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Dependence of conductance on percolation backbone mass
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We study(a(Mg,r)), the average conductance of the backbone, defined by two points separated by Eu-
clidean distance, of massMz on two-dimensional percolation clusters at the percolation threshold. We find
that with increasingvi g and for fixedr,{o(Mg,r)) asymptoticallydecrease$o a constant, in contrast with the
behavior of homogeneous systems and nonrandom frastath as the Sierpinski gaskén which conduc-
tance increases with increasiMyg . We explain this behavior by studying the distribution of shortest paths
between the two points on clusters with a givdr . We also study the dependence of conductancélgn
above the percolation threshold and find tfiatslightly abovep,, the conductance first decreases and then
increases with increasing g and(ii) further abovep,, the conductance increases monotonically for all values
of Mg, as is the case for homogeneous systems.

PACS numbgs): 64.60.Ak, 64.60.Fr, 05.45.Df

I. INTRODUCTION mass of the backbone defined by these points.
One might expect that, for fixed, the average conduc-
There has been considerable study of the bond percolatid@nce wouldincreasewith increasing backbone mass be-
cluster considered as a random-resistor network, with eackuse there could be more paths through which current can

occupied bond having unit resistance and nonoccupied bond9W- In fact, we find that the average conductadeereases

having infinite resistancEL—3]. In two dimensions, the con- onotonically with increasing backbone size, in contrast
figuration studied is typically ah XL lattice and the con- with the 'beha\{lor of homogenequs systems and nonr_andom
9 ypically fractals in which conductance increases. We explain our

ductance is measured between two opposite sides which afiqing by first noting that the conductance is strongly cor-

assumed to have infinite conductarjde-16]. The backbone yg|ated with the shortest path between the two points, and

of the cluster is then defined as the set of bonds that argen studying the distribution of shortest paths along the

connected to the two sides having infinite conductancéackbone between the two points for a givty. This

through paths that have no common bond. analysis extends recent studies of the distribution of shortest
At the percolation threshold, the backbone mass scales geiths where no restriction dig is placed19-22.

(Mg)~L% with dg=1.6432+0.0008[17] and in this “bus

bar” geometry is strongly correlated with. The average Il. SIMULATIONS

conductance of the backbone as a functionLdfias been Our system is a two-dimensional square lattice of gide
studied extensively and has been found to scalg(@s =1000 with pointsA andB defined asA=(L—r/2, 500) B
~L~* with 7=0.9826+0.0008[17]. =(L+r/2, 500). For each realization of bond percolation on

Recently, the distribution of masses of backbones definedlis lattice, if there is a path of connected bonds between
by two points i.e., backbones defined as the set of thoséNd B, we calculate(i) the length of the shortest path be-
bonds that are connected by paths having no common bond¥€€nA andB, (i) the size of the backbone defined Ayand
to two points separated by distancevithin anL XL lattice, B, and(iii) the tota! cqnductance betweémnd B. We per-
has been studigd 8]. This geometry has particular relevance form 100000 realizations at the percolation threshql,
to the oil industry where the oil field is represented by the 0.5, for e.ach of 8 values af (1, 2, 4, 8, 16, 32, 64, and
percolation cluster and the two points represent the locatioft2d: We bin these results based on the value of the back-
of injection and production wells. One finds that when POn€ MassMg, by combining results for all realizations
<L, there is a very broad distribution of backbone massed/ith 2'<Mg<2""" and choosing the center of each bin as
for a givenr. Figure 1 illustrates some typical percolation € value ofMg. _ .
clusters and their backbones defined in this configuration. N Fig- 2@, we plot the simulation results for the average
Because of the broad distribution of backbone masses wePnductancgo(Mg,r)) and find that the conductance, in
have the opportunity to study the conductance between thedgCt: decreaseswith increasingMg. The decrease is seen

two points separated by a fixed distamaes a function of the More clearly in Fig. &), in which we plot scaled values as
discussed below.
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FIG. 1. Typical percolation clusters. The striped sites and the black sites are both part of the percolation cluster; only the black sites form

the cluster backbone defined by sitesndB (black squares Note in(a), with backbone size 6, the shortest path,betweenA andB is
5—the length of the shortest path must always be less than the backbonelmhase] (c) illustrate that in clusters with large backbones,
the length of the shortest path betwe®@ndB can take on a broad range of values.

age conductance on the Sierpinski gasket, a nonrandom fraesults logarithmically by forming the average over samples
tal, the first three generations of which are illustrated in Figscentered at log’.

