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Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices
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We study the use of the Evans nonequilibrium molecular dynamics~NEMD! heat flow algorithm for the
computation of the heat conductivity in one-dimensional lattices. For the well-known Fermi-Pasta-Ulam
model, it is shown that when the heat field strength is greater than a certain critical value~which depends on
the system size! solitons can be generated in molecular dynamics simulations starting from random initial
conditions. Such solitons are stable and travel with supersonic speeds. For smaller heat fields, no solitons are
generated in the molecular dynamics simulations; the heat conductivity obtained via the NEMD algorithm
increases monotonically with the size of the system.

PACS number~s!: 05.70.Ln, 05.45.Yv, 44.10.1i, 05.60.2k
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I. INTRODUCTION

Heat conduction in one-dimensional~1D! lattices has at-
tracted much research interest. Surprisingly, it has b
found that many 1D lattices do not obey the Fourier’s l
@1–17#: the thermal conductivity is divergent in the therm
dynamic limit. For harmonically coupled oscillators, it wa
rigorously shown that the thermal conductivityl is propor-
tional to the number of oscillatorsN @1#. Such a divergence
is founded in the existence of extended waves~phonons!
freely traveling~and carrying thermal energy! along the lat-
tice without attenuation. In later studies@2,3#, impurities or
defects in the chain were taken into account, since it w
anticipated that phonon waves could be damped by the s
tering processes due to such defects, thus possibly remo
the N divergence ofl. However, it was demonstrated fo
isotopically disordered harmonic chains that the heat cond
tivity still diverged at a somewhat slower rate (l'N1/2)
@2,3#. Another way of trying to achieve normal heat condu
tion in one-dimensional lattices is by invoking anharmonic
@4#: here nonlinearity makes it possible for phonons to int
act among themselves thus impeding their free propaga
However, Lepriet al. @12# have found that even strong non
linearity and chaotic behavior is insufficient to ensure
existence of normal heat conduction. In the well-know
Fermi-Pasta-Ulam~FPU! b model they found a power-law
divergence of the thermal conductivityl}Ng for g'0.4.
This power-law divergence was qualitatively attributed to
long-time tail of the heat flux autocorrelation functio
whose time integral gives the thermal conductivity of t
system@13#.

Previous studies of heat conductivity have used a strai
forward simulation method@6–17#. In molecular dynamics
~MD! simulations two heat reservoirs with high and low te
peraturesTH andTL , respectively, are located on each si
of the lattice. The average heat flux and the internal temp
ture gradient are measured, with the thermal conducti
being the ratio of these two quantities. However, there a
number of disadvantages with this approach. In particu
the system is spatially inhomogeneous and one cannot d
an intrinsic temperatureT for the system due to the larg
temperature gradient. Consequently it is impossible to ob
theT dependence of the heat conductivity. In addition, pro
PRE 611063-651X/2000/61~4!/3541~6!/$15.00
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lems associated with the use of the Nose´-Hoover thermostat
for boundary particles have been discussed in Ref.@15#.

Recently Maeda and Munakata@10# proposed a homoge
neous nonequilibrium molecular-dynamics~NEMD! method
based on the Evans heat flow algorithm@18–20#. However,
the system size used in Ref.@10# was too small~32 particles!
to allow one to study the behavior of the NEMD algorithm
the thermodynamic limit.

In this paper we present a detailed study of the Ev
NEMD heat flow algorithm for one-dimensional lattices. W
demonstrate that when the heat field is sufficiently lar
well-defined solitary waves~solitons! can be generated in
simulations with random initial conditions. These soliton o
jects travel at a supersonic speeds, and they also appe
the corresponding Hamiltonian systems. When a soliton
generated, the normal process of homogeneous heat con
tion is destroyed, as heat is transferred through the chain
the highly localized solitary wave. This results in a sha
increase in the effective thermal conductivity of the syste
Due to this instability, progressively smaller fields are r
quired, as the system size increases, to observe the li
regime of the thermal conductivity and thereby carry out
extrapolation of the thermal conductivity to zero fie
strength.

