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Heisenberg, Langevin, and current equations via the recurrence relations approach
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Some years ago the Heisenberg equation of motion was formally solved by the recurrence relations ap-
proach. It is shown here that the Langevin equation represents a structural property of the recurrence relations.
The Langevin equation is useful for studying the time evolution of the current. The resulting current-current
correlation function is compared with Luttinger's phenomenological theory. Geometric interpretations are
made for the conductivity and the dielectric function.

PACS numbegs): 05.40—a, 05.60-k

I. INTRODUCTION which they lie are not smoothly shaped. Regular trajectories
or smooth surfaces would indicate exact solvability of the
More than 30 years ago Mori showed that the Heisenber%eisgenbefg equation. If a rough surface is smoothed, one is
equation of motion can be reformulated as an expressiolPoKing at an approximate time evolution solution.

much resembling the classical Langevin equation for Brown- SOMe essential physical properties such as irreversibility,
ian motion[1]. This work is a tour de force in formal analy- SIoW decay, even dynamic critical behavior are embedded in
sis. It appeared during the time when the physics of BrownN® giqmetr|c propertleshof the reaI|Z(fad Hilbert S?m

ian motion had played a major role in formulating 12]. This understanding has emerged from several exact and

nonequilibrium statistical mechanif2]. Thus Mori’s formu- ?hseyr:gltjxgilxiﬁ?;;jﬁéu:hoer;ﬁgg this method, now known as
lation was seen as providing a basis for the phenomenologi- At an earlier stage we derived the GLE starting from the

cal theory of Brownian motion. The new expression itself, eisenberg equation using the recurrence relations method
not inappropriately, was named the generalized Langevi 13]. It is much simpler than Mori’'s original treatment. But

equation(GLE), as it is known fo this day. Perhaps more viewed from today’s perspective the derivation still suffers
significant is the influence that Brownian motion theory hasfrom the unwield yweip ht Sf the GLE. In the RR analvsis of
exerted on Mori's GLE. The Brownian terminology, e.g., y Welg ' y

andom orce and mermory, has gained a new otk T svoilon menloned shove et re o eferences o
Although appealing, this Brownian analogy did not, how- y Pis. Y y

ever, help solve the GLE. It did not even lend any significantSOIVIng the Heisenberg equation. In the same vein we shall

A . S _show below that the GLE itself is simply a structural prop-
insight into the nature of time evolution implied by the equa erty of the RRs, useful for studying the current, for example.

tion of motion. Mori and others have introduced approximate As an illustration we will show how the conductivity for-
methods of solutiori1,7], but since they were based on un- ula due to Kubo follows quite simolv. Our result mya be
supported physical arguments the validity of these memOd(%'nompared with the phenomqenologiczgl);.reatment of Lutt)i/nger
was never cledi8]. What was evidently needed was an exact[14,15|_ We will also show that such physical quantities as

or even almost exact solution of the GLE for a nontrivial the dielectric function may be given a geometric interpreta-
model. To our knowledge no one was able to produce such fon ybeg 9 P

solution.
Nearly 20 years later we proposed a method for solving, i\e EvoLUTION AND ORTHOGONAL EXPANSIONS
the Heisenberg equation direct]@]. Since the GLE is a
reformulation of the Hesienberg equation, this method In this section we will give a brief review of the recur-
should in fact also solve the GLE. The GLE has a cumberfence relations approach to solving the Heisenberg equation
some structure, which obscures the geometric simplicity thaof motion. We will state several of the basic results without
is inherent in the Heisenberg picture. Our method takes adproof. We will also present an overview of this approach.
vantage of this simplicity. Consider a dynamical variable of interest, séysA(t
What we have found is that a certain set of recurrence=0). The time evolution of A is given by A(t)
relations(RR9 underly the Heisenberg equation. Unraveling = exp(Ht)Aexp(—iHt), where H is the Hamiltonian %
these RRs is tantamount to obtaining the time evolution ac=1), andt=0. We shall assume th#&t is Hermitian. We
cording to the equation of motion. A particular time evolu- can construct a Hilbert spacfor A(t) and study the time
tion is delineated by a unique trajectory in Hilbert space.evolution geometrically.
These trajectories are confined to the surfaces of realized Let A be a vector in this spac® pointing to some arbi-
spaces that are determined by properties of the RRs. Theary initial direction. The time evolution of may then be
trajectories are generally irregular. That is, the surfaces omiewed as a continuous change in the direction of the vector,
the length of this vector being independent of the time, i.e.,
IA(t)||=]|All, since H is assumed Hermitian, wher@A||
*Permanent address. means the norm oA. Also A is such that &||A] <.
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If the tail of the vector is fixed, say, at the origin 8fthe  For f, satisfying the RR1 and the trajectory constrained by
head of the vector begins to delineate a trajectory as the timgg. (5), we find thata, must satisfy an analogous three-term
evolves. This trajectory evidently depends on the dimensiongecurrence relation known as the RR2: For0 anda_;

d of the space and hence @énandH. Whateverd, whether =0,

finite or infinite, the trajectory defines the surface of this

space and the shape of the surface characterizes the nature of Aps1as (1) =—a(t)+a,_(1). (6)
the time evolution in our system.

