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Heisenberg, Langevin, and current equations via the recurrence relations approach

M. Howard Lee
Korea Institute for Advanced Study, Seoul 130-012, Korea

and Department of Physics, University of Georgia, Athens, Georgia 30602*
~Received 3 September 1999!

Some years ago the Heisenberg equation of motion was formally solved by the recurrence relations ap-
proach. It is shown here that the Langevin equation represents a structural property of the recurrence relations.
The Langevin equation is useful for studying the time evolution of the current. The resulting current-current
correlation function is compared with Luttinger’s phenomenological theory. Geometric interpretations are
made for the conductivity and the dielectric function.

PACS number~s!: 05.40.2a, 05.60.2k
e
sio

n
-
n

g

og
lf
v
re
a
.,

w-
an
a

at
n-
od
c

ia
ch

in

o
e

th
a

nc
ng
a
u-
ce
iz
T
o

ries
he
e is

lity,
d in

and
as

he
thod
t
rs
of
s to
for

hall
p-
le.
-
e

ger
as
ta-

r-
tion
ut

.

tor,
.e.,
I. INTRODUCTION

More than 30 years ago Mori showed that the Heisenb
equation of motion can be reformulated as an expres
much resembling the classical Langevin equation for Brow
ian motion@1#. This work is a tour de force in formal analy
sis. It appeared during the time when the physics of Brow
ian motion had played a major role in formulatin
nonequilibrium statistical mechanics@2#. Thus Mori’s formu-
lation was seen as providing a basis for the phenomenol
cal theory of Brownian motion. The new expression itse
not inappropriately, was named the generalized Lange
equation~GLE!, as it is known to this day. Perhaps mo
significant is the influence that Brownian motion theory h
exerted on Mori’s GLE. The Brownian terminology, e.g
random force and memory, has gained a new foothold@3–6#.

Although appealing, this Brownian analogy did not, ho
ever, help solve the GLE. It did not even lend any signific
insight into the nature of time evolution implied by the equ
tion of motion. Mori and others have introduced approxim
methods of solution@1,7#, but since they were based on u
supported physical arguments the validity of these meth
was never clear@8#. What was evidently needed was an exa
or even almost exact solution of the GLE for a nontriv
model. To our knowledge no one was able to produce su
solution.

Nearly 20 years later we proposed a method for solv
the Heisenberg equation directly@9#. Since the GLE is a
reformulation of the Hesienberg equation, this meth
should in fact also solve the GLE. The GLE has a cumb
some structure, which obscures the geometric simplicity
is inherent in the Heisenberg picture. Our method takes
vantage of this simplicity.

What we have found is that a certain set of recurre
relations~RRs! underly the Heisenberg equation. Unraveli
these RRs is tantamount to obtaining the time evolution
cording to the equation of motion. A particular time evol
tion is delineated by a unique trajectory in Hilbert spa
These trajectories are confined to the surfaces of real
spaces that are determined by properties of the RRs.
trajectories are generally irregular. That is, the surfaces
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which they lie are not smoothly shaped. Regular trajecto
or smooth surfaces would indicate exact solvability of t
Heisenberg equation. If a rough surface is smoothed, on
looking at an approximate time evolution solution.

Some essential physical properties such as irreversibi
slow decay, even dynamic critical behavior are embedde
the geometric properties of the realized Hilbert space@10–
12#. This understanding has emerged from several exact
asymptotically exact solutions by this method, now known
the recurrence relations method.

At an earlier stage we derived the GLE starting from t
Heisenberg equation using the recurrence relations me
@13#. It is much simpler than Mori’s original treatment. Bu
viewed from today’s perspective the derivation still suffe
from the unwieldy weight of the GLE. In the RR analysis
time evolution mentioned above there are no reference
any Brownian concepts. They are thus not necessary
solving the Heisenberg equation. In the same vein we s
show below that the GLE itself is simply a structural pro
erty of the RRs, useful for studying the current, for examp

As an illustration we will show how the conductivity for
mula due to Kubo follows quite simply. Our result may b
compared with the phenomenological treatment of Luttin
@14,15#. We will also show that such physical quantities
the dielectric function may be given a geometric interpre
tion.

