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We study the effect of classical cantori in quantum mechanics, extending previous results by several groups.
We find that cantori form exponential barriers to quantum transport not only when Planck’s constant exceeds
the flux through the cantorus but also when it is smaller than the flux. The mechanism of localization in the two
cases is different, and we describe the switch from dynamical localization to a mechanism we call “retunnel-
ing” as Planck’s constant increases. We investigateitidependence of the exponential decay for retunneling
and find that the: ~ %5 coefficient found previously at criticality appears to hold also away from criticality
provided 7# is large enough compared to the flux. Numerical evidence as well as an analytic argument are
given. Our final contribution to this subject is a phase space view of cantori in quantum mechanics. We
illustrate our results using the whisker map.

PACS numbd(s): 05.45~-a, 03.65.Sq

. INTRODUCTION probability depending on Planck’s constanteas’” whereS

is an appropriate action.

The relation of the quantum mechanics of integrable Sys- Quantum states in the chaotic regions are genera”y quasi_
tems to the underlyir_wg classical me_chanics is well U”derergodically distributed in the regiothowever, see Ref4]
stood. Loosely speaking, one may think of the quantum merq, scarred statgs but localization of quantum states may
chanics as classical probability densities together with phases..ur when the classical diffusion time scale is larger than

determined by classical actions and Maslov indices. In th‘?he quantization timéthe time to resolve discrete levels in a

integrable regime, EBK quantized energy states live on th%hase space volume explored by the diffusidn this case

Invariant tori of classical ph_ase spa(:_"e'o paint t_he complete asuantum transport across the chaotic region is also exponen-
guantum picture and describe classically forbidden processe . . X .
ially suppressed but with dramatically different characteris-

such as diffraction and tunneling, extension into complex. ) ; .
coordinates must be magle. t|(is(.,”|)r; particular a different: dependence, of the form
Most systems however are not integrable. The quanturﬁ E ) o i
mechanics of systems with a chaotic component is not so The struct_ure that interests us in this paper in a sense falls
well understood, although tremendous progress has bedf between integrable and chaotic: cantori, which are the
made in the last 30 years. Much insight has been gained intg¢mnants of an irrational winding number tor6AM sur-
the statistical propertie®.g., eigenvalue spacing and eigen_face) at values of the nonlinearity parameter above but close
vector distributionsof the quantum mechanics of fully cha- to the critical value for break up. How these structures delay
otic systemg[1,2]. Indeed, semiclassical rules hold solidly the classical transport in phase space has been thoroughly
for the quantization of such systems: the sum may be over studied in pioneering wors—7]. Remarkable results on the
huge number of paths but is accurate as long as action dicaling properties and renormalization group theory near a
ferences between contributions are appreciable. This is oftecantorus at criticality are now well establishigj9].
the cas¢3]. Near-integrable systems, with their mixed phase In this paper we extend prior investigationH0—14 of
space, are less understood, yet of fundamental importandbe manifestations of cantori in quantum mechanics. The ear-
since typical atomic and molecular systems fall into thislier studies have included elegant results on the exponential
class. One can gain some understanding of the quantum bbarriers that cantori present to quantum transpbt{13,14
havior of such systems by considering the various structureand on how scaling carries over to quantum mechanics
generic to mixed phase space. States in surviving islets dfL0,15. We extend this work in a number of ways. The
stability surrounding stable periodic orbits or attached to in-earlier work had shown that cantori act as strori@gponen-
variant tori are quantized as in regular systems: such stategl) barriers to transport in quantum mechanics than in clas-
lie on tori whose actions satisfy EBK quantization rules. Thesical mechanics whef is big enough that quantum mechan-
phase space area occupied by an islet must be at ledss “sees” a closed surface rather than a broken one.
Planck’s constanth/2, in order to be resolved by quantum However, we show there is also exponential localization for
mechanics. A quantum wave packet initially lying well smallers through a different mechanism, a dynamical local-
within the islets can only tunnel to get out, with tunneling ization effect. We demonstrate the crossover from dynamical
localization to tunneling through a “gquantum-mechanically
closed” cantorus a8 increases. Only at criticality, when the
*Present address: Department of Chemistry, University of Calicantorus is just about to break up, are the characteristics of
fornia at Berkeley, Berkeley, CA 94720-1460. the transport quantified in the literature: thelependence is
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found to bee™ (- *** We find in this paper that this holds 20
away from criticality as well, providedl is big enough com-
pared to the classical flux crossing the cantorus. We provide
numerical arguments as well as an analytic one for this be- I
havior. We show how considering the evolution of states in
the time domain can solidify our understanding about trans-
port through cantori as can Husimi plots in phase space.

In Sec. Il we briefly discuss some properties of cantori in -10
classical mechanics. We illustrate them using a whisker map.
We point out that our results hold for generic cantori in any
map due to the universality of the dynamics near a cantorus. 0
Section Il explores the quantum dynamics near such cantori,
discussing in detail the points raised in the previous para-
graph.

