
PHYSICAL REVIEW E APRIL 2000VOLUME 61, NUMBER 4
Finite-size scaling and conformal anomaly of the Ising model in curved space

J. Gonza´lez
Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientı´ficas, Serrano 123, 28006 Madrid, Spain

~Received 29 June 1999!

We study the finite-size scaling of the free energy of the Ising model on lattices with the topology of the
tetrahedron and the octahedron. Our construction allows us to perform changes in the length scale of the model
without altering the distribution of the curvature in the space. We show that the subleading contribution to the
free energy follows a logarithmic dependence, in agreement with the conformal field theory prediction. The
conformal anomaly is given by the sum of the contributions computed at each of the conical singularities of the
space, except when perfect order of the spins is precluded by frustration in the model.

PACS number~s!: 64.60.Fr, 05.50.1q, 05.70.Jk, 75.10.2b
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The introduction of conformal field theory about 15 yea
ago can be considered one of the most important deve
ments towards the understanding of critical phenomena
two dimensions@1#. This subject added to the progre
achieved ten years before by application of the renormal
tion group ideas to critical phenomena. Both the renorm
ization group and conformal field theory have in common
idea of scaling@2#. This plays a central role in the confron
tation with experimental measurements near a critical po
as well as in numerical simulations where the critical beh
ior is approached by enlarging the size of the system@3#.

The influence of the gravitational background on critic
phenomena is largely unknown, though. This problem can
approached from the point of view of conformal field theo
which is able to deal with two-dimensional backgrounds
lated by conformal transformations to the plane. Althou
the kind of geometries one can handle in this way is
stricted, we have learned about the interesting propertie
conformal field theories on semiplanes@4#, cylinders@5#, and
conical singularities@6#.

In the case of a two-dimensional smooth manifold, it h
been shown on general grounds that the free energyF has
corrections that depend directly on the central chargec of the
conformal field theory@2#. As a function of the length scal
L of the system, the free energy has to behave in the fo

F~L !5aL21b ln~L !1 . . . , ~1!

whereb52cx/12 for a manifold with Euler characteristi
x. A similar formula applies to the case of a conical sing
larity @6#. Logarithmic corrections to the free energy al
arise associated to corners in higher-dimensional spaces@7#.
Until now, though, no examples of statistical models ha
been considered where the logarithmic corrections due to
curvature have been tested. The question is actually n
trivial since, as we will see below, the simplest lattices t
make feasible the construction of models with such sca
behavior do not give rise to smooth manifolds in the co
tinuum limit.

In this paper we study the Ising model on lattices who
continuum limits have the topology of the tetrahedron a
the octahedron. Our aim is to discern whether an expres
like ~1! applies, providing then a check of the conformal fie
theory description on the curved background. To accomp
PRE 611063-651X/2000/61~4!/3384~4!/$15.00
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this task we take the thermodynamic limit along a series
honeycomb lattices that are built by assembling triangu
pieces like that in Fig. 1 as the facets of the given polyh
dron. Our choice of this kind of lattice is determined by t
feasibility of growing them up regularly while preserving th
geometry of the polyhedron. From the point of view of sim
plistic geometry, the local curvature at eachn-fold ring of the
lattice is given byRi5p(62ni)/ni . Thus, our honeycomb
lattices embedded on the tetrahedron, as well as in the o
hedron, keep the same distribution of the curvature~nonva-
nishing only at the threefold and fourfold rings that encirc
the vertices of the respective polyhedra!, no matter the size
of the lattice.

The critical behavior of the Ising model on the tetrah
dron has been discussed in Ref.@8#. It has been shown ther
that the critical exponentsa, b, andg do not deviate in the
curved geometry from the known values of the Ising mo
on a flat space. In the present paper we focus on the imp
that the curvature may leave in the scaling behavior of
statistical system. The ln(L) correction to the free energy i
known in the case of a conical singularity on a tw
dimensional surface@6#. By measuring the ln(L) scaling of
the free energy we are then making a nontrivial check of
conformal field theory prediction, since we are dealing w
geometries that are not small perturbations with respec
flat space. This may also validate our construction as an
ternative procedure to the determination of the conform
anomaly in spaces with the topology of the cylinder@9–15#.

We begin by analyzing the Ising model on the octahedr
Contrary to the case of the tetrahedron, where there is f

FIG. 1. A generic triangular block for the lattices embedded
the tetrahedron and the octahedron.
3384 © 2000 The American Physical Society
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tration of the model, the present lattices are bipartite si
they are built by assembling four of the pieces in Fig.
around each vertex. The partition function has to be th
symmetric under the change of sign of the coupling cons
b→2b.

