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Renormalization-group approach to the vulcanization transition
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Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080

~Received 4 November 1999!

The vulcanization transition—the cross-link-density-controlled equilibrium phase transition from the liquid
to the amorphous solid state—is explored analytically from a renormalization-group perspective. The analysis
centers on a minimal model which has previously been shown to yield a rich and informative picture of
vulcanized matter at the mean-field level, including a connection with mean-field percolation theory~i.e.,
random graph theory!. This minimal model accounts for both the thermal motion of the constituents and the
quenched random constraints imposed on their motion by the cross-links, as well as particle-particle repulsion
which suppresses density fluctuations and plays a pivotal role in determining the symmetry structure~and
hence properties! of the model. A correlation function involving fluctuations of the amorphous solid order
parameter, the behavior of which signals the vulcanization transition, is examined, its physical meaning is
elucidated, and the associated susceptibility is constructed and analyzed. A Ginzburg criterion for the width~in
cross-link density! of the critical region is derived and is found to be consistent with a prediction due to de
Gennes.Inter alia, this criterion indicates that the upper critical dimension for the vulcanization transition is 6.
Certain universal critical exponents characterizing the vulcanization transition are computed, to lowest non-
trivial order, within the framework of an expansion around the upper critical dimension. This expansion shows
that the connection between vulcanization and percolation extends beyond mean-field theory, surviving the
incorporation of fluctuations in the sense that pairs of physically analogous quantities~one percolation related
and one vulcanization related! are found to be governed by identical critical exponents, at least to first order in
the departure from the upper critical dimension~and presumably beyond!. The relationship between the present
approach to vulcanized matter and other approaches, such as those based on gelation-percolation ideas, is
explored in the light of this connection. To conclude, some expectations for how the vulcanization transition is
realized in two dimensions, developed with H. E. Castillo, are discussed.

PACS number~s!: 64.60.Ak, 82.70.Gg, 61.43.Fs
on
th

h
th
a

ne
on

a
a
e
le
a
k

i
te
l
r-
io
o

t
e
u

no
ead
ex-
-

n a
es
ra-
d to
pa-

he
-
an-

n
l
am-
ym-
ss,

ve
is
al

rgy
th

ear-
els
I. INTRODUCTION

While a rather detailed description of the vulcanizati
transition has emerged over the past few years within
context of a mean-field approximation@1–4#, the picture of
this transition beyond the mean-field level is less certain. T
purpose of the present paper is to provide a description of
vulcanization transition beyond the mean-field approxim
tion via the application of renormalization group~RG! ideas
to a model that incorporates both the quenched random
~central to systems undergoing the vulcanization transiti!
and the thermal fluctuations of the constituents~whose
change in character is the fundamental hallmark of the tr
sition!. Our aim is to shed some light on certain univers
properties of the vulcanization transition within the fram
work of the well-controlled and systematically improvab
approximation scheme that the RG provides, viz., an exp
sion about an upper critical dimension that we shall see ta
the value 6.

We remind the reader that the vulcanization transition
an equilibrium phase transition from a liquid state of mat
to an amorphous solid state.~In addition to the technica
reports cited above@1–4#, we refer the reader to some info
mal accounts of the physics of the vulcanization transit
@5–7#.! The transition occurs when a sufficient density
permanent random constraints~e.g., chemical cross-links!—
the quenched randomness—are introduced to connect
constituents~e.g., macromolecules!, whose locations are th
thermally fluctuating variables. In the resulting amorpho
PRE 611063-651X/2000/61~4!/3339~19!/$15.00
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solid state, the thermal motion of~at least a fraction of! the
constituents of the liquid undergo a qualitative change:
longer wandering throughout the container, they are inst
localized in space at random positions about which they
ecute thermal~i.e., Brownian! motion characterized by ran
dom rms displacements.

