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Renormalization-group approach to the vulcanization transition
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The vulcanization transition—the cross-link-density-controlled equilibrium phase transition from the liquid
to the amorphous solid state—is explored analytically from a renormalization-group perspective. The analysis
centers on a minimal model which has previously been shown to yield a rich and informative picture of
vulcanized matter at the mean-field level, including a connection with mean-field percolation theqry
random graph theojyy This minimal model accounts for both the thermal motion of the constituents and the
guenched random constraints imposed on their motion by the cross-links, as well as particle-particle repulsion
which suppresses density fluctuations and plays a pivotal role in determining the symmetry sifactuire
hence propertigsof the model. A correlation function involving fluctuations of the amorphous solid order
parameter, the behavior of which signals the vulcanization transition, is examined, its physical meaning is
elucidated, and the associated susceptibility is constructed and analyzed. A Ginzburg criterion for tkigwidth
cross-link density of the critical region is derived and is found to be consistent with a prediction due to de
Genneslnter alia, this criterion indicates that the upper critical dimension for the vulcanization transition is 6.
Certain universal critical exponents characterizing the vulcanization transition are computed, to lowest non-
trivial order, within the framework of an expansion around the upper critical dimension. This expansion shows
that the connection between vulcanization and percolation extends beyond mean-field theory, surviving the
incorporation of fluctuations in the sense that pairs of physically analogous quafttitegercolation related
and one vulcanization relatgdre found to be governed by identical critical exponents, at least to first order in
the departure from the upper critical dimensiand presumably beyohdThe relationship between the present
approach to vulcanized matter and other approaches, such as those based on gelation-percolation ideas, is
explored in the light of this connection. To conclude, some expectations for how the vulcanization transition is
realized in two dimensions, developed with H. E. Castillo, are discussed.

PACS numbegps): 64.60.Ak, 82.70.Gg, 61.43.Fs

I. INTRODUCTION solid state, the thermal motion ¢t least a fraction 9fthe
constituents of the liquid undergo a qualitative change: no
While a rather detailed description of the vulcanizationlonger wandering throughout the container, they are instead
transition has emerged over the past few years within théocalized in space at random positions about which they ex-
context of a mean-field approximatigti—4], the picture of ecute thermali.e., Brownian motion characterized by ran-
this transition beyond the mean-field level is less certain. Thelom rms displacements.
purpose of the present paper is to provide a description of the Our approach to the vulcanization transition is based on a
vulcanization transition beyond the mean-field approxima-minimal Landau-Wilson effective Hamiltonian that describes
tion via the application of renormalization grodRG) ideas the energetics of various order-parameter-field configura-
to a model that incorporates both the quenched randomnesisns, the order parameter in question having been crafted to
(central to systems undergoing the vulcanization trangitiondetect and diagnose amorphous solidification. This order pa-
and the thermal fluctuations of the constitueritghose rameter and effective Hamiltonian can be derivadong
change in character is the fundamental hallmark of the tranwith specific values for the coefficients of the terms in the
sition). Our aim is to shed some light on certain universaleffective Hamiltoniaih via the application of replica statisti-
properties of the vulcanization transition within the frame-cal mechanics to a specific semimicroscopic model of ran-
work of the well-controlled and systematically improvable domly cross-linked macromolecular syste(fRCMSg, viz.,
approximation scheme that the RG provides, viz., an exparthe Deam-Edwards modg8]; this procedure is described in
sion about an upper critical dimension that we shall see takedetail in Ref.[4]. More generally, the form of the minimal
the value 6. model can be determined from the nature of the order param-
We remind the reader that the vulcanization transition iseter, especially its transformation properties and certain sym-
an equilibrium phase transition from a liquid state of mattermetries that the effective Hamiltonian needs to possess,
to an amorphous solid statéin addition to the technical along with the assumptions of the analyticity of the effective
reports cited abovfl—4], we refer the reader to some infor- Hamiltonian and the continuity of the transition. This
mal accounts of the physics of the vulcanization transitiorsystem-nonspecific strategy for determining the minimal
[5—7].) The transition occurs when a sufficient density of model was applied in Ref9]. There it was shown that by
permanent random constrair(&g., chemical cross-links- regarding the effective Hamiltonian as a Landau free energy
the quenched randomness—are introduced to connect tlome could recover from it the mean-field description of both
constituentge.g., macromoleculéswhose locations are the the liquid and emergent amorphous solid states known ear-
thermally fluctuating variables. In the resulting amorphoudier from the analysis of various semimicroscopic models
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[3,4,10,11. The mean-field value of the order parameter inis the impact of the quenched random constraints on the
the solid state encodes a function rather than a number, andthermal motion of the constituents, taepriori identification
possesses a certain mean-field “universality,” by which weof the vulcanization transition with gelation-percolation is
mean that(as the transition is approached from the amor-thus a nontrivial matter. By contrast with the gelation-
phous solid sideboth the exponent governing the vanishing percolation-type of approaches, the analysis given in the
of the fraction of constituents localizéde., the gel fraction ~ Present paper applies directly to the vulcanization transition
and the scaled distribution of localization lengths of the lo-€xhibited by thermally fluctuating systems and driven by
calized constituents turn out to depend not on the coefficientguenched random constraints. It should therefore shed some
in the Landau free energy but only on its qualitative struc-19Nt on the relevance of the gelation-percolation-type per-

ture. Support for this mean-field picture of the amorphoussPeCtive for the vulcanization transition, as we shall discuss

solid state, in the form of results for the localized fraction” _SI_EQ' VI. : ed foll Ins " .

and scaled distribution of localization lengths, has emergeg) IS paper Is organized as follows. In Sec. [l we give a
r

from extensive molecular dynamics computer simulations o ';i];izgﬁc’:% %ff IEE 8::1?; Eﬁ@ggtserref?ircéhae V?é;acﬂ'igtm
three-dimensional, off-lattice, interacting, macromolecular ’ P PP

systems, due to Barsky and Plischike2,13. In order to canized matter and its field-theoretic representation, together

provide a unified theory of the vulcanization transition thatW'th .";t‘. m|n||m§I flelllclj-theoretlc m_odetlh for the }/_ullgalnlzaltlo_n
encompasses the liquid, critical, and random solid states, wgansition. In Sec. Il we summarize the mean-field-level pic-

shall in the present work adopt this Landau free energy as th re of the vulcani;ation transition, along with. the picture of
appropriate Landau-Wilson effective Hamiltonian. the amorphous solid state that emerges from it. In Sec. IV we

We shall focus on the liquid and critical states, rather tha iscuss the order-parameter correlator and susceptibility for

the amorphous solid state, and shall therefore be concern He vulca_nization tr_ansition_, and examine their physical con-
with the order-parameter correlator rather than its mea ent. I-_|avmg established this preparatory framgwo_rk, we em-
li)ark, in Sec. V, on the analysis of the vulcanization transi-

value. Along the way, we shall therefore discuss the physic . . .
content of this correlator, why it signals the approachingt'Oﬂ_sgzgig?emiagf'fﬁfamﬁglré" tx\é?)rset?;/ne?t/irﬁgznmg;ntlﬂg Itr?]e

amorphous solid state, and how it gives rise to an associatetf

susceptibility whose divergence marks the vuIcanizatiorPaCt qf quctuatl_ons pertu_rba_tlvely, Wh'ch resyl_ts In the con-
transition. struction of a Ginzburg criterion and the identification of 6 as

Given the apparent precision of the picture of the amor_being the appropriate upper critical dimension. We then ap-

phous solid state resulting from the mean-field approximaply a momgntum-shell R.G SChemPT to the mlnlmql model,
tion [3,4,9,12,13 the reader may question the wisdom of thus .obtammg Cef‘a'”. umvgrsal cr_|t|cal exponents N an ex-
our embarking on a program that seeks to go beyond thRansion aroun_d SiX dlmens_lons. _Fmally, in Sec. VI we give
mean-field approximation by incorporating the effects ofS°Me concluding remarks in which we discuss connections

fluctuations. We therefore now pause to explain what hag)etweer! our approach . and those based on gelation-
motivated this program. percolation, and we examine the role played by thermal fluc-

(i) Below six spatial dimensions, mean-field theory nec_tuations', especially ir_1 lower spatial dim'ensionali'ties. In_three
essarily breaks down sufficiently close to the vulcanization"’lppenq'Xes we proylde techn.|ca.I details .assoc'lated with the
transition. Although, as we shall also see, the region of crossger'vat'on (.)f the_ Ginzburg criterion, we investigate the_ ef-
link densities within which fluctuations play an important ects of various fields and vertices Om'“‘?d from the minimal
role is narrower for dimensions closer tout below 6 and mode!, and we present the full derivation of the RG flow
for longer macromolecules, it is by no means necessary fopquations.
this region to be narrow for shorter macromolecules and for
lower-dimensional systems; thus, systems for which the , ‘y;ope) NG THE VULCANIZATION TRANSITION
fluctuation-dominated regime is observably wide certainly
exist. The purpose of the present section is to collect together
(ii) While there have been many successful treatments dhe basic ingredients of our approach to the vulcanization
critical phenomena beyond the mean-field approximation irtransition, including the order parameter, underlying semim-
systems with quenched randomness, these have, by aitoscopic model, replica field theory, and minimal model.
large, been for systems in which the emergent order was ndtll these elements have been discussed in detail elsewhere,
of the essentially random type under consideration here or iand we shall therefore be brief. As the reader will see, al-
the spin glass settinffl4]. Instead the emergent order has though its construction follows a quite conventional path, the
typically been of the type arising in pure systems, albeit pertheory does possess some intricacies. We shall therefore take
turbed by the quenched disorder. We are motivated here byarious opportunities to shed some light on the physical
the challenge of going beyond mean-field theory in the conmeaning of its various ingredients.
text of a transition to a structurally random state of matter.  Although most of our results are not specific to any par-
(iif) The vulcanization transition has often been addresseticular system undergoing a vulcanization transition, in order
from the perspective of gelation-percolation theori@gs—  to make our presentation concrete we shall discuss the physi-
20]. While this perspective can Hand certainly has begn cal content for, and use notation specific to, the case of
taken beyond the mean-field level, it possesses kmihgle = RCMSs. We shall follow closely the notation of Rg£] and,
ensemble, and therefore does not incorporate the effects atcordingly, we shall adopt units of length in which the char-
both quenched randomness and thermal fluctuatii. acteristic size of the macromolecules is urnigxcept in our
Given that an essential aspect of the vulcanization transitiodiscussion of the Ginzburg criterion, Sec. V.A
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A. Order parameter for the vulcanization transition A2 N 1 1 n