The thermodynamic limit has to be taken in order to a
proach the critical point of the model. This may pose a pr
lem as long as we want to measure a scaling behavior like~1!
that is supposed to be well defined at the critical point of
continuum model. On a lattice of finite length scaleL, we
may only define a ‘‘pseudocritical’’ couplingbL at which
some of the observables, like, for instance, the specific h
reaches a maximum value@3#. We will discern later what is
the correct choice to extract the genuine scaling of the c
formal field theory from the finite-size data.

From the technical point of view, high-precision measu
ments are needed in order to observe neatly a ln(L) depen-
dence of the free energy, after subtraction of the lead
contribution}L2. The dimer approach affords such a pos
bility, by translating the computation of the partition functio
into the evaluation of the Pfaffian of an antisymmetric o
eratorA @16,17#. This is given by a coordination matrix o
what is called the decorated lattice, which is obtained in
case by inserting a triangle in place of each of the points
the original lattice. A detailed example of how to build th
coordination matrix for planar lattices similar to ours can
found in Ref.@8#. The partition function can be written in th
form

Z5~cosb! l@det~A!#1/2, ~2!

where l is the number of links of the original lattice. From
~2! it is clear that the partition function and the free ener
F52 ln(Z) can be computed with high precision on reaso
ably large lattices, as far as the evaluation of the correspo
ing determinant becomes feasible.

In the case of our lattices in curved space, the determ
tion of the logarithmic correction toF is facilitated by the
fact that finite-size scaling sets in at very small lattice si
The honeycomb lattices embedded on the octahedron fo
family with increasing number of sitesn524N2,N
51,2, . . . . Thepseudocritical couplings approach the cri
cal couplingb`5 ln(21A3)/2'0.6585 following the finite-
size scaling law

ubN2b`u;1/Nl. ~3!

Usually l is related to the critical exponentn of the corre-
lation lengthl51/n. One can check, however, that in th
case of the octahedronl is sensibly higher than the expecte
valuen2151. The values ofbN , which we have computed
by looking at the maxima of the specific heat forN51 up to
N57 ~1176 lattice sites!, are given in Table I. By carrying
out a sequence of fits, taking four consecutive lattices
each of them, we obtain the respective estimates of the
ponentlocta, in order of increasing lattice size: 1.825, 1.80
1.798, 1.794.

We present in Fig. 2 a logarithmic plot of the values
bN2b` vs N and the linear fit for the last four points. It i
remarkable the small deviation of the points from the l
~3!, even for the smaller lattices, which ensures that the
timates forlocta are converging to a value different to th
e
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expected in flat space. The exponent for the octahedro
very close to the exponent obtained in the case of the te
hedron, for a wider range of lattice sizes,l tetra'1.745(2)
@8#. We recall that these estimates do not point at a criti
exponent of the correlation length different fromn51, but
rather at a violation of the Ferdinand-Fisher criterion for t
determination ofn in the curved spaces.

We have computed the free energyFN for the members
N51 up toN57 of the series of honeycomb lattices embe
ded on the octahedron. The values are given in Table I.
have observed a clear ln(N) correction to the leading behav
ior }N2 of the free energy as a function of the lattice siz
when the measurements are carried out at the critical c
pling b` . The task is facilitated by taking into account th
precise value of the bulk free energy per site in the hon
comb lattice,a/24'20.331 912@18#. By computing at cou-
pling constantb5b` and making a sequence of fits for se
of four consecutive lattices, we obtain the respective val
of the b coefficient in~1!, in order of increasing lattice size
20.204 86,20.207 63,20.208 07,20.208 20. We observe
a clear convergence towards a valueb'20.208. We have
plotted in Fig. 3 the values ofFN2aN2 and the best fit for
the last four points in the plot. The sum of the squares of
deviations from the logarithmic dependence~for N52 up to

TABLE I. Respective values of the pseudocritical couplingsbN

and the free energyFN(b`) for the octahedron.

N bN FN(b`)

1 0.557109~1! 28.69737867937620(1)
2 0.629927~1! 232.7353289357422(1)
3 0.644793~1! 272.6487548788477(1)
4 0.650325~1! 2128.469770730314(1)
5 0.653016~1! 2200.209189542789(1)
6 0.654540~1! 2287.871899726545(1)
7 0.655491~1! 2391.460522363036(1)

FIG. 2. Deviation of the pseudocritical couplings fromb` vs the
length scaleN.
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3386 PRE 61J. GONZÁLEZ
N57) is '2.731027. The accuracy of the fit is remarkabl
given that it is achieved by adjusting only the coefficienb
and the constant term in Eq.~1!.

The above results show that the hypothesis of finite-s
scaling may be applied to the free energy to determine
conformal anomaly on a curved background. Let us n
interpret the coefficientb of the anomaly that we have ob
tained for the octahedron. We assume that the logarith
correction can be computed as the sum of the corrections
each of the conical singularitiesb5( i 51

6 bi . The coefficient
bi for a conical singularity has been established in Ref.@6# in
terms of the central chargec and the angleu enclosed by the
cone:

bi5c
u

24p
@12~2p/u!2#. ~4!