II. TIME EVOLUTION AND ORTHOGONAL EXPANSIONS

In this section we will give a brief review of the recu
rence relations approach to solving the Heisenberg equa
of motion. We will state several of the basic results witho
proof. We will also present an overview of this approach

Consider a dynamical variable of interest, say,A[A(t
50). The time evolution of A is given by A(t)
5exp(iHt)Aexp(2iHt), where H is the Hamiltonian (\
51), and t>0. We shall assume thatH is Hermitian. We
can construct a Hilbert spaceS for A(t) and study the time
evolution geometrically.

Let A be a vector in this spaceS pointing to some arbi-
trary initial direction. The time evolution ofA may then be
viewed as a continuous change in the direction of the vec
the length of this vector being independent of the time, i
iA(t)i5iAi , since H is assumed Hermitian, whereiAi
means the norm ofA. Also A is such that 0,iAi,`.
3571 © 2000 The American Physical Society
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If the tail of the vector is fixed, say, at the origin ofS, the
head of the vector begins to delineate a trajectory as the
evolves. This trajectory evidently depends on the dimensi
d of the space and hence onA andH. Whateverd, whether
finite or infinite, the trajectory defines the surface of th
space and the shape of the surface characterizes the nat
the time evolution in our system.

At a time t>0 we can evidently expressA(t) as an or-
thogonal expansion,

A~ t !5 (
k50

d21

ak~ t ! f k . ~1!

Here f k are a complete set of basis vectors which span
d-dimensional spaceS of A(t). These basis vectors are a
sumed orthogonal, that is, for 0<k, k8<d21,

~ f k , f k8!50 if k8Þk, ~2!

where the inner product is such as to realize the spacS
according to the physical requirements. The conjugate qu
tities ak(t) denote the magnitudes of the projection of t
vector onto the basis vectors at a timet; hence they are
functions oft andd.

In constructingf k for S we shall exercise one degree
freedom allowed and choosef 05A. Then an important
boundary condition results from Eq.~1!:

ak~ t50!5H 1 if k50,

0 if k51,2, . . . ,d21.
~3!

If the inner product is taken to mean the Kubo scalar prod
@16#, the basis vectorsf k that span the spaceS are found to
satisfy a three-term recurrence relation known as the R
given below@16#. For k>0 and f 21[0,

f k115 ḟ k1Dkf k21 , ~4!

whereDk5i f ki /i f k21i , k>1, and for anyf the ‘‘norm’’ on
S is defined asi f i5( f , f ). We shall adopt this form of a
norm onS, instead of the conventional one, to simplify o
notation.

Observe that given the initial or basal basis vectorf 0 , all
others simply follow one by one according to the RR
Hence we can also obtaini f ki one by one and put up th
frames for the structure of the space.

A realized space is what makes the orthogonalization p
cess simple and physically based. In fact,H explicitly enters
into the construction off k , k>1, and it helps to determine
the required number off k’s or d. We avoid using the Gram
Schmidt process, whose generality makes the construc
process highly impractical especially ifd is indefinite@16#.

It should be noted that our basis vectorsf k , k>1, are not
normalized. This condition makes the shape of the space,
hence the trajectory, model dependent, allowing a geome
interpretation for a physical process. In addition, the sa
condition makes the form of the RR2~to be introduced be-
low! the simplest possible.

Now the trajectory of our interest is one that is govern
by the Heisenberg equation of motion,

Ȧ~ t !5 i @H,A~ t !#[ i $HA~ t !2A~ t !H%. ~5!
e
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For f k satisfying the RR1 and the trajectory constrained
Eq. ~5!, we find thatak must satisfy an analogous three-ter
recurrence relation known as the RR2: Fork>0 and a21
[0,

Dk11ak11~ t !52ȧk~ t !1ak21~ t !. ~6!

