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Finite-size scaling and conformal anomaly of the Ising model in curved space
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We study the finite-size scaling of the free energy of the Ising model on lattices with the topology of the
tetrahedron and the octahedron. Our construction allows us to perform changes in the length scale of the model
without altering the distribution of the curvature in the space. We show that the subleading contribution to the
free energy follows a logarithmic dependence, in agreement with the conformal field theory prediction. The
conformal anomaly is given by the sum of the contributions computed at each of the conical singularities of the
space, except when perfect order of the spins is precluded by frustration in the model.

PACS numbse(s): 64.60.Fr, 05.50+q, 05.70.Jk, 75.16:b

The introduction of conformal field theory about 15 yearsthis task we take the thermodynamic limit along a series of
ago can be considered one of the most important develogioneycomb lattices that are built by assembling triangular
ments towards the understanding of critical phenomena ipieces like that in Fig. 1 as the facets of the given polyhe-
two dimensions[1]. This subject added to the progress dron. Our choice of this kind of lattice is determined by the
achieved ten years before by application of the renormalizafeasibility of growing them up regularly while preserving the
tion group ideas to critical phenomena. Both the renormalgeometry of the polyhedron. From the point of view of sim-
ization group and conformal field theory have in common theplistic geometry, the local curvature at eaefold ring of the
idea of scaling2]. This plays a central role in the confron- lattice is given byR;=m(6—n;)/n;. Thus, our honeycomb
tation with experimental measurements near a critical pointlattices embedded on the tetrahedron, as well as in the octa-
as well as in numerical simulations where the critical behavhedron, keep the same distribution of the curvaimenva-
ior is approached by enlarging the size of the sysf8m nishing only at the threefold and fourfold rings that encircle

The influence of the gravitational background on criticalthe vertices of the respective polyhedrao matter the size
phenomena is largely unknown, though. This problem can bef the lattice.
approached from the point of view of conformal field theory, The critical behavior of the Ising model on the tetrahe-
which is able to deal with two-dimensional backgrounds re-dron has been discussed in R]. It has been shown there
lated by conformal transformations to the plane. Althoughthat the critical exponenta, 8, and y do not deviate in the
the kind of geometries one can handle in this way is recurved geometry from the known values of the Ising model
stricted, we have learned about the interesting properties afn a flat space. In the present paper we focus on the imprints
conformal field theories on semiplanes, cylinders[5], and  that the curvature may leave in the scaling behavior of the
conical singularitie$6]. statistical system. The Ib) correction to the free energy is

In the case of a two-dimensional smooth manifold, it hasknown in the case of a conical singularity on a two-
been shown on general grounds that the free enBrgjas  dimensional surfacg6]. By measuring the I() scaling of
corrections that depend directly on the central chargethe  the free energy we are then making a nontrivial check of the
conformal field theony|2]. As a function of the length scale conformal field theory prediction, since we are dealing with
L of the system, the free energy has to behave in the formgeometries that are not small perturbations with respect to

flat space. This may also validate our construction as an al-
F(L)=aL?+blIn(L)+ ..., (§0) ternative procedure to the determination of the conformal
anomaly in spaces with the topology of the cylinfier15).
whereb= —cy/12 for a manifold with Euler characteristic ~ We begin by analyzing the Ising model on the octahedron.
x- A similar formula applies to the case of a conical singu-Contrary to the case of the tetrahedron, where there is frus-
larity [6]. Logarithmic corrections to the free energy also
arise associated to corners in higher-dimensional sgades ™
Until now, though, no examples of statistical models have
been considered where the logarithmic corrections due to the
curvature have been tested. The question is actually non- | ~
trivial since, as we will see below, the simplest lattices that
make feasible the construction of models with such scaling >
behavior do not give rise to smooth manifolds in the con-
tinuum limit.

In this paper we study the Ising model on lattices whose e
continuum limits have the topology of the tetrahedron and
the octahedron. Our aim is to discern whether an expression
like (1) applies, providing then a check of the conformal field  FIG. 1. A generic triangular block for the lattices embedded on
theory description on the curved background. To accompliskthe tetrahedron and the octahedron.
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tration of the model, the present lattices are bipartite since TABLE I. Respective values of the pseudocritical coupliys
they are built by assembling four of the pieces in Fig. 1and the free energly(/..) for the octahedron.
around each vertex. The partition function has to be then

symmetric under the change of sign of the coupling constant N Bn Fn(B=)
B——P. 1 0.5571081) —8.69737867937620(1)
The therm.o_dynam.lc limit has to be taken in order to ap- 5 0.6299271) —32.7353289357422(1)
proach the critical point of the model. This may pose a prob- 3 0.6447981) —72.6487548788477(1)
lem as long as we want to measure a scallng _behaw_o(]J](e 4 0.6503251) —128.469770730314(1)
that is supposed to be well defined at the critical point of the 5 0.6530161 — 200.209189542789( 1
continuum model. On a lattice of finite length scalewe : 1 46) 5 7' 1189972654 (1)
may only define a “pseudocritical” coupling, at which 6 0.65454(1) —287.871899726545(1)
some of the observables, like, for instance, the specific heat, 7 0.6554901) —391.460522363036(1)

reaches a maximum valy8]. We will discern later what is

the correct choice to extract the genuine scaling of the con- . .
formal field theory from the finite-size data. expected in flat space. The exponent for the octahedron is