M=y 3 [ds[ a3

The appropriate order parameter for the vulcanization 2 jj’=170 0 «a=0
transition, capablénter alia of distinguishing between the % 5D (c(s)—c*(s'))

liquid and amorphous solid states, is the following function ) i’

of A wave vectorgk?®,k?, ... k}: VAL

TN E ds f ds’
ji'=170 J0

1Y
le,l fo ds(explik®-ci(s))),

n
x I1 8N (s)— ¢ (s")). (2.2
a=0
il2 A
X (explik®- cj(8)))- - - (explik™- ¢j(8))) |, Here,(- )V, ; denotes a thermal average taken with respect to

the Hamiltonian forn+1 replicas of the noninteracting,
uncross-linked system of macromolecules. Moreo$fr, ;
is an effective pure Hamiltonian accounting for the interac-

h is th | ber of lecul ith tions among the macromolecules and the effects of cross-
whereN is the total number of macromolecule(s) (wit linking, the latter generating interactions between the repli-

j=1,... N and O<s<1) is the position ind-dimensional 55 The parametar measures the strength of the excluded-
space of the monomer at fractional arclengiilong thejth  yolume interaction; the paramete? measures the density of
macromolecule ) denotes a thermal average for a particu-the constraints and serves as the control parameter for the
lar realizationy of the quenched disorddi.e., the cross- yulcanization transition. As a result of there being random
linking), and[ - - - ] represents a suitable averaging over thisconstraintsrather tharinteractions the coupling between the
quenched disorder. It is worth emphasizing that the disordereplicas takes the form gbroduct over all replicas rather
resides in the specification of what monomers are crosshan, say, gpairwise sum As usual, the disorder-averaged
linked together: the resulting constraind® not explicitly  free energy is proportional {dn Z], which we obtain via the
break the translational symmetry of the system. In thereplica technique as lign,on tIn[Z"]. Let us mention, in
liquid state, for each monomeij,6) the thermal average passing, the symmetry content of this replica thedty; , is
(explik-ci(s))), takes the vaIue‘)‘(k‘% and thus the order pa- invariant under arbitrary independent translations and rota-
rameter is simpIyH/i:lé(d) On the other hand, in the tions of the replicas as well as their arbitrary permutation.

ka0 ) . T
amorphous solid state we expect a nonzero fraction of th?ra;]r;‘;orr‘]a;l#;al collective coordinates for the vulcanization

monomers to be localized, and for such monomers
(explik-ci(s))), takes the formp ; o (k)explik-bj(s)), i.e., 1N
a random phase-factor determined by the random mean po- Q(k)== E J' dsexp(iR-Ej(s)), (2.3
sition bj(s) of the monomer j;s) times a random Debye- N =1 Jo

Waller factor p; (k) describing the random extent to
which the monomer is localized. As reviewed in Sec. 3 of

Ref.[4], by choosing the wave vectofk®}~_, to satisfy the L ) .
[4], by sing wave vectofk®},._, to satisfy detail in see Sec. 5.1 of R¢#]. (Such collective coordinates

constrainkk®+ k2+ - - - + kA= 0 the random phase factors are S ) !
P were first introduced in the context of cross-linked macromo-

eliminated from the order paramet€.1), and hence the
order parameter is capable of distinguishing between the |iqLecuIar melts by Ball and Edwardg2].) We use the symbol

uid and amorphous solid states and, furthermore, charactef-to denote the replicated wave vectd® k', . .. k"}, and
izing the randomness of the localization through its dependefine the extended scalar productc by k° c®+k!-ct
dence on the collection of wave vectors. +..-+Kk"c". The collective coordinate®(k) are the mi-

croscopic prototype of the order paramet2rl), the latter

being related taQ(k) via lim,_o(Q(K))F. ;, where

(2.9

which emerge upon introducing Fourier representations of
the two types ofé function in Eg.(2.2b), as discussed in

B. Replicated semimicroscopic model of vulcanized
macromolecular systems
Y (o (e —Hp )
Following Deam and Edwards], by (i) starting from a " (exp—HE W,
semimicroscopic Hamiltonian describing a system of macro-
molecules interacting via an excluded-volume interaction, o .
N . - . C. Replica field theory for vulcanized macromolecular systems
(i) introducing the random constraints imposed by cross-
linking, and(iii) averaging over the quenched disorder using As discussed in detail in Sec. 5.3 of Rpf], one can put
the replica techniquéwith a physical choice for the distri- the partition function into a form of a field theory by apply-
bution of the disorder which leads to an additional replica ing a Hubbard-Stratonovich transformation to the collective
one arrives at the disorder-averaged, replicated partitiogoordinatesQ(k); we denote the corresponding auxiliary

function (for details, see Sec. 4 of R¢#]) order-parameter field b@ (k). At this stage one encounters
a vital issue, viz., that it issentialto draw the distinction

[Z"]o(exp( = Hprr 1)) ns 1 (228 petween examples @ (k) andQ(k) that belong to thene-

(2.9
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replica sector(1RS and those that belong to th@gher-  minimal model capable of describing the universal aspects of

replica sector(HRS). The distinction lies in the value d¢  the vulcanization transition inasmuch as it indicates the ap-

for a replicated wave vectd, if there is exactly one replica propriate order parameter and symmetry content, In the spirit
' N of the standard Landau approach, one can determinieiime

for which the corresponding-vectork® is nonzerofe.g..k  of the minimal model by invoking symmetry arguments
=(0,...,0,k*#0,0, ... ,0)] then we say thak lies in the along with three further assumptiong) that fluctuations

one-replica-sector Ke 1RS) and that the corresponding representing real-space variations in the local density of the

S s . .. constituents are free energetically very costly, and should
Q(k) _andQ(k) are 1RS qu_ant|t|es. Qn the other hand,_|f therefore be either suppressed energetically or, equivalently
there is more than one replica for which the correspondin

N PR Yas far as our present aims are conceynpcevented via a
components ok are nonzero then we say thiaties in the  kinematic constraint(ii) that we need only consider order-
higher-replica sectorkie HRS) and that the corresponding parameter configurations representing physical situations in
Q(k) and Q(k) are HRS quantities. For example, k  Wwhich the fraction of constituents localized is at most small;
=(0, ... k*#0, ... kP#0, ... 0) thenk lies in the HRS. and(iii) that the field components responsible for the incipi-
' ' ' ' ' ' ent instability of the liquid phase are those with long wave-

lengths. Provided these assumptions hold, one fhagx-

and the effective Hamiltonian in powers of the order

(More specifically, in this examplfe lies in the two-replica
sector of the HRS.The importance of this distinction be-
tween the 1RS and the HRS lies in the fact, evident from the, o .- andi) expand the coefficient functions in pow-
order paramete(2.1), that the vulcanization transition is de- ¢ < ot wave vectors. One retains terms only to the order
tected by fields residing in the HRS, wherea_ls the 1RS f'el_d_ﬁecessary for a description of both sides of the transition.
measure the local monomer density, and neither exhibit C”“(When we go beyond mean-field theory, below, RG argu-
cal fluctuations near the vulcanization transition nor acquirg,anis will justify our omission of all 6ther s;/mmetry-
a nEc;nze;ro e.xpegtegluorr:.vaclillje'ln t.he aé)morphoushsoli?qztateam|0wed terms on the grounds that they are irrelevant at the
earing in mind this distinction between the andsived-points of interest.This scheme leads to the following

HRS fields, the aforementioned Hubbard-Stratonovich transr-ninimal model[9,26], which takes the form of a cubic field

formation leads to the following field-theoretic representa-

tion of the disordered-averaged replicated partition function.theory involving a HRS field)(k) that lives on (1+1)-fold

replicatedd-dimensional space:

n T T _ a i
[Z ]ocf DHQJ D'Q exp(—ndNF,({Q%(k),Q(k)})), [Z”]OCJ DO exp—S,), (2,73
(2.5
where Q¢%k) [which represents Q(k) when k Son=N S | -ar+ 9|R|2)|Q(R)|2—Ng
=(0, ...0k*=k#0,0, ... ,0)] is a 1RS field,Q(k) is a ke HRS 2
HRS field, and the explicit expressions for the resulting ef-
fective HamiltonianF, and functional integration measures X E Q(ﬁl)Q(Rz)Q(Ra) Sk tiike s
[23] are given by Eqs(5.12) and (5.9 of Ref. [4]. In this Ky ky kg e HRS v

formulation of the statistical mechanics of RCMSs, one can 2.7D
readily establish exact relationships connecting average val- '

ues and correlators @ (k) with those ofQ(k) [24]. (Such ~ Wwhere 7 is the reduced control parameter measuring the
relationships between expectation values involving micro€ross-link density. This model was introduced in R&f] as
scopic variables and auxiliary fields are common in the setd Landau theory of the vulcanization transition, where it was
ting of field theories derived via Hubbard-Stratonovich trans-shown to yield a rich description of the amorphous solid
formations[25].) For example, for wave vectors lying in the state, even at the saddle-point level, which we briefly sum-

HRS one has marize in Sec. lll(along with the results of various semim-
icroscopic approachgesAlthough the semimicroscopic deri-

(QR)YP, 1 =(Q k)T, ., (2.6a  vation of S, containsn-dependent coefficients,, b,,, and

O,, it is admissible for_us to keep only the—0 limit of

A . . YA these coefficient§.e., a, b, andg) at the outset becaus is
(Q(k)Q(k')>E+1,c:<Q(k)9(k')>f+1,c—MTN5R+R',6, already proportional ta for pertinent field configurations.

(2.6b) We denote averages weighted with exs,) by (- ).
' We wish to emphasize the point that this minimal model

where(-),ﬁl denotes an average over the field the@hp), does not contain fields outside the HRS. For example, in the

and the subscript ¢ indicates that the correlators are corfUPIC interaction term in Eq2.7b, the wave vectors in the

nected. Relationships such as those given in E2j63 and  Summations are constrained to lie in the HRS. Tlirean
(2.6b) allow one to relate order-parameter correlators to corfonstraint on the field embodies the notion that interparticle
reiators of the field theory. interactions give a “mass” in the 1R8.e., produce a free-

energy penalty for density inhomogeneijieghat remains
nonzero at the vulcanization transition. From the standpoint
of symmetry, this constraint has the effect of ensuring that
The exact field-theoretic representation of RCMSs disthe only symmetry of the theorassociated with the mixing
cussed in the previous section serves as motivation for af the replicagis the permutationsymmetry §. ;. Without

D. Minimal model for the vulcanization transition
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it, the model would have the larger symmetry,((@ Q(k)=(2ar/3g) 8 w(\ak¥/b7) (3.13
+1)d), of rotations that mix théCartesian components of (0=( 9) k.0 (

the) replicas; see the term associated with the interreplica

coupling arising from the disorder averaging of the repli- -

cated cross-linking constraints in E@.2b. In addition to w(k)sf do m( H)e*kz’”’, (3.1b
permutation symmetry, the model has the symmetry of inde- 0

pendent translations and rotations of each replica. The re-

striction to the HRSoor, equivalently, the energetic suppres- ~ n . ) )

sion of the 1R$is vital: it entirely changes the content of the Wherek=2,_ok®. The functionm(6) is a universal func-
theory. Without it, one would be led to completely erroneoustion, in the sense that it does not depend on the model-
results for both the mean-field picture of the amorphous soligPecific coefficients, b, andg: it is normalized to unity and

state and, as we shall see, the critical properties of the vufatisfies a certain nonlinear integrodifferential equation; see
canization transition. Refs.[3,4,10. From the physical perspective(k) encodes

For use in Sec. V A, when we come to examine the physithe distribution of localization lengths of the localized mono-
cal implications of the Ginzburg criterion, we list values of mers and the Kronecke$ factor &I((dc)) exhibits the macro-
the coefficients in the action derived for the case of RCMSsscopic translational invariance of the random solid state. By
(up to inesgential factors of the cross-link density controlyassing to thek— 0 limit in Eq. (3.1a one learns that the
paramete.): fraction of localized monomerg (i.e., the gel fractiopis

s oo given by
T=(u = pe) pe, (2.89

0, liquid state;

a=1/2, (2.8b _
(2a/3g)7?, solid state;

q (3.2

b=LlI/6d, (2.89

with the exponenp3 being given by the mean-field value of
g=1/6. (2.8d  unity. It has recently been demonstrated that the mean-field
state summarized here is locally stap®]. (We note, in
Here, u2 is the mean-field critical value ofi?, L is the passing, that no spontaneously replica-symmetry-breaking
arc|ength of each macromo]ecu|e, ahds the persistence solutions of the Order-parameter Stationary condition have
length of the macromolecules. been found, to datg.