The paper is organized as follows. In Sec. II we descr
the NEMD equations of motion for one-dimensional lattic
with nearest-neighbor interactions, and we point out the p
sibility of solitary wave solutions in the system. In Sec.
we carry out the nonequilibrium heat flow simulations on t
well-known Fermi-Pasta-Ulam model. We show that for t
heat field strengths greater than a certain critical value, wh
depends on the system size and temperature, solitons ca
generated from random initial conditions. For smaller h
fields, no solitons can be generated in molecular dynam
simulations with random initial conditions; in this case, t
heat conductivity can be obtained via the NEMD algorith
Some concluding remarks are presented in Sec. IV.

II. NEMD EQUATIONS AND SOLITARY WAVE
SOLUTIONS

We consider a 1D system ofN particles located along the
x axis with lattice constanta51. Each particle is allowed to
3541 © 2000 The American Physical Society
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move in they direction, perpendicular to thex axis, and we
denote byqi the displacement of thei th particle and bypi
the corresponding momentum. The Hamiltonian of the s
tem is expressed as

H5(
i 51

N F 1

2mi
pi

21U~qi 112qi !G , ~1!

wheremi is the mass of thei th particle, andU represents the
interparticle interaction potential. For example, the FPUb
model is exemplified byU(r )5 1

2 r 21b/4r 4, r[qi 112qi .
The Evans thermal conductivity algorithm for gene

N-particle systems of fluid has been described in de
@18,19#. The basis of this algorithm is the Green-Kubo re
tion for the thermal conductivity. For a 1D system defined
the Hamiltonian model~1!, the thermal conductivity coeffi-
cient is given by@19#

l5 lim
t→`

L

kBT2E
0

t

dt^Jx~ t !Jx~0!&eq, ~2!

wherekB is the Boltzmann’s constant,T is the absolute tem
perature of the system, andL5Na is the system size.~The
lattice spatial constanta is taken to be 1 in this paper.! The
notation ^•••&eq denotes an equilibrium ensemble avera
The heat flux vectorJx is given by

Jx~ t !52
1

2N (
i

pi

mi
@U8~qi 112qi !1U8~qi2qi 21!#.

~3!

In the Evans NEMD algorithm theN particle system is
coupled to a ‘‘heat field’’Fe . The coupling is defined in
such a way that the energy dissipation is proportional
JxFe , i.e., dH/dt5LJxFe , and that the adiabatic incom
pressibility of phase space (AIG) condition is satisfied@19#.
The thermal conductivity coefficient can then be found fro
the ratio of the heat flux to the applied heat field

l5 lim
Fe→0

lim
t→`

^Jx~ t !&
TFe

. ~4!

Here^Jx(t)& is, in principle, a nonequilibrium ensemble a
erage; but in practice, it can be replaced by a time averag
Jx(t) if the nonequilibrium steady state is unique. As point
out in the literature~e.g., Ref.@19#!, this heat flow algorithm
is only valid in the linear regime, i.e.,uFeu→0. In the non-
linear regime whenFe is not so small~problem dependent!,
there is no known physical meaning or interpretation for
quantity, limt→`^Jx(t)&/TFe .

The equations of motion which satisfy the above con
tions are

q̇i5pi /mi , ~5!

ṗi5Fi1FeDi2api , ~6!

where Fi5U8(qi 112qi)2U8(qi2qi 21) is the total force
on particlei due to the nearest-neighbor interaction
-
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Di52
1

2
@U8~qi 112qi !1U8~qi2qi 21!#

1
1

N (
j 51

N

U8~qj 112qj !, ~7!

and a is the thermostat multiplier. For a Gaussian therm
stat,a is

a5
1

2K0
(
j 51

N
pj

mj
~F j1FeD j !, K05

1

2 (
j 51

N

pj
2/mj . ~8!

This Gaussian thermostat ensures that the system’s kin
energy is fixed at the constant valueK0. We note that the
total force exerted on the system is exactly zero, i.e.,( i(Fi
1FeDi)50. Thus the total momentum,(pi(t), will remain
zero for t.0 provided that its initial value vanishes.