The RR2 is realizable byDk , called therecurrants. That is,
since the recurrants are in effect the norms of the basis
tors, the RR2 reflects the geometry of the realized space
a givenH. If a0 were known, the RR2 would permit us t
determine the rest also one by one. Buta0 is not knowna
priori and ak must all be determined at once. One possi
avenue is to find the congruence between arealizedRR2 and
some known three-term recurrence relation. This is an a
braic approach.

Another avenue is by the analytic theory of continu
fractions. For Rez.0, let ãk(z)5Tak(t), where T is the
Laplace transform operator. Then, owing to Eq.~3!, the RR2
splits into two terms:

15zã01D1ã1 , ~7a!

ãk215zãk1Dk11ãk11 , k>1. ~7b!

If the two are combined, we obtain the continued fraction
ã0 , first obtained by Mori@1#:

ã051/z1D1 /z1D2 /z1¯ . ~8!

Thus a continued fraction of this form implies the existen
of a d-dimensional space defined by a set of norms orDk . If
this shape is sufficiently smooth, the right-hand side~rhs! of
Eq. ~8! may have a simple enough analytic structure to
solvable. In such a casea0 may be determined by the invers
transform thereof and the rest of theak’s by the RR2. This is
an analytic approach.

This program has been implemented by us for seve
models of physical interest@17#. Many authors have dis
cussed both the formal and physical aspects of this appro
@18–27#. There now exists a large body of literature on t
applications of this method@28–39# and also on applications
of the results obtained by it@40–51#. Cited here are some
representative examples.

III. TIME EVOLUTION IN SUBSPACE

If both sides of Eq.~7a! are divided byã0 , we have

1/ã05z1D1ã1 /ã0 . ~9!

Let us define the ratio of the two functions appearing in E
~9! as

ã1 /ã0[b̃1 . ~10!

Then comparing Eqs.~8! and ~9!, we immediately obtain

b̃151/z1D2 /z1D3 /z1¯ . ~11!
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Recalling our interpretation attached toã0 @see Eq.~8! and
below#, we may seeb̃1 as denoting the existence of a~d-l!-
dimensional space, sayS1 , spanned byf 1f 2¯ f d . ClearlyS1

is a subspace ofS[S0 and b̃1 plays the same role inS1 as
doesã0 in S0 . This relationship can be established as f
lows.

If k51 in Eq. ~7b! and the resulting equation is divide
by ã0 , we obtain with Eq.~10!

15zb̃11D2b̃2 , ~12!

where we have introduced analogously to Eq.~10!

ã2 /ã05b̃2 . ~13!

Similarly we obtain

b̃k215zb̃k1Dk11b̃k11 , k>2, ~14!

provided that

ãk /ã05b̃k , ~15!

which can include Eqs.~10! and~13! if k>1. Equations~12!
and ~14! together stand as the transformed RR2 in subsp
S1 as Eqs.~7a! and ~7b! are in spaceS0 .

We shall now see what physical significance might
contained in theb̃k @Eq. ~15!# themselves by examining
bk(t)5T21b̃k(z), whereT21 is the inverse Laplace trans
form operator. We are assuming that theb̃k’s are all finite
and well behaved, so thatbk’s exist. Now, as shown in Ap-
pendix A, if z→`,

ãk~z!5z2k211O~z2k23!. ~16!

That is,

b̃k~z→`!5z2k1O~z2k22!. ~17!

Hence it follows by the inverse transform that

bk~ t50!5H 1 if k51

0 if k>2 .
~18!

Thus, thebk’s have boundary conditions exactly analogo
to those for theak’s, which were imposed by the choicef 0
5A.

Equations~18!, ~12!, and~14! imply that for k>1

Dk11bk1152ḃk1bk21 , ~19!

with b0[0. We obtain the RR2 that is operative in subspa
S1 , where thebk’s must then be the proper projection coe
ficients for the time evolution of, say,B. That is,

(
k51

d21

bk~ t ! f k[B~ t !. ~20!
-

ce

e

e

But B[B(t50)5 f 1 by Eq. ~18! and B5Ȧ by RR1 given
f 05A. ThusB is not arbitrary. Unlike the time evolution o
Ȧ, however, the time evolution ofB is confined in subspace
S1 at all times, i.e., fort>0,

„B~ t !, f 0…5„B~ t !,A…50. ~21!