The whisker map describes the motion around a separatribe =0 (see text
in a typical(nonintegrablgsystem 16—18. The separatrix is 0= 0+ P’ 3)
a ubiquitous structure in the phase space of generic nonlinear '
systems. A first-order analysis of a typical two-dimensionakryis is a standard map in the variables
near-integrable system near a resonance yields a pendulum
Hamiltonian in a pair of “slow” coordinate-momentum vari-
ables, with the “fast” action being an adiabatic invariant. A P=-
closer look reveals a chaotic layer around the slow variable’s
pendulum separatrix and a corresponding layer around thgith effective nonlinearity parameter
fast adiabatically constant action. Typically there is a thin
layer of chaos around the separatrix, even for the smallest Ak

FIG. 1. Classical whisker map phase spake:5k=2, with

(1=15),0 4

=1,

perturbation. As the perturbation increases, this layer grows Ks= keff=|r_|0' )
to fill phase space.
The whisker map has the form A standard map withkg >k.=0.9716354- - is globally
chaotic(see the next sectigna trajectory started in one area
I"=1—ksing of phase space eventually travels over almost all of it, ex-
cluding only isolated islets of stability which shrink Hg|
grows. This implies that the half width of the chaotic layer
0"=06+X\In|——— (mod 2m). (1) in the whisker map is
[0}
I o~Nk/Ke. (6)

This is a mapping in the “fast” variablels . The parameter
A\ controls where the structures lie in phase spé@slands, The degree of stochasticity grows as the action moves
cantor); properties such as their size and stochasticity dedeeper into the stochastic laydey increases from critical
pend on bothh andk. The map has an infinite number of (k.) at the layer's border to infinity in the middle bf. As a
fixed points consequence, deep inside the chaotic layer the motion is very
random and leads to diffusion in the actit®ec. I). Further
l=loxce”®™,  §,=0orm, (2)  out, the phase space has more structure: in addition to the
) ) ] ) ) islets of stability, there are cantori, remnants of KAM invari-
wherer is an integer. All fixed points withl, —1o|<\k/4 g1t tori which slow down the diffusion. There may be several
are unstable. The infinite number of unstable fixed points igniori in various stages of disintegration within the layer,

this action range accumulate exponentiallyl{o their un- increasing in their transport inhibition as the border with the
stable manifolds overlapping. The fixed pointg, €0, regular region is approached.

>1,+Ak/4) and @,=,1,<l,—Ak/4) are also unstable.
Stable elliptic fixed points exist apf(= ,1,>1,+Ak/4) and
(6,=0,,<l,—\k/4).

An example of the classical whisker map phase space is
given in Fig. 1 where we have chosen parameter vakues
=2\ =5, seeded 50 random initial conditions, and iterate

II. CANTORI IN CLASSICAL MECHANICS

Deep inside the stochastic layer the whisker map suffers
iffusion in action:

the map 400 times. The points were plotted at each iteration. (1(1))=(1(0)),
The motion appears chaotic for roughly—I,|<10, except @)
in the islets. The width of the chaotic layer can be under- (I(t)2>=<l(0)2>+Dt, D=k?%/2,

stood from transforming the behavior around the first-order
resonances to local standard mappings. Expanding the logahere(- - -) represents an ensemble average over many tra-
rithmic shearing term around the fixed point action, we findjectories with initial actionl (0). The diffusion out to the
that the whisker map is locally regular region is, however, impeded by barely broken KAM
tori (cantor) further out in the chaotic laygsee Figs. 2 and
P’'=P+kegysing, 3). “Cantorus” refers to the remnants of an irrational wind-
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FIG. 2. (left) Classical diffusion in the whisker map=10: (Al?) for a set of initial conditions with vanishing action. The initial slopes
agree with Eq. 7(right) Later, diffusion is impeded by cantori. This graph shows the maximum action in the distributiditQk=2. Also
a scaled square root of the dispersion in action is shown. The dashed line corresponds to unimpeded diffusion givef.by Eq.

ing number invariant manifold at, or just above, the critical ~For the whisker map the strongest restraints on diffusion
nonlinearity parametek. at which the manifold breaks up. in the chaotic layer arise from cantori with winding number
At the break-up parameter, the KAM surface acquires a-(y=*m), for integer m. The unperturbed whisker map
scale-invariant fractal structure. It is an invariant set with anwinding number isv,= 1/r,, where

infinite number of infinitesimal gapkb,19] and it presents

partial barriers to motion for a nonlinearity parameter 1 N
larger thark., invalidating the diffusion picturgOf course, ro(l)= w. o E'n
for smallerk they are complete barriers to transport, and for ?

much largerks the cantori disintegrate and diffusion may ynically there are several cantori corresponding to winding
proceed rapidly, asin the chaotic regioGreene found20]  \mbersw=m= y~2 which are “effective” within the cha-
that the Iast.surwvmg KAM curves for the standard niBp. e layer, with varying degrees of “brokennesgNote that

(3)] have winding number- (y+m) where 7:(\/§f1)/2 y ?=1-y 1=2-y~0.382) Those near the outer border
~1.618 is the golden mean amdis an integer. This curve of the chaotic layer are close to critical and present much
remains robust as the magnitude of the standard map paragronger impediments to diffusion than those further inside
eterks increases from O t&;=0.9716354- - [20], when it the |ayer; this is as suggested by the local standard map
breaks up and global chaos sets in. The golden m&aehits  parameter at the cantofEq. (5)]. For example, in Figs. 2
integer relativepis, in a sense, the “most irrational” nUM- anq 3, there are three cantori evident, corresponding to in-
ber: its continued fraction representation is the slowest tQerge winding numbersof 4—y~ 2.4+ y 2, and 5- y 2 at
converge. Other irrational winding numbewrscorrespond to [l —1,|~9.7,15.7,18.2, respectively. These are the values of
trajectories that lie on an invariant curve under small perturynperturbed actions: the cantori are actually curved, as is
bations but they break up at parameti§ <k.. See Refs.  eyident in the phase-space pictures. The classical distribution
[8,9,13,20,5-7,2l1for more detail. is slowed at each cantorus for some time, which is longer the
further out the cantorus is, before escaping finally into the

®

=1,

20 1=20 - 20 stochastic layer. Ultimately a trajectory fills the phase space
10, g I 10 (except for the islets of stabilifyup to the regular region
0

(Fig. 3). It is also important to note that each cantorus has a
“width” which represents the range in action around the