3(a)—3(c). Because the Sierpinksi gasket is not translation- Figure 4a) shows the simulation results fé&t(/|Mg,r)

ally invariant, the analog of the average conductivity be-for r=1 for various backbone masses. The plots collapse,
tween two points in the percolation cluster is the conductiv-the only difference in the plots being the values of the upper
ity averaged over all pairs of points separated by distance cutoffs due to the finite backbone size. Figure 1 illustrates
At each successive generation, there are two types of pairbow the size of the backbone constrains the possible values
(i) pairs which correspond to pairs in the previous generatiomf the shortest path. For all values ldfy, a section of each
(e.g., A and B and (ii) pairs which do not correspond to plot in Fig. 4a) exhibits power law behavior. In Fig.(d),

pairs in the previous generati¢e.g., D and E It is obvious  we show the distribution®(/|Mg,r) for differentr and a

that as we move from one generation to the next, the congivenMj. In Fig. 4(c) we see that when scaled witfmin the
ductance between pairs of tygg increases because there plots collapse, so we can write(/|Mg,r) in the scaling

are more paths between the points than in the previous geferm

eration. On the other hand, the conductance between the

pairs of type(ii) are lower on average than between the pairs 1 s\
present in the previous generation because on average the P(/[Mg,r)~ ( )
shortest path between the two points is longer than between

the pairs in the previous generation. However, for any givernp expression fors can be found by recognizing that we can
r, the shortest path between any two points has a fixed ubPgfrite the well-studied distributior(/|r), the probability

bound independent of the generation. Due to this bound Ofh4t the shortest path between two points separated by Eu-
the shortest path, the average conductivity increases WitRigean distance is / independent oM, as

succeeding generations. This is shown in Figd) 3vhich

shows the average conductivity calculated exactly for gen- , o
erations 1 0 6 for -1, 2 and 4, P(IN= | PUAMePMENAMs, @
/

@
r Amin r dmin

where (i) P(Mg|r) is the distribution of backbone masses
given distancer between the points which determine the
In order to understand why the average conductance dackbone andii) c, is the lower cutoff onMg given /.
the percolation backbone decreases with increaligg we ~ P(Mg|r) has the forn{18]
must(i) recognize that the conductance is strongly correlated
with the shortest path23] between the two points an)
studyP(/|Mg,r), the distribution of shortest paths between
the two points for a given backbone mass. Hence we next
create theP(/|Mg,r) probability distribution, binning our wheredg is the backbone fractal dimension and

IV. SHORTEST PATH DISTRIBUTION

1 [Mg| ™®
P(MB|r>~rT(rT:> . [r=L], &)

B
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FIG. 3. (a)—(c) Three generations of the Sierpinski gasket. At
each successive generation, there are two types of pairs of points:
pairs which correspond to pairs in the previous generation and pairs
which do not. For example, in the second generation the pairs AB
and AC are present in the previous generation but the pair DE has
no corresponding pair in the previous generation. Similarly, the
pairs AB, AC, and DE in the third generation correspond to pairs in
the second generation, but the pair FG does not. Because all points
are multiply connected, the mass of the backbone between any two
points in each generation is equal to the mass of the entire gasket.
(d) Average conductance between all pairs of points separated by

107 102 103 104 distancer on the Sierpinski gasket versus the gasket mass. The
0.8 Me points correspond to successive generations of the Sierpinski gas-
g ' ) ' ket.
0.7 (d)
0.6 rg=0d/dg (4)
=05
5 0.4 is the exponent for the blob size distributiph,24]. From
02 1 / —9/
0.1 P(/|r)~ , (5)
rdmin rdmin
0.0 - J -
107 102 108 104
Mg whered,,;, is the fractal dimension of the shortest path. Since