We have simulated the above described NEMD equati
~5!–~8! for a variety of interparticle interaction potential
and we observe well-defined solitary wave excitations. B
fore describing our numerical results we first analyze w
such solitary waves can occur.

For simplicity, we setmi51 for all i. From Eqs.~5! and
~6! we obtain

q̈i5Fi1FeDi2aq̇i . ~9!

Introducing a new variableQi5qi2qi 21, leads to

Q̈i5Fi2Fi 211Fe~Di2Di 21!2aQ̇i

[U8~Qi 11!22U8~Qi !1U8~Qi 21!

2
1

2
Fe@U8~Qi 11!2U8~Qi 21!#2aQ̇i . ~10!

This equation, together with Eq.~8! for the definition ofa,
forms a set of lattice equations for the variableQi . Note that
if Fe and a are set equal to zero, then Eq.~10! becomes a
lattice system which can support stable supersonic soli
waves for many types of nearest-neighbor interaction po
tials U ~see, e.g., Refs.@21–26#!. But exact analytical solu-
tions for the solitary waves are not available except for so
rather special potential functionsU. For example, in the
Toda lattice,U(r )5(b/a)@exp(2ar)1ar21#, the system is
integrable and exact analytical soliton solutions are kno
@21#.

To analyze Eq.~10! we can use the so-called quasico
tinuum approximation techniques of Refs.@21–26# to reduce
Eq. ~10! to a partial differential equation

F ]2

]t2 1a
]

]t GQ5F ]2

]x2 1
1

12

]4

]x4 2FeS ]

]x
1

1

6

]3

]x3D GU8~Q!,

xP@0,L# ~11!

which can be considered as a generalized Boussinesq e
tion @24#. Here due to the periodic boundary conditions us
for the system~5!,~6!, i.e., qN115q1, The solution of Eq.
~11! must satisfy

E
0

L

Q~x!dx[0. ~12!
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We assume thatQ(x,t)5Qs(x2Vt)1Q0, where Q0 is a
constant background andQs is a localized soliton profile
which vanishes asz5x2Vt→6`. Then from Eq.~12! we
have

Q052
1

LE0

L

Qs~x2Vt!dx. ~13!

SubstitutingQ(x,t)5Qs(x2Vt)1Q0 into Eq. ~11! we
find that the solitary wave profileQs(z)5Qs(x2Vt) should
satisfy

FV2
]2

]z2 2aV
]

]zGQs5F ]2

]z2 1
1

12

]4

]z4

2FeS ]

]z
1

1

6

]3

]z3D GU8~Qs1Q0!.

~14!

It does not seem possible to find an analytical solution
this differential equation for the general case ofQ0Þ0, Fe
Þ0, andaÞ0.

However, we note that if the system is large (N@1) then
Q0 must be very small according to Eq.~13!. Moreover,
assuming thatFe and a are small parameters, we can s
Q050, Fe50, anda50 in Eq. ~14!. After such a drastic
simplification, it is possible to find approximate solita
wave solutions analytically for various types of interpartic
potentialsU(Q) @21–26#. Here we consider a particular ex
ample, the FPU potentialU(Q)5 1

2 Q21 1
4 bQ4. According

to Refs.@26#, the solitary wave profileQ(z) can be approxi-
mated by

Qs~z!56A2~V221!

b
sech@2zA~V221!/V2#. ~15!

Once such an approximate soliton solution is obtain
then we can transform to the original lattice variab
(qi ,pi). Notice thatQi5qi2qi 21, thus

qi5q01(
j 51

i

Qj'q01E
0

z

@Q01Qs~x2Vt!#dx. ~16!

Consequently, the contribution to the kinetic energy from
soliton is

Ksol5
1

2 ( pi
25

1

2 ( q̇i
2

'
1

2E2`

`

dzF E
0

z

VQs8~x2Vt!dxG2

5
1

2
V2E

2`

`

Qs
2~z!dz

5V3AV221

b
. ~17!