At a time t=0 we can evidently expresh(t) as an or- The RR2 is realizable by, , called therecurrants That is,

thogonal expansion, since the recurrants are in effect the norms of the basis vec-
d—1 tors, the RR2 reflects the geometry of the realized space for
At) = E a(tf,. (1) a glvenH. If a; were known, the RR2 wquld permit us to
k=0 determine the rest also one by one. Bytis not knowna

) ) priori anda, must all be determined at once. One possible
Heref, are a complete set of basis vectors which span thgyenye is to find the congruence betweeraizedRR2 and
d-dimensional spacé of A(t). These basis vectors are as- some known three-term recurrence relation. This is an alge-
sumed orthogonal, that is, forstk, k'<d—1, braic approach.
(Fef)=0 if K'#k @) Another avenue is by the analytic theory of continued
ko Tk : fractions. For R&>0, let a,(z)=Ta,(t), whereT is the

where the inner product is such as to realize the spice Laplace transform operator. Then, owing to E3), the RR2
according to the physical requirements. The conjugate quarfPlits into two terms:
tities a(t) denote the magnitudes of the projection of the

vector onto the basis vectors at a timiehence they are 1=73+A 3, (7a)
functions oft andd.

In constructingf, for S we shall exercise one degree of A_1=Zat+ A 181, k=1 (7b)
freedom allowed and choosg,=A. Then an important
boundary condition results from EL): If the two are combined, we obtain the continued fraction for

. 1 if k=0, 5 a,, first obtained by Mor{1]:
a(t=0)= .
(=0=14 k=1,2,...d-1. Bo=1z+AIz+ A2+ . 8

If the inner product is taken to mean the Kubo scalar produ
[16], the basis vector§, that span the spacgare found to
satisfy a three-term recurrence relation known as the RR
given below[16]. Fork=0 andf_;=0,

Cﬁ'hus a continued fraction of this form implies the existence
f a d-dimensional space defined by a set of normapr If
is shape is sufficiently smooth, the right-hand dide) of
Eqg. (8) may have a simple enough analytic structure to be
(4) solvable. In such a casg may be determined by the inverse
transform thereof and the rest of thgs by the RR2. This is

whereA, =/ |/[[f_4]l, k=1, and for anyf the “norm” on  &n analytic approach. _

Sis defined agf||=(f,f). We shall adopt this form of a  This program has been implemented by us for several

norm onsS, instead of the conventional one, to simplify our Mmodels of physical interedtl7]. Many authors have dis-

notation. cussed both the formal and physical aspects of this approach
Observe that given the initial or basal basis vedtgrall ~ [18—27. There now exists a large body of literature on the

others simply follow one by one according to the RR1.applications of this metho28—39 and also on applications

frr1 =it Afiq,

frames for the structure of the space. representative examples.
A realized space is what makes the orthogonalization pro-
cess simple and physically based. In fadtexplicitly enters 1. TIME EVOLUTION IN SUBSPACE
into the construction of,, k=1, and it helps to determine . o
the required number df.’s or d. We avoid using the Gram-  |f both sides of Eq(7a) are divided bya,, we have
Schmidt process, whose generality makes the construction
process highly impractical especiallydfis indefinite[16]. 1/ay=z+A.3,/3,. 9

It should be noted that our basis vectégs k=1, are not
normalized. This condition makes the shape of the space, art us define the ratio of the two functions appearing in Eq.
hence the trajectory, model dependent, allowing a geometri(®) as
interpretation for a physical process. In addition, the same
condition makes the form of the RR® be introduced be- = = _T

. . b,. (10
low) the simplest possible.

Now the trajectory of our interest is one that is governe . . . .
by the Heisenberg equation of motion, dThen comparing Eqg8) and(9), we immediately obtain

A(t)=i[H,A(t)]=i{HA(t) — A(t)H}. (5) by=1/z+A,/z+Ag/z+--+ | (12)
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Recalling our interpretation attacheddg [see Eq.(8) and

below], we may seé; as denoting the existence of(el)-
dimensional space, s&¢, spanned by f,---f4. ClearlyS,

is a subspace =S, andb, plays the same role i, as

doesd, in Sy. This relationship can be established as fol-

lows.