From the technical point of view, high-precision measure-Ve"Y close to the exponent obtained in the case of the tetra-

ments are needed in order to observe neatly b)Idgpen- Nedron, for a wider range of lattice sizeys~1.745(2)
dence of the free energy, after subtraction of the leadin 8]. We recall that these. estimates QO not point at a critical
contribution=L2. The dimer approach affords such a possi-cXPonent of the correlation length different from-1, but
bility, by translating the computation of the partition function rather gt a.V|0Iat|o.n of the Ferdinand-Fisher criterion for the
into the evaluation of the Pfaffian of an antisymmetric op-detérmination ofv in the curved spaces.

eratorA [16,17). This is given by a coordination matrix of e have computed the free enerfy for the members
what is called the decorated lattice, which is obtained in oufN=1 UP toN=7 of the series of honeycomb lattices embed-
case by inserting a triangle in place of each of the points ofi€d on the octahedron. The values are given in Table I. We
the original lattice. A detailed example of how to build the have oEserved a clear Ny correction to the leading behav-
coordination matrix for planar lattices similar to ours can belo" N of the free energy as a function of the lattice size,

found in Ref[8]. The partition function can be written in the When the measurements are carried out at the critical cou-
form pling B... The task is facilitated by taking into account the

precise value of the bulk free energy per site in the honey-

Z=(cosB)'[de(A)]?, (2)  comb lattice,a/24~ —0.331 912[18]. By computing at cou-
pling constaniB= 8., and making a sequence of fits for sets

wherel is the number of links of the original lattice. From of four consecutive lattices, we obtain the respective values
(2) it is clear that the partition function and the free energyof the b coefficient in(1), in order of increasing lattice size:
F=—In(2) can be computed with high precision on reason-— 204 86,—0.207 63,—0.208 07,—0.208 20. We observe
ably large lattices, as far as the evaluation of the correspond; clear convergence towards a vahre —0.208. We have
ing determinant becomes feasible. ~ plotted in Fig. 3 the values dfy—aN? and the best fit for

In the case of our lattices in curved space, the determinahe |ast four points in the plot. The sum of the squares of the

tion of the logarithmic correction t& is facilitated by the  deviations from the logarithmic depender(@er N=2 up to
fact that finite-size scaling sets in at very small lattice size.

The honeycomb lattices embedded on the octahedron form =
family with increasing number of sitesn=24N? N

=1,2,... . Thepseudocritical couplings approach the criti-

cal coupling..=In(2++/3)/2~0.6585 following the finite- 0.1
size scaling law

| Bnu= Bl ~ 1IN, )

Usually \ is related to the critical exponemt of the corre-
lation lengthA=1/v. One can check, however, that in the 1
case of the octahedronis sensibly higher than the expected
valuev~1=1. The values of3y, which we have computed |
by looking at the maxima of the specific heat fé=1 up to ]
N=7 (1176 lattice sites are given in Table I. By carrying ]
out a sequence of fits, taking four consecutive lattices for .
each of them, we obtain the respective estimates of the ex 1
ponent\ o, in order of increasing lattice size: 1.825, 1.809, 1 +
1.798, 1.794.

We present in Fig. 2 a logarithmic plot of the values of o 2 3 4 5 8 7 o
Bn— B vs N and the linear fit for the last four points. It is
remarkable the small deviation of the points from the law
(3), even for the smaller lattices, which ensures that the es- FIG. 2. Deviation of the pseudocritical couplings frggn vs the
timates for\ ., are converging to a value different to that length scaleN.
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-0.70 TABLE II. Respective values of the free energy; at the criti-
E cal couplings of the ferromagnetic and the antiferromagnetic regime
~0.80 3 of the tetrahedron.
N Fr(B.) Fn(—8.)
-0.90 3
E 2 —16.8509982571185(1)  — 14.2539387796425(1)
8 100 3 3 —36.8670648949387(1) —33.8649750683343(1)
% R 4 —64.8195835913494(1) —61.5298831135922(1)
2 5 —100.721855606886(1) —97.2090306933016(1)
| —1.10 3 6 —144.579808605568(1)  —140.884668912476(1)
rf ; 7 —196.396605031357(1) —192.547317539973(1)
-1.20 3 + . 9 —323.913609253478(1) —319.813027662780(1)
E .
~1.30 3 T . . . .
E of fits, each of them for four consecutive lattices, we obtain
E the respective estimates for thecoefficient, in order of in-
_1.40 — TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT H i i . J— J—
o L T T T creasing lattice size: —0.2499801, —0.249 9_94 5,
N —0.249997 8,—0.249999 2. The plot of the functioRy

