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Variational density matrix method for warm, condensed matter: Application to dense hydrogen
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A variational principle for optimizing thermal density matrices is introduced. As a first application, the
variational many-body density matrix is written as a determinant of one-body density matrices, which are
approximated by Gaussians with the mean, width, and amplitude as variational parameters. The method is
illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the
molecular, the dissociated, and the plasma regime are described. Structural and thermodynamic properties
(energy, equation of state, and shock Hugonéwe presented.

PACS numbds): 71.10—~w, 05.30—d, 02.70.Lq

[. INTRODUCTION is needed to compute the thermal averages of operators
Considerable effort has been devoted to systems where
finite temperature ionéreated either classically or quantum Tr[Op]
mechanically by path integral methodasre coupled to de- (O)= Trp] 3

generate electrons on the Born-Oppenheimer surface. In con-
trast, the theory for similar systems with non-degenerate
electrons(T a significant fraction off ) is relatively un- At the first level, this many-body density matrix may be
derdeveloped except at the extreme highimit where  approximated by determinants of one-body density matrices,
Thomas-Fermi and similar theories apply. In this paper weor both spin types, as well as the ions
present a computational approach for systems with nonde-
generate electrons analogous to the methods used for ground
state many body computations. p(ri,ri:B) ... pu(ry.ri;B)

Although an oversimplification, we may usefully view the ') —

f o p(R,R";:B)= .
ground state computations as consisting of three levels of
increasing accuracl]. At the first level, the ground-state p1(ri, ;B oo palrn.I;B)
wave function consists of determinants, for both spin spe-
cies, of single-particle orbitals often taken from local density

functional theory The Jastrow factor can be extended to finite temperature

and the above density matrix multiplied by ;f(r; ,r{; ;8).
In particular, the high-temperature density matrix used in

Py(ry) ... Pp(ry) path integral computations has this form.
VYe(R)=| .- v | (1) Finally, the nodal structure from this variational density
Dy(ry) ... Op(ry) matrix (VDM) may be used in restricted path integral Monte

Carlo (RPIMC) [4—8]. This method has been extensively ap-

lied using the free particle nodes. One aim of the present
gaper is to provide more realistic nodal structures as input to
RPIMC.

This paper considers the first level in this approach. The
next section is devoted to a general variational principle,
which will be used to determine the many-body density ma-
trix. The principle is then applied to the problem of a single
particle in an external potential and compared to exact results
for the hydrogen atom density matrix. After a discussion of
some general properties, many-body applications are consid-
ered starting with a hydrogen molecule and then proceeding

) it warm, dense hydrogen. It is shown that the method and
with the nodal structure.

The finite temperature theorv broceeds similarl Rathethe ansatz considered can describe dense hydrogen in the
ni peratu y P imiiarty. .linolecular, the dissociated and the plasma regime. Structural

than the ground-state wave function a thermal density matrix thermodynamic properties for this system over a range
of temperature$T =5000 to 250 000 Kand densitiegelec-
R,R":B)=(Rle PHR")= e FEs¥ (R)¥ (R’ tron sph_ere r_ad|u_ss=1.75 to _4.() are presented.
p( A=(R| IR Es: (RITs(RY) Atomic units will be used in this paper except where ex-
(2 plicitly indicated otherwise.

The majority of ground-state condensed matter calculation
stop at this level.

If desired, additional correlations may be included by
multiplying the above wave function by a Jastrow factor,
IT; ;f(ri;), where thef will also depend on the type of pair
(electron-electron, electron-iprilComputing expectations ex-
actly (within statistical uncertainjy with this type of wave
function now requires Monte Carlo methods.

Finally diffusion Monte Carlo[2,3] methods using the
nodes of this wave function to avoid the Fermion problem
may be used to calculate the exact correlations consiste
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[l. VARIATIONAL PRINCIPLE FOR THE MANY-BODY We propose solving this equation by parameterizing the den-
DENSITY MATRIX sity matrix with a set of parametets depending on imagi-

The Gibbs-Delbruck variational principle for the free en- nary time andR’,

ergy based on a trial density matrix p(R,R":B)=p(R,0y,....qm), Where q,=q,(R":3),
F<Tr[pH]+kTTr[pInp], (5 i—1,...m (15
where 0
p=plTr[p] (6)

T 9gi(R":B) dp(R,
;1 ai(R";8) dp(R,q)

ORR =3 —

is well known and convenient for discrete systefesg.,
Hubbard modelsbut the logarithmic entropy term makes it -
difficult to apply to continuous systems. Here, we propose a Z

simpler variational principle patterned after the Dirac- |(9q| (16)
Frenkel-McLachlan variational principle used in the time-
dependent quantum probleff@]. Consider the quantity In the imaginary time derivative®, only variations ing and
o ap 2 not g are considered singeis fixed so,
(aﬂ) Tr( ap e " ol (R
SORR'B)=2 s4i(Rp)—p = (7

as a functional of
Using this in Eq.(13) gives for each variational parameter,

0= j_g 8 since these are independent,
ap
1(®)=Tr(0+Hp)? 9 J &—q(®+Hp)dR=O. (18
i

with p fixed. 1(®)=0 when® satisfies the Bloch equation
®=—"Hp, and is otherwise positive. Varyirignith 0 gives
the minimum condition

' This reveals the imaginary-time equivalent to the approach
of Singer and Smitli10] for an approximate solution of the
time dependent Scliinger equation using wave packéee
Sec. ll). Introducing the notation

