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Nonequilibrium molecular dynamics simulations of heat flow in one-dimensional lattices
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We study the use of the Evans nonequilibrium molecular dynaN&MD) heat flow algorithm for the
computation of the heat conductivity in one-dimensional lattices. For the well-known Fermi-Pasta-Ulam
model, it is shown that when the heat field strength is greater than a certain criticalwhich depends on
the system sizesolitons can be generated in molecular dynamics simulations starting from random initial
conditions. Such solitons are stable and travel with supersonic speeds. For smaller heat fields, no solitons are
generated in the molecular dynamics simulations; the heat conductivity obtained via the NEMD algorithm
increases monotonically with the size of the system.

PACS numbgs): 05.70.Ln, 05.45.Yv, 44.16i, 05.60—k

I. INTRODUCTION lems associated with the use of the Ndsmover thermostat
for boundary particles have been discussed in Ried].
Heat conduction in one-dimensiondlD) lattices has at- Recently Maeda and Munakata0] proposed a homoge-

tracted much research interest. Surprisingly, it has beefeous nonequilibrium molecular-dynami¢d¢EMD) method
found that many 1D lattices do not obey the Fourier's lawbased on the Evans heat flow algoritht8—20. However,
[1-17): the thermal conductivity is divergent in the thermo- the system size used in R¢10] was too small32 particle$
dynamic limit. For harmonically coupled oscillators, it was to allow one to study the behavior of the NEMD algorithm in
rigorously shown that the thermal conductivityis propor-  the thermodynamic limit.
tional to the number of oscillators [1]. Such a divergence  In this paper we present a detailed study of the Evans
is founded in the existence of extended wavphonony  NEMD heat flow algorithm for one-dimensional lattices. We
freely traveling(and carrying thermal energplong the lat- demonstrate that when the heat field is sufficiently large,
tice without attenuation. In later studi€®,3], impurities or ~ Well-defined solitary wavesgsolitons can be generated in
defects in the chain were taken into account, since it wasimulations with random initial conditions. These soliton ob-
anticipated that phonon waves could be damped by the scdfcts travel at a supersonic speeds, and they also appear in
tering processes due to such defects, thus possibly removirtfe corresponding Hamiltonian systems. When a soliton is
the N divergence ofn. However, it was demonstrated for generated, the normal process of homogeneous heat conduc-
isotopically disordered harmonic chains that the heat condudion is destroyed, as heat is transferred through the chain via
tivity still diverged at a somewhat slower rata-£N?  the highly localized solitary wave. This results in a sharp
[2,3]. Another way of trying to achieve normal heat conduc-increase in the effective thermal conductivity of the system.
tion in one-dimensional lattices is by invoking anharmonicity Due to this instability, progressively smaller fields are re-
[4]: here nonlinearity makes it possible for phonons to inter-duired, as the system size increases, to observe the linear
act among themselves thus impeding their free propagatioiegdime of the thermal conductivity and thereby carry out the
However, Lepriet al.[12] have found that even strong non- extrapolation of the thermal conductivity to zero field
linearity and chaotic behavior is insufficient to ensure thestrength.
existence of normal heat conduction. In the well-known The paper is organized as follows. In Sec. Il we describe
Fermi-Pasta-Ulan{FPU) 8 model they found a power-law the NEMD equations of motion for one-dimensional lattices
divergence of the thermal conductivity=N? for y~0.4. th_h_ nearest-_nelghbor interactions, and we point out the pos-
This power-law divergence was qualitatively attributed to theSibility of solitary wave solutions in the system. In Sec. Il
long-time tail of the heat flux autocorrelation function, We carry out the r}oneqU|I|br|um heat flow simulations on the
whose time integral gives the thermal conductivity of theWell-known Fermi-Pasta-Ulam model. We show that for the
system[13]. heat field strengths greater than a certain critical velue, which
Previous studies of heat conductivity have used a straighdeépends on the system size and temperature, solitons can be
forward simulation method6—17]. In molecular dynamics generated frem random initial cond|t|ens. For smaller he_at
(MD) simulations two heat reservoirs with high and low tem-fields, no solitons can be generated in molecular dynamics
peraturesT,, and T, , respectively, are located on each sideSimulations V\./It.h random |n|t|a_l cond_mons; in this case, the
of the lattice. The average heat flux and the internal temperdl€at conductivity can be obtained via the NEMD algorithm.
ture gradient are measured, with the thermal conductivitySome concluding remarks are presented in Sec. IV.
being the ratio of these two quantities. However, there are a
number of _disadventa_ges with this approach. In particula_r, II. NEMD EQUATIONS AND SOLITARY WAVE
the system is spatially inhomogeneous and one cannot define SOLUTIONS
an intrinsic temperaturd for the system due to the large
temperature gradient. Consequently it is impossible to obtain We consider a 1D system of particles located along the
the T dependence of the heat conductivity. In addition, prob-x axis with lattice constara=1. Each particle is allowed to
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move in they direction, perpendicular to theaxis, and we
denote byq; the displacement of thith particle and byp;