Recall that the initial choicef 05A has given the bound
ary conditions on theak’s and hence also on thebk’s @see
Eqs.~3! and~18!#. What it all means is that the trajectory o
A(t) that takes place in spaceS0 may be decomposed int
different components, some of which evolve in subspa
only. Indeed, this notion becomes physically relevant wh
we consider the current.

It is clear that there are other subspaces and we can
struct them in the same manner asS1 , e.g., S2

d21ck(t) f k

5C(t), k>2. For the dynamics described by linear respon
theory they are not needed, however. Hence we will not d
cuss them here.

IV. TIME EVOLUTION OF THE CURRENT

According to the continuity equation, the currentJ can be
related to the density fluctuationsr at wave vectorq as@15#
iq•Jq(t)52 ṙq(t). Hence ifrq5A, the dynamical variable
the time evolution ofȦ is in effect the time evolution of the
current, apparently first conceived by Kubo@52#. One may
thus regard the current as a structural property of the re
rence relations.

If Eq. ~1! is differentiated once with respect to time,

Ȧ~ t !5ȧ~ t ! f 01 (
1

d21

ȧk~ t ! f k . ~22!

If the T operator is applied to Eq.~22!, we obtain

Ã̇~z!5~zã021! f 01z( ãkf k

52D1ã1f 01~12D1ã1!( b̃kf k , ~23!

where we have applied Eq.~7a! to replacezã0 and Eq.~15!

to replaceãk . Further, with the identityã1b̃k5b̃1ãk , we can
write Eq. ~23! as

Ã̇~z!5(
1

b̃kf k2w̃~z!(
0

ãkf k5B̃~z!2w̃~z!Ã~z!,

~24!

where we have introducedw̃5D1b̃1 .
Finally, by applying the inverse operatorT21 to the above

equation, we obtain

Ȧ~ t !5B~ t !2E
0

t

w~ t8!A~ t2t8!dt8, ~25!

where w(t)5D1b1(t). Observe thatȦ5B, but „Ȧ(t), f 0…

Þ0 whereas„B(t), f 0…50 as noted previously. The validity
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of this result may be verified by integrating Eq.~25! over the
interval (0,t), which should yieldA(t)2A(0). SeeAppen-
dix D.

According to Eq.~25!, the time evolution ofȦ consists of
two components, one part of the trajectory remaining entir
in subspaceS1 and another encompassing the full spaceS0 .
The second part of the trajectory is one that is induced, s
ing at t50, modulated byw(t)5D1b1(t). It represents the
induced part of the current, which might be termed the d
fuse current after phenomenological theories@14,52#. Thus
the trajectory that is confined to the subspace at all tim
must represent the nondiffuse or intrinsic part of the curre
Because the induced current is modulated byw, it gives rise
to a special relationship between the diffusivity and the c
ductivity ~see the next section!.

We recognize Eq.~25! as the GLE, first derived by Mor
@1#. Evidently our derivation is much simpler. In our vie
the GLE is just a structural property of the RRs. Observe t
Ȧ(t)Þ0 except possibly whent→` if d5` @53#. Thus the
trajectory must continuously evolve in time. It is eith
closed ifd,` or open ifd→`.

V. CURRENT-CURRENT CORRELATION FUNCTION

As suggested earlier, the current-current correlation fu
tion can be obtained if we letA5rq , the electron number
density fluctuations at wave vectorq, which now carry the
electron chargee. By the continuity equation,iq•Jq(t)
52Ȧ(t). Hence, denoting„Jq(t),J2q…[Gq(t), and sup-
pressingq dependence wherever convenient,

q•G~ t !•q[G” ~ t !5„Ȧ~ t !,Ȧ…5i f 1i ȧ1~ t !, ~26!

where the norm off 1 means thef sum rule, i.e.,i f 1i
5D1x, wherex5i f 0i5(A,A), retaining the standard nota
tion for the static susceptibility.

