch. in the phase spacg-ig. 7) and the slow manifoldFigs. 4

The above methods are not suitable for adoption sinc@&nd 9. From our earlier discussion, we know that when the
they do not permit the use of the knowledge of the slowtrajectory is onS,, x is constant and small in magnitude.
manifold. There is an alternate method which uses the relaxconsequently, according to E(P), ¢ should increase lin-
ation oscillations inherent to the dynamics of the PLC effectearly and hence this corresponds the rising brakihn Fig.
In this method, by analogy with electrical analogs, one as7. Further, noting thak~0 for the entire interval of time
sumes that there exists a family of cur\Fe(ép) for eache of  spent by the trajectory 08, (see Fig. 4, the branchAB of
the form shown in Fig. 1 which triggers relaxation oscilla- Fig. 7 corresponds to the pinned state of dislocations. For
tions in the form of plastic strain rate bursts and stress dropghis branch, one can easily see that theean value of S
By comparing the measured stress drops and strain bursts,3.5 using Eq(14). Further, as we move up on this branch
one concludes the existence of the unstable branch, but onewardsB (Fig. 4), the value of§ approaches zero, angl
never records any points in this region. This method is suitfeaches its maximum value. Onéebecomes positive, the
able for our study since we will use relaxation oscillationstrajectory leaves,, and thus, the strain rate jump fronto
arising in the model. Cin Fig. 7, and corresponds to the trajectory jumping from
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S, 10 S; in Figs. 4 and 5. Note that the sloﬁdﬂa'ep for this  of the (derived fast variableép, we will consider the other
portion of the orbit is quite small and negative unlike thetwo variablesy or & or both as parameters. Numerical solu-
zero value for the equivalent part in Fig. 1. Further, we knowtion of Eq. (16) has been attempted usiggand 6 as param-
from Fig. 4, once the trajectory reach8g, the value ofx  eters. Good numerical approximation is obtained by noting

decreases rapidly resulting in the decreaseof Thus, the thaty and henceSis periodic. Thus, any reasonable approxi-
region CD in Fig. 7 corresponds to the movement of themation for the periodicity ofy, for example, sine function
trajectory onS, (in Fig. 4 for which5>0). For this branch, With a proper amplitude and phase, gives a good fit with the
one can quickly check that the strain rate sensitiéitys ~ Phase plot. However, our interest here is to obtain approxi-
positive, having a mean value-(1.5) which is a factor of 2 mate expressions fo#,(¢) on different branches. For this
less than that for the brangkB, implying that the nature of reason, we will use typical values éfandy for the interval
dissipation is quite different from that operating AB. This  under question. From Sec. IV, the trajectory has different
is consistent with known facts about the two branches agynamics in different regions of the slow manifold. These
mentioned in the Introduction. Combining this with the fact are(l) on SZ Wherei( is near|y zero for the entire time Spent
that x is decreasing, the brand@D in Fig. 7 mimics the py the trajectory orS,, (2) just outsideS, wherex~xs4, (3)

equivalept branctC’'D’ in Fig._ 1, yvhich is idenyified with on S, wherex~ /b, for ép>e, and(4) when the trajectory
the slowing down of the mobile dislocations without solutejumps fromS, to S,. Approximate solutions obtained for

atn\}\c;sphere”. hat th drop duration h ibuti these cases are shown in the phase plot by solid lines. Details
e recall that the stress drop duration has contribution, .o wiven in the Appendix. It is clear that these solid lines
from two fast processes, namely, dislocation m”“'pl'cat'onreproduce the general features of the phase plot quite well.