Ill. VULCANIZATION TRANSITION IN MEAN-FIELD B. Gaussian correlator: Liquid and critical states

THEORY: BRIEF SUMMARY OF RESULTS The incipient amorphous solidification, as the vulcaniza-

A. Mean-field order parameter: tion transition is approached from the liquid side, is marked
Liquid and amorphous solid states by strong order-parameter fluctuations, which are diagnosed

Mean-field investigations of RCMSs and related systemyia the correlatoiG(k) defined through
[3,4,9-11 have shown the following(i) There is a continu- g (n1)d N s
ous phase transition between a liquid and an amorphous solid N 5&+&',6G(k)=<9(k)9(k )7 33
state as a function of the density of the cross-litdesother
random constrainjs This transition is contained within the ) )
HRS. Both the liquid and the amorphous solid states havé N€ unusual factor of N is due to our choice of the nor-
uniform densities, and therefore the order parameter is zer@alization ofQ(k) in Eq. (2.3). Section IV, below, is dedi-
in the 1RS on both sides of the transitidii) In the solid  cated to explaining the physical content of this correlator and
state, translational invariance is spontaneously broken at therecisely how, via Eq(2.6b), it is able to detect incipient
microscopic level, inasmuch as a nonzero fraction of the parsandom  solidification. The value of the correlator in the
ticles has become localized in space. However, owing to thenean-field approximation follows from the quadratic terms
randomness of the localization, this symmetry breaking idn Eq( 2.7b and is given by
hidden.[Hence the need for a subtle order paramé&2et). ]
In the language of replicas, the symmetries of independent
translations and rotations of the replicas are spontaneously G(k)~G,(k)=
broken, and all that remains are the symmetries of common 0
translations and rotationigorresponding to the macroscopic
homogeneity and isotropy of the amorphous solid $tdtke
permutation symmetry among thret 1 replicas appears to which below will play the role of the bare propagator. Notice
remain intact at the transitiofiii ) The stationarity condition  hat G, (k) obeys the homogeneity relation
for the order parameter can be solved exactly. In the context

of the minimal model, in the liquid state one fin@f_ls(R) . A R
=0; in the solid state the order parameter takes the form G(k, )~ k| =2 7g(|k||7| ™), (3.5

T A 3.4)
—2ar+b|k|? (
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in which g(x) ~x?~7 for x— + 0 and approaches a constant N - ,
value for largex. Moreover, the exponents take on the mean- Ct(f—r’)=v§ gkrn-(r=r)
field values =0, v=1/2, and y=v(2—7n)=1, this last

relationship  guaranteeing that the  susceptibility

lim_.5G(k, ) diverges agr| 7. X

N

1
L > ds dé(e’”"(CJ(S)*CI"(S’))M
N2 j,j’zl 0

IV. ORDER-PARAMETER CORRELATOR _ ,
AND SUSCEPTIBILITY, AND THEIR X (e " EGEmg sy
PHYSICAL SIGNIFICANCE

4.2

Let us now consider the order-parameter correlator and N
the associated susceptibility from the perspective of incipient ==> d“="Nlim(Q*(0,k—t,t,0, ... 0)
random localizatiorf28]. In the simpler context of, e.g., the V& n—0
ferromagnetic Ising transition the two-point spin-spin cor-
relator quantifies the idea that the externally imposed align-
ment of a particular spin would induce appreciable alignment . "
of most spins within roughly one correlation length gf that Having seen thaC,(r—r’) is closely related to an HRS
spin, this distance growing as the transition is approache@orrelator involvingQ(k) (which can be computed via tie
from the paramagnetic state. How are these ideas borne ofi€ld theory, we now explain in more detail ho@(r—r")
in the context of the vulcanization transition? Imagine ap-detects the spatial extent of relative localization. First, let us
proaching the transition from the liquid side: then the incipi-dispense with the case ¢f0. In this caseCy(r—r’) is
ent order involves random localization and so, by analogyimply (V/N times the real-space density-density correla-
with the Ising case, the appropriate correlator is the one thaton function and, as such, is not of central relevance at the
addresses the question: Suppose a monomer is localized &norphous solidification transition. Next, let us consider the
within a region of some size by an external agent: Over whasmallt limit of C,(r—r"). This quantity addresses the ques-
region are other monomers likely to respond by becomingdion, if a monomer at is localized “by hand,” what is the
localized, and how localized will they be? We can also condikehood that a monomer at responds by being localized at
sider the order-parameter correlator and the associated su&}, no matter how weakly? It is analogous to the correlation
ceptibility from the perspective of the formation ghobile,  function defined in percolation theory that addresses the con-
thermally fluctuating assemblages of macromolecules, nectedness of clustef20].
which we refer to as clusters: How do they diagnose the To substantiate the claim made in the previous paragraph
development of larger and larger clusters of connected magve examine the contribution from each pair of monomers to
romolecules, as the cross-link density is increased towardde quantityC(r—r"). Let us start from the simplest situa-
the vulcanization transition? tion, in which no cross-links have been imposed. We assume
Bearing these remarks in mind, we now examine in detaithatt is small(i.e., V™3> t| 1> Ry, WhereRy is the radius
the physical interpretation of the order-parameter correlatoof gyration for a single macromolecyland that the macro-
(Q(k)Q(—k))". ; which, as we shall see, captures the phys-molecular system has only short-range interactions. For each
ics of incipient localization and cluster formation. To seet€m in the double summation over monomers there are two
this, consider the construction cases to consider, depending on whether or not the pair of
monomers are on the same macromolecule. For a generic
N 1 1 pair of monomers that are on the same macromoleGide
> dsf ds'(8“9(r —ci(s)) i=i’), we expect that(exp (t-(c;(s)—¢;(s’))))~1, and
jj’=1Jo Jo that (ford Ir=r'|<Ry (8(r—ci(s))d(r' —c(s")))
N , . ~V~IR%. Then the total contribution t€,(r—r’) coming
XSO — (s exd ~it-(ci(s) ] from pagirs of monomers on the same macromolecule is of
order (N/V)ZRg‘d. On the other hand, for a generic pair of
Xex;{it-(cjy(s’)—r’)])xl, 4.7 monomers that are on different macromoleculgs., |
#j’), we expect thaﬁexp@t'(c,-(s)—cj,(s’)))>~V*1, and
o N . _ that (5D (r—c;(s))8(r' —¢;(s")))~V 2. Therefore the
which, in addition to depending on the separatienr’, de-  total contribution toC,(r—r') coming from pairs of mono-
pends on the “probe” wave vectdr The first expectation mers on different macromolecules is of ordét/y¥)3V 1.
value in this construction accounts for the likelihood thatthys, we find that the intrachaiine.,j=j’) contribution to

monomers |,s) and (',s’) will, respectively, be found c (r—r’) dominates over the interchaine., j#j’) contri-
aroundr andr’; the second describes the correlation be-pytion in the thermodynamic limit.
tween the respective fluctuations of monomgis) aboutr Moving on to the physically relevant case, in which cross-
and monomerj(,s") aboutr’. links have been introduced so as to form clusters of macro-
Now, the quantityC,(r—r") is closely related to an HRS molecules, we see that what were the intrachain and inter-
correlator involving the semimicroscopic order parameteichain contributions become intracluster and intercluster
Q(k). To see this we introduce Fourier representations of theontributions. With the appropriatslight) changes, the pre-
two & functions and invoke translational invariance, thus esvious analysis holds, which indicates that the intracluster
tablishing thaf29] contribution dominatesC,(r—r') in the thermodynamic

XQ(0,k—1,t,0, ...,0)F ;. (4.3

|V
Cir—r")= N
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limit. In other words, in the smalldimit a pair of monomers 21 s
located atr andr’ contribute unity toCi(r —r") if they are N A
on the same cluster and zero otherwise. This view allows us k k
to identify the smalit limit of C,(r—r’) with the pair- T T—--
connectedness function defined(the on-lattice version of
percolation theory20]. z

1

What aboutC(r—r') in the case of generaP In this
_Case it addresses Ehle question, if a monomer nwﬂo_cal- FIG. 1. One-loop correction to the two-point vertex function.
ized on the scalé (or more strongly, how likely is a Full lines indicate bare HRS correlators; dashed lines indicate am-
monomer near’ to be localized on the same scétg more  iated external bare HRS correlators.
strongly? This additional domain of physical issues associ-
ated with the strength of localization results from the effects

of thermal fluctuations, and is present in the vulcanizationWhere the final asymptotic equality is obtained from a com-

picture but not the percolation one. putation of the(field-theoreti¢ correlator(Q (k) (k")) 1
Let us illustrate the significance @,(r—r') by comput-  [Se€e Eq.(2.6b]. This quantity is a measure of the spatial

ing it in the setting of the Gaussian approximation to the€xtent over which pairs of monomers are relatively Iocghzgd,

liquid state in three dimensions. To do this, we use(@dhy ~ NO matter how weakly, and thus diverges at the vulcanization

to expressCy(r—r') in terms of the(Gaussian approxima- transition. At the Gaussian level of approximation, E&j4),

tion to the correlator (Q(K)Q(k'))S, which has the this susceptibility diverges with the classical exponent

Ornstein-Zernicke form given in E¢§3.4). Thus, we arrive at f|:n|1te B;[ Ct?]';tr?rztr’];(:iro?]eneevr('atnthtisgsﬁeggb;Ir:ﬁcﬁéereérui?; i
the real-space Yukawa form ' 9

emerging, due to the suppression of contribution®tdrom
pairs of monomers whose relative localization is sufficiently

exp(—|r—r'|/Zeq(t))

|Cy(r—r")|e . ' (4.49 Wweak(i.e, those that lead to the divergence in the small-
[r=r’| limit).
1 1 —
———=—t+Dbt*, (4.4b V. VULCANIZATION TRANSITION BEYOND
ler(D) & MEAN-FIELD THEORY
where the correlation lengttj is defined by(zz —2ar. A. Ginzburg criterion for the vulcanization transition