If k=1 in Eq.(7b) and the resulting equation is divided

by @,, we obtain with Eq(10)

1=zb,+A,b,, (12
where we have introduced analogously to E)
%,/8,=D,. (13
Similarly we obtain
bi_1=Zb+ Agyibyig, k=2, (14)
provided that
By [Bo=Dy, (15

which can include Eqg10) and(13) if k=1. Equationg12)
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But B=B(t=0)=f, by Eq. (18 andB=A by RR1 given
fo=A. ThusB is not arbitrary. Unlike the time evolution of
A, however, the time evolution @ is confined in subspace
S, at all times, i.e., foit=0,
(B(1),fo)=(B(t),A)=0. (21

Recall that the initial choicéy,=A has given the bound-
ary conditions on the,’s and hence also on tHg's [see
Egs.(3) and(18)]. What it all means is that the trajectory of
A(t) that takes place in spac® may be decomposed into
different components, some of which evolve in subspaces
only. Indeed, this notion becomes physically relevant when
we consider the current.

It is clear that there are other subspaces and we can con-
struct them in the same manner 8s, e.g.,Eg_lck(t)fl<
=C(t), k=2. For the dynamics described by linear response
theory they are not needed, however. Hence we will not dis-
cuss them here.

IV. TIME EVOLUTION OF THE CURRENT

According to the continuity equation, the curréntan be
related to the density fluctuatiopsat wave vectoq as[15]
iq-Jg(t)= —pg(t). Hence ifpq=A, the dynamical variable,

and(14) together stand as the transformed RR2 in subspaciie time evolution ofA is in effect the time evolution of the

S, as Eqgs(7a) and(7b) are in spaces,.

current, apparently first conceived by Kupg2]. One may

We shall now see what physical significance might bethus regard the current as a structural property of the recur-
contained in theb, [Eq. (15)] themselves by examining ence relations. _ _ _
bk(t)=T*15k(z) where T~ is the inverse Laplace trans- If Eq. (1) is differentiated once with respect to time,

form operator. We are assuming that igs are all finite d-1

and well behaved, so that’s exist. Now, as shown in Ap- Ay =at)fo+ > at)fy. (22
pendix A, if z—oo, T
A(2)=2 K1+ 0(z 3. (16) If the T operator is applied to Eq22), we obtain
That is, A2)=(Z8g—1)fo+ 2> Acfy
b(z—»)=z"k+0(z7%?). 17 B ~ 5
= — A3 fo+ (1-A480) Y Bify, (23
Hence it follows by the inverse transform that
_ where we have applied E¢ra) to replaceza, and Eq.(15)
b(t=0)= 1 it k=1 (19 loreplacd . Further, with the identit@,b,=b,3,, we can
k 0 if k=2. write Eq. (23) as

Thus, theb,’s have boundary conditions exactly analogous
to those for thea,’s, which were imposed by the choidg
=A.

Equations(18), (12), and(14) imply that fork=1

Z(z>=§ B~ %23 afi=B(2) - 2(2A®),
(24)

where we have introducefi=A b, .

Finally, by applying the inverse operat®r * to the above
equation, we obtain
with by=0. We obtain the RR2 that is operative in subspace
S,, where theb,’s must then be the proper projection coef-
ficients for the time evolution of, sayg. That is,

Agyabys1=—byt+by_q, (19)

. t
A(t)=B(t)— fogo(t’)A(t—t')dt', (25)

d-1 . .
Z be(t)f,=B(t). where ¢(t)=A;b,(t). Observe thatA=B, but (A(t),fy)
k=1

20
20 #0 whereaqB(t),fy)=0 as noted previously. The validity
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of this result may be verified by integrating E§5) over the
interval (0t), which should yieldA(t) —A(0). SeeAppen-
dix D.

According to Eq(25), the time evolution ofA consists of

two components, one part of the trajectory remaining entirely

in subspaces; and another encompassing the full sp&ge
The second part of the trajectory is one that is induced, star
ing att=0, modulated byp(t)=A;b,(t). It represents the

induced part of the current, which might be termed the dif-

fuse current after phenomenological theorji&d,52. Thus
the trajectory that is confined to the subspace at all time

must represent the nondiffuse or intrinsic part of the current.”

Because the induced current is modulatedghyt gives rise

to a special relationship between the diffusivity and the con-

ductivity (see the next section

We recognize Eq(25) as the GLE, first derived by Mori
[1]. Evidently our derivation is much simpler. In our view
the GLE is just a structural property of the RRs. Observe th
A(t)#0 except possibly wheti— if d=o [53]. Thus the
trajectory must continuously evolve in time. It is either
closed ifd<<oo or open ifd— .

