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Variational density matrix method for warm, condensed matter: Application to dense hydrogen

Burkhard Militzer1 and E. L. Pollock2
1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

2Physics Department, Lawrence Livermore National Laboratory, University of California, Livermore, California 94550
~Received 30 September 1999!

A variational principle for optimizing thermal density matrices is introduced. As a first application, the
variational many-body density matrix is written as a determinant of one-body density matrices, which are
approximated by Gaussians with the mean, width, and amplitude as variational parameters. The method is
illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the
molecular, the dissociated, and the plasma regime are described. Structural and thermodynamic properties
~energy, equation of state, and shock Hugoniot! are presented.

PACS number~s!: 71.10.2w, 05.30.2d, 02.70.Lq
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I. INTRODUCTION

Considerable effort has been devoted to systems w
finite temperature ions~treated either classically or quantu
mechanically by path integral methods! are coupled to de-
generate electrons on the Born-Oppenheimer surface. In
trast, the theory for similar systems with non-degener
electrons~T a significant fraction ofTFermi! is relatively un-
derdeveloped except at the extreme high-T limit where
Thomas-Fermi and similar theories apply. In this paper
present a computational approach for systems with non
generate electrons analogous to the methods used for gr
state many body computations.

Although an oversimplification, we may usefully view th
ground state computations as consisting of three level
increasing accuracy@1#. At the first level, the ground-stat
wave function consists of determinants, for both spin s
cies, of single-particle orbitals often taken from local dens
functional theory

CGS~R!5UF1~r1! ... FN~r1!

... ... ...

F1~rN! ... FN~rN!
U . ~1!

The majority of ground-state condensed matter calculati
stop at this level.

If desired, additional correlations may be included
multiplying the above wave function by a Jastrow fact
P i , j f (r i j ), where thef will also depend on the type of pa
~electron-electron, electron-ion!. Computing expectations ex
actly ~within statistical uncertainty!, with this type of wave
function now requires Monte Carlo methods.

Finally diffusion Monte Carlo@2,3# methods using the
nodes of this wave function to avoid the Fermion proble
may be used to calculate the exact correlations consis
with the nodal structure.

The finite temperature theory proceeds similarly. Rat
than the ground-state wave function a thermal density ma

r~R,R8;b!5^Rue2bHuR8&5(
s

e2bEsCs~R!Cs~R8!

~2!
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is needed to compute the thermal averages of operators

^O&5
Tr @Or#

Tr @r#
. ~3!

At the first level, this many-body density matrix may b
approximated by determinants of one-body density matric
for both spin types, as well as the ions

r~R,R8;b!5U r1~r1 ,r18 ;b! ... r1~rN ,r18 ;b!

... ... ...

r1~r1 ,rN8 ;b! ... r1~rN ,rN8 ;b!
U . ~4!

The Jastrow factor can be extended to finite tempera
and the above density matrix multiplied byP i , j f (r i j ,r i j8 ;b).
In particular, the high-temperature density matrix used
path integral computations has this form.

Finally, the nodal structure from this variational dens
matrix ~VDM ! may be used in restricted path integral Mon
Carlo ~RPIMC! @4–8#. This method has been extensively a
plied using the free particle nodes. One aim of the pres
paper is to provide more realistic nodal structures as inpu
RPIMC.

This paper considers the first level in this approach. T
next section is devoted to a general variational princip
which will be used to determine the many-body density m
trix. The principle is then applied to the problem of a sing
particle in an external potential and compared to exact res
for the hydrogen atom density matrix. After a discussion
some general properties, many-body applications are con
ered starting with a hydrogen molecule and then proceed
to warm, dense hydrogen. It is shown that the method
the ansatz considered can describe dense hydrogen in
molecular, the dissociated and the plasma regime. Struc
and thermodynamic properties for this system over a ra
of temperatures~T55000 to 250 000 K! and densities~elec-
tron sphere radiusr s51.75 to 4.0! are presented.

Atomic units will be used in this paper except where e
plicitly indicated otherwise.
3470 © 2000 The American Physical Society
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II. VARIATIONAL PRINCIPLE FOR THE MANY-BODY
DENSITY MATRIX

The Gibbs-Delbruck variational principle for the free e
ergy based on a trial density matrix

F<Tr @ r̃H#1kT Tr @ r̃ ln r̃ #, ~5!

where

r̃5r/Tr @r# ~6!

is well known and convenient for discrete systems~e.g.,
Hubbard models! but the logarithmic entropy term makes
difficult to apply to continuous systems. Here, we propos
simpler variational principle patterned after the Dira
Frenkel-McLachlan variational principle used in the tim
dependent quantum problem@9#. Consider the quantity

I S ]r

]b D5Tr S ]r

]b
1Hr D 2

~7!

as a functional of

Q[
]r

]b
~8!

I ~Q!5Tr ~Q1Hr!2 ~9!

with r fixed. I (Q)50 whenQ satisfies the Bloch equation
Q52Hr, and is otherwise positive. VaryingI with Q gives
the minimum condition

Tr @dQ~Q1Hr!#50. ~10!

This may be written in a real space basis as

E E dQ~R8,R;b! @Q~R,R8;b!

1Hr~R,R8;b!# dRdR850 ~11!

or, using the symmetry of the density matrix inR andR8,

E E dQ~R,R8;b! @Q~R,R8;b!

1Hr~R,R8;b!# dRdR850. ~12!

Finally, we may consider a variation at some arbitrary, fix
R8 to get

E dQ~R,R8;b! @Q~R,R8;b!1Hr~R,R8;b!# dR50

;R8. ~13!