Tr[60(0+Hp)]=0. (10
This may be written in a real space basis as pi= d(Inp) (19)
aq;
f f 90 (R",R;8) [O(R,R";B) and using Eq(16), the fundamental set of first-order differ-
ential equations for the dynamics of the variation parameters
+Hp(R,R";8)]dRdR'=0 (11 in imaginary time follows from Eq(18) as,

or, using the symmetry of the density matrixmandR’, no )
f PipHp dR+Z’1 Qif p;jpip“dR=0, (20)

ff 9O (R,R";8) [O(R,R";B)

or in matrix form

+Hp(R,R’; B)] dRAR’ =0. (12) Lo
Finally, we may consider a variation at some arbitrary, fixed 294 +NG=0, (21)
R’ to get
where
f5®(R.R':/3)[@(R,R’:ﬂ)+HP(R,R’:B)]dR:O
H= f pHp dR 22)

R’. (13 ,
and the norm matrix
It should be noted that in going from E@L1) to Eq.(12) a 5
density-matrix symmetric ifR andR’ is assumed, which is _ J°N
| ; e Nj=| pipjp?dR= I|m (23
a property of the exact density matrix. If the variational an- aq, q
satz does not manifestly have this invariance @&&) mini-
mizes the quantity, with

f [O(R,R";B)+Hp(R,R";8)]°dR=0. (14 NEIP(R,ﬁ;B)p(R,G';ﬂ)dR- (24)
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The initial conditions follow from the free particle limit of as variational parameters. The initial conditiongBat0 are

the density matrix at high temperatugg,-0, w=4XB, m=r' andD =0 in order to regain the correct free
particle limit, Eq.(25). For this ansatH, defined in Eq(22)
p(R,R";: B)—exd — (R—R")%4\B]/(4m\B)3N?, as
where A=1/2m. (25 H_f dr= 3h Vo] e’ 30
= | pHpdr= W+ Fﬂ-wf ) (30

Various ansatz forms fop may now be used with this ap- h
proach. After considering the analogy to real-time wave-VNere

packet molecular dynamics, the principle is first applied to 2 \312 )
the problem of a particle in an external field. VmE(ﬁ) f (r—m)"V(r)e 2r—mwgr  (31)
I1l. ANALOGY TO REAL-TIME WAVE-PACKET and
MOLECULAR DYNAMICS
. . — ’ _ ' -3/

Wave packet molecular dynamiég/PMD) was first used N—f pp'dr=[m(w+w')]"3?
by Heller [11] and later applied to scattering processes in )
nuclear physic$12] and plasma physidgl3,14. An ansatz xexp{—(m—m")%/(w+w')lexgD+D"). (32

for the wave functiony(q,) is made and the equation of

motions for the parameters, in real time can be derived From Eq.(21), the equations for the variational parameters

from the principle of stationary actidi2], are,
W= 4N+ 2wWi0— & vi2], (33
5] dtL=0, L[q,(t),a,(O)]=(slia—H|y). (26 = — 2yt (34)
This leads to a set of first-order equations, which provides an D= EV[O]— EV[Z] (35)
approximate solution of the Schdimger equation. However, 2 w '

this principle cannot be directly applied to the Bloch equa-

tion because there is no imaginary part in the density matrixin @bsence of a potential, the exact free particle density ma-
For this reason, we followed in our derivation in Sec. Il thetrix is recovered. The harmonic oscillator case is also correct

principle of Dirac, Frenkel and McLachld®], which mini-  since the Gaussian approximation is exact there. For a hy-
mizes the quantity drogen atom\=1/2,V(r)=—1/r and
1
, Y VIO= — —erf(my2/w) (36)
— 2 —_ )
f |Hy—i6]°dt, 6 R (27 m
. . . m w 8 5
This method was employed in R€fl0] to obtain the dy- V[l]:—gz erf(my2w) — \/—e 2™ ’W},
namical equations in real time. m W 3
The VDM approach and WPMD method share the zero (37)
temperate limit, which is given by the Rayleigh-Ritz prin- W
ciple (see Sec. V A At high temperature, the width of wave V2= 4/ —2m?w . 27 \/l0], (39)

packets in WPMD grows without limits, which is a known
problem of this methodi15,16]. In the VDM approach, the
correct high-temperature limit of free particles is included.
The average width shown in Fig. 10 can be used to verify th
attempts to correct the dynamics of the real-time wave pack-
. 0
ets in Ref[16].

At low temperature, the density matrix as a functionrof
oes to the ground-state wave function as discussed in more
etail in the next section. One expects this to be a fixed point
f the dynamics of the parameters andw determined by

m=0 andWw=0 while D=—E,. The B—= fixed point:
m=0, w=97/8, D=4/37 corresponds to the well known
Rayleigh-Ritz variational result for a Gaussian trial wave

As a first example, we apply this method to the problemfunction
of one particle in an external potential

IV. EXAMPLE: PARTICLE IN AN EXTERNAL FIELD

3/2
Po(r)= E) exp(—8r2/97). (39

H=—\V2+V(r). (29

In ground-state variational studies, addition of two more
dGaussians brings the ground-state energy to within 0.6% of
the exact value and similar improvement would be obtained
here.
'’y — -312 2 Results at finite8 require a numerical solution, which is
r,r',B)=(mw exp ——(r—m)“+D 29 . R . ;
pa B)=(mw) p{ w( ) } 29 illustrated in Fig. 1 comparing the Gaussian variational den-

The one-particle density matrix will be approximated as
Gaussian with meam, width w and amplitude factob,
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For the VDM ansatz, an amplitude parameieis assumed