/~r9min and Mg~r9%, implying /~Mg”‘i”/d‘3, the lower
FIG. 2. Average conductance versus backbone nfasSimu-  cutoff ¢, in Eq. (2) scales as

lation results at the percolation threshold fer 8, 16, 32, 64, and
128, wherer is the distance between the two sitesand B; the c,~ /%8 /dmin (6)
adjacent lines are the theoretical results. For largbe curves for ) .
the simulation results and the corresponding curves for the theorefS L—°, the upper cutoff isc because the maximum back-
ical results coincide for larg#l . (b) Plots of backbone conduc- PONe mass is not constrained by the length of the shortest
tance forr =8, 16, 32, 64, and 128, scaled in accordance with EqsPath. Substituting Eqs(3), (5), and (6) into Eqg. (2), and
(17) and(18). The solid line is a plot of Eq17) with parametera ~ €quating powers of (or powers of/) of the left and right
andb chosen as 0.9 and 6, respectively, to best fit the values fohand sides of the resulting equation, we find
r =128 (right-pointing triangles The collapse to this line for the
lower values ofr improves with increasing. (c) Average conduc- v=g,— 78(7 ~1) @
tance forr=4 for p=0.50, 0.56, and 0.60. Fgr=0.56, the con- / dmin B '
ductance as a function dflg is not monotonic but rather has a
minimum indicated by the arrow(d) Fluctuations in conductance Using Eq. (4) and the valuegy,=2.04 [19,25 and d,,
h(Mg,r)=(c?(Mg,r))—(c(Mg,r)?/(a(Mg,r)) from simula- =1.13[21,25, we findy=1.72, in good agreement with our
tions forr=8, 16, 32, 64, and 128 g@=p.. simulation result
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y=1.7+0.05. (8)

V. AVERAGE CONDUCTANCE

We can now calculate the average conductance. Since

is strongly correlated with”, and sinces scales withr as
r~# and/ scales withr asr9min we have

O-N/*;—/dmin_ (9)

Then using the fact tha®(/

Mg,r)~/"" we have

P(aMg.1)~P(/ =0 dmnlk|Mg n
do
~ W=D (dmin /) -1
=0’ (10)
where
7z=(¢—1)(dyn/ ) —1=—0.17. (12)
Now P(/|Mg,r) is nonzero only for
(ar)min< /< (bMg)9min/de, (12

wherea andb are constants. Hence usitig)~/~#/9min, we
find P(o|Mg,r) is nonzero for

(bMB)(dmin/dB)(_;’«/dmin): (bMB)—ﬁ/dsgag(ar)—ﬁ_
(13

Using these bounds to normalize the distribution, we find

z+1)o*
P(o|Mg,r)= ~ ( ) ~ . (19
(ar)*M(ZJrl)_(bMB)(*M/dB)(ZH)
Then
_ (@~
(o(Mg,r))= (er;/dBO'P(O'|MB,r)dO'
(bMg) e —u(z+2)
z+1 AT
=——(ar)™*# ~ .
z+2 (bMB)l/dB —u(z+1)
1_{ ar
(15

Thus asMg goes to infinity,(c(Mg,r)) decreases asymp-

totically to a constant as
—u(z+1)

(bMB)lldB
ar

1+

M z+1 _;‘L
(o ( B,r)>~m(ar) .
(16)
By considering the asymptotic dependencé®fMg,r))

on Mg, we can reasonably fit the simulation results by

choosing the parameteasandb in Eq. (15) to be 0.9 and 6,
respectively. Using these values faandb, we plot in Fig.
2(a) (o) from Eqg.(15) for multiple values ofr and find that
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FIG. 4. Distribution of shortest paths betwednand B. (a)
P(/|Mg,r), the probability that the length of the shortest path
between two points separated by distands / for a given back-
bone massMg. All plots are forr=1, for values ofMg of 6
(squares 96 (diamonds$, 1536 (circles, and 24 576(triangles.