: 5 cantorus in which the transport is slowed down due to
T n . S

) closely neighboring irrationalsee also Sec. Il B

As k increases, the cantori become weaker and the inner

-10
-20

20 o 30000 i ones may disappear as new ones appear at the growing edge
10 S of the chaotic layer. In Fig. 4 we have zoomed in on the
I © border between the chaotic and regular regions in the whis-
-10 ker map with parameters=10k=1.77. These parameters
20 conspire to give a critical cantorus at winding number 5
0 T 2n —y~2 at actionl =18.7 (the parametet,=0.5). Although
e the cantorus itself is not visible in this picture, which is lim-

FIG. 3. Classical evolution of 20 points initially with randogn  1t€d Dy the number of points iterated, what one can see
and 0<I<1A=10k=2. The borders of the distribution at each Cl€arly are the resonance island structures embracing where
time shown are at cantort=20 shows the cantorus at winding the cantorus would be. One can make out a period 2, period
number 4- y~2,t=300 shows that at 4 y~2:t=3000 shows that 3, period 5, period 8, and period 13 chain, alternating be-
at 5—y~ 2 (see text Finally (t>30000) the outermost cantorus is tween the two sides of the cantorus. Of course this structure
penetrated and the distribution spreads to the border with the regis not unique to cantori in the whisker map: the periodic orbit
lar region. structure occurs around generic cantori. These periodic orbits
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~1.618. Note that the values afand 3 correspond to those

at the dominan¢subdominantsymmetry line; these are lines

of fixed points of the involution§'; and T, whose product
gives the original magsee Refs[8,6]). The subdominant
symmetry line tends to cross a hyperbolic point of each pe-
riodic convergent, whereas the dominant line contains an el-
liptic point of each periodic convergent. The essential point
here is that for the standard map of the form in E).for
I>1, andke>0 the dominant and subdominant symmetry
lines are atr(0), respectively. Fot <I, (wherekg is nega-
tive), the dominant and subdominant symmetry lines are at
0(r), respectively, and the values ef and 8 at 0 andw
should be switched. Notice that at both the subdominant and
dominant symmetry lines, the product of the phase-space
scalingsa f~4.34.

_ - A. Flux through a cantorus
FIG. 4. Classical phase-space near a near-critical cantorus at the ) ) )
border of the stochastic layer. Perhaps the most important aspect of classical behavior

near barely broken tori, for our purposes, is the flux across a
are the “convergents” to the KAM surface; they have wind- ¢antorus. This is the flua W swept across the cantoral gaps
ing numbers which are successive truncations of the continl? One iteration of the map. The “turnstile” construction to
ued fraction representation of the irrational winding numbecompute this is described in Ref$,13. The flux through
associated with the KAM. For the go'den mean, the Convethe CantOI’USSW fO”OWS a Sca“ng relatlon that IS not dlfﬁ-
gents have period given by the Fibonacci sequeRge Cult to guess from Eqg9):
=0,F,=1F;,1=F;+F;_1 with winding numberds; /F; , ;. -1
As i — o this number approaches The figure does not have AW(p) = (af) AW (o), (10
enough points to resolve the structure beyond the 13th level.

The periodic orbit convergents are in a sense _requnsibl\;,hereM:Aks:W
for the fractal structure at criticality and the scale invariance
near a cantorugin fact it was a study of their stability as a
fgnction of the n.onlinearity para_meter which led Greene to AW(w)oc (12)
his result regarding the destruction of the last KAM surface
in the standard maf20]). There is an extensive literature on
the scaling behavior and renormalization group theoriesith z=In afB/In §~3.01. That the flux scales as(Akg)>
(both analytic and numerif8,9,6 near the cantorus to de- holds for a surprisingly wide range &: for the standard
scribe the “structure at all scaleg.The behavior at critical- map, the authors in Ref21] show numerically that the dif-
ity has universal characteristics: near the critical break-ugusion in action goes asiks)® up toks~2.5.
parameter for other irrational winding numbers and for other In Ref.[5], AW for the golden mean cantorus of the stan-
maps one finds the same scaling expongBitsind the same  dard map was computed as the limit of that for high-order
universal map. Thus the scaling relations controlling theperiodic orbit convergents. From that study the proportional-
classicaland quantumhdynamics near a cantorus are univer- ity factor in Eq.(11) is deduced:
sal. We letu represent the distance from criticality.g., for
the standard map Eq3), u=|k|—ks=Ak]. Then, asymp-
totically, a map in @,p) near a generic cantorus is invariant AWK (kg)~0.7(Aks)°. (12)
under the rescaling8,9,6|

J —k¢. This can be expressed as

n— O, Appealing to universality, we expect that the dependence on
the nonlinearity parametefi.e., the scaling exponent)
A 60— aA 6, holds for general one-parameter maps and for cantori at other
(9) noble winding numbers, however, probably with a different
Ap— BAp, proportionality constant.
We exploit the fact that the whisker map is locally a stan-
n=F, . ;—F,~nlw, dard map to calculate the cantoral flux. Generalizing E4)s.

and(5) to the neighborhood of a cantorus,is replaced by
where 6~1.628 is the scaling exponent for the nonlinearity the action at the cantorus rather than at the fixed point. Al-
parameter u;a~—1.41(—1.69) near §==(0) and B~ though we cannot strictly write the whisker map as a local
—3.07(—=2.56) nearf=(0). The last relation expresses standard map, except close to a fixed point, there certainly is
time rescalingn being the number of iterations of the map, a sense in which we can associate an effective standard map
with scaling exponent given by the irrational winding num- parameter and corresponding phase-space scalings anywhere
ber of the KAM, e.g., for the golden mean toruswfy  inside the stochastic layer. We have
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e 1ol ) Ak to trust(14) more when calculating the flux. In Sec. Il B we
AW= N AW =N shall provide numerical evidence supporting our approxima-
et To tion.
=1 Ak 7
~o..J ‘”)\ O|(|| - |—kc) (13
ct o B. Scaling relations in quantum mechanics