One can evaluate Eq.~26! in two equivalent ways, eithe
by means of the GLE@Eq. ~25!# or by using the recurrenc
relations properties directly. In this section the form
method is given and in Appendix C the latter. If Eq.~25! is
substituted in Eq.~26!, we obtain

G” ~ t !/i f 1i5b1~ t !2E
0

t

w~ t2t8!a1~ t8!dt8. ~27!

Here the integral term on the rhs vanishes att50; hence it is
of an induced origin, i.e., the correlation of the diffuse cu
rent.

If the T operator is applied to Eq.~27!, for Rez.0 ~i.e.,
z5 iv1h, wherev is the frequency andh→10), we ob-
tain

G”̃ ~z!/i f 1i5b̃1~z!2w̃~z!ã1~z!. ~28!

Then by the identities already introduced, e.g.,i f 1i5xD1 ,
w̃(z)5D1b̃1(z), and D1ã1(z)5x̃(z)/x, where x̃(z) is the
z-dependent susceptibility, we finally obtain

G”̃ ~z!5xw̃~z!-x̃~z!w̃~z!, ~29!
ly

rt-

-

s
t.

-

at
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r

-

where x̃(z) may be further related tow̃(z) by a linear re-
sponse relation corresponding to the RR2,

x̃~z!/x5
w̃~z!

z1w̃~z!
. ~30!

In general,x̃(z50)<x. If d→` ~where d is the Hilbert
space dimensionality!, the equality generally rules.

As noted, the convoluted term@second term of the rhs o
Eq. ~29!# refers to the correlation of the induced curren
Hence it is to be identified with the diffusivity. Usingw̃(z)
5D” (z) due to Kubo@52,54#, we can write Eq.~29! as

G”̃ ~z!5xD” ~z!2x̃~z!D” ~z!. ~31!

One can show using Eq.~30! that x̃(z→`)5z2210(z24),
which again indicates that the second term of the rhs of
~31! is the diffusive term. Hence we conclude that

xD” ~z!5s” ~z!, ~32a!

where s” [q•s•q, s being the conductivity. By removing
the slashes,

xD~z!5s~z!. ~32b!

If z→0 while the suppressed wave vectorq is held finite, Eq.
~32b! gives an equilibrium condition: s(0)5xD(0). By
removing the slashes from Eq.~31! ~allowed since these
slashed variables are longitudinal!, we obtain the final form,

G̃~z!5s~z!2
s” ~z!

z1D” ~z!
D~z!. ~33!

Recall that the wave vectorq has been suppressed fo
simplicity in all the above quantities. Ifq→0 while zÞ0, the
second term of the rhs of Eq.~33! behaves as 0(q2). Hence,
in this long wavelength limit,G̃(z)5s(z), whereupon the
z→0 limit is taken. If, however, we letz→0 first in Eq.
~29!, which is an equilibrium limit,G̃(z)50 ~see also the
second part of Appendix C!. That of course meanss(z
50)5xD(z50), previously obtained from Eq.~32b!, pro-
vided thatx̃(z50)5x. We have thereby recovered the tw
results that Luttinger deduced phenomenologically@14#. Ob-
serve also that if nowz→` ~i.e., t→0), the induced terms
contribute very little. That is,G̃(z)5s(z)@11O(z22)#.

Finally, by definingG̃(z)/s(z)5e21, wheree is the di-
electric function, we obtain

e21512x̃~z!/x ~34a!

5zã0~z!. ~34b!

The first relation~34a! is well known. The second relation
~34b! makes it possible to give a geometric interpretation
the dielectric function. For example, the Drude dielect
function has but two dimensions in the realized Hilbe
space, classifiable as adynamicrandom phase approximatio
RPA @54#.

By taking the inverse of Eq.~34b! it follows at once that

e511w̃~z!/z ~35a!
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511x̃sc~z!/x, ~35b!

wherex̃SC denotes thescreenedsusceptibility. By comparing
Eq. ~35a! with Eq. ~35b!, we recover the standard relatio
that x̃sc(z)5s” (z)/z and alsox̃sc(z)/x̃(z)5e21, as required.
For recent applications of the conductivity formula, see@55#.