-2 4

°f B=0.05 1 fe10 ] such that
plrrp) 4T 1947 1 N
2| | [l 4 | p(R,R"; B)=e PR {q(R'; B)}]. (42
O Imm— S — As in the one particle example, it is expected that at low
T eos 1l temperature, 83—, the otherg,—0 while D— constant.
pirrp) 04 7 1% From this assumption, E@21) implies that ag3— o
02 - 4 02
° - ° M oM =0 (43)
06 F B-O; ' I ' ‘ 1 086} aqk &QK
orp) 04 ) 1% for all variational parameters, where we have defitéd
0z r A 1070 =[pHpdR and N=[p?dR. Since dH/gdD=2H and
o] L L 0
-1 0 1 2 3

IN/oD=2N, Eg. (43 for q,=D implies D=—H/N=
—Eq. So Eq.(43) may be rewritten as

FIG. 1. Comparison of the Gaussian variational approximation
(circles with the exact density matrip(r,r’; ) (solid line) for a i (ﬂ) -0 (44)
hydrogen atom. The free particle density mattdashed ling is dq \ N
also shown. The plotted is along the line from the proton at the
origin (marked by the vertical bathrough the initial electron po- at the 38— fixed point. With the correspondence

sitionr'=1. ,

p[RAA(R",B)}1—-ePF A y(R {a}), (45)
sity matrix with the exacf17] and the free particle density = , , )
matrix at several temperatures for the initial condition ~ thiS iS equivalent to Eq(41) and thus the Rayleigh-Ritz

—1. At high temperature§3=0.05 and3=0.25 the Gauss- ground state corresponds to a zero temperature fixed point in

ian approximation correctly reproduces the limiting free par-N€ dynamics of the parameters.

ticle density matrix. At lower temperatures, the cusp in the D IS & function ofR"and 3, which is calculated by inte-
exact density matrix due to the Coulombic singularity at the9rating from 8=0 with Eq. (25 as initial conditions. The
proton becomes evident and the peak shifts to the origigero temperature limit oD is a constant,—Eg, which
somewhat faster than the Gaussian variational approximaneans in the low-temperature linfit can written as

tion. As B increases the exact result grows faster than the

variational since the correct energy;0.5, is lower than
—4/37 but the Gaussian variational approximation remain
rather accurate far>1. The free particle density matrix re-

mains centered at=1 and beyondB=0.5(T=54.4¢eV) f(R")=In{go(R)[1+ SR}, (47)
bears little resemblance to the correct result.

D(R";B)=—BEy+f(R"). (46)

SThe functionf(R') can be rewritten as,

where the functiors(R") is introduced to describe the varia-

V. VARIATIONAL DENSITY-MATRIX PROPERTIES t?onal error ir_1 the solgtipn of the Bloph equation. It is iden-
tical to zero if the variational ansatz includes the exact solu-
A. Zero temperature limit tion. It leads to loss of symmetry iR andR’, which will

In the preceding section, it was shown that for the hydro-discussed in the next section. Equati@is) now reads,
gen atom the Gaussian variational density matrix, as a func- , _ - pE , ,
tion of R converges at low temperature to the Gaussian p(RR", B—)=e"P=0y(R) ¢ho(R")[1+ 6(R")]. s
ground-state wave function given by the Rayleigh-Ritz varia-

tional principle. It is generally true that the Rayleigh-Ritz  For certain potentials, several fixed points of the dynam-
ground-state corresponds to the zero temperature limit of ths can exist. Erom Eq48), it follows that only the lowest
VDM as we now show. energy state contributes to physical observables calculated
The Rayleigh-Ritz principle states that for any real param+rom Eq.(3). This completes the argument that the zero tem-
eterized wave functiony(R,qy,...,0y) the variational en-  perature limit of the VDM corresponds to the Rayleigh-Ritz
ergy ground state.
In the case of an anti-symmetrized ansatz for the density
f‘Z’(R)H‘/IZ(R) dR (40)  Matrix, it can be shown that the fixed point of the dynamics
JYp(R)“dR in imaginary time corresponds to the Rayleigh-Ritz ground
state for an antisymmetrized wave function.
is greater than or equal to the true ground-state energy even
at the minimum determined by B. Loss of symmetry

E(fah)=

p The exact density matrix is symmetric undB—R’.
—E({gh)=0Vk. (41  Since we have singled o’ as the initial point for the
J0k imaginary time dynamics, it is not clear that the approxima-
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20 ; - rate than the usual ground state variational Gaussian yesult
This has consequences for calculating the equation of state
19 b B=40.0 ] particularly at low density. Slightly more complicated, ex-

plicitly symmetric forms for the VDM could be used but in
this paper we will continue to explore the basic Gaussian
approximation.

C. Thermodynamic estimators

D(r; B)

Since the VDM, except in the simplest cases, is not exact
various estimators for the same quantity will differ. For ex-
ample the variational principle introduced in Sec. Il consists
essentially in globally minimizing the squared difference be-
tweendp/dB and Hp, either of which can be used in esti-
mating the energy. As mentioned above the energy estimator
Eqg. (51) and its kinetic and potential energy pieces do not
automatically satisfy the virial theorem for Coulomb systems
at low density. As an alternative to E¢h1), one can use the
thermodynamic estimators,