In numerical simulation we observe that when a soliton
generated, small amplitude phonon waves give a neglig
contribution to the system’s kinetic energy. In such a ca
we have
r

t

d

e

s
le
e,

V3AV221

b
5K0[

~N22!T

2
, ~18!

whereT is the absolute temperature of the system which
fixed by the Gaussian thermostat.~Here the Boltzmann con
stantkB is set to be 1.! For any values ofN andT, Eq. ~18!
has a unique solutionV.1, which is the~supersonic! speed
of the solitary wave. Moreover, according to Eq.~18!, the
soliton speed increases with the system’s total kinetic
ergy. In the next section, we present numerical simulat
results to confirm these analytical predictions.

III. SIMULATION RESULTS

Following Ref.@10# we apply the NEMD heat flow algo
rithm @Eqs.~5!,~6!# to the FPUb-model for whichUFPU(r )
5r 2/21br 4/4, and the parameterb is taken to be 1 without

FIG. 1. The evolution ofQi(t)5qi 11(t)2qi(t), showing the
generation of a solitary wave in a NEMD simulation of heat flow
the FPUb model. The heat field strength isFe50.006, the system
size isN5100 particles, and the simulation temperature isT51.
Note that due to the periodic boundary conditions the soliton en
into the left end of the lattice whenever it leaves the right end; u
are dimensionless for the quantities plotted in this and all ot
figures.

FIG. 2. The instantaneous heat flux in NEMD simulations
heat flow in the FPU model, withFe50.006 ~solid line! and Fe

50.01 ~long dashed!, showing a drastic increase of heat flux whe
a soliton is generated about timet51000 in both cases. This is in
contrast to the situation when no soliton is generated forFe

50.002~dotted line!. The system size isN5100 particles and the
simulation temperature is T51.
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loss of generality. Periodic boundary conditions are alw
used. Unless indicated otherwise, the initial conditions forqi
and pi are obtained by a random number generator. T
equations of motion are integrated using a fourth-or
operator-splitting integrator which conserves the system’s
netic energy@27#. The time step size isdt50.005 and the
total simulation time is between 1042106 units for each tra-
jectory.

The first feature of note is that for a given temperatureT
and particle numberN, stable solitary waves can be gene
ated during simulations~which start from random initial con
ditions! if the heat field strengthFe is greater than a certai
critical valueFcr . The solitary wave travels in the directio
of heat flow~to the right in Fig. 1! with a supersonic spee
(Vs.1). When the soliton is generated the normal proc
of homogeneous heat conduction is destroyed and the
flux increases drastically~Fig. 2!. In such a case, heat i
transported in the form of a highly localized energy pu
carried by the soliton, and the average value of heat flu
nearly independent ofFe . ~Note that all units are dimension
less for quantities plotted in Figs. 1–9 in this paper.!

We find that the soliton’s velocity increases with tempe
ture and system size~Fig. 3!, but it is nearly independent o

FIG. 3. The velocity of the solitons generated in the FPU latt
with N5100 particles~circles! andN5200 particles~squares!, re-
spectively. The heat field strength isFe50.01. Lines are for guid-
ance only.

FIG. 4. Propagation of a soliton in the Hamiltonian FPU lattic
which has no applied heat field (Fe50.0) and thermostat (a50).
The initial conditions are taken from the last output of Fig. 1.
s

e
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s
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the heat field strengthFe(<1.0). For example, forN
5100,T510, the soliton’s velocity is found to be, 4.7, 4.
and 4.8 forFe50.01,0.1, and 1.0, respectively. This is
goodqualitativeagreement with that predicted by Eq.~18!.
In addition, it is found that the analytical result~18! gives
very good estimates for the soliton’s velocity. For instan
for N5200,T51, Eq.~18! givesV53.195; in the numerical
simulation we found that the soliton’s velocity is about 3.
Similar as the case for Hamiltonian lattices@21–26#, we find
that the soliton’s amplitude increases with its velocity.

Although the spontaneous generation of solitary wa
~from random initial conditions! is observed in the NEMD
simulationsonly whenthe heat field is strong enough, suc
waves, once generated, continue to exist in the system
the heat field and thermostat areswitched off~Fig. 4!. The
reason for such a behavior is that the soliton is an inhe
excitation in the FPUb model, as explained in the previou
section.