V. CURRENT-CURRENT CORRELATION FUNCTION

As suggested earlier, the current-current correlation func

tion can be obtained if we le&=p,, the electron number-
density fluctuations at wave vectqr which now carry the
electron chargee. By the continuity equationjq-J4(t)
—A(t). Hence, denotingJy(t),J_)=Gq(t), and sup-
pressingq dependence wherever convenient,

q-G(1)-q=G(1) = (A(1),A) = fl[ay(t), (26)
where the norm off; means thef sum rule, i.e.,|f,]
=A,x, wherex=|f,|=(A,A), retaining the standard nota-
tion for the static susceptibility.

One can evaluate E@26) in two equivalent ways, either
by means of the GLEEQ. (25)] or by using the recurrence
relations properties directly. In this section the former
method is given and in Appendix C the latter. If Eg5) is
substituted in Eq(26), we obtain

t
GO/ 4] =ba(t) Jo<p<t—t'>a1<t'>dt'. 27

Here the integral term on the rhs vanishes=a0; hence it is
of an induced origin, i.e., the correlation of the diffuse cur-
rent.

If the T operator is applied to Eq27), for Rez>0 (i.e.,
z=iw+ 7, wherew is the frequency andy— +0), we ob-
tain

&(2)/|t1]|=b1(2) ~P(2)34(2). (29)

Then by the identities already introduced, e|dq|=xA1,
P(2)=Aby(2), and A,3,(2)=%(2)/x, whereX(z) is the
z-dependent susceptibility, we finally obtain

E(2)=x(2)-X(2)%(2), (29)
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wherey(z) may be further related t@(z) by a linear re-
sponse relation corresponding to the RR2,

(2

m . (30

x(2)/ x=

{n general x(z=0)<y. If d—x (whered is the Hilbert

space dimensionalilythe equality generally rules.

As noted, the convoluted terfpsecond term of the rhs of
Eq. (29)] refers to the correlation of the induced current.
lence it is to be identified with the diffusivity. Usirig(z)
D(z) due to Kubo[52,54], we can write Eq(29) as

G(2)=xD(2)~X(2)D(2). (31)

One can show using Eq30) thaty(z—=)=z2+0(z" %),
which again indicates that the second term of the rhs of Eq.

a&Sl) is the diffusive term. Hence we conclude that

xD(2)=é(2), (323

where é=q- o-(q, o being the conductivity. By removing
the slashes,

xD(z)=0(2). (32b)
If z— 0 while the suppressed wave vectgs held finite, Eq.
(32b) gives an equilibrium condition: o(0)=xD(0). By
removing the slashes from E@31) (allowed since these
slashed variables are longitudipalve obtain the final form,

&(2)

G(2)=o(z)- z+D(z)

D(z). (33

Recall that the wave vectaq has been suppressed for
simplicity in all the above quantities. f— 0 while z# 0, the
second term of the rhs of E¢83) behaves as @f). Hence,
in this long wavelength limitG(z) = (z), whereupon the
z—0 limit is taken. If, however, we ler—0 first in Eq.
(29), which is an equilibrium limit,G(z) =0 (see also the
second part of Appendix )C That of course means(z
=0)=xD(z=0), previously obtained from Eq32b), pro-
vided thaty(z=0)= . We have thereby recovered the two
results that Luttinger deduced phenomenologicgll]. Ob-
serve also that if now— (i.e.,t—0), the induced terms

contribute very little. That isG(z) = o(z)[1+0(z ?)].
Finally, by definingG(z)/o(z) =€ 1, wheree is the di-
electric function, we obtain

e 1=1-3(2)/x (349

=Z8y(2). (34b
The first relation(34a is well known. The second relation
(34b) makes it possible to give a geometric interpretation to
the dielectric function. For example, the Drude dielectric
function has but two dimensions in the realized Hilbert
space, classifiable asdgnamicrandom phase approximation
RPA [54].

By taking the inverse of Eq34b) it follows at once that

e=1+9(2)/z (3539
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=1+%%2)/x, (35b) We have demonstrated that the GLE is but a structural
property of the RR1 and RR2. It is especially useful for
where>C denotes thecreenedsusceptibility. By comparing formulating the current with the aid of the continuity equa-
Eqg. (359 with Eq. (35b), we recover the standard relation tion. It leads directly to the current-current correlation func-
thatx°q(z) = &(2)/z and als6y*(z)/x(z) =€ 1, as required. tion, comparable to Luttinger’s theory based on a phenom-
For recent applications of the conductivity formula, §88].  enological transport equation. The conductivity is
identifiable formally as the part of the trajectory for the cur-
rent that remains in the subspace. The same geometric pic-
ture can be applied to the dielectric function and the associ-
As stated in the Introduction, we have derived the GLE byated sum rules.

means of the RR1 and RR2 alone. Our derivation is straight-

VI. DISCUSSION

forward with no reference to any Brownian concept. In this ACKNOWLEDGMENT
circumstance attaching the word “random” B{t) does not _ ) ]
appear supportable. We might still reg@¢t) as a force that The author wishes to thank Professor C. W. Kim, Institute

drives the time evolution oA, i.e., one that pulls or draws for Advanced Study. Seoul, Korea, for his warm hospitality
out the trajectory56]. If, for example,d=2, B(t)=B. Thus  and support.

the pulling is constant in time andl(t) can only be periodic.

