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Traffic jams induced by fluctuation of a leading car
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We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading
car in an open system without sources and sinks. Traffic states and density waves are investigated numerically
by varying the amplitude of fluctuation using a car following model. The phase transitions among the free
traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car.
With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs
at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs
at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving
localized clusters appear just above the transition lines.

PACS numbgs): 05.90:+m, 47.35:+i, 89.40+k

[. INTRODUCTION The traffic flow on a one-lane highway is a unidirection-
ally interacting many particle system since a car interacts
Recently, traffic problems have attracted the interest of avith one car ahead. When an downstream car changes the
community of physicisty1-3]. Traffic flow is a kind of speed or headway, the variation propagate upstream. Then, it
many-body systems of strongly interacting cars. Recent stud¥ill die out or evolve to the density wavesraffic jams.
ies reveal physical phenomena such as the nonlinear wav¥ithout fluctuation, the traffic flow is homogeneous over
and nonequilibrium phase transitiofé—8]. When the car SPace under open boundary condition. However, when the
density increases, the jamming transition occurs and the traftelocity of a leading car fluctuates at a finite amplitude, the
fic jams appear. The jamming transitions from the freelydensity waves may propagates upstream and the formation of
moving traffic to the jammed traffic have been studied bythe density waves will depend on the amplitude of fluctua-
microscopic and macroscopic mod@ts-6,9—16. The jam- tion. The local dynamics of both closed and open systems is
ming transitions are very similar to the conventional phasé'ot different, and all perturbations propagate backward in a
transitions and critical phenomena: the freely moving trafficreference frame moving with the car velocity. Whenever the
and jammed traffic correspond to the gas and liquid phaseégading vehicle leads to local densities in the unstable region
respectively[8]. Furthermore, it has been shown that theOf the closed system, the traffic flow is also unstable in the
metastability occurs near transition point and induces th@pen system. Until now, itis unknown whether fluctuation of
hysteresis phenomend7]. In the coexisting phase where @ leading car induces the jamming transition in an open sys-
both the freely moving traffic and the jammed traffic canteém without sources and sinks. It is important to know the
exist, the kink-antikink density wave appears. The densityphase diagram of this type of source-sinkless open system.
wave exhibits the typical properties of the nonlinear waves In this paper, we investigate the traffic jams induced by
[18-21. random fluctuation of a leading car under the open boundary
In many works, the jamming transitions and the densitycondition without sources and sinks. We use the car follow-
waves have been investigated for the system without an{’d model of the microscopic models. We study the dynamic
inhomogeneity and fluctuatioiexcept for the randomness of traffic states triggered by systematical variation of the ampli-
the initial condition under the periodic boundary condition. tude of velocity fluctuation of a leading car. We show that
Very recently, using the continuum traffic models, He|bing,there are the three distinct congested traffic: the moving lo-
Hennecke, and Treibg22] and Lee, Lee, and Kif23] have calized clusters, the oscillatory congested traffic, and the ho-
studied the traffic flow with on-ramp under the open bound-mogeneous congested traffic. We present a phase diagram of
ary condition. They have found that the different kinds ofthe different kinds of congested traffic induced by velocity
congested traffic are induced by variation of the inflow at thefluctuation of a leading car in the source-sinkless open sys-
upstream freeway boundary and the ramp. It has been showWm. We compare the phase diagram with that obtained un-
that there are such new additional dynamic phases as tifer the periodic boundary condition.
moving localized clusters, pinned localized clusters, trig-
gered stop- and-go traffic, and oscillatory congested traffic Il. MODEL
except for the conventional coexisting phases of the kink-
antikink density wave traffic and homogeneous congested We consider many cars flowing on a one-lane highway
traffic. The inhomogeneity on ramp has the important effectvithout passing and inflow. Cars are numbered as
on the freeway traffic under the open boundary. Nagatani ha%,2,3,...N,N+1,... from the last car upstream. It is supposed
shown that the jamming transion between the oscillatorythat the velocity of camN fluctuates randomly. Then, the
traffic and homogeneous congested traffic occurs on the nefluctuation will propagate upstream. In time, it will die out or
tral stability line for the traffic flow with a bottleneck under evolve to the density waves. We investigate the dynamic
the periodic boundary conditigr24]. states of traffic and the criterion of appearance of density
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FIG. 1. lllustration of the traffic model. Cars are numbered as stable

1,2,3,..N,N+1,..., from the last car. The velocity of chrfluctu- 2.5 -
ates randomly.