Hence, we see the appearance of a probe-wavelength- To begin the process of analyzing the vulcanization tran-
dependent correlation length(t). The physical interpreta-  sition beyond the mean-fielde., tre¢ level, we estimate the
tion is as follows: in the— 0 limit, C,(r—r") is testing for  width 57 of reduced constraint densitieswithin which the
relative localization, regardless of the strength of that localeffects of order-parameter fluctuations about the saddle-point
ization and, consequently, the range of the correlator divalue cannot be treated as weak, i.e., we construct the Gin-
verges at the vulcanization transition. This reflects the incipizburg criterion. To do this, we follow the conventional strat-
ence of an infinite cluster, due to which very distantegy (see, e.g., Ref.30]) of computing a loop expansion for
macromolecules can be relatively localized. By contrast, fokhe two-point vertex function to one-loop order and examin-
generict it is relative localization on a scate * (or smallel  ing its low-wave-vector limifi.e., the inverse susceptibility
that is being tested for. At sufficiently large separations, eveiNote that in the present setting the loop expansion amounts
if a pair of macromolecules are relatively localized, this rela-to an expansion in the inverse monomer density. Our starting
tive localization is so weak that the pair does not contributepoint is the minimal model, Eq:2.7b), for which the bare
to C(r—r"). This picture is reflected by the fact thétz(t)  correlator is given by Eq:3.4). Then the one-loop correction
remains finite at the transition. to the two-point vertex function comes from the diagram
Given that we have identified a correlator that is becom-shown in Fig. 1, which is calculated in Appendix A. By

ing long ranged at the transition, it is natural to seek arbhoosingR63+RS (iLe., in the HRS but not in the two-

associated divergent susceptibil®y;. To do this, we inte- replica sector[31] we obtain for the inverse susceptibility
grateC,(r—r') over space and obtain =1 the result

o J«ddrddrrc( ) . . 2V ddp

=| ——Cyr—r’ NE) '=-2ar+1 —J—_ ——, (B.1

t v Ci (NE) 18 ) o 6
=Nlim (Q*(0,t,~t,0, ... 0)

o in which a large wave-vector cutoff H|= A is implied. The
XQ(0,t,—1,0,...,0)",,. (4.5  (one-loop shifted critical pointr, marks the vanishing of
=71 ie., solves
Passing to the— 0 limit, we have
. . _ % d’p
lim @~(—7)"7, (4.9 0=—-2ar.+ 1892—f — . (5.2
0 NJ (-2ar.+bp?)?
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Now, in mean-field theory the transition occursratO, with 0 Alb A "
positive (respectively, negatiyevalues corresponding to the ' ' '
amorphous solidrespectively, liquidl states. From Eq5.2) Ot ()
we see that that inclusion of fluctuations enlarges the region

of cross-link densities in which the liquid state is stable, as Ob e (b)
one would expect on general physical grounds. However, it C\\‘\\\ ©
is worth noting, in passing, that without the exclusion of the

one-replica sector the converse would océue., fluctua- OHHHHHHHHHHHHHH - (d)

tions would enlarge the region of stability of the amorphous

S?“ddStzté' By su?tra_ctm% E.?(S'Z) fro][_n lgq' (|5.1) fm the of the RG procedurdthe field variables are defined only at the
.S andard way, rep.acmgc y1ts mgan- 1€ . va uép Zero), hatch marks denoting the quantized wave veg¢tdrem (a) to (b)
in the loop correction, and rescaling the integration vanablqntegrate out the fields at the quantized wave vectoris the

FIG. 2. Schematic one-dimensional depiction of the basic steps

p? according tobp?= —2ark?, we arrive at “momentum shell” (shadegt from (b) to (c) rescale lengths to
restore the wave-vector cutoff, and rescale the field to restore the
(NE) =-2a(r—1,) gradient term; from(c) to (d) restore the density of the degrees of
— _ freedom (In practice, we employ a momentum shell of infinitesimal
X (1-189%(V/N)b~¥%(—2ar)(@=92]y), width,)
(5.3

B. Renormalization-group procedure and its subtleties
where J4 is a dimensionless number dependentdiand
weakly onA, at least in the regime of interest, i.€.pelow
6). Equation(5.3) shows that ford<6 a fluctuation domi-
nated regime is inevitable for sufficient small and hence
that the upper critical dimension for the vulcanization tran-

sition is 6, in agreement with n& power-counting argu- graining and rescaling. However, in the present context there

ments applied to the—0 limit of the cubic field theory, Ed. 516 some significant subtleties owing to the need to constrain
(2.7b. The Ginzburg criterion amounts to determining theq fields to lie in the HRS.

departure ofr from its_ critical value such thaF in E@5.3) the In the coarse-graining step, we integrate out the rapidly
one-loop correction is comparable in magnitude to the mean-

field-level result varying components of)(k) (i.e., those corresponding to
To determine the physical content of the Ginzburg crite-Wave vectors satisfying/b<|k|<A). Here, the constraint
rion, we invoke the values of the coefficients of the minimalthat only the HRS field is a critical field demands that one
model appropriate for the semimicroscopic model oftreat the HRS and the 1RS distinctly. We handle this by
ecule density N/V for the volume fraction ¢  in @ hypercubic box of volumé&/"** on which periodic
=(N/V)(L/NI9. Thus we arrive at the following form of the boundary conditions are applied. As a consequence, the

Ginzburg criterion: ford<6, fluctuations cannot be ne- Wave vectors are “quantized,” and therefore we can directly
glected for values of satisfying make the appropriate subtractions associated with the re-

moval of the zero- and one-replica sectors. Having made the
necessary subtractions, we compute the various Feynman
<(L/1)~(@=26-d)(pyg2)=(26-d) (5 4 diagrams(for the construction of the Ginzburg criterion and
the coarse-graining step of the RBy passing to the con-
tinuous wave-vector limifso that wave-vector summations
from which we see that the fluctuation-dominated regime isbecome integrations
narrower for longer macromolecules and higher densities The replica technique has the following curious feature.
(for 2<d<6). Such dependence on the degree of polymerin the infinite-volume limit the different sectors are spaces of
ization L/l is precisely that argued for long ago by de different dimensionalities, and thus the contributions from
Gennes on the basis of a percolation-theory picfGe. the lower replica sectors appear to be sets of measure zero
In addition to the fields and vertices featured in the mini-relative to the contributions from the HRS. However, in the
mal model, there are other symmetry-allowed fields and verreplica limit, the contributions from different sectors are
tices that are generated by the semimicroscopic theory afomparable and, hence, the lower sectors cannot be ne-
RCMSs. Examples are provided by the 1RS field, which deglected. The coarse-graining step is followed by the rescaling
scribes density fluctuations, along with vertices of cubic,step, in which the aim is to return the theory to its original
quartic, or higher order that couple the 1RS field to the HRSorm. The field- and length-rescaling aspects of this gtep
field. In Appendix B we investigate the effect of these fieldsrecover the original wave-vector cutoff and form of the gra-
and vertices, which are omitted from the minimal model, anddient term) are standard, but there is a subtlety associated
show (i) that the inclusion of their effect@t the one-loop with the fact that the original theory is defined on a finite
level) does not change the Ginzburg criterion derived in thevolume (in order that the wave vectors be quantized and the
present section; an(i) that the HRS critical fluctuations do various replica sectors thereby be readily identifiablehis
not provide any singular contributions to the 1RS density-subtlety is that upon coarse graining and rescaling one ar-
density correlation functiofat least to one-loop order rives at a theory that ialmostof the original form, but is

We now describe the RG procedure that we are using, a
schematic depiction of which is given in Fig. 2. The main
thrust of our approach is the standard “momentum-shell”
RG, via which we aim to determine how the parameters of
the theory,r andg, flow under the two RG steps of coarse

2
W= e
2

c
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defined on a coarser lattice of quantized wave vectors asso- *
ciated with the reducedreal-spacgvolume. If we wish to 7

return the theory to its truly original form, we are required to

increase the density of the coarsened wave-vector lattice. To 3 -
accomplish this, we choose to make use of the extension to

(n+1)d dimensions of the following one-dimensional rela-

tion, exact in the thermodynamice., large real-space size

B) limit:

i
> f(k=b™t X f(k. (5.5 }

ke {Z7ib/B} ke{2mi/B} (a) (b)

One way to understand this is to regard the two sides of Eq. ig. 3. Contributing one-loop diagrams. Full lines indicate bare
(5.5 as providing different discrete approximations to theyrs correlators for short-wavelength field=., fields lying in the

same continuous-wave-vectdt.e., infinite-volume limit.  momentum shelj wavy lines indicate long-wavelength fields.
Thus, we expect the difference between them to be unimpor-

tant in the thermodynamic limit. Another way is to regard the
right-hand side of Eq(5.5) as pertaining to a system with a
larger number of degrees of freedom than the left-hand sid
but that the factob ™! appropriately diminishes the weight
of each degree of freedom. It would be equally satisfactory if

we chose, in our RG schemegt to restore the wave-vector S, ({Q})=N >,
lattice spacing, which would amount to our using the left- ke HRS
hand side of Eq(5.5).

(2.7b. By suitably redefining the_scales 6¥(k) andk we
can absorb the coefficients and b, hence arriving at the
§:andau-Wilson effective Hamiltonian

1. A
~ 74 5IKE 0o - Ng

X 2 k) (k) Q(Kka) G iy iy
C. Expansion around six dimensions ky.kz kgeHRS

In the previous two subsections we have established that (5.6

the upper critical dimension for the vulcanization transition, . .
is 6, and we have described an RG procedure capable & which all wave vector summations are cut off beyond

elucidating certain universal features of the transition. We€Plicated wave vectors of large magnitude from which
now examine the RG flow equations near the upper criticalVe ¢an read off the bare correlator

dimension that emerge from this procedure, and discuss the
resulting fixed-point structure and universal critical expo-
nents. To streamline the presentation we have relegated the
technical details of the derivation of the flow equations to

Appendix C. We shall be working to one-loop order and, correspond-
ingly, the diagrams that contribute to the renormalization of
the parameters of the Landau-Wilson effective Hamiltonian

As with the mean-field theory and the Ginzburg criterion,are those depicted in Figs(e3 and 3b). The resulting flow
our starting point is the replicated cubic field theory, Eq.equations are

N 1
Go(k)= T—HHZ (5.7

1. Flow equations

dr/dIn b=27'—Cogz—C67'gz—C11'gz+ O(7%g%,7e9%,£9%,0%), (5.89
3
dg/dInb=g|e/2— C392—§C192+O(7'gz,892,g4) , (5.8b
1 2 2 2 N4
dz/dIn bzz(d+2—clg )+0(719%,e9°,9%), (5.80

where e=6—d, b is the length-rescaling factog is the in which Sg is the surface area of a 6-dimensional sphere of
field-rescaling factor, and thé&onstank coefficients in the unit radius.
flow equations are given by

