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Dependence of conductance on percolation backbone mass
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We study^s(MB ,r )&, the average conductance of the backbone, defined by two points separated by Eu-
clidean distancer, of massMB on two-dimensional percolation clusters at the percolation threshold. We find
that with increasingMB and for fixedr ,^s(MB ,r )& asymptoticallydecreasesto a constant, in contrast with the
behavior of homogeneous systems and nonrandom fractals~such as the Sierpinski gasket! in which conduc-
tance increases with increasingMB . We explain this behavior by studying the distribution of shortest paths
between the two points on clusters with a givenMB . We also study the dependence of conductance onMB

above the percolation threshold and find that~i! slightly abovepc , the conductance first decreases and then
increases with increasingMB and~ii ! further abovepc , the conductance increases monotonically for all values
of MB , as is the case for homogeneous systems.

PACS number~s!: 64.60.Ak, 64.60.Fr, 05.45.Df
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I. INTRODUCTION

There has been considerable study of the bond percola
cluster considered as a random-resistor network, with e
occupied bond having unit resistance and nonoccupied bo
having infinite resistance@1–3#. In two dimensions, the con
figuration studied is typically anL3L lattice and the con-
ductance is measured between two opposite sides which
assumed to have infinite conductance@4–16#. The backbone
of the cluster is then defined as the set of bonds that
connected to the two sides having infinite conducta
through paths that have no common bond.

At the percolation threshold, the backbone mass scale
^MB&;LdB with dB51.643260.0008@17# and in this ‘‘bus
bar’’ geometry is strongly correlated withL. The average
conductance of the backbone as a function ofL has been
studied extensively and has been found to scale as^s&
;L2m̃ with m̃50.982660.0008@17#.

Recently, the distribution of masses of backbones defi
by two points, i.e., backbones defined as the set of tho
bonds that are connected by paths having no common b
to two points separated by distancer within anL3L lattice,
has been studied@18#. This geometry has particular relevan
to the oil industry where the oil field is represented by t
percolation cluster and the two points represent the loca
of injection and production wells. One finds that whenr
!L, there is a very broad distribution of backbone mas
for a given r. Figure 1 illustrates some typical percolatio
clusters and their backbones defined in this configurat
Because of the broad distribution of backbone masses
have the opportunity to study the conductance between t
two points separated by a fixed distancer as a function of the
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mass of the backbone defined by these points.
One might expect that, for fixedr, the average conduc

tance wouldincreasewith increasing backbone mass b
cause there could be more paths through which current
flow. In fact, we find that the average conductancedecreases
monotonically with increasing backbone size, in contr
with the behavior of homogeneous systems and nonran
fractals in which conductance increases. We explain
finding by first noting that the conductance is strongly c
related with the shortest path between the two points,
then studying the distribution of shortest paths along
backbone between the two points for a givenMB . This
analysis extends recent studies of the distribution of shor
paths where no restriction onMB is placed@19–22#.

II. SIMULATIONS

Our system is a two-dimensional square lattice of sideL
51000 with pointsA andB defined asA5(L2r /2, 500),B
5(L1r /2, 500). For each realization of bond percolation
this lattice, if there is a path of connected bonds betweeA
and B, we calculate~i! the length of the shortest path be
tweenA andB, ~ii ! the size of the backbone defined byA and
B, and~iii ! the total conductance betweenA andB. We per-
form 100 000 realizations at the percolation threshold,pc
50.5, for each of 8 values ofr ~1, 2, 4, 8, 16, 32, 64, and
128!. We bin these results based on the value of the ba
bone mass,MB , by combining results for all realization
with 2n,MB,2n11 and choosing the center of each bin
the value ofMB .

In Fig. 2~a!, we plot the simulation results for the averag
conductancê s(MB ,r )& and find that the conductance, i
fact, decreaseswith increasingMB . The decrease is see
more clearly in Fig. 2~b!, in which we plot scaled values a
discussed below.