0.7ce2m(r=y A We end this introductory part of the paper by a brief dis-

~ N cussion on what happens to the scaling relations in a quan-

tized system. The effect of scaling on quantum mechanics
X()\kcezw(rifzm_k )7 (14) has been discussed in the literature, e.g., Ref,15,23. To
¢ first order, the scaling properties carry over to the quantized

where the last line specializes to the case of a cantorus &0tion near a cantorus, provided Planck’s constant is also

inverse winding number = y~2. scaled: the relationh10,15

There is another way to derive the whisker cantoral flux fi—|aplh 17)
from a formula derived in Ref[13]. Letting AW,,4(R*)
denote the flux through the periodic orbit of winding number

p/q, one may write joins Egs.(9). However, as time evolves, effectively gets

R\ 7 scaled to larger and larger values and eventually becomes
- * p/q larger than the scaling regiofl0]. At this time, scaling
AW=0.37AWpiq(R™)| In R* ) (15) breaks down a# is too large to resolve the structures which

give rise to scaling. The breakdown happens at the titne
whereRis the residue of the/q periodic orbit andR* is its ~ which scales as* ~# =7, y=In|a8l/In v~3.05. In[10] it is
value at criticality[20]. [R=(2—TrM)/4 whereM is the  arguedinumerically and also semiclassicaliyat this is also
tangent map of the periodic orfditThere, it is also asserted the time scale when quantum effects such as interference
that for a cantorus sandwiched between two periodic orbitdegin to become important. A consequence of this for quan-
of neighboring rationalgi.e., p’q—pqg’=*1) which have tum diffusion in the kicked rotor ak>k; is the onset of
residues of significantly different size, one may replace thdocalization. Quantum dynamics follows the classical diffu-
logarithm in Eq.(15) with the combination weighted by the sion, scaling wittk as does the fluk~ (Ak)?3], but begins to
inverse “distance” from the resonance to the cantorus. Fodeviate at times scaling with ast* ~# 1. We refer the
example, for a cantorus with unperturbed inverse windingeader to Ref[10] for graphs of this behavior in the kicked
number r+1/y?, we have AW=~0.37AW,(R*)[(1/ rotor. There is some diffusion in action aftet, albeit
NINR/R*)+ (1) In(R..1/R*)]”. It is straightforward to slower; the system does not completely localize in the sense
calculate the components of this expression for cantori in thef (Ap?), not reaching a steady state until much later. The
whisker map using the fixed points for the periodic orbitapproach to complete localization is not a simple one.
pivots on the right-hand side. One obtains, for a cantorus at
inverse winding number + 1/y?

[1l. QUANTUM LOCALIZATION IN THE CHAOTIC

0.7ce 27" 1I ()\kcez’”“) LAYER
~ —In
A Y ke A. Preliminary observations
1 [Akce™ =D ]7 We examine the long-time properties of the quantized
- n(—) (16) mapvia the time-averaged probability of being in final state
¥ Ke |f) having started in initial statg):
This was also obtained in Ref14]. 1
e this i i P(f,i)=lim = > [(flUY]i)[?
We notice this isalmostexactly the same as our earlier ; T&
formula(14): the terms in the large parentheses may be com- Toe 007

bined as

@y AN =2 KA, (18
m(r=y n
In()\kc - )

where in the last line the sum goes over the quasienergy

which gives the same term as that taken to powes in EqQ.  gjgenstates is the one-step time evolution operator for the
(14) once the argument of the logarithm is expanded aroung,5

1. The only difference with Eq14), is then an overall factor

of 227" The difference presumably comes about be-

cause in the formul#16) only the closest resonance is ac- U=e INI=To)ln[e/(1=10)|+ 1)/ gik cosolhi
counted for in the prefactor, but in our formulad), an ef-

fective weighted combination from both resonances occurs

from the local standard correspondence. We are thus inclinelor example, in action representatid,23,
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There are two particularly useful representations in whichWhere Op=pmwhil;. The squared norm of this is then

to study this object: one is a phase-space representéion summed over all times. For the computations we used the

Husimi ploY), the other is action space. The phase-space re@:)Ougrir:rmtgrg\;o[rzrr?]i’nvm:ec?lvggg frue to its namé'fastest

resentation helps us to understand qualitative aspects of the L - .
localization. We take circular coherent states The logarithmic plots > gnd 6 indicate steep expopgnual
decay at the cantori. Classically we observed thancriti-

cal) cantori quench the fast diffusion deeper in the layer;
trajectories take many iterations to get out, but at long times
they roam uniformly all over all the connected chaotic phase
as final and initial states in E¢18). 6, andl, denote the space. In the quantum case the transport is much more se-
center coordinates of the coherent state. Figure 5 is a contowverely impeded, the probability of long-time penetration be-
plot of the logarithm of the time averaged density in a whis-ing exponentially suppressed. The eigenstates are exponen-
ker map of A\=10k=27%=0.2 where the initial coherent tially localized in action and consequently transport across
state is centered &=, =0 (I, is 0.1). The chaotic layer the layer is much impeded. Typically, the further out in the
covers almost all of the shown phase space for these pararstochastic layer the cantorus is, the steeper the “cliff” in the
eters. The shading reflects the magnitude, with light beindogarithm of the time-averaged probabilitgee for example,
high and dark low, however, it is important not to be misledFig. 6).
by regions of dense contours which make the region look Cantori acting as exponential barriers in quantum me-
dark when it is not. Such regions indicate a rapid exponentiathanics have been discussed befd@11,13,14 The local-
change in the magnitude of the probability. We see structureization there results from Planck’s constant exceeding the
which we recognize from the corresponding classical phas#éux through the cantorus: the quantum mechanics sees a
space: islets of stability centered |at-1,/]=(12.3,6.6) and closed surface rather than a broken cantorus. This gives a
0=m(0) at|l—1,/>0(<0), respectively. The shading out barrier, but not an impenetrable one. The quantum system
from the initial state indicates a gentle exponential decay ircan tunnel to get across it. We give this phenomenon the
the deep stochastic layer. This meets a series of curved preciame “retunneling” to distinguish it from ordinary classi-
pices, one set at— 1./~ 10, another set at—1,/~16, and cally forbidden tunneling(The name “retunneling”is appro-
yet another atl —1,|~18. The precipices coincide with the priate, because quantum mechanics sets up a blockade where
cantori in the stochastic layer and indeed their shapes in theone exists classically and then tunnels through it.
Husimi plot resemble their shapes in the classical phase A major new point in this work is that cantori can also be
space, Fig. 3. exponential barriers wheh is smallerthan the gaps, as we