If d— o0, the pulling force itself evolves in time amg(t) can APPENDIX A: THE ASYMPTOTIC BEHAVIOR OF = 3(2)

be nonperiodic.

Calling ¢(t)=A;b4(t) a memory function has some We shall prove one by one that

merit. However, this functiofat least according to our exact B(z—0)=2 K 1o Ay 2 K34 (A1)
solutiong does not show any special dependence on slow
time scales, a Brownian feature often attributed @ fitriori. whereA 5. =A;+A,+---+A,. If z—, we can expand

In fact, ap(t) and b,(t) have rather similar behavior ordi- %,(z) using Eq.(8) as shown below:
narily if d—oe,

If o(t—t")=T8(t—1t'), T a constant, we could obtain dy(z2)=z"1—A;z 3+A;A,z 5~ APz "+A,QZz %—---,
from Eq. (25 the classical Langevin equation. But no (A2)
memory functions of microscopic origin show this behavior
even approximately. There is no microscopic evidence foWhere
the earlier belief that the GLE can justify the classical Lange-
vin equation.

The formalism of the GLE itself has given rise to conjec-
tures, some of which have not been found supportable. For
example, 't was thqught thft TUEC'{IOHS Sucll"a@spo_ss_ess an To obtain the large behavior ofa;, we use the relation
addition property, i.e.ag(t—t')=ap(t)ag(t’). This is not 7 d Ea.(A2). We obtai
correct. The true addition property is richesee Appendix (78 and Eq.(A2). We obtain
E). Then by the RR2a,(t) may not have an addition prop- By =72 2— Az 4Pz 5—Qz 8+ (A3)
erty, nor by the convolution relatioh,(t), so the memory ! 12 '
function also has no addition property of this type. This ex-To optain the largez behavior of3,, we useA,3,=3,
plains the lack of sensitivity to slow time scales noted above_ 73  given by the RRZsee Eq(7b)]. Using the previous

P=A2,+A,A;,

Q=A%+ A2A5(Asp+ Agpz)).

in the memory function. . results(A2) and (A3), we obtain
It has also been conjectured that the basis vedtprs,
would paint a fine picture of(t). This cannot be true. I A=2 3— Az P+ (P+AzA 1302 —+-.  (Ad)

—w, A (z—»)=z"*"1 (see Appendix A Hence ift—0,

ay_o(t) are important and,_,.. have little bearing on the Similarly, using Az;a;=4,—Z7a, from the RR2 and Egs.
orthogonal expansion &(t). If t—oo, all a,(t) and thus all  (A3) and(A4), we obtain
f\, contribute significantly. _ 4 s

The basis vectors are in effect the normal modes of en- Q3=2Z "—Apsz Tt (A5)
ergy delocalization. They are perhaps best observed through. .
classical models like the nearest-neighbor coupled harmon%g'ven these results we can arrive at the general results stated
oscillator chaing17]. If an atom in a chain is perturbed, the in Eq. (A1).
energy transfer process consistsfgf's, wherek represents
the kth atom with respect to the perturbed one. Edgh APPENDIX B: STRUCTURAL PROPERTIES
contains changes in the nearest neighbors ofkiheatom

: We shall show that the RRs underlie all time evolution
only, with no reference to other atoms or the perturbed atom . h as the GLEQ. (25)]. Consider(A(t) f
atk=0. Thesef,,’s do not give a fine description but modes expressions such as the GLEq. (25]. Consider(A(t), o),

at successive positions of the chain.Nfis the number of \(vhere the inner product means the Kubo scalar product. If
atoms in a chaind=N+ 1. Thus in the thermodynamic limit A(t) is given by Eq.(25), we obtain
d—o0 and irreversibility sets in as the delocalization process