III. SIERPINSKI GASKET

In nonfractal systems, the conductance increases as
mass of the conductor increases. We next consider the a
l-
3435 © 2000 The American Physical Society
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FIG. 1. Typical percolation clusters. The striped sites and the black sites are both part of the percolation cluster; only the black s
the cluster backbone defined by sitesA andB ~black squares!. Note in ~a!, with backbone size 6, the shortest path,l , betweenA andB is
5—the length of the shortest path must always be less than the backbone mass;~b! and ~c! illustrate that in clusters with large backbone
the length of the shortest path betweenA andB can take on a broad range of values.
fra
gs
on
e

tiv
e
ai
tio
o

o
re
ge

t
ir

e
e

pp
o

w

en

te

en
e

les

se,
per
tes
lues

n

Eu-

s
e

age conductance on the Sierpinski gasket, a nonrandom
tal, the first three generations of which are illustrated in Fi
3~a!–3~c!. Because the Sierpinksi gasket is not translati
ally invariant, the analog of the average conductivity b
tween two points in the percolation cluster is the conduc
ity averaged over all pairs of points separated by distancr.
At each successive generation, there are two types of p
~i! pairs which correspond to pairs in the previous genera
~e.g., A and B! and ~ii ! pairs which do not correspond t
pairs in the previous generation~e.g., D and E!. It is obvious
that as we move from one generation to the next, the c
ductance between pairs of type~i! increases because the
are more paths between the points than in the previous
eration. On the other hand, the conductance between
pairs of type~ii ! are lower on average than between the pa
present in the previous generation because on average
shortest path between the two points is longer than betw
the pairs in the previous generation. However, for any giv
r, the shortest path between any two points has a fixed u
bound independent of the generation. Due to this bound
the shortest path, the average conductivity increases
succeeding generations. This is shown in Fig. 3~d! which
shows the average conductivity calculated exactly for g
erations 1 to 6 forr 51, 2 and 4.

IV. SHORTEST PATH DISTRIBUTION

In order to understand why the average conductance
the percolation backbone decreases with increasingMB , we
must~i! recognize that the conductance is strongly correla
with the shortest path@23# between the two points and~ii !
studyP(l uMB ,r ), the distribution of shortest paths betwe
the two points for a given backbone mass. Hence we n
create theP(l uMB ,r ) probability distribution, binning our
c-
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results logarithmically by forming the average over samp
centered at log2l .

Figure 4~a! shows the simulation results forP(l uMB ,r )
for r 51 for various backbone masses. The plots collap
the only difference in the plots being the values of the up
cutoffs due to the finite backbone size. Figure 1 illustra
how the size of the backbone constrains the possible va
of the shortest path. For all values ofMB , a section of each
plot in Fig. 4~a! exhibits power law behavior. In Fig. 4~b!,
we show the distributionsP(l uMB ,r ) for different r and a
givenMB . In Fig. 4~c! we see that when scaled withr dmin the
plots collapse, so we can writeP(l uMB ,r ) in the scaling
form

P~ l uMB ,r !;
1

r dmin
S l

r dmin
D 2c

. ~1!

An expression forc can be found by recognizing that we ca
write the well-studied distributionP(l ur ), the probability
that the shortest path between two points separated by
clidean distancer is l , independent ofMB , as

P~ l ur !5E
cl

`

P~ l uMB ,r !P~MBur !dMB , ~2!

where ~i! P(MBur ) is the distribution of backbone masse
given distancer between the points which determine th
backbone and~ii ! cl is the lower cutoff onMB given l .
P(MBur ) has the form@18#

P~MBur !;
1

r dB
S MB

r dB
D 2tB

, @r !L#, ~3!

wheredB is the backbone fractal dimension and
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FIG. 2. Average conductance versus backbone mass.~a! Simu-
lation results at the percolation threshold forr 58, 16, 32, 64, and
128, wherer is the distance between the two sitesA and B; the
adjacent lines are the theoretical results. For larger, the curves for
the simulation results and the corresponding curves for the the
ical results coincide for largeMB . ~b! Plots of backbone conduc
tance forr 58, 16, 32, 64, and 128, scaled in accordance with E
~17! and~18!. The solid line is a plot of Eq.~17! with parametersa
and b chosen as 0.9 and 6, respectively, to best fit the values
r 5128 ~right-pointing triangles!. The collapse to this line for the
lower values ofr improves with increasingr. ~c! Average conduc-
tance forr 54 for p50.50, 0.56, and 0.60. Forp50.56, the con-
ductance as a function ofMB is not monotonic but rather has
minimum indicated by the arrow.~d! Fluctuations in conductanc
h(MB ,r )5A^s2(MB ,r )&2^s(MB ,r )&2/^s(MB ,r )& from simula-
tions for r 58, 16, 32, 64, and 128 atp5pc .
tB5d/dB ~4!

is the exponent for the blob size distribution@1,24#. From
Ref. @19#

P~ l ur !;
1

r dmin
S l

r dmin
D 2gl

, ~5!

wheredmin is the fractal dimension of the shortest path. Sin
l ;r dmin and MB;r dB, implying l ;MB

dmin /dB , the lower
cutoff cl in Eq. ~2! scales as

cl ;l dB /dmin. ~6!