It should be noted that in going from Eq.~11! to Eq. ~12! a
density-matrix symmetric inR andR8 is assumed, which is
a property of the exact density matrix. If the variational a
satz does not manifestly have this invariance Eq.~13! mini-
mizes the quantity,

E @Q~R,R8;b!1Hr~R,R8;b!#2dR50. ~14!
a

d

-

We propose solving this equation by parameterizing the d
sity matrix with a set of parametersqi depending on imagi-
nary timeb andR8,

r~R,R8;b!5r~R,q1 ,...,qm!, where qi5qi~R8;b!,

i 51, . . . ,m ~15!

so

Q~R,R8;b!5(
i 51

m
]qi~R8;b!

]b

]r~R,q!

]qi

5(
i 51

m

q̇i

]r

]qi
. ~16!

In the imaginary time derivativeQ, only variations inq̇ and
not q are considered sincer is fixed so,

dQ~R,R8;b!5(
i 51

m

dq̇i~R8;b!
dr~R,q!

]qi
. ~17!

Using this in Eq.~13! gives for each variational paramete
since these are independent,

E ]r

]qj
~Q1Hr!dR50. ~18!

This reveals the imaginary-time equivalent to the appro
of Singer and Smith@10# for an approximate solution of the
time dependent Scho¨dinger equation using wave packets~see
Sec. III!. Introducing the notation

pi[
]~ ln r!

]qi
~19!

and using Eq.~16!, the fundamental set of first-order differ
ential equations for the dynamics of the variation parame
in imaginary time follows from Eq.~18! as,

E pjrHr dR1(
i 51

m

q̇iE pj pir
2 dR50, ~20!

or in matrix form

1

2

]H

]qW
1NJ qẆ 50, ~21!

where

H5E rHr dR ~22!

and the norm matrix

Ni j [E pipjr
2 dR5 lim

q8→q

]2N

]qi]qj8
, ~23!

with

N[E r~R,qW ;b!r~R,qW 8;b! dR. ~24!
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The initial conditions follow from the free particle limit o
the density matrix at high temperature,b→0,

r~R,R8;b!→exp@2~R2R8!2/4lb#/~4plb!3N/2,

where l51/2m. ~25!

Various ansatz forms forr may now be used with this ap
proach. After considering the analogy to real-time wav
packet molecular dynamics, the principle is first applied
the problem of a particle in an external field.

III. ANALOGY TO REAL-TIME WAVE-PACKET
MOLECULAR DYNAMICS

Wave packet molecular dynamics~WPMD! was first used
by Heller @11# and later applied to scattering processes
nuclear physics@12# and plasma physics@13,14#. An ansatz
for the wave functionc(qn) is made and the equation o
motions for the parametersqn in real time can be derived
from the principle of stationary action@12#,

dE dtL50, L@qn~ t !,q̇n~ t !#5^cu i ] t2Huc&. ~26!

This leads to a set of first-order equations, which provides
approximate solution of the Schro¨dinger equation. However
this principle cannot be directly applied to the Bloch equ
tion because there is no imaginary part in the density ma
For this reason, we followed in our derivation in Sec. II t
principle of Dirac, Frenkel and McLachlan@9#, which mini-
mizes the quantity

E uHc2 iuu2dt, u5
]c

]t
. ~27!

This method was employed in Ref.@10# to obtain the dy-
namical equations in real time.

The VDM approach and WPMD method share the z
temperate limit, which is given by the Rayleigh-Ritz pri
ciple ~see Sec. V A!. At high temperature, the width of wav
packets in WPMD grows without limits, which is a know
problem of this method@15,16#. In the VDM approach, the
correct high-temperature limit of free particles is include
The average width shown in Fig. 10 can be used to verify
attempts to correct the dynamics of the real-time wave pa
ets in Ref.@16#.

IV. EXAMPLE: PARTICLE IN AN EXTERNAL FIELD

As a first example, we apply this method to the proble
of one particle in an external potential

H52l¹21V~r !. ~28!

The one-particle density matrix will be approximated as
Gaussian with meanm, width w and amplitude factorD,

r1~r ,r 8,b!5~pw!23/2expH 2
1

w
~r2m!21DJ ~29!
-
o

n

n

-
x.

o

.
e
k-

a

as variational parameters. The initial conditions atb→0 are
w54lb, m5r 8 andD50 in order to regain the correct fre
particle limit, Eq.~25!. For this ansatzH, defined in Eq.~22!
as

H[E rHr dr5S 3l

w
1V@0#D e2D

~2pw!3/2, ~30!

where

V@n#[S 2

pwD 3/2E ~r2m!nV~r !e22~r 2m!2/wdr ~31!

and

N[E rr8dr5@p~w1w8!#23/2

3exp$2~m2m8!2/~w1w8!%exp~D1D8!. ~32!

From Eq.~21!, the equations for the variational paramete
are,

ẇ54l12wV@0#2 8
3 V@2#, ~33!

ṁ522V@1#, ~34!

Ḋ5
1

2
V@0#2

2

w
V@2#. ~35!

In absence of a potential, the exact free particle density
trix is recovered. The harmonic oscillator case is also corr
since the Gaussian approximation is exact there. For a
drogen atom,l51/2, V(r )521/r and

V@0#52
1

m
erf~mA2/w!, ~36!

V@1#5
m

m3

w

4 Ferf~mA2/w!2A 8

pw
e22m2/wG ,

~37!