and its subsequent |mmob|I|;at|0n. But, the;e tWo timéye siress here that these lines correspond to the simplest
scales could not be separated in the stress-strain curve. Ho‘é{bproximation

ever, in the present phase plot representaion. 7), we see The above analysis refers to a fixed value eofAs a

that the fast' muItlp.I|'cat|.on of dIS|OC<':?.tI0nS correspondtc function ofe, we find that the magnitude of the stress drops,
and that of immobilization t&D. This correspondence Nas j,creases initially, and then decreases. This feature is a direct
been possible due to the mapping of the relevant time scalgggi¢ of the existence of back-to-back Hopf bifurcations in
in the dynamics of the dislocations obtained from the analyye model. On the other hand, experimentally one sees only a
sis of the slow manifold to the various regions in the phasjecreasing trend. While the decreasing trend is consistent,
plot thereby allowing us to identify the individual contribu- yhe jncreasing trend seen in the model for low strain values
tions. (Note also that in Fig. 7, we have plotted points of the .o, pe traced to the effect of another crucial parameter in the
trajectory at equal intervals of time which shows that themodel, namelyb,. We recall that this parameter corresponds

time interval corresponding tBD is small) From Figs. 4, the remobilization of immobile dislocations. For the value
and 5, we see that as the trajectory descends oBythart of - ¢, ;sed in the present calculation, the bifurcation from the

the slow manifold and gets close &, it leavesS,, since  geady state is a mildly subcritical Hopf bifurcation, i.e.,
dg/9x becomes positivex(~50). Further, the strain rate Sen- 4¢165s the transition the amplitude of the stress change is
sitivity parameteiS changes sign db. For the corresponding - gprypt but the magnitude is small. However, for smaller val-
DA partin Fig. 7, the slope is small and negative as for theeg ofh,, this jump can be made sufficiently large in which
partBC. Noting thatB andD are the points at whic§ turns 56 the amplitude of the stress drops can be made to de-

negative, and noting that the fixed point is unstalit®, so - ease withe right from the onset of the PLC effect.
called “unstable branch” of the SRS, not accessible to the

dynamics, can be inferred by drawing a (dotted) line con-
necting the maximum and the minimum of the stress and VI. DISCUSSION AND CONCLUSIONS

passing it through the unstable fixed poifig. 7). The study of the relaxation oscillations in the model was

We will now attempt to use the results of our analysis of . . . .

. S ) . motivated by the need to explain the apparent inconsistency
time scales in different regions of the slow manifold to ob- . . . .

. . . i between the time scales observed in experimental stress-time
tain th-e dependence ef, as a function of¢. The equation  geries and those that could be argued on the basis of the
for €, is negative SRS feature commonly used in the literature. The

study of relaxation oscillations using the geometry of the

€ me1 m: slow manifold has helped us to identify different time scales
g XmeT to+ X, (15 operating in different regions of the phase space, apart from
showing that the nature of the relaxation in the model is due
which on using Eqs(6) and(9) gives to the atypical bent geometry of the slow manifold. This

geometry is very different from the standéBeshaped mani-

. [mde . Ifmd b fold and hence the relaxation oscillations seen here differ
: 6p(7 To|- ES 7+ — | tyo" qualitatively from those seen in systems wkshaped slow
%z ¢ (16) manifold. Some comparative comments between these two
dé d(e— ép) types of manifolds may be in order here. As in Bishaped

manifold, there are two attracting branches in our case also,
Here we note that in the slow manifold description, all slownamely, S, and S,. The dynamics orfS, is slow as it is
variables appear as parameters. However, since SRS desntrolled by the slow variablesand ¢. On the other hand,
scribes the dependence of the slow variaplas a function on S;, the time dependence of the trajectory is largely con-
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trolled by the fast variable. In this sense, the dynamics on cal systems39,40. The latter type of oscillations result
S, is slow and that or8, is fast. Though there are two fast from “sticking” of the trajectory to the repelling part of the
jumps as in theS-shaped manifold, in our case, there is noS-shaped slow manifold before jumping to the attracting
equivalent unstable part of the slow manifold which causegleat of the slow manifold. In our case, although these oscil-
these jumps. lations have a similarity with canard type of solutions, the
The analysis of the time scales controlling the relaxatiorfePelling part of slow manifold does not exist. Instead, the

oscillations has been directly used to reconstruct the relaxiajectories stick to the unstable part of the phase space
. e . . where the dynamics is accelerated once the trajectory moves
ation oscillation in theg- €, plane which bears a strong re-