Our approach to the vulcanization transition is based o
minimal Landau-Wilson effective Hamiltonian that describ
the energetics of various order-parameter-field configu
tions, the order parameter in question having been crafte
detect and diagnose amorphous solidification. This order
rameter and effective Hamiltonian can be derived~along
with specific values for the coefficients of the terms in t
effective Hamiltonian! via the application of replica statisti
cal mechanics to a specific semimicroscopic model of r
domly cross-linked macromolecular systems~RCMSs!, viz.,
the Deam-Edwards model@8#; this procedure is described i
detail in Ref.@4#. More generally, the form of the minima
model can be determined from the nature of the order par
eter, especially its transformation properties and certain s
metries that the effective Hamiltonian needs to posse
along with the assumptions of the analyticity of the effecti
Hamiltonian and the continuity of the transition. Th
system-nonspecific strategy for determining the minim
model was applied in Ref.@9#. There it was shown that by
regarding the effective Hamiltonian as a Landau free ene
one could recover from it the mean-field description of bo
the liquid and emergent amorphous solid states known
lier from the analysis of various semimicroscopic mod
3339 © 2000 The American Physical Society
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3340 PRE 61WEIQUN PENG AND PAUL M. GOLDBART
@3,4,10,11#. The mean-field value of the order parameter
the solid state encodes a function rather than a number, a
possesses a certain mean-field ‘‘universality,’’ by which
mean that~as the transition is approached from the am
phous solid side! both the exponent governing the vanishi
of the fraction of constituents localized~i.e., the gel fraction!
and the scaled distribution of localization lengths of the
calized constituents turn out to depend not on the coefficie
in the Landau free energy but only on its qualitative stru
ture. Support for this mean-field picture of the amorpho
solid state, in the form of results for the localized fracti
and scaled distribution of localization lengths, has emer
from extensive molecular dynamics computer simulations
three-dimensional, off-lattice, interacting, macromolecu
systems, due to Barsky and Plischke@12,13#. In order to
provide a unified theory of the vulcanization transition th
encompasses the liquid, critical, and random solid states
shall in the present work adopt this Landau free energy as
appropriate Landau-Wilson effective Hamiltonian.

We shall focus on the liquid and critical states, rather th
the amorphous solid state, and shall therefore be conce
with the order-parameter correlator rather than its m
value. Along the way, we shall therefore discuss the phys
content of this correlator, why it signals the approach
amorphous solid state, and how it gives rise to an associ
susceptibility whose divergence marks the vulcanizat
transition.

Given the apparent precision of the picture of the am
phous solid state resulting from the mean-field approxim
tion @3,4,9,12,13#, the reader may question the wisdom
our embarking on a program that seeks to go beyond
mean-field approximation by incorporating the effects
fluctuations. We therefore now pause to explain what
motivated this program.

~i! Below six spatial dimensions, mean-field theory ne
essarily breaks down sufficiently close to the vulcanizat
transition. Although, as we shall also see, the region of cro
link densities within which fluctuations play an importa
role is narrower for dimensions closer to~but below! 6 and
for longer macromolecules, it is by no means necessary
this region to be narrow for shorter macromolecules and
lower-dimensional systems; thus, systems for which
fluctuation-dominated regime is observably wide certai
exist.

~ii ! While there have been many successful treatment
critical phenomena beyond the mean-field approximation
systems with quenched randomness, these have, by
large, been for systems in which the emergent order was
of the essentially random type under consideration here o
the spin glass setting@14#. Instead the emergent order h
typically been of the type arising in pure systems, albeit p
turbed by the quenched disorder. We are motivated here
the challenge of going beyond mean-field theory in the c
text of a transition to a structurally random state of matte

~iii ! The vulcanization transition has often been addres
from the perspective of gelation-percolation theories@15–
20#. While this perspective can be~and certainly has been!
taken beyond the mean-field level, it possesses but asingle
ensemble, and therefore does not incorporate the effec
both quenched randomness and thermal fluctuations@21#.
Given that an essential aspect of the vulcanization transi
it
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is the impact of the quenched random constraints on
thermal motion of the constituents, thea priori identification
of the vulcanization transition with gelation-percolation
thus a nontrivial matter. By contrast with the gelatio
percolation-type of approaches, the analysis given in
present paper applies directly to the vulcanization transit
exhibited by thermally fluctuating systems and driven
quenched random constraints. It should therefore shed s
light on the relevance of the gelation-percolation-type p
spective for the vulcanization transition, as we shall disc
in Sec. VI.