As L→`, the upper cutoff is̀ because the maximum back
bone mass is not constrained by the length of the shor
path. Substituting Eqs.~3!, ~5!, and ~6! into Eq. ~2!, and
equating powers ofr ~or powers ofl ) of the left and right
hand sides of the resulting equation, we find

c5gl 2
dB

dmin
~tB21!. ~7!

Using Eq. ~4! and the valuesgl 52.04 @19,25# and dmin
51.13@21,25#, we findc51.72, in good agreement with ou
simulation result

et-

s.
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FIG. 3. ~a!–~c! Three generations of the Sierpinski gasket.
each successive generation, there are two types of pairs of po
pairs which correspond to pairs in the previous generation and p
which do not. For example, in the second generation the pairs
and AC are present in the previous generation but the pair DE
no corresponding pair in the previous generation. Similarly,
pairs AB, AC, and DE in the third generation correspond to pairs
the second generation, but the pair FG does not. Because all p
are multiply connected, the mass of the backbone between any
points in each generation is equal to the mass of the entire ga
~d! Average conductance between all pairs of points separate
distancer on the Sierpinski gasket versus the gasket mass.
points correspond to successive generations of the Sierpinski
ket.
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c51.760.05. ~8!

V. AVERAGE CONDUCTANCE

We can now calculate the average conductance. Sincs
is strongly correlated withl , and sinces scales withr as
r 2m̃ and l scales withr as r dmin, we have

s;l 2m̃/dmin. ~9!

Then using the fact thatP(l uMB ,r );l 2c we have

P~suMB ,r !;P~ l 5s2dmin /m̃uMB ,r !
dl

ds

;s (c21)(dmin /m̃)21

5sz, ~10!

where

z[~c21!~dmin /m̃ !21520.17. ~11!

Now P(l uMB ,r ) is nonzero only for

~ar !dmin&l &~bMB!dmin /dB, ~12!

wherea andb are constants. Hence using^s&;l 2m̃/dmin, we
find P(suMB ,r ) is nonzero for

~bMB!(dmin /dB)(2m̃/dmin)5~bMB!2m̃/dB&s&~ar !2m̃.
~13!

Using these bounds to normalize the distribution, we find

P~suMB ,r !5
~z11!sz

~ar !2m̃(z11)2~bMB!(2m̃/dB)(z11)
. ~14!

Then

^s~MB ,r !&5E
(bM)2m̃/dB

(ar)2m̃

sP~suMB ,r !ds

5
z11

z12
~ar !2m̃

12F ~bMB!1/dB

ar G2m̃(z12)

12F ~bMB!1/dB

ar G2m̃(z11)
.

~15!

Thus asMB goes to infinity,^s(MB ,r )& decreases asymp
totically to a constant as

^s~MB ,r !&;
z11

z12
~ar !2m̃F11F ~bMB!1/dB

ar G2m̃(z11)G .

~16!

By considering the asymptotic dependence of^s(MB ,r )&
on MB , we can reasonably fit the simulation results
choosing the parametersa andb in Eq. ~15! to be 0.9 and 6,
respectively. Using these values fora andb, we plot in Fig.
2~a! ^s& from Eq. ~15! for multiple values ofr and find that
agreement with the simulation results improves with incre
 -

ing r. For larger, the curves for the simulation results an
the curves for the theoretical results are coincident at la
MB . The poor results for smallr are due to corrections-to
scaling not being included in our derivation~e.g., for smallr,
there are significant corrections-to-scaling for the relatio
s;r 2m̃ andMB;r dB @17#!.