the corresponding momentum. The Hamiltonian of the sys
tem is expressed as

N
1
H= 2 P UG =) |, (1)

wherem; is the mass of theth particle, andJ represents the
interparticle interaction potential. For example, the FBU
model is exemplified byJ (r)=3r2+ B/4r% r=q;,1—q;.

The Evans thermal conductivity algorithm for general
N-particle systems of fluid has been described in detai
[18,19. The basis of this algorithm is the Green-Kubo rela-

tion for the thermal conductivity. For a 1D system defined by

the Hamiltonian mode(1), the thermal conductivity coeffi-
cient is given by[19]

. L T
A=l fo At(3,(0)3,(0))eqy 2

wherekg is the Boltzmann'’s constant, is the absolute tem-
perature of the system, arid=Na is the system sizgThe
lattice spatial constard is taken to be 1 in this paperThe
notation(- - - ), denotes an equilibrium ensemble average
The heat flux vectod, is given by

1 i
0= 55 = U’ (@1 + U’ (@)
€

In the Evans NEMD algorithm th&l particle system is
coupled to a “heat field"F.. The coupling is defined in
such a way that the energy dissipation is proportional t
JFe, ie., dH/dt=LJ,F., and that the adiabatic incom-
pressibility of phase spacé\(I') condition is satisfied19].
The thermal conductivity coefficient can then be found from
the ratio of the heat flux to the applied heat field

(Ix(1))
TF.

A= Ilim lim

Fe—0 t—ox

(4)

Here(J,(t)) is, in principle, a nonequilibrium ensemble av-
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1
_E[U/(qi+l_Qi)+U,(qi_qifl)]

1 N
N2 Y ), w

and « is the thermostat multiplier. For a Gaussian thermo-
stat,« is

N

1 X op 1

S 2KpiSim

a=

J

[I'his Gaussian thermostat ensures that the system’s kinetic
energy is fixed at the constant valg. We note that the
total force exerted on the system is exactly zero, Eg(F;
+F.D;)=0. Thus the total momenturzp;(t), will remain
zero fort>0 provided that its initial value vanishes.

We have simulated the above described NEMD equations
(5)—(8) for a variety of interparticle interaction potentials,
and we observe well-defined solitary wave excitations. Be-
fore describing our numerical results we first analyze why
such solitary waves can occur.

For simplicity, we sem,=1 for all i. From Eqgs.(5) and
(6) we obtain

qi=Fi+FeDi—aq;. ()
Introducing a new variabl®,=q;—q;_4, leads to
Qi=Fi—F_1+F¢(D;=D;_y)—aQ
=U"(Qj+1)—2U"(Q)+U"'(Qi-1)
1 )
_EFe[U,(QHl)_U,(Qifl)]_aQi- (10

Orhis equation, together with E@8) for the definition ofe,

forms a set of lattice equations for the variale. Note that
if Fo and « are set equal to zero, then E4.0) becomes a
lattice system which can support stable supersonic solitary
waves for many types of nearest-neighbor interaction poten-
tials U (see, e.g., Ref§21-26). But exact analytical solu-
tions for the solitary waves are not available except for some
rather special potential functiond. For example, in the
Toda lattice,U(r)=(b/a)[ exp(—ar)+ar—1], the system is
integrable and exact analytical soliton solutions are known

erage; but in practice, it can be replaced by a time average ¢21].

Jy (1) if the nonequilibrium steady state is unique. As pointed
out in the literaturge.g., Ref[19]), this heat flow algorithm
is only valid in the linear regime, i.e|F,|—0. In the non-
linear regime wherf is not so smallproblem dependent

there is no known physical meaning or interpretation for the

quantity, lim_,..(J,(t))/TF,.