When the heat field strengthFe is smaller than the critica
value no soliton can be generated from random initial c
ditions ~see Fig. 5!. In this case, the time-averaged heat fl
^Jx(t)& can be measured~see Fig. 6!, and the conductivity,
limt→`^Jx(t)&/(TFe), can be calculated. In Fig. 7 the he
conductivity obtained through the NEMD simulations
plotted ~error bars are estimated to be within 10% at mos!.
The NEMD heat conductivity increases with the system si

e

,
FIG. 6. Time-averaged heat flux in a NEMD simulation of he

flow in the FPU model.Fe50.002,N5100,T51.

FIG. 5. The evolution ofQi(t)5qi 11(t)2qi(t), showing that
no soliton is generated for a small heat field strengthFe50.002,
which is below the critical value.
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When Fe→0 the conductivity converges to a finite valu
which, according to the generalized Green-Kubo relat
@19,28#, should equal the conductivity obtained through E
~2!. We have tested this convergence for the FPU system
N5100 particles. In Fig. 8 we plot the function

l~ t !5
N

kBT2E
0

t

dt^Jx~t!Jx~0!&eq, ~19!

where the ensemble average is obtained by using ten i
pendent trajectories of the length 106 units in time. It is clear
that whent→`, l approaches to a value around 93, which
in good agreement with the heat conductivity obtain
through NEMD algorithm~see Fig. 7!.

Finally, we investigate how the critical field strengthFcr
for generating solitons depends on the particle numberN and
the system temperatureT. We found thatFcr increases with
T. For example, atN5100 the critical valueFcr is around
0.0054 and 0.0085 forT51 andT510, respectively. On the
other hand, we found thatFcr decreases monotonically wit
N as shown in Fig. 9. For a system of 10 000 particles,
critical field is as small as 0.0005~accuracy is within
61024). This means that an extremely small field has to
used in order to observe the linear regime~with no solitons!
of heat conduction. However, when the heat field is too sm

FIG. 7. The heat conductivity obtained from the NEMD sim
lation of the FPU lattice withN5100 ~circles!, 300 ~squares!, and
400~triangles! particles, respectively. The simulation temperature
T51. Lines are for guidance only.

FIG. 8. The time-dependent heat conductivityl(t) calculated
from the Green-Kubo formula~19!, for the FPU lattice withN
5100 particles, and temperatureT51.
n
.
of

e-

d

e

e
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the noise-signal ratio@when using Eq.~4!# would become too
large and thus the efficiency of the NEMD algorithm will b
drastically reduced.

IV. CONCLUDING REMARKS

In conclusion, we have shown that the Evans NEMD h
flow algorithm, which was designed originally for computin
thermal conductivity in liquids, can generate solitons when
is applied to 1D lattices. In the well-known FPU model, w
have shown that when the heat field strength is greater th
certain critical value a soliton can be generated from rand
initial conditions. Such a soliton is stable and it travels w
a supersonic speed which is determined by the system
and temperature. Because of this instability, progressiv
smaller fields have to be used~as the system size increase!
to observe the linear regime of the thermal conductivity a
thereby carry out the extrapolation to zero field. This grea
reduces the efficiency with which the algorithm can be us
to compute the thermal conductivity of large 1D lattice
Nevertheless, for small systems, we have found that the
conductivity increases with the size of the system, which
in qualitative agreement with previous findings@12–14#.

The present study has been primarily focused on FPUb
model, but we have checked numerically that similar ph
nomena also exist for other types of 1D lattices with distin
interparticle interaction potentials~e.g., the Toda potentia
and Morse potential! and even for diatomic lattices. In par
ticular, the spontaneous generation of solitons can be
served not only for the nonequilibrium heat flow system
with Gaussian thermostat but also with the Nose´-Hoover
thermostat and an isoenergetic thermostat. The mecha
underlying the observed chaos-soliton transition above
critical field strength still remains to be identified, partic
larly in terms of Lyapunov spectra-shift and phase sp
contraction@19# induced by the nonequilibrium heat flow
algorithms. This and other related issues will be addresse
our future work@29#.
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