2. Fixed-point analysis and its consequences

(CO,C(’),Cl,Cg):X So (9A2,36-6,72, (5.9 We proceed in the standard way by first finding the fixed
N (27)® points (r, ,9,) of the flow equations, at which
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d(7,g)/dInb=(0,0). We linearize the flow equations about each of the resulting fixed points,

2—(Cy+Cy)os —2Co0,
d [7—7, 1 3 —r,
I
where we have dropped higher-order corrections. We then v 1=2—(5¢/21), n=—el21. (5.15

establish the RG eigenvalues at each fixed point by finding

the eigenvalues of the linearized RG transformation matriBoth above and below six dimensions, the critical exponents
ces. Finally, we solve E@5.10 to obtain the flow near each » and# (andg, to be discussed beldvare identical to those
fixed point. governing analogous quantities in percolation theatyleast
For £ both negative and positivé.e., for d both above to first order ine), as computed via the Potts field theory
and below 6 we find a Gaussianfixed point (GFP:  [35]. We discuss the significance of this result and the rela-
(74 ,94)=(0,0). Solving Eq.(5.10 about this fixed point tionship between the present approach and percolation-
gives the flow gelation-based approaches in Sec. VI.
We have focused on the cubic interaction in the vulcani-
7(b) _ 7(1)b” 1 zation field theory. There are, of course, additional
g(b) - g(1)b¥2)’ (5.13) symmetry-allowed interactions, such as the quartic interac-
tion. Near to six dimensions, however, the fact that such
with the RG eigenvalueg, andy,, respectively, given by interactions are irrelevant at the GFP can be shown byenai
y.=2 andyg=¢/2. power-counting arguments, which hold in the replica limit
As one can see from E¢5.11), above six dimensions the (and remain uncompromised at the WFFP, owing to its prox-
GFP is unstable in the direction and stable in thg direc-  imity to the GFB.
tion. However, below six dimensions the GFP also becomes
unstable in theg direction, and a new fixed point—the D. Scaling for gel fraction and wave-vector-dependent
Wilsor21—Fisher2 fixed point(WFFg’)—emergesl, located at order parameter
(74 ,952)={(A/28),(1/126) (27)°ISg](VIN) " “}e. (Let us . .
mention, in passing, that if we had not correctly implementeq0 moosrg?:ro?ﬁ relate_properfues_ of the a_morphous solid state
! . ; puted in the liquid and critical states, we now
the constraint that wave-vector summations exclude Conmfollow the standard scaling analysis. To do this, we add to
butions for the 1RS then the structure of the flow equation%he minimal model, Eq(5.6), a sour.ce field tha't couples
would have been utterly different; e.g., the WFFP would ' o

have occurred at a complex value g By solving Eq. linearly to the order parameter- N2 prs2(K)U(—k).
(5.10 for the WFFP we find the flow We assume thaU contains only long ngelength ccompo-
nents, so that it does not couple to any field featuring in any
r(b)—r, (7(1)—7,)—C4(g(1)—g,) momentum-shell integrations. Then the renormalization of
b—a. |~ 0 . U(—k) comes only from the rescalings kfandQ(k), and
9(b)—g,
thus we have
C4(g(1)_g*))
bY2, 5.1 e Y—=>h=91 (i
( a(1)—g, (5.12 U’(k")=zb U (k). (5.16

here C,=(3/Y14) (V/N [(2) 6TV V2 A 25 1/ d th To obtain the exponer@, which describes the scaling of the
Vli\zlGerSige“nvgalu\g)';x{r(e gi\)/[eflG tgyi)Z]i(S(s/Zi)Z)ar?gy :e gel fractionq, the conventional method prescribes the appli-
e ! 2 cation of auniform source field. In the present theory, the

We now proceed to obtain the critical exponents for(zero replica sector field variable (0), which would
physical quantities from the RG eigenvalues at each fixegouple to such a uniform source, is excluded, and instead we

point. The homogeneity relation for the correla@(k), fol- ~ chooseU(k)=hdi. i 5. wherek, lives in the HRS but is
lowing from a standard RG analydi83], reads otherwise arbitrarily small(This prescription is consistent
with the notion that the gel fraction follows from the long-
G(k,7)=27z?b~9G(bk,b"17). (5.13  wavelength limit of the order parameter, the limit being

taken via wave vectors in the HRSdence we arrive at the
We eliminateb by choosingo|k|=1; then comparison with recursion relation foh:

Eq. (3.5 leads tov=1/y; and »=C,g> . Thus, for the GFP
we have ' o h'=zh=b%; y,=(d+2— 7)/2. (5.17)

v =2, 5=0, (5.149  As we are already in possession pfat the GFP and the
WFFP, we thus arrive at the scaling dimensign of the
and for the WFFP we have, to first orderdn source fieldh.
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Having obtainedy,,, we now use it, together witl,, y,
and the singular part of the free energy densjtjo deter-
mine B, in the following way. According to homogeneitly,
has the form

f(7,9,h)=b~ % (7bYr,gbYs,hb¥n). (5.18

By taking the derivative with respect toso as to form the
order-parameter equation of state, choosirg0, and pass-

ing to the smallk, limit, one finds the following scaling
behavior of the gel fraction:

q(7,9,0)~ lim af/oh|,_o~b~9"YaM (7hY7,ghYs,0)
b

- T(d—Yh)/yTM(l,gT_yg /yT, 0). (5.19

Let us first consider the regime#>6, for which the ap-

propriate fixed point is the GFP and, therefore one expects, |
the exponents to take on their classical values. Now, as ong

can see from the mean-field value for the order paranteter
(and thus the gel fractioq), Eg.(3.18, both of which are
proportional tog ™!, the cubic interaction is dangerously ir-
relevant at the GFP, and thus one has

M(l,g,0)~$, for g—+0. (5.20
Hence, near the GFP one has
q(7,9,00~7%, for g—+0, (5.21a3
d+2 6-d
g0 Yo _T+T:1 (5.21h
Y. Y; 2 o

which is precisely the mean-field value of the expongnt
given in Sec. Il A.
Now let us turn to the regimd<6, for which the expo-
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The quantityr”, which plays the role of the fluctuation cor-
relation length in the liquid state, is here seen to play the role
of the characteristic scale for the localization lengths in the
ordered state. Presumably, it also governs the scale over
which (amplitude-typé fluctuations are correlated in the
solid state. Let us note that the mean-field result for the order
parameter not only obeys this scaling relatigvith 8=2v

=1) but also provides an explicit form for the function
There are, however, fascinating possibility of multifractality
in the characterization of vulcanized matter, say, along the
lines of that are found in randomly diluted spin and resistor
systems by Harris and Lubensk$8|.

VI. CONCLUDING REMARKS: CONNECTIONS
WITH OTHER APPROACHES AND THE ROLE
OF THERMAL FLUCTUATIONS

Having constructed an RG theory for the liquid and criti-
states of vulcanized matter, we now examine the results
this RG theory and discuss the relationship between these
results and the results of other approaches to the vulcaniza-
tion transition. As we have seen in Sec. V C, via an expan-
sion around six spatial dimensions our minimal model for the
vulcanization transition yields values for certain critical ex-
ponents that characterize the behavior of the system near to
and at the transition. These exponents turn out to be numeri-
cally equal to those characterizing physically analogous
quantities in percolation theory, at least to first order in the
departures from six dimensions. We have not proven that
the equality between exponents holds beyond first ordey in
although there are hints in the structure of the theory sug-
gesting that it does.

This equality between exponents seems reasonable in
view of the intimate relationship between percolation theory
and theconnectivityof the system of cross-linked macromol-
ecules, this connectivity pertaining to tis¢atisticsof sys-
tems formed according to the Deam-Edwards distribution of
quenched randomneé&and hence to the statistical mechanics
of the uncross-linked macromolecular liqui®7]. Indeed, a
connection between the percolation and vulcanization transi-

nents are nonclassical. The appropriate fixed point is now thgq s 4jready shows up at the level of mean-field theory: the
WFFP, at which the cubic interaction is irrelevant but ”Otdependence of the gel fractiapon the cross-link-density
dangerously so. Thus, in this regime one has the standa%mrm parametep? obtained via the semimicroscopic ap-

scaling relation

d—yn
ey

1—(el7), (5.22

where the second equality holds only to order
In fact, under thénot unreasonablessumption that there

proach(in the case of RCMSsviz., thatq obeys
1—-qg=exp—u’q), (6.9

is identical to the mean-field-percolation dependence of the
fraction of sites participating in the infinite cluster, obtained

is only one characteristic length scale in the ordered statby Erdcs and Rayi in their work on random grapH$9,40,
(i.e., that the fluctuation correlation length does not provide ahis identity holding not just near the transition, where the
length scale independent from the localization length $cale dependence of on MZ_,U«g is linear, but for all cross-link
we can go beyond the establishing of the scaling of the gediensities. Moreover, the mean-field result emerging from the
fraction (i.e., the long-wavelength limit of the order param- minimal model of the vulcanization transition yields this lin-
ete) and propose a more general scaling hypothesis, whicBar dependend@ut cannot, of course, be applied beyond the

incorporates the scaling of thsingular part of the wave-
vector-dependent order paramef86]. This takes the form
of the scaling hypothesis:

(Q(k))ySo Pw (k27 2Y). (5.23

transition regimg The relevance of percolation theory to the
vulcanization transition also manifests itself beyond the
mean-field level in the physicaimeaning of the order-
parameter correlator, as we have discussed in Sec. IV. This
connection has long been realized, and supports the use of
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percolative approaches as models of certain aspects of the (iii) Despite the explicit differences in the forms of the
vulcanization transitiof15-20. two theories, it turns out that, in the—0 limit, the integrals
These percolative approaches include direct applicationsand the combinatorics conspire to produce precisely the
of percolation theoryf15-18, mentioned in the preceding same flow equations. In some delicate way, which we do not
paragraph, as well as the approach given by Lubensky angily understand, the constraints on the wave-vector summa-
Isaacsori19,20. The latter approach extends the connectiontions in the vulcanization theory play a similar role to the
between the _stgtistics of I.inear macromolecule; and the zerg|d-index contractions in the Potts theory.
component limit of a spin systerf41,42. In this way, a Having discussed the similarities of the Potts and vulca-

correspondence. is established between the stati'stics Alzation approaches, let us now catalogue the many distinc-
branched, polydisperse, macromolecules and a multicompQpns petween them.