. . . . . t
is contln_ued._The mechanism of the long time behavior thus ag(t) = _J o(t)ag(t—t")dt’. (B1)
is contained inf,, , k—o. 0
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If the T operator is applied to EqB1), we obtain ment. See Appendix A dfL3] and also Eq(8.10 of [52(a)].
A more general proof will be given elsewhdi®3].
Z8—1=—¢a,=—Aa,, (B2
_ ~ ~ APPENDIX D: VALIDITY OF THE GENERALIZED
where we have usegd=A,b; andb,=3,/a,. We have re- LANGEVIN EQUATION
covered Eq(7a), the first of the RR2. o . .
Consider now(A(t),f,) again using Eq(25). We obtain The validity of the GLE may be established if we can
recover from Eq(25)
ZAé]_:’Bl_A(b‘él. (BS) t v
f (B(t’)—f o(t'—t")A(t")dt” |dt’ =A(t) —A(0).
Hence 0 0
(D1)
By '=2+7. (B4)

To prove this result, we shall use two identities, the first
If both sides of Eq(B4) are multiplied byd,, we recover given by Eq.(15 and another which follows from it. Ik
Eq. (7a again. Similarly,(A(t),f,) for ksd—1 yields Eq. =1,
(7a), showing that the basal relation for the RR2y. (73)]

alone underlies the GLE. bu(2)=3(2)/30(2), (D2)
We see that the GLE really refers to a relationship be- 5 5
tweena, anda, . Since the two are connected vgdor all k, A(2)b1(z)=by(2)a,(2). (D3)

only Eq. (7@ appears. In higher relationships, such as be-
tweena, anda, there would appear Eq7b). The RR2 un- Hence, by convolution, we obtain
derlies all these expressions for time evolution in Hermitian
systems. t
y wmszm—VMMWMK (D4)
0
APPENDIX C: CONDUCTIVITY FORMULA VIA
RECURSION RELATIONS

t t
fak(t—t’)bl(t’)dt’:j b (t—t")ay(t")dt’. (D5)
In Sec. V[see Eq.(26)] the current-current correlation 0 0

function was given byG(t) =|/f,/|a;(t). This quantity was _ _ o _
evaluated by using the GLE to arrive at the conductivityOur idea is to eliminate the first term on the Ihs of EQ1)
formula. It can be evaluated more simply via the relations oy an equivalent contained in the second term on the same

the RR2, which is done here. From E§6), side. This is accomplished by means of the above two iden-
tities (D4) and (D5).
a;(z)=zXAlél(z). (C1) Looking at the second integral term of E@1), we re-

place¢ by A;b; and resolveA(t) into agfy+a,fy, where a
sum onk=1 is implied. The two resolved terms will be

Usingd,=b,3, and eliminatingz, by Eq. (78), and also o0 g separately. The first term gives us

usingA1b,(z) =%(z), we obtain

-~ t ! t’ ’ ! ! "
G(2)=x0(2) - X(2)%(2), (C2 A1 fodt fo by (1" —t)ag(t")dt" fo
where we have used the connection to linear response theory, t
A43,(2)=%(2)/x. We have thus obtained the conductivity == foao(t)dt fo=A(t=0)—ag(t)fo. (D6)

formula (29) quite directly.

It was remarked after Eq33) thatG(z—0)=0, attaining  |n the second line we have used EB4) and Aja;= — &,
a static limit which is an equilibrium state. This can be from RR2[see Eq(6)].

readily seen from the Laplace-transformed continuity equa- The second term gives
tion, z(pq)+iq-(JIg=0. If z—0 while g is held fixed,

. - . . = t ’ t
(_.J)G(l)))—;% By linear response theory this implies tha(z Alf dt’ft bl(t’—t”)ak(t’)dt”fk=—f (),
' 0 0 0
One can also obtain this behavior directly from the recur- (D7)
rence relations formalism. From E(R6),
where
B(z-0/Ifl= | atdt-au(t-=)-ayt-0) :
(3 I(t)=foao(t—t )b(t")dt’. (D8)

Now a,(0)=0 [see Eq(3)]. Also, a;(t=x>)=0 sinceaq(t)  Here we have used E¢D5) and RR2 as above in obtaining
and all the derivatives vanish &s>%. Exact solutiong17], Eq. (D6).

e.g., a;=Jq(t), te*tz’z, tanht/cosht, satisfy this require- Let
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t
lﬂ(t):Joao(t—t’)bk(t’)dt'- (D9)

Then
(d/dt)g(t) =Dby(t) +1(t). (D10
Substitutingl (t) from Eq. (D10) into Eq. (D7), we obtain
immediately
t
rhs of Eq.(D7)=f B(t)dt—a(t)fy. (D11
0

If Egs. (D6) and (D11) are now combined, we obtain the
desired proof stated by E¢D1).