0 i . well into this region. This aspect coupled to the fact that
semblance to the relaxation oscillations resulting from th 9 b b

df £ th ive SRS. The inf 4 d.fethere is no inherent constraint on the manifold structure leads
assumed form of the negative - The information on Mo oscillations of all sizes. It is clear that such oscillations

ferer_1t time scales operating in different regions of the slow..q it from the trajectory sticking to the direction of tBg
manifold has been used to calculate the dependenged®  plane and moving into the unstable part of the phase space
€, for the two dissipative branches and the associated straipy varying amounts each time the trajectory viSis These

rate jumps between them. This has helped to identify thgumps translate into stress drops of varying sizes which are
various regions of the slow manifold with the stick state andgenerally seen in experimental time serEgy. 2). This also

the slip state of dislocations. It has also helped us to clarifymeans that'fp_ ¢ is not a simple limit cycle, and the sim-
the inconsistency in the time scales of the dynamics. Furtheglistic approach of inferring the “negative” SRS should be
several important features of the SRS derived from theyiven up. The present analysis stresses the importance of
model compare well with those reported in the literature. Inusing sound dynamical tools such as the slow manifold as
particular, we note that the slope of the first dissipativethe basis for studying more complex oscillations rather than
branchAB is larger than that of the second brar€B (Fig.  phenomenological concepts such as the negative SRS.

7). Further, we recall that- 5= — ¢™+y+a which is posi-

tive for AB, gradually approaches zero Bds reached fol- APPENDIX
lowed by strain rate jump. Similarly, for the bran€@D, & ) . ) .
approaches zero as we approd@followed by a jump in the Here we obtain approximate analytical expressions for

strain rate. Thus, vanishing &f is indicative of strain rate €p(¢) for different regions of thep-€, phase plot(Fig. 7)
jumps just as the strain rate sensitivity also vanishes. Notingsing the knowledge of time scales obtained from the analy-
thaty is the immobile dislocation density, it is tempting to sis of relaxation oscillations. For the numerical evaluation,
interpretd as being related to some kind of effective stressh€ values of control parameters have been chosee as
(Recall that the effective stressd¢ = o, — HNY2, wheren ~ — 200, m=1.2,0p=0.002, andi=0.0001.

is the work hardening coefficientThus, the points at which ~ RegionAB: When the trajectory is 08,, x~0, for the
strain rate jumps occur correspond to points at which thé&ntire interval of time. Using= —y/é in Eq. (15), we get
effective stress vanishes which is very much like the classi- )

cal explanation. Since the definition of strain rate sensitivity de, o™ my
assumes strain as a state variable which is not fueay be ﬁ - F)

an effective alternate parameter for defining strain rate sen-

Slthlty Thus, it is nice to see that we can attribute a phySicaNoting that 8= d)m_y—a, this equation can be integrated

meaning to this parameter. thereby reducing the number of parameters to one, namely,
The analysis has also helped us to provide a dynamica}. Integrating, we get

interpretation of the negative SRS. The analysis also shows

that the large jumps in the strain rate across the stable .

branches are due to the relaxational nature of the dynamics €p="Y In(

which in turn is a result of the bent nature of the slow mani-

fold and the fact that the bifurcation is of the Hopf type.