V@2#5A w

2p
e22m2/w1

3w

4
V@0#. ~38!

At low temperature, the density matrix as a function ofr
goes to the ground-state wave function as discussed in m
detail in the next section. One expects this to be a fixed p
of the dynamics of the parametersm and w determined by
ṁ50 and ẇ50 while Ḋ52E0 . The b→` fixed point:
m50, w59p/8, Ḋ54/3p corresponds to the well known
Rayleigh-Ritz variational result for a Gaussian trial wa
function

C0~r !5S 4

3p D 3/2

exp~28r 2/9p!. ~39!

In ground-state variational studies, addition of two mo
Gaussians brings the ground-state energy to within 0.6%
the exact value and similar improvement would be obtain
here.

Results at finiteb require a numerical solution, which i
illustrated in Fig. 1 comparing the Gaussian variational d
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sity matrix with the exact@17# and the free particle densit
matrix at several temperatures for the initial conditionr 8
51. At high temperatures~b50.05 andb50.25! the Gauss-
ian approximation correctly reproduces the limiting free p
ticle density matrix. At lower temperatures, the cusp in
exact density matrix due to the Coulombic singularity at
proton becomes evident and the peak shifts to the or
somewhat faster than the Gaussian variational approxi
tion. As b increases the exact result grows faster than
variational since the correct energy,20.5, is lower than
24/3p but the Gaussian variational approximation rema
rather accurate forr .1. The free particle density matrix re
mains centered atr51 and beyondb50.5 (T554.4 eV)
bears little resemblance to the correct result.

V. VARIATIONAL DENSITY-MATRIX PROPERTIES

A. Zero temperature limit

In the preceding section, it was shown that for the hyd
gen atom the Gaussian variational density matrix, as a fu
tion of R converges at low temperature to the Gauss
ground-state wave function given by the Rayleigh-Ritz var
tional principle. It is generally true that the Rayleigh-Ri
ground-state corresponds to the zero temperature limit of
VDM as we now show.

The Rayleigh-Ritz principle states that for any real para
eterized wave functionc(R,q1 ,...,qm) the variational en-
ergy

E~$q%!5
*c~R!Hc~R! dR

*c~R!2dR
~40!

is greater than or equal to the true ground-state energy e
at the minimum determined by

]

]qk
E~$q%!50 ; k. ~41!

FIG. 1. Comparison of the Gaussian variational approximat
~circles! with the exact density matrixr(r ,r 8;b) ~solid line! for a
hydrogen atom. The free particle density matrix~dashed line! is
also shown. The plottedr is along the line from the proton at th
origin ~marked by the vertical bar! through the initial electron po-
sition r 851.
-
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For the VDM ansatz, an amplitude parameterD is assumed
such that

r~R,R8;b!5eD~R8;b!r̃@R,$q~R8;b!%#. ~42!

As in the one particle example, it is expected that at l
temperature,b→`, the other q̇k→0 while Ḋ→constant.
From this assumption, Eq.~21! implies that asb→`

]H

]qk
1Ḋ

]N

]qk
50 ~43!

for all variational parameters, where we have definedH
[*rHr dR and N[*r2 dR. Since ]H/]D52H and
]N/]D52N, Eq. ~43! for qk[D implies Ḋ52H/N[
2E0 . So Eq.~43! may be rewritten as

]

]qk
S H

ND50 ~44!

at theb→` fixed point. With the correspondence

r†R,$q~R8,b!%‡→eD~R8;b!c~R,$q%!, ~45!

this is equivalent to Eq.~41! and thus the Rayleigh-Ritz
ground state corresponds to a zero temperature fixed poi
the dynamics of the parameters.

D is a function ofR8 andb, which is calculated by inte-
grating fromb50 with Eq. ~25! as initial conditions. The
zero temperature limit ofḊ is a constant,2E0 , which
means in the low-temperature limitD can written as

D~R8;b!52bE01 f ~R8!. ~46!

The functionf (R8) can be rewritten as,

f ~R8!5 ln$c0~R8!@11d~R8!#%, ~47!

where the functiond(R8) is introduced to describe the varia
tional error in the solution of the Bloch equation. It is ide
tical to zero if the variational ansatz includes the exact so
tion. It leads to loss of symmetry inR and R8, which will
discussed in the next section. Equation~45! now reads,

r~R,R8,b→`!5e2bE0c0~R!c0~R8!@11d~R8!#.
~48!

For certain potentials, several fixed points of the dyna
ics can exist. From Eq.~48!, it follows that only the lowest
energy state contributes to physical observables calcul
from Eq.~3!. This completes the argument that the zero te
perature limit of the VDM corresponds to the Rayleigh-R
ground state.

In the case of an anti-symmetrized ansatz for the den
matrix, it can be shown that the fixed point of the dynam
in imaginary time corresponds to the Rayleigh-Ritz grou
state for an antisymmetrized wave function.

B. Loss of symmetry

The exact density matrix is symmetric underR↔R8.
Since we have singled outR8 as the initial point for the
imaginary time dynamics, it is not clear that the approxim

n
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tion given in Eq.~29! automatically satisfies this condition
For the free particle limit and the harmonic oscillator, whe
the Gaussian is the exact solution, it obviously does bu
general it does not.

As a specific example, we consider again the ground-s
limit of the hydrogen atom in the Gaussian approximatio
Using the ground-state values for the variational paramet
m50 andw59p/b, Eq. ~29! becomes,

lim
b→`

r~r ,r 8;b!5eD~r 8;b!~8/9p2!3/2e28r 2/9p. ~49!