A more efficient way than Eq. 18 to calculate the time-shall show in Sec. Ill B. This is due to a dynamical localiza-
averaged probability in action involves performing a forwardtion mechanism: when the classical mechanics diffuses suf-
and backward fast-fourier transform at each time $&: ficiently slowly, the corresponding quantum mechanics lo-

a(0)=exd — (06— 0,)%12k+il 6181/ (k)Y
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calizes. Dynamical localization also occurs deep in the 0 1 2 3 4 5 6

chaotic layer; below we discuss similarities and differences

of such localization with dynamical localization at cantori. ~ FIG. 8. A=10k=2/=0.2, initial action staté = —15.

Thus there are two quite different mechanisms which are

responsible for the exponential decay at cantori; we discus&lfip (not the extremal edge of the cantorus but rather, of the
them in some detail in Secs. Ill B and Ill C. Studying the StriP surrounding the_cantorlij[ is thus the curvature o_f the
dependence of the time-averaged probabilapd also the cantoru_s together with the width of thg qantoral st_rlp that
explicit time dependengeguides us in this study and indi- determine the onset at=—16. The Husimi plot of Fig. 5
cates which mechanism is at work. Our main contributionsSupports this. Starting with an action statel at—15 cuts

in addition to pointing out the existence of a dynamical lo-2Cross a range of the “natural” curved states in the cantorus
calization mechanism at cantori, are to an understanding dand so that the quantum time-averaged probability shows

the retunneling mechanistndependence away from critical- almost no decay until a limiting, extremal a(;tior_1 that can be
ity, and a new argument for the previously discovered eached by any of the curved cantorus localization bands that

dependence at criticality. the initial action state lies on. This is further elucidated by

As remarked above, the contours of the Husimi measurée Husimi plot of the time-averaged propagator having
of transport near a cantorus from an initial action well insideStarted in the action state= — 15, as shown in Fig. 8. If the
the central chaotic zone follow the shape of the cantorughitial action is changed in such a way that it still touches the
This is consistent with the observation in RE21] of the ~ cantoral band in some range of angle, the limiting value of
classical motion near a cantorus in the kicked rotor: the clasthe action changes correspondingly. The onset of the expo-
sical trajectories in a strip around the cantorus tend to follownential decay is at this limiting actiomot at the extremal
curves parallel to the cantorus, with a much slower diffusior©f the cantorus. This point has been somewhat neglected in
in a direction normal to the cantorus. Our Husimi plots sug-the kicked-rotor literature.
gest that the quantized system has a related property: the
localization mechanisntbe it dynamical or retunnelinge- B. Dynamical localization at cantori
spects the local curvature in phase space lttgites to the
convergents near a cantorus. We expect that the exponentig|
decay occurs not exactly at the golden mean cantorus but %
a strip around it, due either to dynamical localization result-

The concept of dynamical localization imard chaotic
stems came to light in the 198(026-29, where the stan-
ard map at large kick strength was studied. The energy and

) : e ! momentum were found to be bounded at large times, in con-
ing from slow classical diffusion or from retunneling through <t t5 the diffusive classical behavior. The quantum me-

other cantori in the strip whose gaps are smaller hahhis  cpanics follows the classical behavior up to the “break”
is reinforced by both the Husimi plots and the action plots. time, or quantization timet,~h/SE, when all the quantum

_ Inspecting the time-averaged probability in action, Fig. 7,g5te5 are resolved and the motion becomes quasiperiodic.
it is important to bear in mind both the curvature near the(o]c course sincesE depends orh this relation does not
cantorus and the effective width around it within which themean that the quantization time scales linearly with

o . . ! %uantum interference leads to exponentially localized states.
port corresponds to initiating and checking horizontal ImesWe refer the reader to Reff27,30 for a simple argument

in the phase plane. Such a constant action line may initiall)(based on the kicked rotor systemhich predicts the local-

tOUCh. the curved cantorus b_and tangentia_lly at one pOimization length: the probability distribution of a state centered
affecting where the exponential decay begins. In Fig. 7 WE s actionl goes as
cn

focus on the logarithm of the time-averaged probability near
the cantorus at inverse winding number 4~ 2 in the whis- g 2h(1=1cp/D, (21)

ker map with\=10k=2. When the initial state is deep in

the chaotic layer at initial actioh=0, a sharp exponential whereD is the classical diffusion constant. In fact one can
decay begins dt= — 16 whereas the onset of sharp decay forcheck that this relation holds in tlteepchaotic layer in the
starting at initial action =—15 is atl=—17. The valud whisker map[The dynamical localization occuring there sat-
= —16 is the extremal action of the inner end of the cantoralsfies this relation provided the localization length in action
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FIG. 9. Slopes at an inner cantor(winding number H y~2)
as a function ofi. The classical parameters are=5k=1.5. The
effective standard map parameterkig;=1.32. The dashed lines
have slopes 0.5 and0.66 (see texk