FIG. 2. D(r,B) from the Gaussian approximation in the ground-
state limit (solid line) of the hydrogen atom. Deviations of this

function from linearity indicate a breakdown of symmetry in the 9
Gaussian approximation fop(r,r’;8). The dashed line is (Ey=— <—|n p>, (52
—8r2/9m+4B/37+3/2In2 expected from the Rayleigh-Ritz P
ground state Eq(39).
N
tion given in Eq.(29) automatically satisfies this condition. (K)y=— E<5|n P>, (53
For the free particle limit and the harmonic oscillator, where
the Gaussian is the exact solution, it obviously does but in &/ g
general it does not. _ _ (V)=—— <—2In p> (54)
As a specific example, we consider again the ground-state B\ ode

limit of the hydrogen atom in the Gaussian approximation.
Using the ground-state values for the variational parameterd$or the total, kinetic, and potential energy. These estimators

m=0 andw=97/8, Eq. (29) becomes, satisfy
lim p(r,r'; B) =P (8/9m2) %7 (49) (E)=(K)+(V) (55)
B*mc
For this to be symmetric undek-r’, we must have _b);_the following argument. Any functiof=f(8\,3e?) sat-
isfies
lim D(r’;B)=—8r'?/9m+c(B) (50)
B of \ of L of 56)
_ —=\N—+e—.
and from the result foD, limg_..c(B)=4pB/3m+c;. P I e
Figure 2 compares thB(r,B) from the Gaussian VDM )
with Eq. (50) usingc(B) =4p/37+3/2In 2. From Eq. (21) it follows that all parametersq;

— . 2 H
There are several consequences of this small violation of 9i(R’;8,\,€%) have this property and therefore so does

R<R’ symmetry. As shown generally in the section above,(N€ variational density matrix. , ,
In the zero temperature limit, the thermodynamic estima-

mrotl:]ne d-ﬁs Qto; el:"nrglrt —f(I)Dr a'SG;ZZ;;?L;%Z’I}?Jt]zcti\gnivﬁiréil fotors satisfy the virial theorem, which is also satisfied by any
g 9y ’ xact and any variational Rayleigh-Ritz ground state. From

l055 of ymmetry this-s not the same a8 the eneray given LIS ZC1C {emperature imit o the VDM given by Eg8) and

the estirr):ator y 9y g the 1/3 factor in Egs.(53) and(54), it is seen that the sym-
metry error§(R’) is unimportant in this limit. It should be

Tr[Hp] noted that calculating the derivatives fg) and (V) in-

Trip] (51)  creases the numerical work. The pressure is estimated from
p

in the B— limit, which for the hydrogen atom gives the 3(P)o=2(K)+(V). (57)
more accurate resW{E)=—0.4709. This will be seen again
below for the hydrogen molecule where E§1) also gives

more accurate ground-state energies. Other consequences are
less pleasant. Although the energy is more accurate the virial We represent the many-particle density matrix by a deter-
theorem,(K)=—(U)/2, between the kinetic and potential minant of one-particle density matricégq. (4)]. It can be
energy is violated by about 3%wvhile both are more accu- written as

(By=(H)=

VI. MANY-PARTICLE DENSITY MATRIX



PRE 61 VARIATIONAL DENSITY MATRIX METHOD FOR WARM, . .. 3475

FIG. 3. Gaussian approximation for the ground state of a hydrogen molecule for bond Rerigtb top left panel shows the Gaussian
mean parametan for the two electrons. These stay in the center of the bane Q) until aboutR=2 and then attach themselves to the
separating protons®{R/2). The width parameter, displayed in the lower left panel, makes the transition from the optimal value for a helium
atom,R=0, to the hydrogen atom resuit=97/8 at largeR. The right panel shows the dissociation energy for the singlet state computed
from Eq.(52) (open circles with error barsind the thermodynamic estimator ({D/d3) (dashed linecompared to the results of Kolos and
Roothan(solid line).

Application to an isolated hydrogen molecule at low tem-
p(RR'.8)=2 epl | P1(Tk.p, . B) perature is shown in Fig. 3. This is for the singlet stéte-
s K tiparallel electron spins The triplet state is considered later
after a discussion of how to treat permutation terms in the

=2 €[] (mwp) 2 parameter equations. The bond length at minimum energy is
P K 1.47, compared with the experimental value of 1.40. The
1 direct energy estimator E@51) gives a dissociation energy
Xexw’ — ——(re—mp )2] (58) of 4.50 eV at the minimum compared to the experimental
Wp, : value of 4.75 eV. BeyondR=2, the energy rises quickly

toward the value given by the Rayleigh-Ritz estimator
The permutation sum is over all permutations of identical—dD/dg.

particles(e.g., same spin electronand the permutation sig-
nature ep== +1. The initial conditions for Eq(21) arew,  VII. ANTISYMMETRY IN THE PARAMETER EQUATIONS

=0, m=r,, andD = 0. For this ansatz the generator of the The determinantal form for the VDM, Ed58), is cor-

norm matrix, Eq.(24), rectly antisymmetric under exchange of identical particles.
Since ion exchange effects are negligible at the temperatures
N=exaD+D' € (Wet W )]~ 32 considered here these are ignored.
X )27; Pl—k[ LW Pk)] The determinantal form leads M terms in the equations

of motion for the variational parameters presented in Appen-
X exp{— (my—mp )2/ (Wit wp )} (59 dix A. It was originally hoped that exchange effects could be
ignored in these equations while retaining the full determi-
For a periodic system the above equation is also summedantal form for the VDM but this leads to an instability in
over all periodic simulation cell vectors,, with m,— mp, fermionic systems, e.g., it results in an unphysical strong

—my—mp +L. If only the identity permutation is consid- attraction between two hydrogen molecules.