This paper is organized as follows. In Sec. II we give
brief account of the order parameter for the vulcanizat
transition, and of the Deam-Edwards replica approach to v
canized matter and its field-theoretic representation, toge
with a minimal field-theoretic model for the vulcanizatio
transition. In Sec. III we summarize the mean-field-level p
ture of the vulcanization transition, along with the picture
the amorphous solid state that emerges from it. In Sec. IV
discuss the order-parameter correlator and susceptibility
the vulcanization transition, and examine their physical c
tent. Having established this preparatory framework, we e
bark, in Sec. V, on the analysis of the vulcanization tran
tion beyond mean-field theory. We begin by examining t
self-consistency of mean-field theory by estimating the i
pact of fluctuations perturbatively, which results in the co
struction of a Ginzburg criterion and the identification of 6
being the appropriate upper critical dimension. We then
ply a momentum-shell RG scheme to the minimal mod
thus obtaining certain universal critical exponents in an
pansion around six dimensions. Finally, in Sec. VI we gi
some concluding remarks in which we discuss connecti
between our approach and those based on gelat
percolation, and we examine the role played by thermal fl
tuations, especially in lower spatial dimensionalities. In th
appendixes we provide technical details associated with
derivation of the Ginzburg criterion, we investigate the e
fects of various fields and vertices omitted from the minim
model, and we present the full derivation of the RG flo
equations.

II. MODELING THE VULCANIZATION TRANSITION

The purpose of the present section is to collect toget
the basic ingredients of our approach to the vulcanizat
transition, including the order parameter, underlying sem
icroscopic model, replica field theory, and minimal mod
All these elements have been discussed in detail elsewh
and we shall therefore be brief. As the reader will see,
though its construction follows a quite conventional path,
theory does possess some intricacies. We shall therefore
various opportunities to shed some light on the physi
meaning of its various ingredients.

Although most of our results are not specific to any p
ticular system undergoing a vulcanization transition, in ord
to make our presentation concrete we shall discuss the ph
cal content for, and use notation specific to, the case
RCMSs. We shall follow closely the notation of Ref.@4# and,
accordingly, we shall adopt units of length in which the ch
acteristic size of the macromolecules is unity~except in our
discussion of the Ginzburg criterion, Sec. V A!.
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A. Order parameter for the vulcanization transition

The appropriate order parameter for the vulcanizat
transition, capableinter alia of distinguishing between the
liquid and amorphous solid states, is the following functi
of A wave vectors$k1,k2, . . . ,kA%:

F 1

N (
j 51

N E
0

1

dŝ exp„ik1
•cj~s!…&x

3^exp„ik2
•cj~s!…&x•••^exp„ikA

•cj~s!…&xG ,

~2.1!

whereN is the total number of macromolecules,cj (s) ~with
j 51, . . . ,N and 0<s<1) is the position ind-dimensional
space of the monomer at fractional arclengths along thej th
macromolecule,̂•&x denotes a thermal average for a partic
lar realizationx of the quenched disorder~i.e., the cross-
linking!, and@•••# represents a suitable averaging over t
quenched disorder. It is worth emphasizing that the disor
resides in the specification of what monomers are cro
linked together: the resulting constraintsdo not explicitly
break the translational symmetry of the system. In
liquid state, for each monomer (j ,s) the thermal average
^exp„ik•cj (s)…&x takes the valuedk,0

(d) and thus the order pa
rameter is simply)a51

A dka,0
(d) . On the other hand, in the

amorphous solid state we expect a nonzero fraction of
monomers to be localized, and for such monom
^exp„ik•cj (s)…&x takes the form̀ ( j ,s)(k)exp„ik•bj (s)…, i.e.,
a random phase-factor determined by the random mean
sition bj (s) of the monomer (j ,s) times a random Debye
Waller factor ` ( j ,s)(k) describing the random extent t
which the monomer is localized. As reviewed in Sec. 3
Ref. @4#, by choosing the wave vectors$ka%a51

A to satisfy the
constraintk11k21•••1kA50 the random phase factors a
eliminated from the order parameter~2.1!, and hence the
order parameter is capable of distinguishing between the
uid and amorphous solid states and, furthermore, chara
izing the randomness of the localization through its dep
dence on the collection of wave vectors.