;'gpinodal
; line
waves. Figure 1 shows the schematic illustration of the traf- "
fic model. The dynamics of this system is essentially deter- 2.0
mined by the motion of the leading car, the so-called ahead

long distance car. We use the car following model of the

microscopic traffic models since it is difficult to take into

unstable

account the fluctuation of a moving car in the continuum or 1.5 4'0" 5'0 '61 5
macroscopic traffic models. ToAx, T '
For later convenience, we summarize the car following
models with the optimal velocit}5,8,20,25,26 Newell[25] FIG. 2. Phase diagram of the difference equation model ob-
and Whithan26] have analyzed the traffic model describedtained from the linear and nonlinear analysis. The solid and dotted
by the following equation of motion of car lines indicate, respectively, the coexisting and spinodal lines. The
circle indicates the critical point.
dX](t"' 7')
T:V(ij(t))v 1) jam appears as the kink-antikink density wave. The kink jam

has been presented by the solution of the modified KdV
where x;(t) is the position of carj at time t, Ax(t) equation. The densities out of and within the kink-antikink
=X;+1(t) —x;(t) is the headway of carat timet, andris  density wave are consistent with the densities on the coex-
the delay time. The idea is that a driver adjusts the car veisting curve under the constant valueafAlso, it has been
locity dx;(t)/dt according to the observed headway;(t). s_hown that pnly near the neutral stability lifie _spinodal
The delay timer allows for the time lag that it takes the car line), the soliton density wave apped/]. The soliton den-
velocity to reach the optimal velocity (Ax;(t)) when the  Sity wave has been described by the KdV equation.

traffic flow is varying. Generally, it is necessary that the optimal velocity func-
By Taylor expanding Eq(1), one obtains the differential tion has the following properties: it is a monotonically in-
equation modef5] creasing function and it has an upper bounmaximal veloc-
ity). The optimal velocity function has been given by
dzxj(t) dx;(t)
AT V(AX;(t))— a9 I 2 Vo

V(Ax))= {tanh(Ax; —h¢) +tanih,)}, (4)

2
wherea is the sensitivity of a drivef5] anda= 1/7. Further-
more, by transforming the time derivative to the difference in

Eq. (1), one can obtain the difference equation mddel whereh, is the safety distance ang,,, is the maximal ve-

locity [5,8]. Equation(4) has the turning pointinflection

Xj(t+27) =x;(t+ 1)+ 7V(AX;(1). (3  Poinh atAx;=he:
Equation(3) is obtained only by assuming a forward differ- dZV(ij)
ence approximation for the velocitydx;(t+ 7)/dt=x;(t Vi(he) =— 7 =0.
+27)—x;(t+ 7). If one uses the symmetrical difference ap- I TAax=h,

proximation dx;(t+ 7)/dt=x;(t+27) —x;(t), the resulting

difference equation does not exhibit traffic behavior similar It is important that the optimal velocity function has the

to those of Eqgs(1) and(2). turning point. Otherwise, one cannot have the kink-antikink
The difference equation model is more suitable for com-density wave solution representing the traffic jam.