For this to be symmetric underr↔r 8, we must have

lim
b→`

D~r 8;b!528r 82/9p1c~b! ~50!

and from the result forḊ, limb→` c(b)54b/3p1c1 .
Figure 2 compares theD(r ,b) from the Gaussian VDM

with Eq. ~50! usingc(b)54b/3p13/2 ln 2.
There are several consequences of this small violatio

R↔R8 symmetry. As shown generally in the section abo
in the b→` limit 2Ḋ is the Rayleigh-Ritz variationa
ground-state energy for a Gaussian wave function, which
the hydrogen atom isE0524/3p520.4244. Because of th
loss of symmetry this is not the same as the energy given
the estimator

^E&5^H&[
Tr @Hr#

Tr @r#
~51!

in the b→` limit, which for the hydrogen atom gives th
more accurate result^E&520.4709. This will be seen agai
below for the hydrogen molecule where Eq.~51! also gives
more accurate ground-state energies. Other consequenc
less pleasant. Although the energy is more accurate the v
theorem,^K&52^U&/2, between the kinetic and potenti
energy is violated by about 3%~while both are more accu

FIG. 2. D(r ,b) from the Gaussian approximation in the groun
state limit ~solid line! of the hydrogen atom. Deviations of thi
function from linearity indicate a breakdown of symmetry in t
Gaussian approximation forr(r ,r 8;b). The dashed line is
28r 2/9p14b/3p13/2 ln 2 expected from the Rayleigh-Rit
ground state Eq.~39!.
in

te
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rate than the usual ground state variational Gaussian res!.
This has consequences for calculating the equation of s
particularly at low density. Slightly more complicated, e
plicitly symmetric forms for the VDM could be used but i
this paper we will continue to explore the basic Gauss
approximation.

C. Thermodynamic estimators

Since the VDM, except in the simplest cases, is not ex
various estimators for the same quantity will differ. For e
ample the variational principle introduced in Sec. II consi
essentially in globally minimizing the squared difference b
tween]r/]b andHr, either of which can be used in est
mating the energy. As mentioned above the energy estim
Eq. ~51! and its kinetic and potential energy pieces do n
automatically satisfy the virial theorem for Coulomb syste
at low density. As an alternative to Eq.~51!, one can use the
thermodynamic estimators,

^E&52 K ]

]b
ln r L , ~52!

^K&52
l

b K ]

]l
ln r L , ~53!

^V&52
e2

b K ]

]e2 ln r L ~54!

for the total, kinetic, and potential energy. These estimat
satisfy

^E&5^K&1^V& ~55!

by the following argument. Any functionf 5 f (bl,be2) sat-
isfies

b
] f

]b
5l

] f

]l
1e2

] f

]e2 . ~56!

From Eq. ~21! it follows that all parameters qi
5qi(R8;b,l,e2) have this property and therefore so do
the variational density matrix.

In the zero temperature limit, the thermodynamic estim
tors satisfy the virial theorem, which is also satisfied by a
exact and any variational Rayleigh-Ritz ground state. Fr
the zero temperature limit of the VDM given by Eq.~48! and
the 1/b factor in Eqs.~53! and ~54!, it is seen that the sym
metry errord(R8) is unimportant in this limit. It should be
noted that calculating the derivatives for^K& and ^V& in-
creases the numerical work. The pressure is estimated f

3^P&v52^K&1^V&. ~57!

VI. MANY-PARTICLE DENSITY MATRIX

We represent the many-particle density matrix by a de
minant of one-particle density matrices@Eq. ~4!#. It can be
written as
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FIG. 3. Gaussian approximation for the ground state of a hydrogen molecule for bond lengthR. The top left panel shows the Gaussia
mean parameterm for the two electrons. These stay in the center of the bond (m50) until aboutR52 and then attach themselves to th
separating protons (6R/2). The width parameter, displayed in the lower left panel, makes the transition from the optimal value for a
atom,R50, to the hydrogen atom resultw59p/8 at largeR. The right panel shows the dissociation energy for the singlet state comp
from Eq.~51! ~open circles with error bars! and the thermodynamic estimator (2dD/db) ~dashed line! compared to the results of Kolos an
Roothan~solid line!.
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r~R,R8,b!5(P eP)
k

r1~r k ,rPk
8 ,b!

5(P ePeD)
k

~pwPk
!23/2

3expH 2
1

wPk

~r k2mPk
!2J . ~58!

The permutation sum is over all permutations of identi
particles~e.g., same spin electrons! and the permutation sig
natureeP561. The initial conditions for Eq.~21! are wk

50, mk5r k8 , andD50. For this ansatz the generator of th
norm matrix, Eq.~24!,

N5exp~D1D8!(P eP)
k

@p~wk1wPk
8 !#23/2

3exp$2~mk2mPk
8 !2/~wk1wPk

8 !%. ~59!

For a periodic system the above equation is also sum
over all periodic simulation cell vectors,L , with mk2mPk

→mk2mPk
1L . If only the identity permutation is consid

ered the norm matrix is easily inverted so that Eq.~21! gives

ẇk522wkHD2
8

3
wk

2Hwk
, ~60!

ṁk52wkHmk
, ~61!

Ḋ52S 3

2
n11DHD22(

i 51

n

wiHwi
, ~62!

where

Hqk5
1

2

]H

]qk
. ~63!

For systems of electrons and ions the full expression forHqk
and the norm matrix are derived in Appendix A.
l

ed

Application to an isolated hydrogen molecule at low te
perature is shown in Fig. 3. This is for the singlet state~an-
tiparallel electron spins!. The triplet state is considered late
after a discussion of how to treat permutation terms in
parameter equations. The bond length at minimum energ
1.47, compared with the experimental value of 1.40. T
direct energy estimator Eq.~51! gives a dissociation energ
of 4.50 eV at the minimum compared to the experimen
value of 4.75 eV. BeyondR52, the energy rises quickly
toward the value given by the Rayleigh-Ritz estima
2dD/db.