dth i q h A practical means of treating all exchange terms, in par-
ered the norm matrix is easily inverted so that E2{) gives ticular terms involving the potential energy, in the variational

parameter equations was not found. Instead it was necessary

_ 8 , R L . ;
W= —2WHp— = W2H (60)  to use an approximation similar to that used in the real-time
3 computations[13,16: only pair exchanges in the kinetic-
energy terms were retained. This will be illustrated for the
M= —WyHm,, (61 hydrogen molecule after first giving the explicit form for this
correction. It is stressed that, unlike the real time computa-
) 3 n tions, once the variational parameters are determined the full
D=- §n+1 HD—ZE wiHWi, (62 determinantal form is then used in calculating the various
=1 averages.
For two particles with parallel spin, the correction term to
where L S
the kinetic energy is given by,
10H N, ~
Ho=3 dak (63 AK= N dR pasKpas— f dRpKp, (64)
For systems of electrons and ions the full expressiorHfgr pas=p1(r)pa(ra)—pa(r)pi(ra), pr=p1(ry)ps(ry)

and the norm matrix are derived in Appendix A. (65)
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. ) ) FIG. 5. Energy of repulsion for the triplet ground state of the
FIG. _4' Effect of antisymmetry on the density-matrix param- hydrogen molecule for bond lengk The thermodynami¢dashed
eters, width and mean, for a hydrogen molecule. The praange  i,q) anq the direct estimator, E(G1), (circles with error basfor
black dots along axis) are separated by 1.8 and the initial electron y,o G4yssian approximation using the kinetic exchange term in the
posmons_re(BZO): +1.5 along _the mo_IecuIar axis. The solid line parameter equations are compared with the Kolos and Roothan re-
for the singlet statdelectron spins antiparalleshows both elec- g g (solid ling). The thermodynamic estimator for the Gaussian

trons centered in the molecular bond at low temperatlleege ). 455 oximation with all exchange terms is shown by the dot-dashed
For the triplet statgparallel electron spins the electronslong line.

dashed lingare centered close to the protons. The approximation of
including only kinetic pair exchange&ot-dashed ling gives a
similar result for the mean, with the electrons centered slightly in—T
side the protons but overestimates the Gaussian widfhpane).

At high temperature §<4) exchange is unimportant and the pa-
rameters are nearly the same for all cases.

hese equations lead to an effective repulsion between the
Gaussians for two electrons with parallel spin if there is sig-
nificant overlap. As a example of this effect the variational
parameters for the singlet and triplet states of the hydrogen
molecule are compared in Fig. 4. For the triplet state param-
NAS:j dRpas N :f dR pf (66)  eters the solution including full exchange effedtsng-
dashed lingare compared with those obtained in the kinetic
For the Gaussian ansatz in E§8) it becomes, pair exchange approximatiddot-dashed line The approxi-
mation now prevents the Gaussian means for the same spin
4NN, i -
AK=— ——[3(1-%?)—Q?], (67) electrons frorr_1 coIIaps!ng to the bond center. at lower tem
wWN perature and is numerically close to the solution for full ex-
change.
w Even at the lowest temperature considered here in the
2\/@‘ dense hydrogen simulatio§000 K) exchange effects be-
tween same spin electrons are negligible beyond a few ang-
) stroms, i.e., one or perhaps two nearest neighbors. Figure 4
QZZW(ml_mZ)Zy No=W%e"~1. (68)  for the triplet state thus overestimates the effect likely in
dense hydrogen. The main effect of including exchange in
The corrections to the norm matriX are neglected in order the parameter equations is probably to prevent the instability
to keep its analytically invertible form. The corrections to mentioned above.

W=W,+W,, W=

Hgqk in Eq. (63) are given by Figure 5 shows an energy comparison for the triplet
ground state of the hydrogen molecule. First, we compare the

AK k:i iAK (69) Gaussian approximation using only the kinetic exchange

2N dgi term in the parameter equations. For the direct estimator, Eq.

h . d . f th follow f (51), one finds fairly good agreement with the quantum
Eqi E:é)(;)r?gt'(%g)to ynamics of the parameters follow romchemistry resul{18]. The thermodynamic estimator gives a
' ' somewhat more repulsive triplet interaction ®er~2. Con-
Aw;=—2w;(AKp+ 2 w,AK,,) (70)  sidering also the Coulomb exchange terms in the Gaussian
! approximation leads to the dot-dashed line for the thermody-
At = —w,AK,, (71) namic estimator. We conclude that leaving out the Coulomb
1 exchange terms in the parameter equations for efficiency

. reasons is a reasonable approximation in many particle
AD = - Z(AKD+W1A KW1+W2A sz). (72) Simulations.
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FIG. 6. Proton-proton pair correlation function from VDM FIG. 7. Proton-electron pair correlation functions from VDM
(solid line) and RPIMC(dashed lines at;=1.75, 2.0, and 4.0 for (solid line) and RPIMC(dashed lines at;=1.75, 2.0, and 4.0 for
T<125000K. T<125000K.