putation since the time and space variables are discrete. The The spinodal line has been obtained from the neutral sta-

three models have been studied under the periodic boundabjlity condition [8,20]. It is given by

condition. It has been shown from simulation and analysis

that the three models exhibit a similar traffic behavior and a=1/r=3V'(Axo), (5)

give a similar phase diagraf®,18,20. The phase diagram

of the difference equation model is shown in Fig. 2. The

solid line indicates the coexisting curve. The dotted line in-

dic_ates the spinodal line. The_ circle _indi_cz_ﬂes 'ghe Criticalcoexisting curve has been obtained from the solution of the

point. Ir.1 each model, the trafflc flow is divided into three modified KdV equatiorf8,20]. It is given by

regions: one is the stable region above the coexisting curve,

the second is the metastable region between the spinodal line

and the coexisting curve, and the third is the unstable region oo e . _
below the spinodal line. In the unstable region, the traffic Axo=he \/3 a 1) with a:=3vpaf2.  (6)

whereAXx, is the average value of the headway 31dA ;)
is the derivative of the optimal velocity function Ak,. The
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IIl. SIMULATION

FIG. 3. Typical traffic patterns of headwafg) The space-time . . .
evolution of headway without fluctuation at boundary faK, We carry out a computer simulation for the traffic flow

=4.0 andv,=1.7. (b) The space-time evolution of headway with described by Eqd7) and(8). We solve Eq(7) by iteration
fluctuation fromt =10 020 tot=10 300 at intervals of 20 time steps Under the boundary conditiof8). We study the space-time
for v,=1.7 and8=0.4. (c) The space-time evolution of headway eYO|Ut'On of headway for various values of amplitude
with fluctuation fromt=10 020 tot=10 300 at intervals of 20 time  First, we study the case af=0 without fluctuation. We
steps fory,= 1.7 ands=0.8. The density waves appear and propa-SUppose that the headway is initially homogeneous over all
gate upstream. cars:Ax;(0)=AXx, and all cars move at the constant velocity
given by vo=V(AXy). In the steady state of the optimal
The spinodal line and coexisting curve in E¢S.and(6) are  velocity model, the velocity is uniquely related with the
shown in Fig. 2 wherer,,,=2.0. The critical point is given headway. The boundary conditionig(t) = »y,. In time, the

by (h.,ac). traffic flow changes to the homogeneous stateAa (t)
It is useful to rewrite Eq(3) in terms of the headway. One =V~ (v,), whereV ! is the inverse function of the optimal
obtains the following difference equation: velocity. Figure 8a) shows the space-time evolution of head-

way at intervals of 80 time steps fdrx,=4.0 andv,=1.7

AXj(t+27)— Axj(t+7)— 7{V(AX; ;1 1(1))—V(AX;(1))}=0.  wherea=2.0,h.=5.0, andN=200. Without fluctuation, the
(7)  velocity of all upstream cars is a constant valuevgf 1.7
uniquely determined by the boundary condition of NaiThe

The boundary condition in this model is given by headway of the homogeneous state is given Au;(t)

_ _ _ =V {1.7)=forj=1,2,..N—1.
Axy- (T 7) = Axy -1 (D) + H{wn (1) = V[AXn-1(t= 7)1}, Secondly, we study the traffic flow in the metastable re-
with gion with a finite amplitude of fluctuation. When the ampli-
tude of fluctuation is small, the traffic flow is stable and
vn(t) =+ S 2R(1) —1.0] (8)  nearly homogeneous over space except for fluctuation near

the downstream boundary. FiguréBshows the space-time
where R(t) is the random number between zero and unityevolution of headway frorh= 10020 tot =10300 at intervals
and v, is the average velocity of cad. The correlation is of 20 time steps fow,=1.7 and5=0.4 wherea=2.0, h,
given by (R(t+m)R(t))= 6;+m Where §;;=1 for m=0 =5.0, andN=200. When the amplitude is larger than the
and &y, m=0 for m#0. §; ,, denotes the Kronecker delta. critical value, the density waves appear and propagate up-
We note that the Kronecker delta is different from the am-stream. Figure @) shows the space-time evolution of head-
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FIG. 5. Space-time evolutions of headway for the systematical variatieg ffbm t=10 020 tot=10 300 at intervals of 20 time steps
fora=2.0,h,=5.0,5=0.5.(a) The free traffic forv,=1.7.(b) The moving localized clusters of the compression wave/fer 1.65.(c)—(f)
The oscillatory traffic forv,=1.5,1.3,1.0,0.5(g) The moving localized clusters of the expansion waveipr 0.35.(h) The homogeneous
congested traffic fow,=0.3.