VII. ANTISYMMETRY IN THE PARAMETER EQUATIONS

The determinantal form for the VDM, Eq.~58!, is cor-
rectly antisymmetric under exchange of identical particl
Since ion exchange effects are negligible at the temperat
considered here these are ignored.

The determinantal form leads toN! terms in the equations
of motion for the variational parameters presented in App
dix A. It was originally hoped that exchange effects could
ignored in these equations while retaining the full determ
nantal form for the VDM but this leads to an instability i
fermionic systems, e.g., it results in an unphysical stro
attraction between two hydrogen molecules.

A practical means of treating all exchange terms, in p
ticular terms involving the potential energy, in the variation
parameter equations was not found. Instead it was neces
to use an approximation similar to that used in the real-ti
computations@13,16#: only pair exchanges in the kinetic
energy terms were retained. This will be illustrated for t
hydrogen molecule after first giving the explicit form for th
correction. It is stressed that, unlike the real time compu
tions, once the variational parameters are determined the
determinantal form is then used in calculating the vario
averages.

For two particles with parallel spin, the correction term
the kinetic energy is given by,

DK5
NI

NAS
E dR rASK̂rAS2E dR r I K̂r I , ~64!

rAS5r1~r1!r2~r2!2r2~r1!r1~r2!, r I5r1~r1!r2~r2!
~65!
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NAS5E dR rAS
2 , NI5E dR r I

2 ~66!

For the Gaussian ansatz in Eq.~58! it becomes,

DK52
4lNI

wNQ
@3~12w̃2!2Q2#, ~67!

w5w11w2 , w̃5
w

2Aw1w2

,

Q25
2

w
~m12m2!2, NQ5w̃3eQ2

21. ~68!

The corrections to the norm matrixN are neglected in orde
to keep its analytically invertible form. The corrections
Hqk in Eq. ~63! are given by

DKqk5
1

2NI

]

]qk
DK ~69!

The correction to dynamics of the parameters follow fro
Eqs.~60! to ~62!,

Dẇ1522w1~DKD1 4
3 w1DKw1

! ~70!

Dṁ152w1DKm1
~71!

DḊ522~DKD1w1DKw1
1w2DKw2

!. ~72!

FIG. 4. Effect of antisymmetry on the density-matrix para
eters, width and mean, for a hydrogen molecule. The protons~large
black dots alongx axis! are separated by 1.8 and the initial electr
positionsr e(b50)561.5 along the molecular axis. The solid lin
for the singlet state~electron spins antiparallel! shows both elec-
trons centered in the molecular bond at low temperatures~largeb!.
For the triplet state~parallel electron spins!, the electrons~long
dashed line! are centered close to the protons. The approximatio
including only kinetic pair exchanges~dot-dashed line! gives a
similar result for the mean, with the electrons centered slightly
side the protons but overestimates the Gaussian width~left panel!.
At high temperature (b<4) exchange is unimportant and the p
rameters are nearly the same for all cases.
These equations lead to an effective repulsion between
Gaussians for two electrons with parallel spin if there is s
nificant overlap. As a example of this effect the variation
parameters for the singlet and triplet states of the hydro
molecule are compared in Fig. 4. For the triplet state para
eters the solution including full exchange effects~long-
dashed line! are compared with those obtained in the kine
pair exchange approximation~dot-dashed line!. The approxi-
mation now prevents the Gaussian means for the same
electrons from collapsing to the bond center at lower te
perature and is numerically close to the solution for full e
change.

Even at the lowest temperature considered here in
dense hydrogen simulations~5000 K! exchange effects be
tween same spin electrons are negligible beyond a few a
stroms, i.e., one or perhaps two nearest neighbors. Figu
for the triplet state thus overestimates the effect likely
dense hydrogen. The main effect of including exchange
the parameter equations is probably to prevent the instab
mentioned above.

Figure 5 shows an energy comparison for the trip
ground state of the hydrogen molecule. First, we compare
Gaussian approximation using only the kinetic exchan
term in the parameter equations. For the direct estimator,
~51!, one finds fairly good agreement with the quantu
chemistry result@18#. The thermodynamic estimator gives
somewhat more repulsive triplet interaction forR.2. Con-
sidering also the Coulomb exchange terms in the Gaus
approximation leads to the dot-dashed line for the thermo
namic estimator. We conclude that leaving out the Coulo
exchange terms in the parameter equations for efficie
reasons is a reasonable approximation in many part
simulations.

f

-

FIG. 5. Energy of repulsion for the triplet ground state of t
hydrogen molecule for bond lengthR. The thermodynamic~dashed
line! and the direct estimator, Eq.~51!, ~circles with error bars! for
the Gaussian approximation using the kinetic exchange term in
parameter equations are compared with the Kolos and Rootha
sults ~solid line!. The thermodynamic estimator for the Gaussi
approximation with all exchange terms is shown by the dot-das
line.
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VIII. RESULTS FROM MANY-PARTICLE SIMULATIONS

In this section, we report results from VDM Monte Car
simulation with 32 pairs of protons and electrons in the te
perature and density range of 5000 K<T<250 000 K and
1.75<r s<4.0. Particle configurations are generated by
quencing over all particles, giving the particle a uniform d
placement, computing the new density matrix from Eqs.~21!
and~15! and accepting or rejecting the new configuration
the Metropolis algorithm. This is completely analogous
the usual Monte Carlo ground-state variational calculati
except for the additional work of determining the variation
parameters based on the proposed configuration.

Although the Gaussian ansatz VDM will be seen to p
vide a reasonable model for hydrogen over the full den
and temperature regime, a large purpose in presenting t
results is to serve as a base for documenting future impro
ments from better VDM’s and the application of RPIMC.