B. Replicated semimicroscopic model of vulcanized
macromolecular systems

Following Deam and Edwards@8#, by ~i! starting from a
semimicroscopic Hamiltonian describing a system of mac
molecules interacting via an excluded-volume interacti
~ii ! introducing the random constraints imposed by cro
linking, and~iii ! averaging over the quenched disorder us
the replica technique~with a physical choice for the distri
bution of the disorder which leads to an additional replic!,
one arrives at the disorder-averaged, replicated parti
function ~for details, see Sec. 4 of Ref.@4#!

@Zn#}^exp~2Hn11
P !&n11

W , ~2.2a!
n
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Hn11
P [

l2

2 (
j , j 851

N E
0

1

dsE
0

1

ds8 (
a50

n

3d (d)
„cj

a~s!2cj 8
a

~s8!…

2
m2V

2N (
j , j 851

N E
0

1

dsE
0

1

ds8

3 )
a50

n

d (d)
„cj

a~s!2cj 8
a

~s8!…. ~2.2b!

Here,^•&n11
W denotes a thermal average taken with respec

the Hamiltonian forn11 replicas of the noninteracting
uncross-linked system of macromolecules. Moreover,Hn11

P

is an effective pure Hamiltonian accounting for the intera
tions among the macromolecules and the effects of cro
linking, the latter generating interactions between the re
cas. The parameterl2 measures the strength of the exclude
volume interaction; the parameterm2 measures the density o
the constraints and serves as the control parameter for
vulcanization transition. As a result of there being rando
constraintsrather thaninteractions, the coupling between the
replicas takes the form ofproduct over all replicas rather
than, say, apairwise sum. As usual, the disorder-average
free energy is proportional to@ ln Z#, which we obtain via the
replica technique as limn→0n21ln@Zn#. Let us mention, in
passing, the symmetry content of this replica theory:Hn11

P is
invariant under arbitrary independent translations and ro
tions of the replicas as well as their arbitrary permutation

The natural collective coordinates for the vulcanizati
transition are

Q~ k̂![
1

N (
j 51

N E
0

1

dsexp„i k̂• ĉ j~s!…, ~2.3!

which emerge upon introducing Fourier representations
the two types ofd function in Eq. ~2.2b!, as discussed in
detail in see Sec. 5.1 of Ref.@4#. ~Such collective coordinate
were first introduced in the context of cross-linked macrom
lecular melts by Ball and Edwards@22#.! We use the symbo
k̂ to denote the replicated wave vector$k0,k1, . . . ,kn%, and
define the extended scalar productk̂• ĉ by k0

•c01k1
•c1

1•••1kn
•cn. The collective coordinatesQ( k̂) are the mi-

croscopic prototype of the order parameter~2.1!, the latter
being related toQ( k̂) via limn→0^Q( k̂)&n11

P , where

^•••&n11
P [

^•••exp~2Hn11
P !&n11

W

^exp~2Hn11
P !&n11

W
. ~2.4!

C. Replica field theory for vulcanized macromolecular systems

As discussed in detail in Sec. 5.3 of Ref.@4#, one can put
the partition function into a form of a field theory by apply
ing a Hubbard-Stratonovich transformation to the collect
coordinatesQ( k̂); we denote the corresponding auxilia
order-parameter field byV( k̂). At this stage one encounter
a vital issue, viz., that it isessentialto draw the distinction
between examples ofQ( k̂) andV( k̂) that belong to theone-
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replica sector~1RS! and those that belong to thehigher-