Equation~15! can be recast in terms of the scaled varia
x[MB /r dB as

^s~x,r !&5
z11

z12
~ar !2m̃ f ~x!, ~17!

where

FIG. 4. Distribution of shortest paths betweenA and B. ~a!
P(l uMB ,r ), the probability that the length of the shortest pa
between two points separated by distancer is l for a given back-
bone mass,MB . All plots are for r 51, for values ofMB of 6
~squares!, 96 ~diamonds!, 1536 ~circles!, and 24 576~triangles!.
The plots for the variousMB differ by the points at which they cu
off. ~b! P(l uMB ,r ) for r 51 ~squares!, 4 ~diamonds!, and 16
~circles! for a single backbone size of 24 576.~c! When scaled by
r dmin, the plots collapse. The dashed line is constructed to hav
slope of21.7; see Eq.~8!.
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f ~x!5

12S b

adB
xD 2(m̃/dB)(z12)

12S b

adB
xD 2(m̃/dB)(z11)

. ~18!

In Fig. 2~b!, we plot the average conductance scaled in
cordance with Eqs.~17! and~18!. The expected collapse im
proves with increasingr for the same reason as noted abo

Above the percolation threshold, for backbones of s
larger than the correlation length, the strong correlation
tween the conductance and the shortest path breaks d
and we expect the conductance toincreasewith the mass of
the backbone, as is the case in non-random systems. Th
seen in Fig. 2~c!, where we plot conductance versus bac
bone mass for the bond occupation probabilitiesp50.56 and
p50.60, which are above the percolation threshold and,
comparison, conductanceat the percolation threshold,p
50.50@26#. Figure 2~c! shows that forp50.60, all backbone
masses sampled are of size greater than the correlation le
and the conductance increases monotonically. Forp50.56,
the smaller backbone masses are of size less than the c
lation length and Fig. 2~c! shows that the conductance in
tially decreases; for larger backbone masses, however
sizes of the backbones are greater than the correlation le
and Fig. 2~c! shows that the conductance then increases.

As in all problems involving strong disorder, fluctuation
are significant. Using Eq.~14! we can calculatês2(MB ,r )&
at p5pc . We find

^s2~MB ,r !&5E
(bM)2m̃/dB

(ar)2m̃

s2P~suMB ,r !ds

5
z11

z13
~ar !22m̃

12F ~bMB!1/dB

ar G2m̃(z13)

12F ~bMB!1/dB

ar G2m̃(z11)
.

~19!

We next calculate the fluctuation of the average conducta

h~MB ,r !5
A^s2~MB ,r !&2^s~MB ,r !&2

^s~MB ,r !&
. ~20!

In the limit MB→`,h(MB ,r ) increases to its maximum

h~`,r !5A 1

~z11!~z13!
'0.65. ~21!
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In Fig. 2~d!, we ploth(MB ,r ) from our simulation data and
find that, for largeMB ,h(MB ,r ) approaches a value of ap
proximately 0.7 in reasonable agreement with the value
0.65 in Eq.~21! and confirms the fact that fluctuations a
large. This is consistent with the broad distribution of sho
est paths~see Fig. 4! and the strong correlation between th
conductance and shortest path.

VI. DISCUSSION

We have found through simulations that, atp5pc , the
average conductance of percolation backbones—define
two points separated by Euclidean distancer of mass
MB—decreases with increasingMB . Our findings are in
contrast to the behavior of homogeneous systems and
random fractals. By studying the conductance of the Sierp
ski gasket, a nonrandom fractal, we see that this differenc
due to the fact that the shortest path between two poi
separated by Euclidean distancer on the Siepinski gasket
has a fixed upper bound independent of the size of the
ket, as opposed to the percolation backbone where the a
age length of the shortest path increases with the mass o
backbone.

A derivation, which depends only on the strong corre
tion between the conductance between two points and
shortest path between these points, results in a closed
expression for the conductance, Eq.~15!. The agreement of
Eq. ~15! with the results of our simulations confirms ou
understanding of why the average conductance decre
with increasing backbone mass: the smaller contribution
the average conductance from the longer minimal paths p
sible in the clusters with larger backbone size cause the
erage conductance to be smaller. Our derivation was not
cific to two dimensions, and should also hold in high
dimensions.

As the bond occupation probability approaches one,
behavior of the conductance must be that of a homogene
system, for which the conductance increases monotonic
for all values ofMB . We, in fact, confirmed this behavio
and also identified a crossover regime slightly abovepc in
which the conductance first decreases and then incre
with increasingMB .
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