One can obtain the proof somewhat more directly by first

applying the Laplace transform to E(R5) and then using
Egs.(D2) and (D3). After resolving the coupled terms, one
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(AL, A")=(A(t=t"),A), (ED)

where A=A(t=0). Using Egs.(1) and (2), we obtain at
once the addition property:

d-1

ao<t—t'>=k§0 a(Dae(t)|flllfoll

=ap(t)ag(t’)+Aa (t)a(t’)

+A1A2a2(t)a2(t,)+"‘ . (EZ)
Observe that it’ =0, it yields a trivial identity with the help
of Eq. (3). If t'=t, Eq. (E2) with Eq. (3) yields the Bessel
equality[9].

We can easily test the validity of the addition property
with the known admissible solutions of E@). For example,

if d=2 (i.e., Ay=1 and 0 ifk=1 andk=2, respectively,

can then apply the inverse transform to put the proof in thén€n @o(t) =cost, a,(t) =sint. This is a trivial case. I3
final form. The solution we have shown above does provide-2 and 1 ifk=1 andk=2, respectivelya(t) =Ji(t), the
more details and hence perhaps is more insightful. To ouP€Ssel function. Then EqE2) yields the familiar addition

knowledge, ours is the first proof of the validity of the GLE.

APPENDIX E: ADDITION PROPERTY OF a(t)

The addition property ofy(t) may be established from
the stationarity ofA(t), i.e.,

property ofJy(t).

We may use Eq(E2) to obtain the addition property of
other admissible functions such as ext{(2), sech, jo(t),
the spherical Bessel function, etc. The addition property of
ao(t) is indeed very rich. It is even useful for establishing
the addition properties of certain mathematical functions.

[1] H. Mori, Prog. Theor. Phys33, 423(1965; 34, 399 (1965.

[2] See, e.g.Many-Body Theoryedited by R. KuboBenjamin,
New York, 1966.

[3] S. Yip, Annu. Rev. Phys. Chen30, 547 (1979; J. P. Boon
and S. Yip, Molecular HydrodynamicgMcGraw-Hill, New
York, 1980.

[4] U. Ballucan, V. Tognetti, and R. Vallauri, imtermolecular
Spectroscopy and Dynamical Properties of Dense Systuins
ited by J. v. KronendonkNorth-Holland, Amsterdam, 1980

[5] P. Grigolini, J. Stat. Phy27, 283(1982; Adv. Chem. Phys.
62, 1(1985.

[6] J. Y. Ryu and S. D. Choi, Prog. Theor. Phy®, 429 (1984);
J.Y.Ryu, Y. C. Chung, and S. D. Choi, Phys. Re\3B 7769
(1985.

[7] K. Tankeswar and K. N. Pathak, J. Phys.: Condens. Métter
591 (1994); 7, 5729(1995.

[8] U. Ballucani, V. Tognetti, and R. Vallauri, Phys. Rev.1®,
177 (1979; M. Znajil, Phys. Lett. A177, 111(1993; Czech.
J. Phys44, 545(1993; M. H. Lee, J. Phys.: Condens. Matter
8, 3755(1996.

[9] M. H. Lee, Phys. Rev. B6, 2547(1982.

[10] M. H. Lee, Phys. Rev. Lett51, 1227(1983; M. H. Lee, J.
Florencio, and J. Hong, J. Phys. Z2, L331 (1989; M. H.
Lee, I. M. Kim, and R. Dekeyser, Phys. Rev. LéR, 1579
(19849.

[11] E. B. Brown, Phys. Rev. B5, 10 805(1992; 49, 4305(1994.

[12] D. Vvitali and P. Grigolini, Phys. Rev. 89, 1486(1989; P.
Allegrini, P. Grigolini, and A. Rocco, Phys. Lett. 233 309
(1997.

[13] M. H. Lee, J. Math. Phys24, 2512(1983.

[14] J. M. Luttinger, Phys. Rev135 A1505 (1964).

[15] G. D. Mahan,Many-Particle PhysicgPlenum, New York,
1981); Phys. Rep145 252 (1987).

[16] M. H. Lee, Phys. Rev. Let9, 1072(1982.

[17] M. H. Lee, J. Hong, and J. Florencio, Phys. SEL9, 498
(1987; M. H. Lee, J. Kim, W. P. Cummings, and R. Dekeyser,
J. Mol. Struct.336, 296 (1995; M. H. Lee, in Progress in
Statistical Physicsedited by W. Sungt al. (World Scientific,
Singapore, 1993 pp. 54-74.

[18] J. P. Killingbeck, Rep. Prog. Phy48, 53 (1985.

[19] M. Cini and A. D’Andrea, J. Phys. @1, 193(1988.

[20] A. S. T. Pires, Helv. Phys. Actél, 988(1988.

[21] P. Giannozzi, G. Grosso, and G. Pastori Parravicini, Rev.
Nuovo Cimentol3, 1 (1990.