replica sector~HRS!. The distinction lies in the value ofk̂:
for a replicated wave vectork̂, if there is exactly one replica
for which the correspondingd-vectorka is nonzero@e.g., k̂
5(0, . . . ,0,kaÞ0,0, . . . ,0)] then we say thatk̂ lies in the
one-replica-sector (k̂P1RS) and that the correspondin
Q( k̂) and V( k̂) are 1RS quantities. On the other hand,
there is more than one replica for which the correspond
components ofk̂ are nonzero then we say thatk̂ lies in the
higher-replica sector (k̂PHRS) and that the correspondin
Q( k̂) and V( k̂) are HRS quantities. For example, ifk̂
5(0, . . . ,kaÞ0, . . . ,kbÞ0, . . . ,0) then k̂ lies in the HRS.
~More specifically, in this examplek̂ lies in the two-replica
sector of the HRS.! The importance of this distinction be
tween the 1RS and the HRS lies in the fact, evident from
order parameter~2.1!, that the vulcanization transition is de
tected by fields residing in the HRS, whereas the 1RS fie
measure the local monomer density, and neither exhibit c
cal fluctuations near the vulcanization transition nor acqu
a nonzero expectation value in the amorphous solid stat

Bearing in mind this distinction between the 1RS a
HRS fields, the aforementioned Hubbard-Stratonovich tra
formation leads to the following field-theoretic represen
tion of the disordered-averaged replicated partition functi

@Zn#}E D n
†VE D̄†V exp„2ndNFn~$Va~k!,V~ k̂!%!…,

~2.5!

where Va(k) @which represents V( k̂) when k̂

5(0, . . . ,0,ka5kÞ0,0, . . . ,0)] is a 1RS field,V( k̂) is a
HRS field, and the explicit expressions for the resulting
fective HamiltonianFn and functional integration measure
@23# are given by Eqs.~5.12! and ~5.9! of Ref. @4#. In this
formulation of the statistical mechanics of RCMSs, one c
readily establish exact relationships connecting average
ues and correlators ofQ( k̂) with those ofV( k̂) @24#. ~Such
relationships between expectation values involving mic
scopic variables and auxiliary fields are common in the s
ting of field theories derived via Hubbard-Stratonovich tra
formations@25#.! For example, for wave vectors lying in th
HRS one has

^Q~ k̂!&n11
P 5^V~ k̂!&n11

F , ~2.6a!

^Q~ k̂!Q~ k̂8!&n11,c
P 5^V~ k̂!V~ k̂8!&n11,c

F 2
Vn

m2N
d k̂1 k̂8,0̂ ,

~2.6b!

where^•&n11
F denotes an average over the field theory~2.5!,

and the subscript c indicates that the correlators are c
nected. Relationships such as those given in Eqs.~2.6a! and
~2.6b! allow one to relate order-parameter correlators to c
relators of the field theory.

D. Minimal model for the vulcanization transition

The exact field-theoretic representation of RCMSs d
cussed in the previous section serves as motivation fo
g

e
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e
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minimal model capable of describing the universal aspect
the vulcanization transition inasmuch as it indicates the
propriate order parameter and symmetry content. In the s
of the standard Landau approach, one can determine theform
of the minimal model by invoking symmetry argumen
along with three further assumptions:~i! that fluctuations
representing real-space variations in the local density of
constituents are free energetically very costly, and sho
therefore be either suppressed energetically or, equivale
~as far as our present aims are concerned!, prevented via a
kinematic constraint;~ii ! that we need only consider orde
parameter configurations representing physical situation
which the fraction of constituents localized is at most sm
and~iii ! that the field components responsible for the inci
ent instability of the liquid phase are those with long wav
lengths. Provided these assumptions hold, one may~i! ex-
pand the effective Hamiltonian in powers of the ord
parameter, and~ii ! expand the coefficient functions in pow
ers of wave vectors. One retains terms only to the or
necessary for a description of both sides of the transiti
~When we go beyond mean-field theory, below, RG arg
ments will justify our omission of all other symmetry
allowed terms on the grounds that they are irrelevant at
fixed-points of interest.! This scheme leads to the followin
minimal model@9,26#, which takes the form of a cubic field
theory involving a HRS fieldV( k̂) that lives on (n11)-fold
replicatedd-dimensional space:

@Zn#}E D̄†V exp~2Sn!, ~2.7a!