Using this, we have inferred the existence of the unstablwhere}gp(o) and¢(0) refer to their respective values as the

branch as containing the two poin8,and D, where strain trajectory entersS,. In Fig. 7, we have used,(0)=4.7,

rate jumps(where § and S are zer¢ and the unstable fixed #(0)=2.2, andy=6.15. P

point is located. In this sense, Hopf bifurcation is at the root RegionBC: This region corresponds to the jump frcdg

of the “negative” SRS. Similar features of SRS were found, S,. This happens when the trajectory is just outsie

to operate in a model designed to mimic stick-slip dynamicszq; this region,s is neard .., and sincex~ (y/bo) Y2 the

of tectonic fault[35]. There are other studies on stick-slip evolution ofx is well described bw—xs. imolving that the

dynamics, both experimente86] and theoretical37], which time of evolution is very short y(Thus, wg )éar? regard the

support the view that Hopf bifurcation was found to be re- Lvolution of ¢ as being mainly determined by thatof(This

sponsible for the instability. Thus, it is likely that Hopf bi- .
furcation is relevant to situations where stick-slip dynamicsreglon also corresponds ®>0 and smal~0.2) Thus, we

operates and wherever one measures the two stable brancﬁ@?‘ﬁz ¢max ON the right-hand side of E¢9). Then,
and the jumps across the branchag].

The relaxation oscillations in the model are reminiscent of dé _
the canardtype of oscillations in multiple type scale dynami- dt

(A1)

" —(y+a)

— = | +4€,(0), A2
SO —(yray, #O B2

d(e— ¢Maxs,e”), (A3)
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wherexs, is the value ofx at the time of leavings,. Inte-

grating this equation with initial conditions &t=0, ¢
=¢(0)= Pmax, We get

ol 180 (90— dna)d

- m m
st¢m ax st‘lsma%.j

(A4)

Clearly, the first term is small since the time span of evolu-

tion that we are interested in is alses. Now consider Eq.
(15). Usingx~x3, we get

de, .
dt

med me;d
+ (A5)

o|— .
¢m ax d’max

Sincemed ¢,x< 5, we drop the first term. Integrating the
above equation with the initial valug,(0)=e, leads to

¢maxe[¢max_ d’(t)] )

P M B, bmad MA—€) [ $(1) — dmarlemd
(A6)

In Fig. 7, we have used the valués=0.021, ¢ .= 4.98,
andx52=1.7.

RegionCD: Consider the trajectory o8, with x~ /b,
and e,>e. Then, Eq.(16) reads,

de, Ep( ¢
=" A7)

Since e/ép<1.0, we expand the denominator and retain

terms upto»sgl. We note here that o6, x is rapidly de-

creasing and therefore, using slow manifold values is not
good approximation. Even so, as a simplest approximatio

we usex~ d/bg. Then, we get

m¢™ 15 bgy

by  dé

ﬁ_ me?b, eb§y+
dé -’

d¢ - ¢m+15_¢md52

(A8)

In this equation, botly and § appear as parameters whose
values are chosen appropriate to this region. Integrating the

above equation with the initial values @{0) andép(O), we
get
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o eb(Z)y 1-m_ 41-m
= napl? ¢ O]

e’by - 8
T [¢" "= ™(0)]+ b—[¢m—¢m(0)]
0

—@[¢—¢<0>]+é (0) (A9)
dé pr=r

In Fig. 7, we have used the values &F3.57, y=1.0 with
¢(0)=4.3 ande,(0)="7460.0.
RegionDA: This region again corresponds to the trajec-

tory descending o8, but ép< e. Then, Eq16) can be writ-
ten in the form

: (med+5 - md+ bo fyom
de, P70 @\ T gm Y
40 ed(l—&)
e

(A10)

In this region, the value ad is slowly varying with its value
near the minimum for which5~—0.15. Since¢ is near
bmin, WE USEd= ¢y and regard the variation as largely
arising due to the changes “-"b Using (1— }sp/e)*lm(l
+e€,/€), we have

dep _

a6~ (Ar€p+Biey®—Crep), (A11)

where A;=(m/¢min)—(|8l/ed), and B,;=—(|5|/e*d)

- (bo/egnid)  and  Cy=(m/¢pine?) + (bo/e*ddp;y).

%inceC1<Al andB,, we drop the last term. Integrating the

above equation with the initial conditiong(0)= ¢, and
e,—€, we get

eAleAl(¢7 bmin)

- . (A12)
P A +eBy(1— PP dmin))

In Fig. 7, we have use@,,;,=1.55.
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