VIIl. RESULTS FROM MANY-PARTICLE SIMULATIONS . . . L .
which leads to complete dissociation and ionization in the

In this section, we report results from VDM Monte Carlo low-density limit at nonzero temperatures.
simulation with 32 pairs of protons and electrons in the tem- Considerable differences between the proton-proton pair
perature and density range of 500&K<250000K and correlation functions are found at,=1.75 below T
1.75<r¢=<4.0. Particle configurations are generated by se=20000K where VDM shows still a fair number of mol-
quencing over all particles, giving the particle a uniform dis-ecules while RPIMC predicts a metallic fluid where all bonds
placement, computing the new density matrix from E84)  are broken as a result of pressure dissociaf®@0]. This
and(15) and accepting or rejecting the new configuration byeffect has to be verified by RPIMC simulations with VDM
the Metropolis algorithm. This is completely analogous tonodes because free particle nodes could enhance the transi-
the usual Monte Carlo ground-state variational calculationgion to a metallic state.
except for the additional work of determining the variational ~ The position of the peak shifts from 1.45 at the lowest
parameters based on the proposed configuration. density, corresponding to;=4.0, to 1.3 atrg=1.75. The
Although the Gaussian ansatz VDM will be seen to pro-same trend has been found in the RPIMC simulat[@j$ut
vide a reasonable model for hydrogen over the full densitythe opposite was reported in Ref&1] and[22].
and temperature regime, a large purpose in presenting these In the proton-electron pair correlation functions shown in
results is to serve as a base for documenting future improve~ig. 7, one finds a strong attraction present even at high
ments from better VDM’s and the application of RPIMC. temperatures such as 250000 K. At low temperatures, the
The proton-proton pair correlation functions are shown inelectrons are bound in atoms and molecules. This pair corre-
Fig. 6. For temperatures below 20000 K, a peak emergektion function does not show a clear distinction between the
near 1.4 that demonstrates clearly the formation of moliwo cases. From studying the height of the peak at the origin
ecules. The comparison with RPIMC simulatiof@19] at  multiplied by the density, one can make comparisons of the
low density shows that the peak positions agree well butiumber of bound electrons at low temperature. Similar to the
RPIMC predicts a significantly bigger height indicating a molecular fraction, one finds a reduction of bound electrons
larger number of molecules. This could be explained by thevith decreasing density below that corresponding rto
missing correlations in the VDM ansatz. =2.0. The comparison with PIMC shows that VDM under-
At a density ofr,=2.0, proton-proton pair correlation estimates the height of the peak. This is probably a result of
functions from RPIMC and VDM are almost identical. If the the Gaussian ansatz, which does not satisfy the cusp condi-
peak is sufficiently separated from the remaining curve, théion at the proton.
area under the peak multiplied by the density gives an esti- Figure 8 shows the effect of the Pauli exclusion principle
mate for the molecular fraction. By comparing the estimatdeading to a strong repulsion for electrons in the same spin
for different densities at 5000 K, one finds that the moleculaistate. This effect is not present in the interaction of electrons
fraction is diminished when the density is lowered below thatwith antiparallel spin displayed in Fig. 9. There one observes
corresponding t@ = 2.0. This effect is well-known and is a the effect of the Coulomb repulsion at high temperature. At
result of the increased entropy of dissociated moleculedpw temperature, one finds a peak at the origin as a result of
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FIG. 8. Electron-electron pair correlation function for electron With increasing density and decreasing temperature. At low

with parallel spin from VDM(solid line) and RPIMC(dashed lines ~ temperature, the attraction to the protons dominates, which
atre=1.75, 2.0, and 4.0 fof <125 000 K. leads to a decreasing average width. Finally bound states

form and the width approaches a finite limit. At low densi-

the formation of molecules, in which two electrons of Oppo_ties, this is close to the ground-state squared width of the

site spin are localized along the bond. The differences frorﬁso:atliq mlollecule, 3.138. he i | f he th
the PIMC graphs can be interpreted as a consequence of the nrig. L1, we compare the interna energy from the t. er
different molecular fractions observed in Fig. 6. modynamic estimator in Eq52) and the direct estimator in

The average squared widthof the Gaussian is shown in

Fig. 10 as a function temperature and density. At high tem- 2.5 o or0TE R
2; e--er=2DE s
=40 r=30 r=20 r=186 r=175 <+-<r=4TE
: < 15 F ¢ —<r=4DE ;
2 ] S 1k +r=2 RPIMC ]
W e e R - : Xr,=4 RPIMC
3 584 0.5 F 4 1
2 3 :
g) L p—— ;¥ 0f ]
3 X :
2 13 -0.5 .
1 heme—] p— 18 0
0
x
HIN 3 0.0
1= pr———— p— 15
O -0.1
3 x .
2 s N
1 X ¥\-—-—. \_— o — g -02
0 A
3\ s w
\ =4 -0.3
0
10 '\' x -0.4
3
5 Q
0 DN N S N -05 4« 1
024024024024024°6 L . L
r 0 10000 20000 30000 40000 50000

T (K
FIG. 9. Electron-electron pair correlation function for electron (9
with antiparallel spin from VDM(solid line) and RPIMC(dashed FIG. 11. Internal energy per atom versus temperature from the
lines atrg=1.75, 2.0, and 4.0 fof <125 000 K. Note the change VDM using the thermodynamiETE, Eq.(52)] and direct estimator
in scale in the last row. [DE, Eqg.(51)] compared with RPIMC results.