FIG. 10. Logarithm of the time-averaged probability near the
k?/(2#4) is small enough that the distribution does not en-cantorus at winding number-1y~2, whose outer edge is dt
counter a cantorus before this is achieyed. =6.4. The slopes are 3.2, 18, and 6.5 respectively. Note the scale

Classical motion in the scaling region near a noncriticaldifferences on the vertical axis.

cantorus is a slow diffusion in action, the diffusion constant
being proportional to the flux transported across the cantoruslecreaseas# increases. This heralds the changeover from
AW [Eq. (14)]. We may then expect that the quantum coun-dynamical localization to re-tunneling, to be discussed in the
terpart displays dynamical localization, similar in principle next section.
to that in the deep chaotic layer. However, the details are We note that our smalk results are consistent with the
quite different; it was shown in Ref10] that the onset of findings in Ref.[31]. There the authors extract a scaling
localization happens at a time scaling similar/to” and  function for decay of wavefungtions across resonance zones
the subsequent approach to complete localization shows oM @ quantum renormalization map. Using an argument
more complicated dependence on time than in the strong@sed smaller values df resolving more of the classical
chaotic case. We refer the reader to Sec. Il B and the refelN@se space structure, hence higher order periodic conver-

ences there; in particular to Ré1L0]. The simple argument 9€NtS. they explain the qualitative behavior of thelepen-
leading to Eq.(21) for the localization length in the strong ?hence of thel_ e>;ponennal decays within the framework of
chaotic case no longer holds and as a consequende dhe €lr renomatization map.

AW dependence of the localization length are more compli- We can examine this in the time domain also, as shown in
e P 9 P'"Eig. 11 and theh =0.001,0.008 traces in Fig. 12. The initial

The sl fthe | thm of the i q state is atl=0 and all the quantum curves as well as the
€ slope of the fogarithm ot the timeé-averaged propagag,,ssica| initially diffuse out at the classical rat&/2 (see

tor gives the exponential decay factor and is inversely relate ig. 12. We notice that for small enough values ffthe

to the localization length. In Fig. 9 we have plotted the l09a-4,;antum dynamics follows the classical into the cantoral re-
rithm of this slope at an inner cantorus of the whisker MaPyion. This is theh regime we are currently discussing. The

with A=5 andk=1.5. This cantorus is at inverse winding quantum states then localize, falling away from the classical
number 1+ y~# and corresponds to the unperturbed actiongistribution at various times after that. We shall come back
~5.68. The extremal value of the cantorus is-&.4. The to these plots shortly.

effective standard map parameter for this cantoru&gjs As the approach to localization is complicated we cannot
=1.32. predict theAW dependence of the localization length other

A typical graph of the time-averaged probability near this
cantorus is shown in the top graph of Fig. 10, where the
initial state is at 4. Most initial conditions decay with about
the same slope at the cantori and the error-bars in Fig. 9
account for the variation. Exceptions are when the initial <
state lies well in the cantoral strigee Sec. Il A or when
tunneling interactions into resonances around the cantorus
enhance the probability of being found there. The slope re-
corded in Fig. 9 is that at the outer edge of the cantorus.

For Ini<—4 the slopes increase more slowly than in the
strongly chaotic case, going 48 wherep<<1, rather than as R | . . . | . |
fi, as in the deep stochastic laypris close to 0.5 in the case 0 500 1000 1500 2000 2500 3000 3500
shown. We findp depends oik ¢ but is always smaller than t
1. For very smalk the localization length would be too large FIG. 11. (Al?) for the whisker map\=5k=1.5. The dots
to be resolved within the cantoral width. For largerthe  represent a classical average, the curves from the top down are at
local slopes at the cantorus reverse behavior and begin #©=0.001,0.002,0.008,0.02,0.1, respectively.
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FIG. 14. As in Fig. 12 but with the quantum data beinghat

FIG. 12. (Al?) for the whisker mapA=5k=1.5. The dots =0.001,0.01,0.02,0.05, respectively.

represent a classical average. The curves from top down dre at
=0.001 (line), 0.008(¢),0.02(+). The I represents the maxi-
mum action of the classical distribution. The dashed line indicates
the initial diffusion of all quantum and classical curves, with diffu-
sion constant 1.125.

C. Retunneling

At a larger value off, the time-averaged probability
graph develops a sharp kink at the cantaflogver two pic-
tures of Fig. 10; see also Fig. 9 for lofi>—4. This signifies

than to expect that it goes as some positive fractional powe:;rlhe beginning of a different type of localization mechanism
. t the cantorus. Quantum diffusion cannot happen wiién
of the flux. We have checked that this is true. Recall thai Q bp

fs | than the fl torh8V: th t
locally the whisker map is a kicked rotfEg. (3)]. In Fig. 13 s larger than the flux across a cantodiV: the quantum