Sn($V%)5N (
k̂PHRS

S 2āt1
b̄

2
uk̂u2D uV~ k̂!u22Ng

3 (
k̂1 ,k̂2 ,k̂3PHRS

V~ k̂1!V~ k̂2!V~ k̂3!d k̂11 k̂21 k̂3 ,0̂ ,

~2.7b!

where t is the reduced control parameter measuring
cross-link density. This model was introduced in Ref.@10# as
a Landau theory of the vulcanization transition, where it w
shown to yield a rich description of the amorphous so
state, even at the saddle-point level, which we briefly su
marize in Sec. III~along with the results of various semim
icroscopic approaches!. Although the semimicroscopic deri
vation of Sn containsn-dependent coefficientsān , b̄n , and
gn , it is admissible for us to keep only then→0 limit of
these coefficients~i.e., ā, b̄, andg) at the outset becauseSn is
already proportional ton for pertinent field configurations
We denote averages weighted with exp(2Sn) by ^•&S.

We wish to emphasize the point that this minimal mod
does not contain fields outside the HRS. For example, in
cubic interaction term in Eq.~2.7b!, the wave vectors in the
summations are constrained to lie in the HRS. This~linear!
constraint on the field embodies the notion that interpart
interactions give a ‘‘mass’’ in the 1RS~i.e., produce a free-
energy penalty for density inhomogeneities! that remains
nonzero at the vulcanization transition. From the standpo
of symmetry, this constraint has the effect of ensuring t
the only symmetry of the theory~associated with the mixing
of the replicas! is thepermutationsymmetry Sn11. Without
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it, the model would have the larger symmetry, O„(n
11)d…, of rotations that mix the~Cartesian components o
the! replicas; see the term associated with the interrep
coupling arising from the disorder averaging of the rep
cated cross-linking constraints in Eq.~2.2b!. In addition to
permutation symmetry, the model has the symmetry of in
pendent translations and rotations of each replica. The
striction to the HRS~or, equivalently, the energetic suppre
sion of the 1RS! is vital: it entirely changes the content of th
theory. Without it, one would be led to completely erroneo
results for both the mean-field picture of the amorphous s
state and, as we shall see, the critical properties of the
canization transition.

For use in Sec. V A, when we come to examine the phy
cal implications of the Ginzburg criterion, we list values
the coefficients in the action derived for the case of RCM
~up to inessential factors of the cross-link density cont
parameterm2):

t5~m22mc
2!/mc

2, ~2.8a!

ā51/2, ~2.8b!

b̄5Ll /6d, ~2.8c!

g51/6. ~2.8d!

Here, mc
2 is the mean-field critical value ofm2, L is the

arclength of each macromolecule, andl is the persistence
length of the macromolecules.

III. VULCANIZATION TRANSITION IN MEAN-FIELD
THEORY: BRIEF SUMMARY OF RESULTS

A. Mean-field order parameter:
Liquid and amorphous solid states

Mean-field investigations of RCMSs and related syste
@3,4,9–11# have shown the following.~i! There is a continu-
ous phase transition between a liquid and an amorphous
state as a function of the density of the cross-links~or other
random constraints!. This transition is contained within th
HRS. Both the liquid and the amorphous solid states h
uniform densities, and therefore the order parameter is z
in the 1RS on both sides of the transition.~ii ! In the solid
state, translational invariance is spontaneously broken a
microscopic level, inasmuch as a nonzero fraction of the p
ticles has become localized in space. However, owing to
randomness of the localization, this symmetry breaking
hidden.@Hence the need for a subtle order parameter~2.1!.#
In the language of replicas, the symmetries of independ
translations and rotations of the replicas are spontaneo
broken, and all that remains are the symmetries of comm
translations and rotations~corresponding to the macroscop
homogeneity and isotropy of the amorphous solid state!. The
permutation symmetry among then11 replicas appears to
remain intact at the transition.~iii ! The stationarity condition
for the order parameter can be solved exactly. In the con

of the minimal model, in the liquid state one findsV̄( k̂)
50; in the solid state the order parameter takes the form
a
-

-
e-

s
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l-

i-

s
l

s

lid

e
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xt

V̄~ k̂!5~2at/3g!d k̃,0
(d)

v~Aak̂2/bt!, ~3.1a!