The equations of motion which satisfy the above condi-

tions are

qi=pi/m, 5

pi=Fi+FeDi—ap;, (6)

where F;=U'(qi;1—0;)—U’'(q,—q;_,) is the total force
on particlei due to the nearest-neighbor interaction

To analyze Eq10) we can use the so-called quasicon-
tinuum approximation techniques of Ref21-26 to reduce
Eqg. (10) to a partial differential equation

3

02+ J _(92+1 gt - (9+ J U’
Q% ne T Flax s o) [V(Q):
xe[OL] (12)

which can be considered as a generalized Boussinesq equa-
tion [24]. Here due to the periodic boundary conditions used
for the system(5),(6), i.e., qy;1=01, The solution of Eq.
(12) must satisfy

fOLQ(x)dXEO. (12
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We assume tha@Q(x,t)=Q¢(x—V1t)+Qqy, whereQ, is a —————

constant background an@Q is a localized soliton profile « A . 1

which vanishes ag=x—Vt— *«. Then from Eq.(12) we 10 | I\

have :7/% j‘\

1t —C /T\

Qo=—7 fo Qs(x—V)dx. (13 : B A

[ :I/At /:\

Substituting Q(x,t) = Q4(x—V1t) +Q, into Eqg. (11) we —K A
find that the solitary wave profil®4(z) = Qs(x— V1) should WWW
satisfy 0 [WAMASRNAS S IR A A ARSI AN

, & J #? 1 9 0 50 100
v 92 ava Qs= ﬁ_F 12 92 Lattice site i

FIG. 1. The evolution ofQ;(t)=q;, 1(t) —q;(t), showing the
U’ (Qst Qo). generation of a solitary wave in a NEMD simulation of heat flow in
the FPUB model. The heat field strength i5,=0.006, the system
(14 size isN=100 particles, and the simulation temperaturd is1.

. . ) ) Note that due to the periodic boundary conditions the soliton enters
It does not seem possible to find an analytical solution fofinto the left end of the lattice whenever it leaves the right end; units

this differential equation for the general case@f#0, F,  are dimensionless for the quantities plotted in this and all other

o ”
|3z 637

#0, anda#0. figures.
However, we note that if the system is lardést 1) then
Qo must be very small according to E¢L3). Moreover, NZ-1 (N=2)T
assuming thaf, and a« are small parameters, we can set V3 T: KOETa (18

Qo=0, F,=0, anda=0 in Eq. (14). After such a drastic
simplification, it is possible to find approximate solitary whereT is the absolute temperature of the system which is
wave solutions analytically for various types of interparticle fixed by the Gaussian thermostétlere the Boltzmann con-
potentialsU (Q) [21-26. Here we consider a particular ex- stantkg is set to be 1.For any values oN andT, Eg. (18)
ample, the FPU potentidll (Q)=3Q?+ 8Q* According  has a unique solutiow>1, which is the(supersonitspeed

to Refs.[26], the solitary wave profil€®(z) can be approxi- of the solitary wave. Moreover, according to Ed8), the

mated by soliton speed increases with the system’s total kinetic en-
SVP=T) ergy. In the next section, we present numerical simulation
Qu(2)= =+ 5 sech 2z(VZ—1)/V2]. (15) results to confirm these analytical predictions.

. . . . . Ill. SIMULATION RESULTS
Once such an approximate soliton solution is obtained

then we can transform to the original lattice variables Following Ref.[10] we apply the NEMD heat flow algo-

(g;,p;). Notice thatQ;=q,—q;_;, thus rithm [Eqgs. (5),(6)] to the FPUB-model for whichU gp(r)
i =r2/2+ Br*/4, and the parameted is taken to be 1 without
z
inQO+j21 Qj=~(o+ fO[QO+Q5(X_Vt)]dX- (16) 3 :

Consequently, the contribution to the kinetic energy from the
soliton is 2r

1 1 .
KsoIZE z pizzz 2 Qiz

1fwd
~2)..%7

Heat flux J {t)

2

vt M A

z
f VQL(x—Vt)dx 0
0
12[* a2 -1 L
=5V7| Qs(2)dz 0 5000 10000
o Time t
—\3 vi-1 17) FIG. 2. The instantaneous heat flux in NEMD simulations of
B heat flow in the FPU model, witlr,=0.006 (solid line) and F,

_ ) ) ) ~ =0.01(long dashell showing a drastic increase of heat flux when
In numerical simulation we observe that when a soliton isa soliton is generated about time 1000 in both cases. This is in

generated, small amplitude phonon waves give a negligibleontrast to the situation when no soliton is generated Fgr
contribution to the system’s kinetic energy. In such a case=0.002(dotted lind. The system size isl=100 particles and the
we have simulation temperature is=1.