nent field theory. This field thepry reduces to the one-state (i) The Potts field theory has a multiplet ofeal fields on
limit of the Potts model under circumstances appropriate fog_gimensional space; the vulcanization field theory has a real
the transition to a physical gél.e., a state in which one is  gjnget field living on f+1)-fold replicatedd-dimensional
certain to find a reversibly bonded, infinite, branched macro-space_

moleculg [43]. _ _ _ (i) The Potts field theory represents a setting involving a
An essential ingredient of the approaches discussed in thgngje ensembld21], the ensemble of percolation configura-
previous paragraph is the Potts model in its one-stal§qns whereas the vulcanization field theory describes a

limit—a rep_resgntan_on_of .percolatlc[14.4,45. It is therefore physical problem in whictwo distinct ensembleghermal
worth considering similarities and differences between the,q gisorderplay essential roles. As such, the vulcanization
mln]mal field theory of the vulcanization trans_ltl'on chused field theory is capable of providing a unified theory not only
on in the present paper, EQ.7h, and the minimal field ¢ yhe transition but also of the structure, correlations, and
theory for the Potts model. The minimal field theory f_or the (e.g., elastit response of the emerging amorphous solid
Potts model is the— 0 limit of the cubicn-component field  giate This is already manifested at the mean-field level, in-
theory, the Landau-Wilson Hamiltonian for which is asmuch as the vulcanization field theory presents an order
parameter that is far richer in its physical content that the one
presented by the Potts model.
(iii) The entire symmetry structures possessed by the per-
n colation and vulcanization field theories are quite different.
3 3 The Potts field theory has translational and rotational invari-
—w! )a,/;;‘ﬂ Agﬁ)ywawﬁ%)’ 6.2 ance(in unreplicated spaggalong with the discrete symme-
try of (n+1)-fold permutations of the nonlinear potential.
wherer controls the bond-occupation probabiliignd hence  The vulcanization field theory has the symmetries of the in-
the percolation transition w® is the nonlinear coupling dependent translations and rotations of the- (L) replicas of
strength, and ). is the “Potts tensor(which controls the space, along with the discrete symmetry nf{1)-fold per-

n

1 1
d g2y = 2
fvd x(E (erzlml

a=1

aBy
internal symmetry of the theory; for a discussion of thismutations among the replicas.
theory see, e.g., Sec. 2.7 of REZ0)). (iv) The nature of the spontaneous symmetry breaking at

How does this Potts field theory compare the vulcanizathe percolation and vulcanization phase transitions is dis-
tion field theory that we have been analyzing in the presentinct. The percolation transitiofin its Potts representation
paper? The Potts field theory has a cubic interaction, as do@svolves the spontaneous breaking of the—<0 limit) of a
the vulcanization field theory, and therefore its upper criticaldiscrete(n+ 1)-fold permutation symmetry. By contrast, the
dimension is also 6. If we examine the RG analysis of thevulcanization transition involves the spontaneous breaking of
Potts field theory(in an expansion around six dimensions the (n—0 limit of the) continuoussymmetry of relative
[46] we see that, at the one-loop level, diagrams identical intranslations and rotations of tire+ 1 replicas; the permuta-
form (i.e., those shown in Fig.)&nter the renormalization of tion symmetry remains intact in the amorphous solid state, as
the various vertices. Moreover, in thre—0 limit the RG  does the symmetry of common translations and rotations of
flow equations for the two theories turn out to be identical.replicated space. Thus, the vulcanization transition is associ-
This striking result is connected to the following observa-ated with the appearance of low-energy, long-wavelength,
tions. Goldstone-type excitation28], which we expect to lead to

(i) In the Potts case, aside from tdedimensional inte- the restoration of the broken continuous symmetry in and
grals corresponding to the diagrams, the coefficients in théelow a lower critical dimension of two. By contrast, fluc-
flow equations are determined by the contractions of Pottstuations destroy the percolation transition only at and below
tensor indices associated with each cubic vertex, these cothe the lower critical dimension of unity.
tractions being the origin of the-dependence of the coeffi- While there are these apparent distinctions between the
cients in the flow equations. percolation and vulcanization approaches, especially in low

(ii) In the vulcanization case, the diagrams intrinsicallydimensions, there is also evidence in favor of some sort of
correspond torf+ 1)d-dimensional integrals but, due to the sharp correspondence between the physics of percolation and
constraints on the summations over wave vectors, these diaulcanization coming from the computation of critical expo-
grams produce r(+1)d-dimensional integrals (which  nents near the upper critical dimension. This apparent di-
smoothly reduces tal-dimensional integrals in the—0 chotomy can, however, be reconciled if we carefully delin-
limit), together withd-dimensional integralgsee Eqs(A2) eate between three logically distinct physical properties
and (C9)]. pertaining to RCMSs and other randomly constrained sys-
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tems:(i) macroscopic network formatidifby which we mean amorphous solid state, we hope to construct a picture of the
that constraints are present in sufficient density to connect aulcanization transition and the emergent rigid state in two
nonzero fraction of the constituents into a giant random molspatial dimensions.
ecule; (ii) random localization(by which we mean the
change in thermal motion of a nonzero fraction of the con-
stituents from wandering throughout the container to fluctu-
ating only over finite distances from their random mean po- It is a pleasure to thank Karin Dahmen, Bertrand Four-
sitions; and (iii) the acquisition of rigidity(by which we cade, Eduardo Fradkin, Sharon Glotzer, Avi Halperin,” Jose
mean the emergence of a nonzero static shear modulus Maria Roma, Michael Stone, Clare Yu, and especially

Within mean-field theoryand hence above six spatial di- Horacio Castillo for helpful discussions. This work was sup-
mensiony, these three properties go hand in hand, emergingorted by the National Science Foundation through Grant
simultaneously at the phase transition. At and below six diNos. DMR99-75187(W.P., P.M.G) and NSF-DMR91-
mensions they appear to continue to go hand in hatd 20000 (\_N.P.), a_md_ by the Campus Research Board of the
though, strictly speaking, we have not yet investigated théJniversity of lllinois.
issue of the acquisition of rigidity beyond mean-field thgory
until one reaches two dimensions vyhere we believe this APPENDIX A: INVERSE SUSCEPTIBILITY
broad picture will changéas we shall discuss shor}lyThus, AND GINZBURG CRITERION
it appears that, within the limited sphere of issues concerning
amorphous solidification that percolation-based approaches In order to calculate the one-loop correction to the two-
are capable of addressing, such approaches do not lead opeint vertex function'®(k), we first calculate the self-
astray. In other words, the superposition of thermal fluctuaenergyzn(ﬁ) (i.e., the sum of all two-point one-particle-
tions on the positions of the constituents of the macroscopigreducible amputated diagraisn terms of whichl'@(k)
network that emerges as the constraint density is |ncrease£GO(R)_1_En(R)|nﬂ0_ To one-loop orders. (k) is given
towards the phase transition QOes not qud to any chan_ges m/ the amputated diagram shown in Fig. 1,
the critical exponents governing percolation-type quantities:
disorder fluctuations appear to play a more important role
than do 'Fhermal fluctuations, as far as the percolative aspects s, (k)= 1892 ) 2 Go(ky)Go(k,—K). (A1)
of the critical phenomenon are concerned. k, < HRS

This brings up the interesting issue of the nature of the (k—kq €HRS)
vulcanization transition and its relationship with the percola-
tion tra_msmon as the d|menS|QnaI|Fy of space 1S redl.JCEd tq_et us emphasize the meaning of the notation: one is directed
the neighborhood of two spatial dimensions, two being the ) A _
lower critical dimension of the vulcanization transitigihe ~ 1© Sum over all replicated wave vectdege HRS subject to
ideas reported in this paragraph result from an ongoing colthe constraint thak—k; e HRS; one should also bear in
laboration with H. E. Castillg47].) Indeed, the case of two mind the fact that the external wave veckdies in the HRS.
dimensions is especially fascinating in view of the fact thatThis constrained summation can be expressed in terms of
there is a conventional percolation transition in two dimen-several unconstrained summatidfier cases in whictk has
sions, whereas the thermal fluctuations are expected to beonzero entries in at least three replicas, i.e., lies in the
sufficiently prominent to destablize the amorphous solid3*RS) as
phase, in which case the macroscopic network formation no
longer occurs simultaneously with the random localization of
constituents of the network. It is tempting to specul@] 2 Xk =2 X(ky)
that in two dimensions an anomalous type of vulcanization _ki=HRS ka
transition(not accompanied by true localizatiorontinues to ~ (k~ki1=HRS)
happen simultaneously with percolation transition. As the n
constraint density is tuned from below to above criticality, -> > X(R1)|k1:péa+ nX(R1)|R1:6
the amorphous solidification order parameter would remain =0 p
zero, whereas the order-parameter correlations would change n
frpm decaying e>_<ponentia||y to decgying algebraically with — E 2 X(R1)|‘klzpéa+k
distance. One might say thatonstraint-density controlled a=0 p
cluster fragmentatiorrather than the thermal excitation of
lattice defects, as in regular two-dimensional meltinguld
be mediating the melting transition. If this scenario should
happ_e_n to be borne out, then, at_ sufficiently high cross-linkror anyX(Rl). Here,{é“}”:0 is the collection of unit vectors
densities one would have a quasiamorphous solid state—the . @ . -
random analog of a two-dimensional soféBl—exhibiting N rePlicated space, so that, e.g., a generic veptoan be
quasi-long-range positional order but of a random rather thagXPressed a&;_op“e”. Whenk belongs to the 2R$e.g.,
regular type. By implementing these ideas via an effectivek=(1%,12,0, . . . ,0)] there is a slight modification of EGA2)
field theory that describes low-energy excitations of theand, instead, we have
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+nX(ko)lk, k. (A2)
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2 X(kp) =2 X(ky)
k; e HRS kq
(k—kq €HRS)

n
- X (k)| =paat nX(ky) k.~
ZO % ( 1)|kl’pe ( 1)|kl’° FIG. 4. Example of a one-loop correction to the self-energy due
N to a vertex omitted from the minimal model.
- X (k)i —paes ikt NX(ky) & ik
0;0 % (ko) [ie, =pea+ ikt NX(Ky) [, =k (NE) 12N TR s
+X k a1+ X( —|282. A3 A _ S
( |k =lte l)|k =l%e ( ) :GO(O) 1_N lz(k)|kﬁ6
For the moment, let us focus on the casekef3*RS. By

making use of Eq(A2), and subsequently transforming each = —2ar+ 18g2_f —_ (A7)
unconstrained summation into an integral, we obtain —2ar+bp?)?