This formula leads in the case of the octahedron tob5
25c/12'20.41666c, which for c51/2 corresponding to
the Ising model is in very good agreement with our nume
cal result. This provides a clear indication that the continu
limit of the Ising model on the octahedron is given by
conformal field theory, with the same central charge as
the model in flat space.

We move now to the family of honeycomb lattices em
bedded on the tetrahedron. We may distinguish between
ferromagnetic and the antiferromagnetic regime, since
lattices are frustrated in this case. The finite-size scalin
actually different in the two regimes. The number of latti
sites is given now by the formulan512N2, whereN is the
integer that labels the member in the family. At the ferr
magnetic critical couplingb`.0, we have measured th
free energy with the same precision as before, forN52 up to
N59. The values that we have obtained are given in Ta
II. The accuracy of the fit to a ln(N) correction added to the
leading behavior is again remarkable. By making a seque

FIG. 3. Plot of the finite-size correction to the free energy of
Ising model at the ferromagnetic critical point, in lattices on t
octahedron~points over the full line! and on the tetrahedron~points
over the dashed line!.
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of fits, each of them for four consecutive lattices, we obt
the respective estimates for theb coefficient, in order of in-
creasing lattice size: 20.249 980 1, 20.249 994 5,
20.249 997 8,20.249 999 2. The plot of the functionFN
2aN2 is given in Fig. 3, together with the logarithmic de
pendence from the last fit.

The result that we obtain for the coefficientb is again in
very good agreement with the value expected for a con
mal field theory. The outcome of adding the effect of fo
conical singularities with enclosed angleu5p yields the
prediction b52c/2. Therefore, we may conclude that th
critical point in the ferromagnetic regime provides an e
ample of ac51/2 conformal field theory on the curved bac
ground.

The finite-size scaling works differently in the antiferro
magnetic regime. The values of the free energy compute
b52b` are given in Table II. The accuracy of the fits
determine the ln(N) correction is as good as in the forme
instances, but now theb coefficient turns out to be positive
By carrying out the same sequence of fits as in the ferrom
netic regime, we find the convergent series for the estima
of b : 0.749 44, 0.749 86, 0.749 95, 0.749 96. We have p

FIG. 4. Plot of the finite-size correction to the free energy o
free scalar field~points over the full line! and of the Ising model at
the antiferromagnetic critical point~points over the dashed line!, in
lattices embedded on the tetrahedron.

TABLE II. Respective values of the free energyFN at the criti-
cal couplings of the ferromagnetic and the antiferromagnetic reg
of the tetrahedron.

N FN(b`) FN(2b`)

2 216.8509982571185(1) 214.2539387796425(1)
3 236.8670648949387(1) 233.8649750683343(1)
4 264.8195835913494(1) 261.5298831135922(1)
5 2100.721855606886(1) 297.2090306933016(1)
6 2144.579808605568(1) 2140.884668912476(1)
7 2196.396605031357(1) 2192.547317539973(1)
9 2323.913609253478(1) 2319.813027662780(1)
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PRE 61 3387FINITE-SIZE SCALING AND CONFORMAL ANOMALY . . .
ted in Fig. 4 the values ofFN2aN2 and the logarithmic fit
for the last four points. The sum of the squares of the de
tions from the ln(N) dependence (N52 to N59) is '2.2
31027.

We can learn the correct interpretation of these res
from a similar feature of the finite-size data of the free sca
field on the curved lattice. This can be described by a sim
tight-binding model, whose spectrum reproduces that of
Laplacian on the lattice@19#. The partition function is com-
puted through the determinant of the coordination matrix,
the zero mode has to be removed in order to obtain a n
ingular result. As a consequence of that, the coefficient of
ln(N) correction~fitted to data fromN52 to N59 as shown
in Fig. 4! turns out to be'0.49999. The correct result i
front of the logarithmic correction is obtained by adding t
regularized contribution of the zero mode, which scales l
(1/2)ln(L22) after introducing the length dimensions of th
Laplacian in the lattice.
,
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The same effect operates in the antiferromagnetic reg
of the lattices on the tetrahedron. These cannot be dec
posed in two disjoint sublattices, so that there is an intrin
frustration that rules out perfect antiferromagnetic order,
respective of lattice size. The zero mode is missing in
spectrum, and the correct conformal anomaly of thec51/2
conformal field theory is restablished adding ‘‘by hand’’
the free energy the regularized zero mode contribut
ln(L21).

To summarize, we have checked that the continuum li
of the Ising model taken along lattices embedded on
tetrahedron and the octahedron corresponds to respectic
51/2 conformal field theories. We have seen that the c
vergence to the critical coupling is sensibly accelerated w
respect to a flat geometry when performing the finite-s
scaling in the curved lattices. Our construction may be use
to determine the central charge corresponding to other m
els whose underlying conformal field theory is not known
a
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