The proton-proton pair correlation functions are shown
Fig. 6. For temperatures below 20 000 K, a peak emer
near 1.4 that demonstrates clearly the formation of m
ecules. The comparison with RPIMC simulations@8,19# at
low density shows that the peak positions agree well
RPIMC predicts a significantly bigger height indicating
larger number of molecules. This could be explained by
missing correlations in the VDM ansatz.

At a density of r s52.0, proton-proton pair correlatio
functions from RPIMC and VDM are almost identical. If th
peak is sufficiently separated from the remaining curve,
area under the peak multiplied by the density gives an e
mate for the molecular fraction. By comparing the estim
for different densities at 5000 K, one finds that the molecu
fraction is diminished when the density is lowered below t
corresponding tor s52.0. This effect is well-known and is
result of the increased entropy of dissociated molecu

FIG. 6. Proton-proton pair correlation function from VDM
~solid line! and RPIMC~dashed lines atr s51.75, 2.0, and 4.0 for
T<125 000 K!.
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which leads to complete dissociation and ionization in
low-density limit at nonzero temperatures.

Considerable differences between the proton-proton
correlation functions are found atr s51.75 below T
520 000 K where VDM shows still a fair number of mo
ecules while RPIMC predicts a metallic fluid where all bon
are broken as a result of pressure dissociation@8,20#. This
effect has to be verified by RPIMC simulations with VDM
nodes because free particle nodes could enhance the tr
tion to a metallic state.

The position of the peak shifts from 1.45 at the lowe
density, corresponding tor s54.0, to 1.3 atr s51.75. The
same trend has been found in the RPIMC simulations@8# but
the opposite was reported in Refs.@21# and @22#.

In the proton-electron pair correlation functions shown
Fig. 7, one finds a strong attraction present even at h
temperatures such as 250 000 K. At low temperatures,
electrons are bound in atoms and molecules. This pair co
lation function does not show a clear distinction between
two cases. From studying the height of the peak at the or
multiplied by the density, one can make comparisons of
number of bound electrons at low temperature. Similar to
molecular fraction, one finds a reduction of bound electro
with decreasing density below that corresponding tor s
52.0. The comparison with PIMC shows that VDM unde
estimates the height of the peak. This is probably a resu
the Gaussian ansatz, which does not satisfy the cusp co
tion at the proton.

Figure 8 shows the effect of the Pauli exclusion princip
leading to a strong repulsion for electrons in the same s
state. This effect is not present in the interaction of electr
with antiparallel spin displayed in Fig. 9. There one obser
the effect of the Coulomb repulsion at high temperature.
low temperature, one finds a peak at the origin as a resu

FIG. 7. Proton-electron pair correlation functions from VD
~solid line! and RPIMC~dashed lines atr s51.75, 2.0, and 4.0 for
T<125 000 K!.
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the formation of molecules, in which two electrons of opp
site spin are localized along the bond. The differences fr
the PIMC graphs can be interpreted as a consequence o
different molecular fractions observed in Fig. 6.

The average squared widthw of the Gaussian is shown i
Fig. 10 as a function temperature and density. At high te

FIG. 8. Electron-electron pair correlation function for electr
with parallel spin from VDM~solid line! and RPIMC~dashed lines
at r s51.75, 2.0, and 4.0 forT<125 000 K!.

FIG. 9. Electron-electron pair correlation function for electr
with antiparallel spin from VDM~solid line! and RPIMC~dashed
lines atr s51.75, 2.0, and 4.0 forT<125 000 K!. Note the change
in scale in the last row.
-
m
the

-

perature and low density, one finds only small deviatio
from the free particle limit. These become more significa
with increasing density and decreasing temperature. At
temperature, the attraction to the protons dominates, wh
leads to a decreasing average width. Finally bound st
form and the width approaches a finite limit. At low dens
ties, this is close to the ground-state squared width of
isolated molecule, 3.138.

In Fig. 11, we compare the internal energy from the th
modynamic estimator in Eq.~52! and the direct estimator in

FIG. 10. Average squared width of the Gaussian single-part
density matrices as a function of temperature for different densit

FIG. 11. Internal energy per atom versus temperature from
VDM using the thermodynamic@TE, Eq.~52!# and direct estimator
@DE, Eq. ~51!# compared with RPIMC results.
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Eq. ~51!. Both agree fairly well at low density. Difference
build up with increasing density and decreasing temperat
Comparing with RPIMC simulations, one finds that t
VDM energies are generally too high. The magnitude of t
discrepancy shows the same density and temperature de
dence as the difference between the two VDM estimat
The difference from the RPIMC results could be explain
by the missing correlation effects in the VDM method.

At high temperature, the thermodynamic estimator alw
gives lower energies than the direct estimator. BelowT
525 000 K, the ordering is reversed. This is consistent w
the results from the isolated atom and molecule. The con
quence is that the direct estimator is actually closer to
value expected from RPIMC simulations. However, it sho
be noted that this estimator is not thermodynamically con
tent ~see Sec. V B!.

In Fig. 12, we compare pressure as a function of temp
ture and density from the two VDM estimators with RPIM
results. At low density, the agreement is remarkably go
With increasing density and decreasing temperature, the
ference grows. For densities overr s52.0 below 10 000 K,
one finds a significant drop in the direct estimator for t
pressure. We interpret this effect as a result of the ther
dynamic inconsistency.