X . echanics can no longer resolve the gépsnstiles in the
we have plotted the slopes of the logarithm of tlme—averagetrgnantorus wherti> AW/ In fact we first see a kink when

probability for the kicked rotor at nonlinearity parameter z _g 01 and indeed W/ 7= 0.01 using our formul&14). In
Keft=MK/|1 ¢t~ 1|=1.32 corresponding to the whisker pa- Fig 9, the slopes now decreasefaincreases fofi>0.01,
rameters\ =5k=1.5 at the cantorus atly . We notice  whereas they increase Aloes fori below 0.01. This sup-
that the quantum kicked rotor slopes are roughly a factor oports the idea that it is a different localization mechanism:
1.3 hlgher than those in the WhlSk@m the dynamical local- As the system becomes less C|assiﬁ$_, |argerﬁ) any
ization regime. This supports our formulél4) over that in  dynamical localization and retunneling effects become stron-
Ref.[14] and Eq.(16): the flux through the whisker cantorus ger. In dynamical localization the system becomes more
is that through the corresponding kicked rotor tinés strongly localized ag increasegso slopes increagein the
—1o//A=1.14 whereas that of E{16) says that the factor latter case more tunneling means more transport &s-
relating the two igl,—1,//A=0.7. creasesso slopes decreasd he slopes plotted in the figures
Our main observation in this section is thé dependence are again thdocal slopes at the cantorugOf course imme-
of the logarithm of the time-averaged transport probability indiately around the cantorus there are other cantori With
the vicinity of the cantoral strip, witlp being a positive >AW and also resonance chains. This affects the overall
fraction whenh is smaller than the flux. This supports our Slope or transport property in the region. In this figure we are
assertion and qualitative observations in the previous se&oncerned only with the local slope at the cantrus.
tions that cantori can act as exponential barriers when e can see the distinction between exponential decay due
<AW/, due to a dynamical localization mechanism. Thet© dynamical localization and tunneling in the time domain

dependence found in the time domain is consistent with thé‘lso'h F'r_St co;i%e; a:jgam F'%' 11. 1tis tcleg_:cfthat _qltJarlt#m
interpretation that it is a dynamical localization effect. mechanics ah=1.1 does no managez 0 diftuse into the
inner cantoral region, as it collapseg Al ©)~5.7 just as the
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FIG. 13. Slopes of the quantum kicked rotdég,=1.32. The

Inh

dashed lines have slope 0.5 and.66.

corresponding classical distribution has reached the cantoral
region. To see whether the smalfg’s manage to penetrate
the cantorugwithout having to resort to tunneling over long
times, we focus in on shorter times in Figs. 12 and 14. Here
we have also plotted the maximum of a classical distribution
of points with initial =0 and evenly spaced in angle. The
dashed line at 6.4 is the outer edge of the cantorus at 1
+ v~ 2: the classical distribution gets held up by this cantorus
between about=40 andt=200. In the range of time plotted

in these two figures, the quantum spread &t0.001 follows

the classical average: in this time regime we can think of this
curve as representing the classical averdljen fact pen-
etrates this cantorus and then localiz&$he quantum spread

at #=0.008 appears to follow the classical into the cantoral
region and then falls away and localizes shortly before about
t=200. It localizes within the cantoral strigvith the corre-
sponding localization length in the time-averaged picture as
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- ' ' ' In such a case, we might expect a perturbation matrix ele-
6r = '*w-‘\!’ . ment could well give the transition probability amplitude and
. T hence the tunneling rate across the cantorus. i the ap-
Q X . A . .
& 4l rE | propriate perturbation potential for this, then
= 15?11 A1 =v(Al,A,AK)
L T - |
2 B =B "w(BAL|aB|'h, S AK), (22
0 . . : . ) where in the first step we have expressed the amplitude in
210 8 -6 7] 2 0

] 1‘1 terms of all the parameters it could depend on and in the
n second step we have used scaling propeftes Eqs(9) and

FIG. 15. Slope at the near-critical cantokg=0.98 (winding ~ 17)]. We use the shorthanil for I/~ 17, Let us first con-
number 2- y~ 2 with A=5k=1.5). The slope of the dashed line is sider a critical cantorus wherk=0. r is arbitrary and at
—0.66. criticality we can choose it such that all thie dependence

appears in a factor in front akl: letting r = —In#/In|ag|,

plotted in Fig. 9. However, ath=0.02 the dynamics never then
makes it to the cantoral strip: the graph falls away from the B
classical averag@nd the smallefi quantum plotswhen the v(Al ’ﬁ’0)|criticality:ﬁav(ﬁ ’AlL1,0, (23
classical maximum reaches the edge of the cantdtud.?)

can still grow somewhat after that time, when the highesiwhere

actions in the evolved distribution reach the cantorus. Sub- In|a|
sequently, more of the distribution can diffuse and so the 0'—<
expectation valuéAl?) grows] Figure 14 shows a similar In| 8|

plot for different #’'s. The #=0.01,0.02,0.05 curves fall
away from thef = 0.001(and the classicawhen the classi-
cal maximum strikes the outer edge of the cantorus. Tha:?

This implies that, in the critical case, whatever the transition
atrix element may bef and action appear together as
/7. This gives the tunneling dependence. We note that
his result was also obtained in RgL0| where scaling was
Invoked inside a time integral whose upper limit extended to
infinity. Even though scaling does not hold for most of the
times in the integral, the result holds up numerically: the
exponential dependence of the integral is almost independent

they all fall away at the same time is another indication thal
the cantorus presents a barrier to diffusion through whic
they can only tunnel(If it was a dynamical localization ef-
fect that we were seeing, differefits would fall away at
different times)

From Figs. 9 and 13 we observe that thelependence of . g o .
the retunneling does not go @s2*'* as in ordinary tunnel- of ime. Why this is so is still an open question.
ing across a KAM torus or a potential barrier. Rather, when Near the subdominant symmetry line~0.65 whereas

A is somewhat bigger thaAW it fits a dependence more as hear the dominant symmetry line~0.76: the numerically .
CaAlRT : , measured value 0.66 is very close to that near the subdomi-
e where o is a fraction close to 0.66. Whefi