VI. DISCUSSION

As stated in the Introduction, we have derived the GLE
means of the RR1 and RR2 alone. Our derivation is straig
forward with no reference to any Brownian concept. In th
circumstance attaching the word ‘‘random’’ toB(t) does not
appear supportable. We might still regardB(t) as a force that
drives the time evolution ofA, i.e., one that pulls or draw
out the trajectory@56#. If, for example,d52, B(t)5B. Thus
the pulling is constant in time andA(t) can only be periodic.
If d→`, the pulling force itself evolves in time andA(t) can
be nonperiodic.

Calling w(t)5D1b1(t) a memory function has som
merit. However, this function~at least according to our exac
solutions! does not show any special dependence on s
time scales, a Brownian feature often attributed to ita priori.
In fact, a0(t) and b1(t) have rather similar behavior ord
narily if d→`.

If w(t2t8)5Gd(t2t8), G a constant, we could obtai
from Eq. ~25! the classical Langevin equation. But n
memory functions of microscopic origin show this behav
even approximately. There is no microscopic evidence
the earlier belief that the GLE can justify the classical Lan
vin equation.

The formalism of the GLE itself has given rise to conje
tures, some of which have not been found supportable.
example, it was thought that functions such asa0 possess an
addition property, i.e.,a0(t2t8)5a0(t)a0(t8). This is not
correct. The true addition property is richer~see Appendix
E!. Then by the RR2,a1(t) may not have an addition prop
erty, nor by the convolution relationb1(t), so the memory
function also has no addition property of this type. This e
plains the lack of sensitivity to slow time scales noted abo
in the memory function.

It has also been conjectured that the basis vectorsf k→`

would paint a fine picture ofA(t). This cannot be true. Ifz
→`, ãk(z→`)5z2k21 ~see Appendix A!. Hence if t→0,
ak→0(t) are important andf k→` have little bearing on the
orthogonal expansion ofA(t). If t→`, all ak(t) and thus all
f k contribute significantly.

The basis vectors are in effect the normal modes of
ergy delocalization. They are perhaps best observed thro
classical models like the nearest-neighbor coupled harm
oscillator chains@17#. If an atom in a chain is perturbed, th
energy transfer process consists off 2k’s, wherek represents
the kth atom with respect to the perturbed one. Eachf 2k
contains changes in the nearest neighbors of thekth atom
only, with no reference to other atoms or the perturbed a
at k50. Thesef 2k’s do not give a fine description but mode
at successive positions of the chain. IfN is the number of
atoms in a chain,d5N11. Thus in the thermodynamic limi
d→` and irreversibility sets in as the delocalization proce
is continued. The mechanism of the long time behavior t
is contained inf 2k , k→`.
y
t-

w

r
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e

-
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We have demonstrated that the GLE is but a structu
property of the RR1 and RR2. It is especially useful f
formulating the current with the aid of the continuity equ
tion. It leads directly to the current-current correlation fun
tion, comparable to Luttinger’s theory based on a pheno
enological transport equation. The conductivity
identifiable formally as the part of the trajectory for the cu
rent that remains in the subspace. The same geometric
ture can be applied to the dielectric function and the ass
ated sum rules.
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APPENDIX A: THE ASYMPTOTIC BEHAVIOR OF ãk„z…

We shall prove one by one that

ãk~z→`!5z2k212D12̄ k11z2k231¯ , ~A1!

whereD12̄ k5D11D21¯1Dk . If z→`, we can expand
ã0(z) using Eq.~8! as shown below:

ã0~z!5z212D1z231D1D12z
252D1Pz271D1Qz292¯ ,

~A2!

where

P5D12
2 1D2D3 ,

Q5D12
3 1D2D3~D121D1234!.

To obtain the largez behavior ofã1 , we use the relation
~7a! and Eq.~A2!. We obtain

ã15z222D12z
241Pz262Qz281¯ . ~A3!