PRE 61 VARIATIONAL DENSITY MATRIX METHOD FOR WARM, . .. 3479

20

T T '

< Experiment [23]
4 + 0O Experiment {24]
Linear mixing

| O—Or=1.75DE
| @--@r=175TE

& —————————

15 |+ —-— Tight-binding MD
r ---- PACH
= Sesame
@ 3 | ——- limit p=4p, J
g 10 A --ARPIMC
= 3 — |®—eVDMTE
o [ AR s 8 [e--eVDMDE
3 =
S N SR
R s TR I |
4
0
0 1t

2 S PT hbba =y
O 1 1 !
0.25 0.50 0.75 1.00 1.25
157 p (gem™)
— / o’
_§ - / ,«""’4 + | FIG. 13. Comparison of experimental and several theoretical
= 17 / rad + ] Hugoniot functions
o i / ,_,.2;’:'7 + ]
05 L d»"":/ ] dotted ling, Padeapproximation in the chemical picture
,/ 1 (PACH) by Ebelinget al.[28] (dotted ling, RPIMC simula-
e tions [29] (triangles, VDM direct estimator{ DE, full dia-
0 s N S I ] monds, Eq.51)] and VDM thermodynamic estimatilE,
0 10000 20000 30000 full circles, Egs.(52—(54)]. The long dashed line indicates
T(K) the theoretical high pressure limit=4p, of the fully disso-

in high and | ciated non-interacting plasma. In the experiments, a shock

FIG. 12. Pressure versus temperature in high and low tempergg o yonagates through a sample of precompressed liquid
ture range. VDM pressure is calculated from virial relation usmgdeuterium characterized by its initial Stat&q(Vo,pg). As-

both the direc{DE, Eq. (S1] and thermodynami€TE, Eqs.(53) suming an ideal shock front, the variableos 0%‘,tr?e. shocked

d(64 timators for kineti d potential . . . . .
and (54)] estimators for kinetic and potential energy material E,V,p) satisfy the Hugoniot relatiof30],

Eqg. (51). Both agree fairly well at low density. Differences H=E—Eg+ 3 (V=Vg)(p+po)=0. (73)
build up with increasing density and decreasing temperature.

Comparing with RPIMC simulations, one finds that the The initial conditions in the experiment wefe=19.6 K and
VDM energies are generally too high. The magnitude of thisp=0.171 g/cmi. We setp,=0 becausep,<p. We show
discrepancy shows the same density and temperature depafo VDM curves based on the thermodynamic and direct
dence as the difference between the two VDM estimatorsestimators. FoEE,, we use the corresponding value of the

The difference from the RPIMC results could be explainedground state Of the iso'ated hydrogen mo'ec[ﬂE:
by the missing correlation effects in the VDM method. —0.955 ancEgE— —1.124.

At high temperature, the thermodynamic estimator always e expect the difference of the two estimators to give a
gives lower energies than the direct estimator. Below o ,gh estimate of the accuracy of the VDM approach. At
=25000K, the orde.rlng is reversed. This is consistent Wltl’high temperature, the difference is relatively small and
the results from the isolated atom and molecule. The CONSggreement with RPIMC simulations is reasonable. Both
quence is that the direct estimator is actually closer to thg/py estimators indicate that there is maximal compressibil-
value expected from RPIMC simulations. However, it shouldity around 1.5 Mbar. However, in this regime of high density
be noted that this estimator is not thermodynamically consisy, g relatively low temperature a more careful study seems
tent(see Sec. VR unavoidable. We suggest RPIMC simulations using the

In Fig. 12, we compare pressure as a function of temperaypm nodal surface to restrict the paths.
ture and density from the two VDM estimators with RPIMC

results. At low density, the agreement is remarkably good.
With increasing density and decreasing temperature, the dif-
ference grows. For densities ovey=2.0 below 10000 K, The VDM approach provides a way to systematically im-
one finds a significant drop in the direct estimator for theprove the many-particle density matrix. Already the simplest
pressure. We interpret this effect as a result of the thermoansatz using one Gaussian to describe the single-particle den-
dynamic inconsistency. sity matrices gives a good description of hydrogen in the
Figure 13, compares the Hugoniot from Laser shock waveliscussed range of temperature and density. The method in-
experimentg23,24] with results from several theoretical ap- cludes the correct high-temperature behavior and shows the
proachegSesame data base by Kerlep] (thin-solid line, expected formation of atoms and molecules. The thermody-
linear mixing model by Rosdgdashed ling [26], tight- namic variables are in reasonable agreement with RPIMC
binding molecular dynamics by Lenoslet al. [27] (dash-  simulations. The presented Gaussian ansatz can be improved

IX. CONCLUSIONS
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in several ways. One could use a sum of Gaussians, addhere the amplitud® and the widthsv, and meansn, are
underestimated correlation effects by including a Jastrovihe variational parameters. The permutation sum is over all
factor in the ansatz or use a two-step path integral. Furthepermutations of identical particlée.g., same spin electrons
one can use this essentially analytic density matrix to furnistand e,= +1 is the permutation signature. The initial condi-
the nodal surface in RPIMC simulations, replacing the freeions arew, =0, my=r,, andD=0.
particle nodes by a density matrix that already includes the For this ansatz the generator of the norm matrix,
principle physical effects. This level of accuracy seems to be
required to determine a Hugoniot function that is very sen- B  Nq—32
sitive to the different level of approximations made by vari- N_; 67’1_,([ [”(Wk+w7’k)]
ous theories.
><exp{—(mk—m;k)zl(wk+w7’3k)}exp(D+D’).
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APPENDIX. GAUSSIAN APPROXIMATION
INTERACTION TERMS Npp= ; epNp, (A7)