[22] P. Grigolini, J. Mol. Struct.250, 119 (199)); Quantum Me-
chanical Irreversibility and MeasuremeriiWorld Scientific,
Singapore, 1993

[23] P. A. Braun, Rev. Mod. Phy$5, 115(1993.

[24] V. S. Viswanath and G. Mler, Recursion MethodSpringer-
Verlag, Berlin, 1994

[25] J. F. Annette, W. Mathew, C. Foulkes, and R. Haydock, J.
Phys.: Condens. Mattd;, 6455(1994).

[26] I. V. Krasovsky and V. I. Peresada, J. Phys2@ 149(1995.

[27] Y. Millev, Am. J. Phys.66, 655 (1998.

[28] A. S. T. Pires and M. E. De Gouvea, Can. J. P§fk.1475
(1983.

[29] C. Lee and S. I. Kobayashi, Phys. Rev. Lé2, 1061(1989.

[30] I. M. Kim and B. Y. Ha, Can. J. Phy€7, 31(1989.

[31] J. Hong and H. Y. Kee, Phys. Rev. ®, 2415 (1995; J.
Hong, J. Korean Phys. So81, L829(1997; H. Y. Kee and J.
Hong, Phys. Rev. B5, 5670(1997).

[32] V. S. Viswanath, S. Zhang, and G. Ner, Phys. Rev. B51,



3578 M. HOWARD LEE PRE 61

368(1995; V. S. Viswanath, J. Stolze, and G. Ner, J. Appl. Phys.88, 5068(1988.

Phys.75, 6057(1994; J. M. Liu and G. Mlier, Phys. Rev. A [44] T. Uzer, Phys. Repl99, 73 (199)).

42, 5854(1990. [45] R. N. Nettleton, J. Phys. Soc. Jp#il, 3103(1992; J. Chem.
[33] J. Florencio, O. F. de Alcantara Bonfim, and F. C. Sa Barreto, Phys.99, 3059(1993.

Physica A235 523(1997. [46] V. E. Zobov and M. A. Popov, Zh. Eksp. Teor. Fi08 1450
[34] S. Sen, Physica 222, 195(1995; R. S. Sinkovits and S. Sen, (1995 [JETPS81, 795(1995)].

Phys. Rev. Lett74, 2686 (1995; S. Sen and J. C. Phillips, [47] F. Shibata, M. Yasufuku, and C. Uchiyama, J. Phys. Soc. Jpn.

Phys. Rev. E47, 3152(1993; J. Florencio, S. Sen, and Z. X. 64, 93 (1995.

Cai, J. Phys.: Condens. Mattér 1363(1995. [48] R. Blasi and S. Pascazio, Phys. Rev53, 2033(1996.
[35] M. Bohm and H. Leschke, Physica 209, 116 (1993. [49] A. Greiner, L. Reggiani, T. Kuhn, and L. Varan, Phys. Rev.
[36] I. Sawada, Phys. Rev. Le®3, 1668(1999. Lett. 78, 1114(1997).

[37] S. G. Jo, K. H. Lee, S. C. Kim, and S. D. Choi, Phys. Rev. E[50] N. A. Sergeev, Solid State Nucl. Magn. Resf, 45 (1997.
55, 3676(1997; J. J. Song, S. N. Yi, and S. D. Choi, J. Math. [51] V. Capek, Z. Phys. B: Condens. Mattkd, 323 (1997; Ann.

Phys.33, 336(1992. Phys.(Berlin) 7, 201 (1998.
[38] C. Lee, J. Phys. Soc. JpB8, 3910(1989. [52] (a) R. Kubo, Rep. Prog. Phy&9, 235(1966; (b) in Statistical
[39] A. S. T. Pires, Phys. Status Solidi®9, 163(1985; B. J. O. Mechanics edited by J. Meixne(North-Holland, Amsterdam,
Franco, A. S. T. Pires, and N. P. Silva, Rev. Bras. E5.1 1965.
(1985. [53] M. H. Lee (unpublishegl
[40] K. H. Li, Phys. Rep.134, 1 (1986. [54] M. H. Lee, Contrib. Plasma Phy89, 143 (1999.
[41] M. Znojil, Phys. Rev. A35, 2448(1987; J. Math. Phys31, [55] G. Rapke, Phys. Rev. 557, 4673 (1999; G. Ropke and A.
108(1990. Wierling, ibid. 57, 7075(1998.
[42] G. Mdller, Phys. Rev. Lett60, 2785(1988. [56] I. Sawada, J. Phys. Soc. J@h, 3100(1996.

[43] G. Lobon, G. Peerez-Garcia, and J. Casas-Vazquez, J. Chem.