To obtain the largez behavior of ã2 , we useD2ã25ã0
2zã1 , given by the RR2@see Eq.~7b!#. Using the previous
results~A2! and ~A3!, we obtain

ã25z232D123z
251~P1D3D1234!z

272¯ . ~A4!

Similarly, using D3ã35ã12zã2 from the RR2 and Eqs
~A3! and ~A4!, we obtain

ã35z242D1234z
261¯ . ~A5!

Given these results we can arrive at the general results s
in Eq. ~A1!.

APPENDIX B: STRUCTURAL PROPERTIES

We shall show that the RRs underlie all time evoluti
expressions such as the GLE@Eq. ~25!#. Consider„Ȧ(t), f 0…,
where the inner product means the Kubo scalar produc
Ȧ(t) is given by Eq.~25!, we obtain

ȧ0~ t !52E
0

t

w~ t8!a0~ t2t8!dt8. ~B1!
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If the T operator is applied to Eq.~B1!, we obtain

zã02152w̃ã052D1ã1 , ~B2!

where we have usedw̃5D1b̃1 and b̃15ã1 /ã0 . We have re-
covered Eq.~7a!, the first of the RR2.

Consider now„Ȧ(t), f 1… again using Eq.~25!. We obtain

zã15b̃12w̃ã1 . ~B3!

Hence

ã0
215z1w̃. ~B4!

If both sides of Eq.~B4! are multiplied byã0 , we recover
Eq. ~7a! again. Similarly,„Ȧ(t), f k… for k<d21 yields Eq.
~7a!, showing that the basal relation for the RR2@Eq. ~7a!#
alone underlies the GLE.

We see that the GLE really refers to a relationship
tweenȧk andak . Since the two are connected viaw for all k,
only Eq. ~7a! appears. In higher relationships, such as
tweenäk andak there would appear Eq.~7b!. The RR2 un-
derlies all these expressions for time evolution in Hermit
systems.

APPENDIX C: CONDUCTIVITY FORMULA VIA
RECURSION RELATIONS

In Sec. V @see Eq.~26!# the current-current correlatio
function was given byG” (t)5i f 1i ȧ1(t). This quantity was
evaluated by using the GLE to arrive at the conductiv
formula. It can be evaluated more simply via the relations
the RR2, which is done here. From Eq.~26!,

G”̃ ~z!5zxD1ã1~z!. ~C1!

Using ã15b̃1ã0 and eliminatingzã0 by Eq. ~7a!, and also
usingD1b̃1(z)5w̃(z), we obtain

G”̃ ~z!5xw̃~z!2x̃~z!w̃~z!, ~C2!

where we have used the connection to linear response the
D1ã1(z)5x̃(z)/x. We have thus obtained the conductivi
formula ~29! quite directly.

It was remarked after Eq.~33! thatG̃(z→0)50, attaining
a static limit which is an equilibrium state. This can b
readily seen from the Laplace-transformed continuity eq
tion, z^rq&1 iq•^Jq&50. If z→0 while q is held fixed,

^Jq&→0. By linear response theory this implies thatG̃(z
→0)50.

One can also obtain this behavior directly from the rec
rence relations formalism. From Eq.~26!,

G”̃ ~z50!/i f 1i5E
0

`

ȧ1~ t !dt5a1~ t5`!2a1~ t50!.

~C3!

Now a1(0)50 @see Eq.~3!#. Also, a1(t5`)50 sincea0(t)
and all the derivatives vanish ast→`. Exact solutions@17#,
e.g., a15J1(t), te2t2/2, tanht/cosht, satisfy this require-
-

-

n

f

ry,

-

-

ment. See Appendix A of@13# and also Eq.~8.10! of @52~a!#.
A more general proof will be given elsewhere@53#.

APPENDIX D: VALIDITY OF THE GENERALIZED
LANGEVIN EQUATION

The validity of the GLE may be established if we ca
recover from Eq.~25!

E
0

tS B~ t8!2E
0

t8
w~ t82t9!A~ t9!dt9D dt85A~ t !2A~0!.