—aN? is given in Fig. 3, together with the logarithmic de-
FIG. 3. Plot of the finite-size correction to the free energy of thependence from the last fit.
Ising model at the ferromagnetic critical point, in lattices on the  The result that we obtain for the coefficiemis again in
octahedror{points over the full lingand on the tetrahedrgipoints  very good agreement with the value expected for a confor-
over the dashed line mal field theory. The outcome of adding the effect of four
conical singularities with enclosed angle= 7 yields the
N=7) is~2.7x 10 ’. The accuracy of the fit is remarkable, predictionb= —c/2. Therefore, we may conclude that the
given that it is achieved by adjusting only the coefficient critical point in the ferromagnetic regime provides an ex-
and the constant term in EL). ample of ac=1/2 conformal field theory on the curved back-
The above results show that the hypothesis of finite-sizground.
scaling may be applied to the free energy to determine the The finite-size scaling works differently in the antiferro-
conformal anomaly on a curved background. Let us nowmagnetic regime. The values of the free energy computed at
interpret the coefficienb of the anomaly that we have ob- g=— g, are given in Table Il. The accuracy of the fits to
tained for the octahedron. We assume that the logarithmigetermine the I{) correction is as good as in the former

correction can be computed as the sum of the corrections faastances, but now thie coefficient turns out to be positive.
each of the conical singularitiés=°_b; . The coefficient By carrying out the same sequence of fits as in the ferromag-
b; for a conical singularity has been established in R&fin  netic regime, we find the convergent series for the estimates
terms of the central chargeand the angl® enclosed by the of b : 0.749 44, 0.749 86, 0.749 95, 0.749 96. We have plot-
cone:

3.00

6
[1—(27/6)%]. (4)

bi=C o

2.50

This formula leads in the case of the octahedronbte
—5c¢/12~—0.4166&, which for c=1/2 corresponding to

the Ising model is in very good agreement with our numeri-« 2.00
cal result. This provides a clear indication that the continuum

limit of the Ising model on the octahedron is given by a
conformal field theory, with the same central charge as for | | 59

the model in flat space. z
We move now to the family of honeycomb lattices em- =
bedded on the tetrahedron. We may distinguish between th 1.00

ferromagnetic and the antiferromagnetic regime, since the
lattices are frustrated in this case. The finite-size scaling is
actually different in the two regimes. The number of lattice
sites is given now by the formula=12N?, whereN is the 0.50 T T T T T T T T
integer that labels the member in the family. At the ferro- t 2 3 4 5 6 7 8 9 10
magnetic critical coupling8..>0, we have measured the N

free energy with the same precision as beforeNer2 up to FIG. 4. Plot of the finite-size correction to the free energy of a
N=9. The values that we have obtained are given in Tabléree scalar fieldpoints over the full lingand of the Ising model at

Il. The accuracy of the fit to a i) correction added to the the antiferromagnetic critical poiripoints over the dashed linen
leading behavior is again remarkable. By making a sequendattices embedded on the tetrahedron.
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ted in Fig. 4 the values df y—aN? and the logarithmic fit The same effect operates in the antiferromagnetic regime
for the last four points. The sum of the squares of the deviaef the lattices on the tetrahedron. These cannot be decom-
tions from the Inl) dependenceN=2 to N=9) is ~2.2  posed in two disjoint sublattices, so that there is an intrinsic
X1077. frustration that rules out perfect antiferromagnetic order, ir-
We can learn the correct interpretation of these resultsespective of lattice size. The zero mode is missing in the
from a similar feature of the finite-size data of the free scalaspectrum, and the correct conformal anomaly of ¢kel/2
field on the curved lattice. This can be described by a simpleonformal field theory is restablished adding “by hand” to
tight-binding model, whose spectrum reproduces that of théhe free energy the regularized zero mode contribution
Laplacian on the lattic€19]. The partition function is com- In(L™1).
puted through the determinant of the coordination matrix, but To summarize, we have checked that the continuum limit
the zero mode has to be removed in order to obtain a non®f the Ising model taken along lattices embedded on the
ingular result. As a consequence of that, the coefficient of théetrahedron and the octahedron corresponds to respective
In(N) correction(fitted to data fromN=2 toN=9 as shown =1/2 conformal field theories. We have seen that the con-
in Fig. 4) turns out to be~0.49999. The correct result in vergence to the critical coupling is sensibly accelerated with
front of the logarithmic correction is obtained by adding therespect to a flat geometry when performing the finite-size
regularized contribution of the zero mode, which scales likescaling in the curved lattices. Our construction may be useful
(1/2)In(L?) after introducing the length dimensions of the to determine the central charge corresponding to other mod-
Laplacian in the lattice. els whose underlying conformal field theory is not known.
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