way from t=10020 tot=10300 at intervals of 20 time two dotted lines on the right side of,=V~%(h.)=1.0 indi-
steps forv,=1.7 and 6=0.8 wherea=2.0, h.=5.0, and cate the neutral stability poirispinodal pointand the coex-
N=200. The traffic flow is independent of the initial condi- isting point. These points are given, respectively, by the val-
tions for nonvanishing fluctuations. We use the initial condi-ues v,=V~1(5.65)=1.58 andv,=V 1(6.23)=1.84 for a
tion of the homogeneous state witfx;(0)=Ax,=const. =2.0h.=5.0. Similarly, the two dotted lines on the left side
We carry out the simulation by varying the amplitude of »,=V (h.)=1.0 indicate the neutral stability point
and the velocityr,, of the leading car. We obtain the phase (spinodal point and the coexisting point. These points are
diagram in @,,8) space wherea=2.0h.=5.0. Figure 4 given, respectively, by the valueg=V~1(4.35)=0.42 and
shows the phase diagram far=2.0h.=5.0. The circles in- »,=V~1(3.77)=0.16 for a=2.0h,=5.0. The values are
dicate the transition point between the homogeneous trafficalculated by Eqs(5) and (6). WhenAx,, is within the un-
and the traffic with density waves. The solid lines indicatestable region between 4.35 and 5.65, the jammed traffic with
the transition line connecting the transition points. The soliddensity waves appears even if fluctuation is very weak. In the
line on the right side represents the transition line betweennstable traffic flow, the velocity is betweerny,
the free traffic(FT) and the congested traffic with density =V~ (5.65)=1.58 and v,=V 1(4.35)=0.42. For weak
waves. The solid line on the left side represents the transitiofiuctuation, the transition points agree with the neutral stabil-
line between the homogeneous congested trdfficT) and ity point obtained from the linear stability analydig,20].
the congested traffic with density waves. The two transitionWith increasing the amplitude of fluctuation, the transition
lines are symmetric against the ling=V~1(h.)=1.0. The  point between the free traffi&T) and the density wave traf-
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FIG. 6. Headway profiles at=10 500 together with the coexisting points. The profil@s-(h) correspond to the space-time evolutions
(@—(h) in Fig. 5. The dotted lines indicate the coexisting points 3.77 and 6.23.

fic shifts to a larger value of velocity. Symmetrically, the proaches to the coexisting curve.

transition point between the homogeneous congested traffic We study the traffic patterns induced by large amplitudes
and the density wave traffic shifts to a lower value of veloc-of fluctuation. We show the space-time evolution of headway
ity with increasing the amplitude of fluctuation. When the for the systematical variation of boundary valug undera
amplitude of fluctuation is large, the transition point ap-=2.0h.=5.0,6=0.5. The patternga)—(h) in Fig. 5 exhibit
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the space-time evolutions of headway, respectively,pr within the density wave agree, respectively, with the values
=1.7, 1.65, 1.5, 1.3, 1.0, 0.5, 0.35, 0.3 fram 10020 tot 6.23 and 3.77 at coexisting points. Similarly, the expansion
=10300 at intervals of 20 time steps. The value=1.67  density wave in the profilég) has a kink-antikink form. The
+0.02 of the first transition point between the free traffic andheadways out of and within the density wave agree with the
the density wave traffic is obtained, numerically, fér values 3.77 and 6.23 at coexisting points. The strong density
=0.5. The valuer,=0.33:0.02 of the second transition waves in the profilegc)—(f) have the kink-antikink form.
point between the homogeneous congested traffic and thEhe headways out of and within the density wave agree with
density wave traffic is obtained fa¥=0.5. The patterrfa)  those at the coexisting points. Thus, the oscillatory traffic
shows the free traffic before the transition. The headway procorresponds to the coexisting phase found in the periodic
file is nearly homogeneous over space except for the neigtsystem. However, the jamming transition points induced by
borhood of the downstream boundary. The patteirexhib-  fluctuation are definitely different from those of the periodic
its the moving localized clusterMLC’s) just after the System. The jamming transition depends strongly on the am-
transition. The traffic is the congested traffic with a single orplitude of fluctuation. The traffic jams induced by fluctuation
a few density waves. The density wave is a compressioare definitely different from the congested traffic triggered by
wave and propagates backward. The traffic corresponds the inhomogeneity.