The general equations for the variational paramejensa

X ) . —2(my—myp)
arameterized density matrix, from EQ1), are i P
P y E(Q ) Nm-D:E € Y N7), (A8)
! P WI +Wfp_
LA a0 (A1) |
_—— q: ,
2 99 s -1 3 (mj—mp)?
where Nup= = P witwp |2 witwy N
(A9)
HEJ’ pdeR=f pHp, dR (A2) -
! 5 28,51 (M=mp) (my—mp-1)
. = + N,
and the norm matrix Nmimi = P Wi+ W, (W +wp) (wj+ij—1) P
Al
_ 2 ; *N (A0
Nji=| pjpip®dR= ["nm, (A3) 5o L
q'—q WU7HI N E iP n
W €p
with MW P W; +Wj (WJ +WP;1)
3 (m=mp-2)?]) [2(m—mp)
N= f p(R,;B)p(R,G';B) dR. (Ad) X3 ||| W, N
] I
The subscript in Eq. (A2) indicates that only onp needs to (A11)
be antisymmetric and the identity permutation can be used in
the other.(We are also dropping ! prefactors, which are 5P, 3 2(mi—m7>i)2
the same for the norm matrix and thus cancel )otlihis NW.WJ.=E €p) 7o 2|5~ ,
) . . . i P (wWi+wp)-|2 Wj+Wp.
appendix contains the detailed formulas for these equations i ]
for a parameterized Gaussian density matrix applied to a 1 3 (Mm—mp)2
Coulomb system. n S A
Repeating Eq(58) the parameterized variational density (Wi+W7>i)(Wj+W7>j*1) 2 witwp
matrix is an anti-symmetrized product of one-particle density 5
matrices, 3 (mj— mp}fl)
2 wrwpn Np, (A12)
p(RR'.B)=2 epll palricirp, .B)
Pk where
:2 fpeDH (’7TW73)73/2 (mj_mp_)z
P k K expl — ——— 1
(Wj+wp)
2D ! )
Np: e H = N'pfl.
i

[ (v W ) T2

1 2
Xex —W—(rk_mpk) ) (A5)

Pk (A13)
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The Hamiltonian for a periodic system of electrons and ionds symmetric inr when the periodic cell has inversion sym-

is given by,

1 e
__i=§:l Vi+Y Z:J (rij)

=2 20 Ziri)+ 2 Unagt Uions,  (A14)
where the purely ionic terms are,
|0ns 2 2 ZZvlﬂ(thE Z UMad (A15)

<1’

The Ewald potentialy(r), which includes interactions with
periodic images and incorporates charge neutrality reads,

¢<r>=§ +

k#0

41
Qk?

erf(G|r+L]|)
Ir+L|

Xexp — k2/4G2) - m

—2 k2exp(|k r), (A16)

where() is the periodic cell volume an@ an arbitrary con-
stant. The Madelung term i is the interaction energy of

an electron with it's periodic images and neutralizing back-

ground(e.g.,Uyaq= — 1.41865L for a simple cubic simula-
tion cell, the usual cageTo do the integrals, we represent
the Gaussians by their Fourier series

1

2 3/2 )
—2MW(r—-m—L)“_ -
] Temmzg

e—kzw/Beik~(r—m)

(A17)

#(r). This finally gives
H=2 ep{Kp+UpNp (A18)
P

with

(A19)

- 2. ZW(M— R, , %)+ > Upag+ Uions,
(A20)

WhereriEWiwpi/(Wi+wpi) and m;=
+w7>i). The interaction integral

(Mywyp, +mpw;)/ (W

A '
W(rw)=3 ope Kwielher (A21)
k#0
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metry. Continuing, the left-hand side of E@1) is

10H
=570 (A22)
g o_LH 1 Kp  Wp)
Wi 2 gw; _2 aw, aw; Np
ﬁNP
+(KptUp) == (A23)
1H &KP aup
Him,= 2 0m 2 Np
+(Kpt up) } (A24)
with
INp 3 (m—mp)?
i +2 ,
IW; WitWp (Wit wp)
(A25)
INp 4(mi_m73i) N 226
am; wi+wp |7 (A26)
aw; (Wi+WPi)2 (W +W7D)
(A27)
Kp_| g m A28
amy | O w7 (A28
where we have used the fact that termsPinrand P~ i give

the same contribution under the permutation sum and so
and in the interaction terms use the Fourier representation fafombined them. The derivatives of the interaction integral

are,
—r-__ [1]
am,; w+w7, ;, WS — g Wi+ )
-2 ZWHm-R ,Wi)}, (A29)
aUp 2W’p. 5
= | (P — e T T
IWj (Wi+WPi)2{WPi 12# WEEI(Fm, — My @+ )

-2 ZWm - R, ,Vvo}
+(mp—mi)-[2 WUy — g W+ W)
! i

-2 ZWiH(m—R, ,Vvo”, (A30)
|

where W[ and W2 denote the derivatives alV with the

first and second argument. Comparing Eds21) and(A16)

the interaction integral may be written as
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r+L r 2r
erf | | WH(rw)=—— erf[r/\/W]——e’rz’W ,
W(r,w)= D Y || mw A31 r Y
(r,w)=y(r)— 2 thﬁ (A31) (A35)
and its derivatives as 1
WE(r W)= — e T, (A36)
W/ W
W (r,w)=V(r)+ 2, A IrL
’ = [r+L|° Jw At 8=0, the initial derivatives for the variational parameters
reduce to
2Ir+L| 5
+ exp—|r+L[%w) |, (A32) W =2, (A37)
W
o=+ L[2w) m;=0, (A38)
exp(—|r w)
WE2l(r w) = — +—. (A33) .

( 2 w3/ Q D=-U,. (A39)
For an isolated systeni(—) and these would simplify to, For large numbers of electrons it is not possible to treat all
permutations. Here the approximation discussed in Sec. VI
W(r W)= erf{r/\w] (A34) is used where the kinetic pair exchange corrections given
’ r ' there are added to the identity permutation term derived here.
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