3544 FEI ZHANG, DENNIS J. ISBISTER, AND DENIS J. EVANS PRE 61

A S e e e e e B '

”””””” — 10 AN AL VAN ‘
)= ol - SV SV PNy PP AT A Y
el o1 AR Ao a b
- MM
e N A AR S A O
M'VMMmWH
. LSOO
NN ST,

/ ' O e NN Y

(s
T
3
g
Y
1

K
\q\

Soliton Velocity Vg
N
\
Y
\
Time t

w
T
~N
1

a
()

N T TN SR 0 50 100
0 5 10 15 20 Lattice site i
Temperature T

FIG. 5. The evolution ofQ;(t)=q;, 1(t) —q;(t), showing that

FIG. 3. The velocity of the solitons generated in the FPU lattice© Soliton is generated for a small heat field strerfggs-0.002,
with N=100 particles(circles and N=200 particles(squarey re-  Which is below the critical value.
spectively. The heat field strengthks=0.01. Lines are for guid-
ance only. the heat field strengthF,(<1.0). For example, forN
=100,T=10, the soliton’s velocity is found to be, 4.7, 4.7,

loss of generality. Periodic boundary conditions are alway@"d 4.8 forF.=0.01,0.1, and 1.0, respectively. This is in
used. Unless indicated otherwise, the initial conditionsgfor 900d qualitative agreement with that predicted by E4.8).
and p, are obtained by a random number generator. Thd" addition, it is found that the analytical resylt8) gives
equations of motion are integrated using a fourth-ordet®"Y good estimates for the soliton’s velocity. For instance,

operator-splitting integrator which conserves the system’s kifor N=200T=1, Eq.(18) givesV=3.195; in the numerical

netic energy[27]. The time step size i$t=0.005 and the simulation we found that the soliton’s velocity is about 3.2.
total simulation time is between 46 10° units for each tra- Similar as the case for Hamiltonian latticé -24, we find
jectory. that the soliton’s amplitude increases Wlth its vel_ocny.

The first feature of note is that for a given temperaftre Although th? 's.pontane_c')us generatlon O.f solitary waves
and particle numbeN, stable solitary waves can be gener- (f_rom rgndom initial condltlonbl_s ob_served in the NEMD
ated during simulationgvhich start from random initial con- simulationsonly whentge hea'_[ field is sFror_lg inough, suc?t
ditions) if the heat field strengtk, is greater than a certain vr\:avEs, o?cledgenderz;te , continue _tohex(;st ]'C?Ft N Zys%t_ehm arter
critical valueF, . The solitary wave travels in the direction the heat field and thermostat aswitched off(Fig. 4). The

of heat flow(to the right in Fig. 1 with a supersonic speed reason for such a behavior is that the soliton is an inherent

(Vg>1). When the soliton is generated the normal procesgxcitation in the FPUB model, as explained in the previous
of homogeneous heat conduction is destroyed and the hedgetion. ) . o
When the heat field strength, is smaller than the critical

flux increases drasticallyFig. 2). In such a case, heat is | ! b qf d il
transported in the form of a highly localized energy pulse/2/U€ o soliton can be generated from random Initial con-
itions (see Fig. . In this case, the time-averaged heat flux

carried by the soliton, and the average value of heat flux i b ' dth Juctivi
nearly independent d¥,. (Note that all units are dimension- Jx(t)) can be measuretsee Fig. 6 and the conductivity,
lim,_..(J,(t))/(TFg), can be calculated. In Fig. 7 the heat

less for quantities plotted in Figs. 1-9 in this paper. X { - . :
We find that the soliton’s velocity increases with tempera-conductivity obtained through the NEMD simulations is
ture and system siz@&ig. 3), but it is nearly independent of plotted (error bars are estimated to be within 10% at most
The NEMD heat conductivity increases with the system size.