Figure 13, compares the Hugoniot from Laser shock w
experiments@23,24# with results from several theoretical ap
proaches~Sesame data base by Kerley@25# ~thin-solid line!,
linear mixing model by Ross~dashed line! @26#, tight-
binding molecular dynamics by Lenoskyet al. @27# ~dash-

FIG. 12. Pressure versus temperature in high and low temp
ture range. VDM pressure is calculated from virial relation us
both the direct@DE, Eq. ~51!# and thermodynamic@TE, Eqs.~53!
and ~54!# estimators for kinetic and potential energy.
e.
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en-
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a-

.
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dotted line!, Pade´ approximation in the chemical pictur
~PACH! by Ebelinget al. @28# ~dotted line!, RPIMC simula-
tions @29# ~triangles!, VDM direct estimator@DE, full dia-
monds, Eq.~51!# and VDM thermodynamic estimator@TE,
full circles, Eqs.~52!–~54!#. The long dashed line indicate
the theoretical high pressure limitr54r0 of the fully disso-
ciated non-interacting plasma. In the experiments, a sh
wave propagates through a sample of precompressed li
deuterium characterized by its initial state, (E0 ,V0 ,p0). As-
suming an ideal shock front, the variables of the shock
material (E,V,p) satisfy the Hugoniot relation@30#,

H5E2E01 1
2 ~V2V0!~p1p0!50. ~73!

The initial conditions in the experiment wereT519.6 K and
r50.171 g/cm3. We set p050 becausep0!p. We show
two VDM curves based on the thermodynamic and dir
estimators. ForE0 , we use the corresponding value of th
ground state of the isolated hydrogen molecule,E0

TE5

20.955 andE0
DE521.124.

We expect the difference of the two estimators to give
rough estimate of the accuracy of the VDM approach.
high temperature, the difference is relatively small a
agreement with RPIMC simulations is reasonable. B
VDM estimators indicate that there is maximal compressib
ity around 1.5 Mbar. However, in this regime of high dens
and relatively low temperature a more careful study see
unavoidable. We suggest RPIMC simulations using
VDM nodal surface to restrict the paths.

IX. CONCLUSIONS

The VDM approach provides a way to systematically im
prove the many-particle density matrix. Already the simpl
ansatz using one Gaussian to describe the single-particle
sity matrices gives a good description of hydrogen in
discussed range of temperature and density. The metho
cludes the correct high-temperature behavior and shows
expected formation of atoms and molecules. The thermo
namic variables are in reasonable agreement with RPI
simulations. The presented Gaussian ansatz can be impr

a-

FIG. 13. Comparison of experimental and several theoret
Hugoniot functions
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in several ways. One could use a sum of Gaussians,
underestimated correlation effects by including a Jast
factor in the ansatz or use a two-step path integral. Furt
one can use this essentially analytic density matrix to furn
the nodal surface in RPIMC simulations, replacing the f
particle nodes by a density matrix that already includes
principle physical effects. This level of accuracy seems to
required to determine a Hugoniot function that is very s
sitive to the different level of approximations made by va
ous theories.
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APPENDIX. GAUSSIAN APPROXIMATION
INTERACTION TERMS

The general equations for the variational parametersq in a
parameterized density matrix, from Eq.~21!, are

1

2

]H

]qW
1NJ qẆ 50, ~A1!

where

H[E rHr dR5E rHr I dR ~A2!

and the norm matrix

Nj i [E pj pir
2 dR5 lim

q8→q

]2N

]qj]qi8
, ~A3!

with

N5E r~R,qW ;b!r~R,qW 8;b! dR. ~A4!

The subscriptI in Eq. ~A2! indicates that only oner needs to
be antisymmetric and the identity permutation can be use
the other.~We are also dropping 1/N! prefactors, which are
the same for the norm matrix and thus cancel out.! This
appendix contains the detailed formulas for these equat
for a parameterized Gaussian density matrix applied t
Coulomb system.

Repeating Eq.~58! the parameterized variational densi
matrix is an anti-symmetrized product of one-particle dens
matrices,

r~R,R8,b!5(P eP)
k

r1~r k ,rPk
8 ,b!

5(P ePeD)
k

~pwPk
!23/2

3expH 2
1

wPk

~r k2mPk
!2J , ~A5!
dd
w
r,
h
e
e
e
-

-

S.
l

in

ns
a

y

where the amplitudeD and the widthswk and meansmk are
the variational parameters. The permutation sum is over
permutations of identical particles~e.g., same spin electrons!
andeP561 is the permutation signature. The initial cond
tions arewk50, mk5r k8 , andD50.

For this ansatz the generator of the norm matrix,

N5(P eP)
k

@p~wk1wPk
8 !#23/2

3exp$2~mk2mPk
8 !2/~wk1wPk

8 !%exp~D1D8!.

~A6!

For a periodic system the above equation also is summ
over all periodic simulation cell vectors,L , with mk2mPk

8

→mk2mPk
8 1L . Using this the components of the norm m

trix are then

NDD5(P ePNP, ~A7!

NmiD
5(P ePF22~mi2mPi

!

wi1wPi

GNP, ~A8!

NwiD
5(P ePS 21

wi1wPi
D F3

2
2

~mi2mPi
!2

wi1wPi

GNP,

~A9!

Nmimj
5(P ePF2d j ,Pi

IJ

wi1wj
14

~mi2mPi
!

~wi1wPi
!

~mj2mP
j
21!

~wj1wP
j
21! GNP,

~A10!

Nmiwj
5(P ePH d j ,Pi

wi1wj
1

1

~wj1wP
j
21!

3F3

2
2

~mj2mP
j
21!2

~wj1wP
j
21! G J F2~mi2mPi

!

wi1wPi

GNP,

~A11!