the moving localized clusters found by Helbiegal. [22]. We consider what happens if the fluctuation amplitdde
The patterns(c)—(f) show the oscillatory congested traffic of the velocity of the leading car is larger than the average
(OCT). The number of density waves increases according agelocity v,. When > vy, the velocityvy(t) of the leading

v, approaches ta.=V (h.)=1.0. The number reaches car becomes a negative value instantly. This means that the
the maximum value at.=V~*(h.)=1.0. Then, the number leading car moves averagely forward but moves instantly
of density waves decreases according/gsleparts fromy, ~ backward. This case occurs in Figsgh 5(h), 6(g), and &h).
=1.0. When, is larger thanv,=1.0, the compression The backward moving of the car occurs seldom on a high-
waves propagate backward as the density waves. Whén — way. However, the backward movement will be allowed in
less thanv.= 1.0, the expansion waves propagate backwardhe theoretical model since the traffic models are closely re-
as the density waves. The patteig) exhibits the moving lated to the information traffic and the granular flow.
localized clusters just before the second transition. The traf-
fic is the congested traffic with a single or a few density
waves. The density wave is a expansion wave and propagates
backward. The traffic corresponds to the moving localized We have investigated the traffic jams triggered by veloc-
clusters. The density wave of pattén) is not a compression ity fluctuation of a leading car in an open system without
wave but a expansion wave. This distinguishes pattgfin  sources and sinks by the use of the car following model. We
from pattern(b). The MLC in the high density region is have found the jamming transition triggered by the fluctua-
similar to that found in the macroscopic traffic flow model tion of the leading car. We have shown that the jamming
[28]. The pattern(h) exhibits the homogeneous congestedtransition depends strongly on the amplitude of fluctuation.
traffic (OCT) after the second transition. The headway pro-When the fluctuation is very small, the transition points are
file is nearly homogeneous over space except for the neigleonsistent with the neutral stability points predicted by the
borhood of the downstream boundary. The pinned localizedinear stability theory. When the amplitude of fluctuation is
clusters are not found in the traffic jams triggered by fluc-large, the jamming transition occurs in the metastable region.
tuation of a leading car. For comparing the headway with th&Ve have presented the phase diagram of the different kinds
coexisting points quantitatively, we show the headway pro-of congested traffic induced by fluctuation of the leading car.
files att=10500 together with the coexisting points. The We have shown that the oscillatory traffic and moving local-
profiles (a)—(h) in Fig. 6 exhibit, respectively, the plots of ized clusters similar to those found in the different models
headway against car numbeor v,=1.7, 1.65, 1.5, 1.3, 1.0, appear in this model.

0.5, 0.35, 0.3. The profiles correspond to thosé=a10500 To our knowledge, this paper is the first work showing
in the space-time evolution in Fig. 5. The dotted lines indi-that fluctuation of a leading car induces the jamming transi-
cate the coexisting points 3.77 and 6.23 &6+ 2.0h,=5.0.  tion in this new type of source-sinkless open system. There
The headway profiléa) is homogeneous over space exceptare at least three qualitatively different types of systeibs.

for the neighborhood of the downstream boundary. Theclosed systems where the density or the average headway is
value of headway is less than the value 6.23 at the coexistinthe appropriate control parametég) open systems with
point. The headway profiléh) is homogeneous over space fixed boundaries and with vehicle sources and sinks where
except for the neighborhood of the downstream boundarythe traffic flux is the order paramet9,30], and(3) source-
The value of headway is larger than the value 3.77 at theinkless open systems with moving boundaries which are
coexisting point. The compression density wave in the prodescribed in this paper, where the velocity is the order pa-
file (b) has a kink-antikink form. The headways out of and rameter.

IV. SUMMARY
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