~D1!

To prove this result, we shall use two identities, the fi
given by Eq.~15! and another which follows from it. Ifk
>1,

b̃k~z!5ãk~z!/ã0~z!, ~D2!

ãk~z!b̃1~z!5b̃k~z!ã1~z!. ~D3!

Hence, by convolution, we obtain

ak~ t !5E
0

t

bk~ t2t8!a0~ t8!dt8. ~D4!

E
0

t

ak~ t2t8!b1~ t8!dt85E
0

t

bk~ t2t8!a1~ t8!dt8. ~D5!

Our idea is to eliminate the first term on the lhs of Eq.~D1!
by an equivalent contained in the second term on the s
side. This is accomplished by means of the above two id
tities ~D4! and ~D5!.

Looking at the second integral term of Eq.~D1!, we re-
placew by D1b1 and resolveA(t) into a0f 01akf k , where a
sum on k>1 is implied. The two resolved terms will b
treated separately. The first term gives us

D1E
0

t

dt8E
0

t8
b1~ t82t8!a0~ t8!dt9 f 0

52E
0

t

ȧ0~ t !dt f05A~ t50!2a0~ t ! f 0 . ~D6!

In the second line we have used Eq.~D4! and D1a152ȧ0
from RR2 @see Eq.~6!#.

The second term gives

D1E
0

t

dt8E
0

t8
b1~ t82t9!ak~ t8!dt9 f k52E

0

t

dt8I ~ t8! f k ,

~D7!

where

I ~ t !5E
0

t

ȧ0~ t2t8!bk~ t8!dt8. ~D8!

Here we have used Eq.~D5! and RR2 as above in obtainin
Eq. ~D6!.

Let
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c~ t !5E
0

t

a0~ t2t8!bk~ t8!dt8. ~D9!

Then

~d/dt!c~ t !5bk~ t !1I ~ t !. ~D10!

SubstitutingI (t) from Eq. ~D10! into Eq. ~D7!, we obtain
immediately

rhs of Eq.~D7!5E
0

t

B~ t !dt2ak~ t ! f k . ~D11!

If Eqs. ~D6! and ~D11! are now combined, we obtain th
desired proof stated by Eq.~D1!.

One can obtain the proof somewhat more directly by fi
applying the Laplace transform to Eq.~25! and then using
Eqs. ~D2! and ~D3!. After resolving the coupled terms, on
can then apply the inverse transform to put the proof in
final form. The solution we have shown above does prov
more details and hence perhaps is more insightful. To
knowledge, ours is the first proof of the validity of the GL

APPENDIX E: ADDITION PROPERTY OF a0„t…

The addition property ofa0(t) may be established from
the stationarity ofA(t), i.e.,
r

r

t

e
e
ur

„A~ t !,A~ t8!…5„A~ t2t8!,A…, ~E1!

where A[A(t50). Using Eqs.~1! and ~2!, we obtain at
once the addition property:

a0~ t2t8!5 (
k50

d21

ak~ t !ak~ t8!i f ki /i f 0i

5a0~ t !a0~ t8!1D1a1~ t !a1~ t8!

1D1D2a2~ t !a2~ t8!1¯ . ~E2!

Observe that ift850, it yields a trivial identity with the help
of Eq. ~3!. If t85t, Eq. ~E2! with Eq. ~3! yields the Bessel
equality @9#.

We can easily test the validity of the addition proper
with the known admissible solutions of Eq.~5!. For example,
if d52 ~i.e., Dk51 and 0 if k51 andk>2, respectively!,
then a0(t)5cost, a1(t)5sint. This is a trivial case. IfDk
52 and 1 ifk51 andk>2, respectively,ak(t)5Jk(t), the
Bessel function. Then Eq.~E2! yields the familiar addition
property ofJ0(t).

We may use Eq.~E2! to obtain the addition property o
other admissible functions such as exp(2t2/2), secht, j 0(t),
the spherical Bessel function, etc. The addition property
a0(t) is indeed very rich. It is even useful for establishin
the addition properties of certain mathematical functions.
r,
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