En(R)=18gz(V“+1f d V9, Go(ky) Gk, —k) We mention, in passing, that whénlies in the 2RS, we
need to use EqA3) instead of Eq(A2) in evaluating the
n conlstrained summation. The resulting two extra terms in
d ~ o “a D B+ turn out to be nonextensive and nondivergent at the
_220 VJ dp Go(pe?)Go(pe”—k) transition, and thus do not change the result for the Ginzburg
criterion. (The appearance of nonextensive terms may seem
strange, but also occurs in the semimicroscopic theory of
+2nG0(6)GO(R)). (A4) RCMSs, where the free energy for the saddle-point value of
the order parameter has a nonextensive part; for a discussion

The limit of the validity of the Landau theorgi.e., the ~Of tiS iSsue see Sec. 2.6 of Rgt].)

tree-level approximationcan be ascertained by enquiring

when the loop corrections to the inverse susceptibility be- APPENDIX B: SUBLEADING ELEMENTS:
come comparable its tree-level value. Thus we take the long- ADDITIONAL SEMIMICROSCOPICALLY
wavelength limit of the correctiofiAl) via a sequence of GENERATED FIELDS AND VERTICES

wave vector lying in the HRS, obtaining The inspiration for the minimal model, E@2.7b, dis-

. . cussed in Sec. Il D, comes from experience with detailed
En(k)mH():lBgz(V”“J d"* D, Go(ky)? statistical-mechanical investigations of various semi-
microscopic models of RCMSs and related systems

) [3,4,11,12. The field theories obtained in these investiga-

—2(n+ 1)Vf d9p Go(p)2+2nGy(0)?]. tions contain additional fields and vertices beyond those fea-

tured in the minimal model. Among them are the 1RS field

(AB) [variously denoted aél(ké“) or Q%(k)], which describes
density fluctuations; various vertices that couple the 1RS
field to itself and to the HRS field; and quartic or higher-
order HRS vertices. In the present section we discuss the role
of these additional fields and vertices. We shall confine our
attention to effects that show up at the one-loop level. To
avoid confusion we shall, in this section, denote the bare
HRS and 1RS correlators respectively, @QRS andGJ"s,

At this stage, then—0 limit may be takerjthe reason for
this is discussed in Sec. Il D, shortly after EQ.7b]. In
addition, the integral over then(+1)-fold replicated space
goes smoothly into an integral over the ordinérg., unrep-
licated space. Thus, we arrive at

S (0| o=lim= (k) [k .o

n—0

1. Subleading influences on the higher replica sector

=1892(Vf dp Go(p)z—ZVJ dp Go(p)z). We begin by considering the possible corrections to the
HRS seIf-energ;En(R)m_@ arising from the additional fields
(A6) and vertices. At the one-loop level, the only contributions

arising from an omitted vertex are those associated with the
From this expression, we see an example of what turns out tquartic vertex, for which there are two situations to consider,
be a typical effect of the exclusion of the 1RS, viz., that itdepending on whether the loop wave vector lies in the 1RS
reverses the sign relative to the unconstrained version. Bygr the HRS. Figure 4 shows the relevant diagram.
collecting this loop correction together with the tree-level Let us first look at the contribution of this diagram when
inverse susceptibility, we arrive at the result that we shall us¢he loop wave vector lies in the HRS. In this case, evaluating
to establish the Ginzburg criterion: the diagram involves the constrained summation:
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HRS, which evidently vanishes in the—0 limit. On the other
> GERS(k) hand, when both internal wave vectors lie in the HRS, the

ke HRS o . . o
< contribution involves the constrained summation dvevith

ke HRS and pe®—k) e HRS. In this case, the contribution

n
—_ HRS/ [\ _ HRS/ |, A HRS/ A
_% Go (k) Zo ; Go (ke®) +nGy(0) to the 1RS self-energy reads

— HRS/ [, HRS, HRS/ A
E& GHRS(k) (n+1); GHRS(k) +nGERS(0), S elRc e k)
(B1) (pé‘ff{'eRHsRS)
which vanishes in the—0 limit. - .~
Let us now look at the contribution of this diagram when - 2 GgRs(k)GSRS(pea_ K)
. . . . ke HRS
the loop wave vector lies in the 1RS. In this case, no critical
;a;gk)T?rrFIqtors_fgature, so that the resulting c_ont_r|but|on to _ 2 GERS(R)GQRS(pé“—R)
n(K) koo Iis finite. There are also contributions to KeARS
3.(K) |5 arising from one-loop diagrams involving two cu- (pe”~ke 1RS)
bic vertices, in which either one or both loop-wave vectors «n (B3)
lie in the 1RS. None of these contributions alters the Gin- ’
zburg criterion established in Sec. V A.
which also evidently vanishes in tlme—0 limit. [In the last
step we have used E(B2), as well the strategy for handling
2. Absence of feedback of critical fluctuations constrained summations employed in Eg1).]
on the density-density correlator We conclude that, to one-loop order, the 1RS self-energy
_ ) _ . does not acquire any singular contributions due to critical
As we have discussed in Sec. Ill, the 1RS fi@ldke®),  fiyctuations in the HRS. In this sense, the two sectors are
which describes density fluctuations, remains “massive” alye|| separated in the neighborhood of the vulcanization tran-
the vulcanization transitioi.e., the coefficient of the term  gjtion. However, it is straightforward to shdw9] that there
quadratic in this field remains positive at the transitiamd  5re 1RS correlators, such as those involving four 1RS fields
the corresponding bare correlator is nonsingular at the vuly ¢ only two replica indices, which do become long ranged

canization transition. We now examine the effects of HRSy¢ the vulcanization transition and are thus capable of signal-
critical fluctuations on the correlator of the 1RS field. Wejnqg the transition.

approach this issue by studying those one-loop diagrams for
the 1RS self-energy in which at least one internal wave vec-
tor lies in the HRS; there are three types of contribution to APPENDIX C: DERIVATION OF FLOW EQUATIONS
consider. WITHIN THE EPSILON EXPANSION
(i) There is the contribution associated with the diagram )
shown in Fig. 4 but with the external wave vectors now lying 1. Implementation of the momentum-shell RG
in the 1RS. By the same reasoning that we applied to Eq. The first step in the momentum-shell RG approach that
(B1), this contribution vanishes in the—0 limit. we are adopting is to integrate out Fourier components of the
(it) There are the two contributions associated with thefielg () (k) having wave vectors in the shell/b<|k|<A.

type of diagram shown in Fig. 1. When one of the internaltq qg this, we defin€)< andQ~, respectively, as the long

wave vectors lies in the 1RS and the other lies in theAHRS(,;md short wavelength components(@(k), by

the contribution involves a constrained summation oker

with ke HRS and pe“— k) e 1RS(wherek is the loop wave _ |0 for A/b<|k|<A;
vector andpe® is the external wave vectprin this case, the 0=k = Q(k), for 0<|k|<A/b: (Cla
constraints on the summation require tiiat 2RS andk
=pe“+le?, where# a andl+0. Then, the contribution to R R
the 1RS self-energy reads R Q(k), for A/b<|k|<A;
O~ (k)= . (C1b
R o 0, for 0<|k|<A/b.
> GG pe k)
_keHRs
(pe®—ke1RS) Then, by exchanging)(k) for Q~(k) and Q=(k) in Eq.

A R (5.6) we can reexpress the effective Hamiltonian as
= > GHRS(pe+1e#)GLRY — Ief)
B(#a) 1#0

1.
=n|§:o GgRs(péa+|éﬁ)G(1)R5(_|éB)|ﬁ#a, Sn({Q}):Sn({Q<})+NREHRS -7t §|k|2)
* €

(B2) x|~ (k)[2=v{Q}), (C2a
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VHQD=NG X Sigeiriy 007 (k) Q7 (ko) Q7 (kg) +30 7 (ky) Q7 (ko) Q™ (k3) + 302 (k) Q= (kp) Q7 (ky)).
kq,ky,kge HRS
(C2b

Now, focusing on the partition function, we integrate out the aforementioned short-wavelength field comgbnéntthe
context of a cumulant expansion Vh Thus, Eq.(2.79 becomes

(27 [ D0~ exp—5;, (csa
S0 =5,(127) - In(expV)- (0
f 5*Q>ex;<—NA > |-t %|R|2> |Q>(R)|2)9XPV
ke HRS
In(expV)~=In
f 5T0>ex;<—NA > |-t %IW) |Q>(R)|2)
ke HRS
1 5 ) 1 3 2 3 4
(V)= (VA= (V)2) + 27 (V) = 3(V)-(V2) .+ 2(V) )+ O(V*). (c39
[
Note that we have not explicitly given the factor associated Q= (k) =20'(k"), (C6a

with Gaussian fluctuations in the wave-vector shell because

it is nonsingular and, therefore, does not contribute to the f e
quantities that we are focusing on, viz., the RG flow equa- k'=Dbk. (C6b
tions.

Next, we calculat%,f’erf to the one-loop level by com- The recasting of the theory in its original form also involves

puting the cumulant expansion @(V3) and discarding op- the restoration of the wave-vector lattice, as _d|scussed in Sec.
V B. Having made this restoration, we arrive at recursion

erators that are irrelevant in the vicinity af=6. This lati ¢ da. al ith th dition that th f
amounts to retaining only terms of the form of those presen¥_e ations forr andg, along wi € condition that the coel-

in the original minimal model, and thus we are in a position icient of the gradient term be restored to its original value:
to begin the task of recasting the resulting theory in its origi-
nal form. The terms that must be considered correspond to
the diagrams shown in Fig. 3, and are computed in Sec. C 2.
When included, they produce the following intermediate g'=(g+fLUN)Zp 20+, (C7b
form for the effective coarse-grained Hamiltonian:

7' =(7+fQIN)Z%p~ (1, (C7a

1=(1—f/N)2p (Nt Dd=2, (C70
Syf=85— 2 fa(l]Q=(k)|? . o . _
ke HRS The computation of the coefficients in the recursion relations
simplifies under the convenient choice bf 1+x with X
_ 2 fa(ky, Ky ka) positive and very small, because it allows the approximation
Ky ko k3 e HRS of the shell integrals by the product of end-point values of

R R R the integrands and the shell volumes. Thus, we arrive at the
X Q= (k) Q= (k) Q=(kg) Ok, +k,+ky,0, (C4)  differential RG recursion relationsi.e., flow equations
given in the main text in Eqg5.89 and(5.8b), along with
where the functiong, and f; can be found in Sec. C2. In the coefficientd5.9).
fact, only their long wavelength parts are needed, i.e., we
shall only need the constarfty”’, {9, andf{") in the Taylor 2. Evaluation of two diagrams

expansions o . .
P The renormalizations of and the gradient term acquire a

~ 0. L e ) nontrivial contribution associated with diagraa of Fig. 3,
fa(k) =157 +5 15 7[k[*+ O(k™), (€58 which determinesf,(k) in Eg. (C4). Thus, including the
symmetry factor of the diagram, we need to evaluate
fa(ky ko ko) =)+ 0(KE k3 K3 ky - ko ky - ks ko ka). N 2 N .
(C5b fa(k)=99> > Go(k)Go(ki—k).  (C8
k; e HRS
The next step is to rescaf@~ andk via (ky—keHRS)
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We have encountered this kind of constrained summation in
Appendix A, and we use the recipe given there, together with f(zl):

the facts that the external wave vector satisfids$
€ (0,A/b) whereas the internal wave vectors satisky|
e (A/b,A) and|k;—k| e (A/b,A). In practice, we are con-
cerned with the smal-behavior off ,(k), in which case the
latter two constraints are equivalefthe difference in their

effects being subdominantThus, by invoking Eq(A2) we
arrive at

n+1

J d(n+ 1)dk1
Alb<|k|<A

X Go(ky)Golky—k)

n

-89 s

V

a=0 (277)d

f dp Gy(pe®)Gy(pe*—Kk) |.
Alb<|p|<A
(C9)

Then, by expanding for smak and taking then—0 limit,
we obtain

9 A

kd-1dk
297V >

0=
(2m)8J Am(— 74+ K3/2)2

+0(g),
(C103

Vn+1

3693<

n

(27T)(n+1)d

Y%
a=0 (27r)¢

Y
a=0 (27r)¢

v
a=0 (2m)¢

In fact, what we need is the—0 limit of f5(0,0,0), which
is given by
ki~ tdk
f0=—9g%v >
(2m) 4 am(— r+K?/2)3

A

+0(g°). (C13

RENORMALIZATION-GROUP APPROACH TO TH . ..

f d’p GO(R)GO(R+Rz)Go(R_R1)|k=péa+kl :
Alb<|p|<A
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kd-1dk

Sq f/\
Ab(— 7+ K?2)3

(2m)¢

(_

kd+1dk

+EJA— +0(g* C10
dJam(—7+Kk?2)* (), (c1o0

where Sy is the surface area of ddimensional sphere of
unit radius.