200 A A\ 3
A 7“ L
A AN
— " 7
N J\
_/\
AT -
[} J\ /L N
£ - -
= . AN
J\ A
A J\
n 7\
A /\
0 |-/™
0 50 100 0.0 X X X . 1 R . . R
Lattice site i 0 50000 100000

Time
FIG. 4. Propagation of a soliton in the Hamiltonian FPU lattice,

which has no applied heat field-{=0.0) and thermostata(=0). FIG. 6. Time-averaged heat flux in a NEMD simulation of heat
The initial conditions are taken from the last output of Fig. 1. flow in the FPU modelF.=0.002,N=100,T=1.



PRE 61 NONEQUILIBRIUM MOLECULAR DYNAMICS ... 3545

800 . . . . . r . 6 ——
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o ] ) FIG. 9. The critical field strength for generating solitons, as a
FIG. 7. The heat conductivity obtained from the NEMD simu- fynction of the particle number. The simulation temperaturd is
lation of the FPU lattice witiN=100 (circles, 300 (squares and =1. The line is for guidance only.

400 (triangles particles, respectively. The simulation temperature is
T=1. Lines are for guidance only. the noise-signal ratipvhen using Eq(4)] would become too

. . large and thus the efficiency of the NEMD algorithm will be
When F.—0 the conductivity converges to a finite value, drastically reduced.

which, according to the generalized Green-Kubo relation
[19,28, should equal the conductivity obtained through Eq.

(2). We have tested this convergence for the FPU system of V. CONCLUDING REMARKS

N =100 particles. In Fig. 8 we plot the function In conclusion, we have shown that the Evans NEMD heat
N [t flow algorithm, which was designed originally for computing

At = _zj d7{(J(7)34(0))eq, (190  thermal conductivity in liquids, can generate solitons when it

ksT*Jo is applied to 1D lattices. In the well-known FPU model, we

%@ve shown that when the heat field strength is greater than a
pendent trajectories of the length®lnits in time. It is clear ertain critical value a soliton can be generated from random

., . initial conditions. h liton i le and it travels with
that whent— o, \ approaches to a value around 93, which is tial conditions. Such a soliton is stable and it travels wit

. . L . supersonic speed which is determined by the system size
in good agreement with the heat conductivity obtained? o e .
through NEMD algorithm(see Fig. 7. and temperature. Because of this instability, progressively

Finall . tigate how th itical field st smaller fields have to be uséds the system size increases
inally, we investigate how the critical ieid s rengtly, to observe the linear regime of the thermal conductivity and
for generating solitons depends on the particle nurhband

; . thereby carry out the extrapolation to zero field. This greatly
the system temperatuie We foun_q thatF g INCreases with reduces the efficiency with which the algorithm can be used
T. For example, alN=100 the critical valug~, is around

N . ° to compute the thermal conductivity of large 1D lattices.
0.3054; anéj 0'00f85 fc(J;F—h;ianddT— 10, respectlvel_y. ﬁn theh Nevertheless, for small systems, we have found that the heat
other hand, we found thai,, decreases monotonically With - 4, ctivity increases with the size of the system, which is
N as shown in Fig. 9. For a system of 10000 particles, the qualitative agreement with previous finding2—14.

where the ensemble average is obtained by using ten ind

criticiaél1 field_ is as small as 0.0005accuracy_ is within The present study has been primarily focused on EPU
+10™). This means that an extremely small field has to behﬂodel, but we have checked numerically that similar phe-
used in order to observe the linear regiméth no soliton$  \,mena also exist for other types of 1D lattices with distinct

of heat conduction. However, when the heat field is too smal nterparticle interaction potentiale.g., the Toda potential

and Morse potentialand even for diatomic lattices. In par-
ticular, the spontaneous generation of solitons can be ob-
served not only for the nonequilibrium heat flow systems
with Gaussian thermostat but also with the Néksover
thermostat and an isoenergetic thermostat. The mechanism
underlying the observed chaos-soliton transition above the
50 . critical field strength still remains to be identified, particu-
larly in terms of Lyapunov spectra-shift and phase space
contraction[19] induced by the nonequilibrium heat flow
algorithms. This and other related issues will be addressed in
our future work[29].

100 T
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