Nwiwj
5(P ePH d j ,Pi

~wi1wPi
!2 F3

2
2

2~mi2mPi
!2

wj1wPj

G
1

1

~wi1wPi
!~wj1wP

j
21! F3

2
2

~mi2mPi
!2

wi1wPi

G
3F3

2
2

~mj2mP
j
21!2

wj1wP
j
21 G J NP , ~A12!

where

NP5e2D)
j

expH 2
~mj2mPj

!2

~wj1wPj
! J

@p~wj1wPj
!#3/2 5NP21.

~A13!
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The Hamiltonian for a periodic system of electrons and io
is given by,

H52
1

2 (
i 51

Ne

¹ i
21( (

i , j
c~r i j !

2(
i

(
I

ZIc~r i I !1(
i

UMad1U ions, ~A14!

where the purely ionic terms are,

U ions5( (
I ,I 8

ZIZI 8c~r II 8!1(
I

ZI
2UMad. ~A15!

The Ewald potential,c(r ), which includes interactions with
periodic images and incorporates charge neutrality reads

c~r !5(
L

erf~Gur1L u!
ur1L u

1 (
kÞ0

4p

Vk2

3exp~2k2/4G2!2
p

G2V

5 (
kÞ0

4p

Vk2 exp~ ik•r !, ~A16!

whereV is the periodic cell volume andG an arbitrary con-
stant. The Madelung term inH is the interaction energy o
an electron with it’s periodic images and neutralizing ba
ground~e.g.,UMad521.41865/L for a simple cubic simula-
tion cell, the usual case!. To do the integrals, we represe
the Gaussians by their Fourier series

S 2

pwD 3/2

(
L

e22/w~r2m2L !2
5(

k

1

V
e2k2w/8eik•~r2m!

~A17!

and in the interaction terms use the Fourier representation
c(r ). This finally gives

H5(P eP$KP1UP%NP ~A18!

with

KP5(
i

F 3

wi1wPi

22
~mi2mPi

!2

~wi1wPi
!2 G ~A19!

UP5( (
i , j

W~m̃i2m̃j ,w̃i1w̃j !

2(
i

(
I

ZIW~m̃i2RI ,w̃i !1(
i

UMad1U ions,

~A20!

wherew̃i[wiwPi
/(wi1wPi

) and m̃i[(miwPi
1mPi

wi)/(wi

1wPi
). The interaction integral

W~r ,w![(
kÞ0

4p

Vk2 e2k2w/4eik•r ~A21!
s

-

or

is symmetric inr when the periodic cell has inversion sym
metry. Continuing, the left-hand side of Eq.~A1! is

HD[
1

2

]H

]D
5H ~A22!

Hwi
[

1

2

]H

]wi
5

1

2 (P ePH S ]KP
]wi

1
]UP
]wi

DNP

1~KP1UP!
]NP
]wi

J , ~A23!

Hmi
[

1

2

]H

]mi
5

1

2 (P ePH S ]KP
]mi

1
]UP
]mi

DNP

1~KP1UP!
]NP
]mi

J ~A24!

with

]NP
]wi

5F2
3

wi1wPi

12
~mi2mPi

!2

~wi1wPi
!2 GNP ,

~A25!

]NP
]mi

5F24
~mi2mPi

!

wi1wPi

GNP , ~A26!

]KP
]wi

5F2
6

~wi1wPi
!2 18

~mi2mPi
!2

~wi1wPi
!3 G ,

~A27!

]KP
]mi

5F28
mi2mPi

~wi1wPi
!2G , ~A28!

where we have used the fact that terms inPi andP21i give
the same contribution under the permutation sum and
combined them. The derivatives of the interaction integ
are,

]UP
]mi

5
2wPi

wi1wPi

F(
j Þ i

W@1#~m̃i2m̃j ,w̃i1w̃j !

2(
I

ZIW
@1#~m̃i2RI ,w̃i !G , ~A29!

]UP
]wi

5
2wPi

~wi1wPi
!2 H wPiF(j Þ i

W@2#~m̃i2m̃j ,w̃i1w̃j !

2(
I

ZIW
@2#~m̃i2RI ,w̃i !G

1~mPi
2mi !•F(

iÞ i
W@1#~m̃i2m̃j ,w̃i1w̃j !

2(
I

ZIW
@1#~m̃i2RI ,w̃i !G J , ~A30!

whereW@1# and W@2# denote the derivatives ofW with the
first and second argument. Comparing Eqs.~A21! and~A16!
the interaction integral may be written as
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W~r ,w!5c~r !2(
L

erfcF ur1L u

Aw
G

ur1L u
1

pw

V
~A31!

and its derivatives as

W@1#~r ,w!5¹c~r !1(
L

r1L

ur1L u3 S erfcF ur1L u

Aw
G

1
2ur1L u

Apw
exp~2ur1L u2/w!D , ~A32!

W@2#~r ,w!52(
L

exp~2ur1L u2/w!

w3/2Ap
1

p

V
. ~A33!

For an isolated system (L→`) and these would simplify to

W~r ,w!5
erf@r /Aw#

r
, ~A34!
o,

f
,

u,

ys

-

m

W@1#~r ,w!52
r

r 3 S erf@r /Aw#2
2r

Apw
e2r 2/wD ,

~A35!

W@2#~r ,w!52
1

wApw
e2r 2/w. ~A36!

At b50, the initial derivatives for the variational paramete
reduce to

ẇi52, ~A37!

ṁi50, ~A38!

Ḋ52UI . ~A39!

For large numbers of electrons it is not possible to treat
permutations. Here the approximation discussed in Sec.
is used where the kinetic pair exchange corrections gi
there are added to the identity permutation term derived h
a

B

ds
d 5.
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