The plots for the varioud g differ by the points at which they cut
off. () P(/|Mg,r) for r=1 (squarel 4 (diamond$, and 16
(circles for a single backbone size of 24 578) When scaled by
rdmin, the plots collapse. The dashed line is constructed to have a
slope of —1.7; see Eq(8).

ing r. For larger, the curves for the simulation results and
the curves for the theoretical results are coincident at large
Mg. The poor results for smafl are due to corrections-to-
scaling not being included in our derivatiéa.g., for smalr,
there are significant corrections-to-scaling for the relations
o~r * andMg~r9 [17)).

Equation(15) can be recast in terms of the scaled variable
x=Mpg/r% as

z+1 ~
(o(x.1)= S5 (@n #f(x), (17)

agreement with the simulation results improves with increaswhere
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b —(pldg)(z+2) In Fig. 2(d), we ploth(Mg,r) from our simulation data and
1—| —x find that, for largeMz,h(Mg,r) approaches a value of ap-
d . : .
as proximately 0.7 in reasonable agreement with the value of

—(uldg)(z+1) " (18) 0.65 in Eq.(21) and confirms the fact that fluctuations are
1— ( TX> large. This is consistent with the broad distribution of short-
as est pathgsee Fig. 4 and the strong correlation between the

. . conductance and shortest path.
In Fig. 2(b), we plot the average conductance scaled in ac- P

cordance with Eqs(17) and(18). The expected collapse im-
proves with increasing for the same reason as noted above.
Above the percolation threshold, for backbones of size V1. DISCUSSION

larger than the correlation length, the strong correlation be- \we have found through simulations that, @t p., the

tween the conductance and the shortest path breaks doviyerage conductance of percolation backbones—defined by
and we expect the conductanceitoreasewith the mass of two points separated by Euclidean distanceof mass

the backbone, as is the case in non-random systems. Thism decreases with increasinls. Our findings are in
BT B-

seen in Fig. &), where we plot conductance versus back- .
. o contrast to the behavior of homogeneous systems and non-
bone mass for the bond occupation probabilifes0.56 and . S
random fractals. By studying the conductance of the Sierpin-

p=0.60, which are above the percolation threshold and, for . o .
comparison, conductancat the percolation thresholdp ski gasket, a nonrandom fractal, we see that this difference is

—0.50[26]. Figure Zc) shows that fop=0.60, all backbone due to the fact that the shortest path between two points,

masses sampled are of size greater than the correlation |en$ﬁpara'ged by Euclidean distancen the Siepinski gasket,
and the conductance increases monotonically. fre0.56, nas a fixed upper bound independent of the size of the gas-
the smaller backbone masses are of size less than the corf&l: as opposed to the percolation backbone where the aver-
lation length and Fig. @) shows that the conductance ini- 39€ length of the shortest path increases with the mass of the
tially decreases; for larger backbone masses, however, tf@ckbone.
sizes of the backbones are greater than the correlation length A derivation, which depends only on the strong correla-
and Fig. Zc) shows that the conductance then increases. tion between the conductance between two points and the
As in all problems involving strong disorder, fluctuations shortest path between these points, results in a closed form
are significant. Using Eq14) we can calculatéa?(Mg,r))  expression for the conductance, Efj5). The agreement of

atp=p.. We find Eq. (15 with the results of our simulations confirms our
~ understanding of why the average conductance decreases
(0¥ (Mg,r))= (an~* o2P(a|Mg,r)da with increasing backbone mass: the smaller contributions to
(bM) ~#/dg the average conductance from the longer minimal paths pos-
b M) Hela] - 2+ 3) sible in the clusters with larger backbone'siz.e cause the av-
1— (bMg) erage conductance to be smaller. Our derivation was not spe-
_ztl 2 ar cific to two dimensions, and should also hold in higher
=-3@n [(bMB)l’dB D dimensions. . -
1—|— As the bond occupation probability approaches one, the
ar behavior of the conductance must be that of a homogeneous

(19 system, for which the conductance increases monotonically
for all values ofMgz. We, in fact, confirmed this behavior
We next calculate the fluctuation of the average conductancend also identified a crossover regime slightly abpyen
which the conductance first decreases and then increases

2 — 2 o .
h(Mg.r)= V(0% (Mg, 1)) —(o(Mg,1)) . (20 With increasingMg.
, <O'( M B !r)>
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