The renormalization ofy acquires a nontrivial contribu-

tion associated with diagraiib) of Fig. 3, which determines

f3(kq,k,,ks) in Eq.(C4). Thus, including the symmetry fac-

tor of the diagram, we need to evaluate

8

faki ko ko) = 37(30)° 2 Go(k)Go(k+k,)
) ke HRS
(k+kp e HRS)
(k—kq €HRS)
X Go(k—ky). (C11)

This constrained sum is similar to the one analyzed in the

context of Eq.(A2), but is more lengthy, yielding

f o d D Gy (k) Go(k+ ko) Go(k—ky)
Alb<|k|<A

| 0% Go(R)Go(K+ ko) Go(k—Ke)li i
Alb<|p|<A

f d% Go(k)Go(k+kp) Go(k—ky) iz paa—i,
Alb<|p|<A

(C12

It is worth emphasizing that, once again, the essential conse-
guence of the exclusion of the 1RS from the theory. Without
it, even signs of all three coefficients{”), f$!, and fs,
would be reversed, and the fixed-point structure of theory
would be completely changed.

[1] P. M. Goldbart and N. Goldenfeld, Phys. Rev. L&®, 2676
(1987; Macromolecules22, 948 (1989; Phys. Rev. A39,
1402(1989; 39, 1412(1989.

[2] P. M. Goldbart and A. Zippelius, Phys. Rev. L€ttl, 2256
(1993.

[3] H. E. Castillo, P. M. Goldbart, and A. Zippelius, Europhys.

Lett. 28, 519 (1994.

[4] P. M. Goldbart, H. E. Castillo, and A. Zippelius, Adv. Phys.
45, 393(1996.

[5] A. Zippelius and P. M. Goldbart, iBpin Glasses and Random
Fields edited by A. P. YoungWorld Scientific, Singapore,
1998, pp. 357-389.



3356

[10] M. Huthmann, M. Rehkopf, A. Zippelius, and P. M. Goldbart,

[16] D. Stauffer, J. Chem. Soc., Faraday Tran§221354(1976);

[6] P. M. Goldbart, inRigidity Theory and Applicationgdited by

M. F. Thorpe and P. M. DuxburyKluwer Academic/Plenum
Publishers, New York, 1999pp. 95-124.

[7] P. M. Goldbart, in Proceedings of the Conference on Unifying

Concepts in Glass Physics, Trieste, 1999Phys.(to be pub-
lished].

Ser. A280A, 317(1976.

[9] W. Peng, H. E. Castillo, P. M. Goldbart, and A. Zippelius,

Phys. Rev. B57, 839(1998.

Phys. Rev. E54, 3943(1996.

[11] C. Roos, A. Zippelius, and P. M. Goldbart, J. Phys3@ 1967

(1999.

[12] S. J. Barsky and M. Plischke, Phys. Rev5& 871(1996); S.

J. Barsky, Ph.D. thesis, Simon Fraser University, Canada,
1996; S. J. Barsky and M. Plischkenpublishedl

[13] S. J. Barsky and M. Plischke kindly allowed us to report re-

sults from their simulations in Ref9].

level see, e.g., K. H. Fischer and J. A. Hergpin Glasses
(Cambridge University Press, Cambridge, England, 1984-
pecially Sec. 8.3; and C. De Dominicis, |. Kondor, and T.
Temesva, in Spin Glasses and Random FieldRef. [5]), pp.
119-160.

[15] P. J. Flory,Principles of Polymer Chemistr§Cornell Univer-

sity Press, Ithaca, NY, 1953

D. Stauffer,Introduction to Percolation TheoryTaylor and
Francis, Philadelphia, 1985

[17] P.-G. de Gennesscaling Concepts in Polymer Physi@Sor-

nell University Press, Ithaca, NY, 1979

[18] D. Stauffer, A. Coniglio, and M. Adam, Adv. Polym. Sdi4,

103 (1982.

[19] T. C. Lubensky and J. Isaacson, Phys. Rev. Léfi. 829

(1978; 42, 41Q0E) (1979; Phys. Rev. A20, 2130(1979; J.
Phys.(France 42, 175(1981).

[20] See, e.g., T. C. Lubensky, ifi-Condensed MatterProceed-

WEIQUN PENG AND PAUL M. GOLDBART

PRE 61

condition k-m>0 for some suitable unitn(+ 1)d-vector m.
This is due to the fact tha®(—k)=Q(k)* (i.e., its Fourier
transform is real Similarly, DEQ indicates that we integrate
the 1RS version of) (k) for ke 1RS(similarly constrained by
reality to a suitable half spage

) [24] One can derive such relationships, e.g., by comparing Egs.
[8] R. T. Deam and S. F. Edwards, Philos. Trans. R. Soc. London,

(4.17 and(5.153 of Ref. [4].

[25] See, e.g., J. Zinn-JustiQuantum Field Theory and Critical

Phenomen&Clarendon Press, Oxford, 198@specially Chap.

21.
[26] In principle, one can construct a minimal model directly in

terms of Q(k) by following the same general considerations
that lead to the minimal model fd2 (k). The minimal model
for Q(k) is equivalent in physical content to the minimal
model forQ(k); the difference would only lie in the values of
the phenomenological parametes, andg. In order to keep

in line with the strategy used in Re#], we choose)(k) as
the central quantity in our minimal model.

[14] For a discussion of spin glass theory beyond the mean-field27] H. E. Castillo, P. M. Goldbart, and A. Zippelius, Phys. Rev. B

60, 14702(1999.

[28] Some initial considerations of these issues were given in Ref.

[5].

[29] To obtain the relationshig4.1) betweenC,(r—r') and the

order parameter correlator requires an application of the rep-
lica technique that we do not give explicitly here; see Appen-
dix A of Ref. [4].

[30] D. J. Amit, Field Theory, the Renormalization Group, and

Critical PhenomendWorld Scientific, Singapore, 1989

[31] The result for the inverse susceptibility depends on the route

through wave vector space through which the 0 limit is
taken. Specifically, one gets distinct results for the inverse
susceptibility depending on whether or not the limit is taken
via HRS wave vectork that are in the two-replica sector
or not. However, both routes lead to the same Ginzburg crite-
rion.

[32] P. G. de Gennes, J. Phy&rance Lett. 38, L355 (1977); see

also Ref[17].

ings of the Les Houches XXXI Summer School of Theoretical [33] See, e.g., Ref:34], especially Chap. 3.
Physics, 1978, edited by R. Balian, R. Maynard, and G. Tou{34] See, e.g., J. Card{gcaling and Renormalization in Statistical

louse(North Holland, Amsterdam, 1979pp. 405—-475.

[21] The single ensemble must be identified either with the equilib-

Physics (Cambridge University Press, Cambridge, England,
1996.

rium configurations of a system without quenched randomnesgzs) A, B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Das-

or with the realizations of a quenched-disordered system that is

gupta, Phys. Rev. LetB5, 327 (1975; 35, 13971E) (1975.

not fluctuating thermally. Which identification is made de- [36] The very possibility that the ordered state is characterized by a

pends on the physical setting that the ensemble is intended to
describe. If, e.g., the intended setting involy@gysicalgela-

tion (i.e., bond formation is reversible on the time scale of the
experimenk then the elements of the ensemble correspond to
the distinct configurations of the system that are accessible in
thermal equilibrium. If, on the other hand, the intended setting
is chemicalgelation(i.e., bond formation is irreversible on the

functionrather than a numbeéor discrete set of numbersand
thus the possibility of a wave-vector-dependent scaling form
for the order parameter itself, is a natural feature of the vulca-
nization transition. It arises from the impossibility of restoring
stability by “condensation” into a homogeneous state, this
impossibility being due to the absence of the homogeneous
sector from the theory.

time scale of the experimenthen the elements of the en- [37] A. B. Harris and T. C. Lubensky, Phys. Rev. 5, 6964

semble correspond to distinct realizations of the permanent
bonding, and fluctuations from one element to another corre-

(1987. We thank Tom Lubensky for bringing this reference to
our attention.

spond not to thermal fluctuations but to variations from sample[3g] The relevance of percolation theory to tinermalmotion i.e.,

to sample.

[22] R. C. Ball and S. F. Edwards, Macromolecules; 748(1980;

R. C. Ball, Ph.D. thesis, Cambridge University, 1980.

the statisticamechanicy of the resulting cross-linked macro-
molecular system is less clear.

[39] P. Erds and A. Rayi, Magyar Tud. Akad. Mat. Kut. Int.
Kozl. 5, 17 (1960, especially Theorem 9Hreprinted in
Paul Erdcs: The Art of CountingRef. [40]), Chap. 14, article

[23] The measureD'() indicates that we integrat@(k) with k
e HRS and withk restricted to a half space via an additional



PRE 61 RENORMALIZATION-GROUP APPROACH TO TH . .. 3357

[324]]. For an informal discussion, see P. Esdmd A. Rayi, randomnesgin the form of either the cross-linking or the
Bull. Inst. Internat. Statist38, 343 (1961) (reprinted inPaul bonding.
Erdds: The Art of CountingRef. [40]), Chap. 14, articlgv]). [44] P. W. Kastelyn and C. M. Fortuin, J. Phys. Soc. Jp8. 11

[40] Paul Erdcs: The Art of Countingedited by J. SpencéMIT (1969; C. M. Fortuin and P. W. Kastelyn, Physi¢dtrech)
Press, Boston, MA, 1973 57, 536 (1972.

[41] P. G. de Gennes, Phys. LeB8A, 339 (1972; see also Ref. [45] See, e.g., Ref34], especially Chap. 8.
[17]. [46] D. J. Amit, J. Phys. A9, 1441(1976.

[42] J. des Cloizeaux, J. Phy@zrance 36, 281(1975. [47] H. E. Castillo, P. M. Goldbart, and W. Pefignpublisheg

[43] By contrast, the approach adopted in the present paper appli¢48] For a review of quasi-long-range order in two-dimensional
to irreversibly bonded systems, such as vulcanized mgéia systems without quenched disorder, see D. R. Nelson, in
media formed by the permanent random cross-linking of pre- Defect-Mediated Phase Transitign®hase Transitions and
existing macromoleculgsand chemical gels(i.e., media Critical Phenomena, Vol. 7, edited by C. Domb and J. L. Lei-
formed by the permanent random bonding of low-molecular- bowitz (Academic, London, 1983pp. 1-9.

weight multifunctional units In each case there is quenched [49] W. Peng and P. M. Goldbaftinpublisheg