_ _ i nant symmetry line. We suggest that the subdominant sym-
=AW or a bit larger, the dependence is weaker. In Fig. 13,64y jine provides the pertinent scaling exponents for tun-

we have copsidered a cantorus closer to criticali_ty: this is ON@eling by the following argument: in the cantoral region the
further out in the chaotic layer oj;[he same whisker map. Ity qtion follows curves parallel to the cantorus, sampling
has inverse winding number-2y <, with unperturbed ac-  many angles. The overall quantum tunneling across the
tion 7.64 and effective standard map paramétgr=0.98. ¢\ rves will then be dominated by the scaling exponents giv-
Again, thefi dependence of thoeﬁeretunnelmg in this near-jng the smallestr; this is at the subdominant symmetry line.
critital cantorus is close te~ @7 At criticality, this ex-  In Refs.[10,11], it was suggested that the proximity of the
ponent has been previously found in the quantum kicke@xtremal action of the cantorus to the subdominant symmetry
rotor, but here we are claiming a wider applicability, which line was the reason for the appearance of the subdominant
we now discuss. as the scaling exponent. However, this region does not dis-
For acritical cantorus AW=0) of the kicked rotor it has tinguish itself from the other angles: we reiterate that the
been found numerically that the tunneling probability goes agontours near the cantorus closely follow curves parallel to
™7 where 0~0.66 [11]. In Ref. [10], this exponent is the classical cantorus, as does the classical motion.
shown to be related to scaling exponents in this region. We To further check the reason for the appearance of the
give a different but related argument to that in R&D]: one  subdominair we compared the slopes for entering the can-
based on perturbation theory. Consider the basis of deformegdral region either side. The relevant extremal actions occur
action states, which have curvature in phase space followingt different values of the angle variable depending on the
the curvature of the nearby cantorus. Let us label these statelfrection of approach: for example for a whisker cantorus at
by their extremal value of actiofi5). Then, in the neigh- |>1,, the extremal action from entering at actions below the
borhood of a near-critical cantorus, a transition between tweantorus is in the range-81 but entering from actions
such curved statéd ) and |l is very weak; as we have above the cantorus the extremal action is approximately 4
seen in the Husimi plots, the transition is exponentially—5. Nonetheless, there was no discernible difference in the
small, and in the classical picture, trajectories follow alongslopes in the two cases, and the fit is much better to a 0.66
the curve but transport between different curves is very slowslope than to a 0.75 slope.
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Finally, we comment on th& dependence for retunneling that in the kicked rotor problem at large kick strength. This
across a cantorus away from criticality. We may say thamechanism is well understood. Much stronger localization
such cantori which are noncritical but hae>AW are happens at cantori further out in the layer. There may be
“classically open but quantum-mechanically closed.” If we several effective cantori in the layer, increasing in their ef-

use the sameas in the perturbation theory argument above fectiveness in slowing down transport.
8" Ak—# MM aBsk Evaluating the exponent and writing in ~ The major results concerned localization mechanisms and

terms of the flux, we get f dependences of transport properties at cantori. We pointed
out that our results concerning this hold not just for cantori in
(oI =hv[A~7AlL 1(AW/A)Y]. (24 the whisker map, but rather for any cantori in generic maps

due to the universality of behavior near cantori. We found
So, wherz>AW we expect the dependence to tend towardsnere were two mechanisms resulting in quantum exponential
that of the critical casé& ~“Al. (When# is not appreciably decay at cantori: one, whemh <AW, is a dynamical local-
bigger thanAW, all thei andAl dependence are not all in jzation similar to that in the deep chaotic layer, the other, at
the same factor on the right-hand side and so we cannotz > Aw is a retunneling when quantum mechanics sees a
easily determine a general tunneling dependence for thigiosed cantorus, due to the finitebeing too big to resolve
case) Our numerical results support thigigs. 15, 13, and  he gaps. Each mechanism has different characteristics and
9). This is what we might expect: if:>AW (and still  gependences than the usual dynamical localization and ordi-
smaller than the scaling regipnthen to the quantum me- nary tunneling as is described in the text. This is due to the
chanics, the cantorus and its immediate neighborhood do n@tricate structure of the phase space there and the resulting

look that different from criticality. scaling properties. Which mechanism is at work can be de-
duced either by looking in the time domain or at a time-
IV. SUMMARY averaged probability.

: . We also argued that the exponentlaldependence, dis-
The effect cantori have on ntum tran rti k e . ; o
¢ efiect cantorl have on guantu ansport is a eycussed at the critical kicked rotor cantorus in the literature,

qguestion for understanding the dynamics in generic near: o . .

integrable systems. We are not the first to study this: th olds for an almost critical cantorus in the whisker map and

work of Refs.[11,1( in particular has shed much light on or noncritical' cantor p_rovideg‘i s somewhat bigger than

this subject(We also note that recent experime[@g&] have AW. We prowde numerical ewdgnce as well as an argl_Jment
based on scaling and perturbation theory to support this. We

investigated the effect of cantori in quantum mechahidée ‘ o that th " hould hold f ;
developed this work further and discussed some new effect%. ress again that these properties should hold for generic can-

Our results are illustrated using the whisker map. W idered ti q babiliti Il as i
The whisker map is interesting in its own right, since it € considered ume-averaged probabililies as well as ime

describes the motion near a separatrix, and separatrices wiﬂ?"e"’pmef‘t of dlstr]but]ons to Qemonstra_\te our numerical
their chaotic layer are ubiquitous in the phase spaces of gé—eSUItS' A f!nal contribution of this paper 1S a_phase-space
neric systems. We showed how a local effective standargFPresentation OT the quantum mecham_cs which shows the
map parameter can tell us about the degree of stochasticity ﬁpntoral regions in the guantum mgchan_|cs more clearly than
the chaotic layer in the classical map and also about the flu}f? @n action representation. This picture is also l.JseM to bear
through cantori. The classical dynamics in the chaotic Iaye|'n mind when cgnS|der|ng behavior near cantori and the on-
is one of fast diffusion deep in the layer, impeded by cantorPet of exponential decay.
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