v~k![E
0

`

du p~u!e2k2/2u, ~3.1b!

where k̃[(a50
n ka. The functionp(u) is a universal func-

tion, in the sense that it does not depend on the mo
specific coefficientsa, b, andg: it is normalized to unity and
satisfies a certain nonlinear integrodifferential equation;
Refs.@3,4,10#. From the physical perspective,v(k) encodes
the distribution of localization lengths of the localized mon
mers and the Kroneckerd factor d k̃,0

(d) exhibits the macro-
scopic translational invariance of the random solid state.
passing to thek̂→0̂ limit in Eq. ~3.1a! one learns that the
fraction of localized monomersq ~i.e., the gel fraction! is
given by

q5H 0, liquid state;

~2a/3g!tb, solid state;
~3.2!

with the exponentb being given by the mean-field value o
unity. It has recently been demonstrated that the mean-fi
state summarized here is locally stable@27#. ~We note, in
passing, that no spontaneously replica-symmetry-break
solutions of the order-parameter stationary condition h
been found, to date.!

B. Gaussian correlator: Liquid and critical states

The incipient amorphous solidification, as the vulcaniz
tion transition is approached from the liquid side, is mark
by strong order-parameter fluctuations, which are diagno
via the correlatorG( k̂) defined through

N21d k̂1 k̂8,0̂
(n11)d

G~ k̂![^V~ k̂!V~ k̂8!&S . ~3.3!

The unusual factor of 1/N is due to our choice of the nor
malization ofQ( k̂) in Eq. ~2.3!. Section IV, below, is dedi-
cated to explaining the physical content of this correlator a
precisely how, via Eq.~2.6b!, it is able to detect incipient
random solidification. The value of the correlator in th
mean-field approximation follows from the quadratic term
in Eq.~ 2.7b! and is given by

G~ k̂!'G0~ k̂![
1

22āt1b̄uk̂u2
, ~3.4!

which below will play the role of the bare propagator. Noti
that G0( k̂) obeys the homogeneity relation

G~ k̂,t!;uk̂u221hg~ uk̂uutu2n!, ~3.5!
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in which g(x);x22h for x→10 and approaches a consta
value for largex. Moreover, the exponents take on the mea
field valuesh50, n51/2, andg5n(22h)51, this last
relationship guaranteeing that the susceptibi
lim k̂→0̂G( k̂,t) diverges asutu2g.

IV. ORDER-PARAMETER CORRELATOR
AND SUSCEPTIBILITY, AND THEIR

PHYSICAL SIGNIFICANCE

Let us now consider the order-parameter correlator
the associated susceptibility from the perspective of incip
random localization@28#. In the simpler context of, e.g., th
ferromagnetic Ising transition the two-point spin-spin co
relator quantifies the idea that the externally imposed ali
ment of a particular spin would induce appreciable alignm
of most spins within roughly one correlation length of th
spin, this distance growing as the transition is approac
from the paramagnetic state. How are these ideas borne
in the context of the vulcanization transition? Imagine a
proaching the transition from the liquid side: then the inci
ent order involves random localization and so, by analo
with the Ising case, the appropriate correlator is the one
addresses the question: Suppose a monomer is localize
within a region of some size by an external agent: Over w
region are other monomers likely to respond by becom
localized, and how localized will they be? We can also co
sider the order-parameter correlator and the associated
ceptibility from the perspective of the formation of~mobile,
thermally fluctuating! assemblages of macromolecule
which we refer to as clusters: How do they diagnose
development of larger and larger clusters of connected m
romolecules, as the cross-link density is increased towa
the vulcanization transition?

Bearing these remarks in mind, we now examine in de
the physical interpretation of the order-parameter correla

^Q( k̂)Q(2 k̂)&n11
P which, as we shall see, captures the ph

ics of incipient localization and cluster formation. To s
this, consider the construction

Ct~r2r 8![F V

N (
j , j 851

N E
0

1

dsE
0

1

ds8^d (d)
„r2cj~s!…

3d (d)
„r 82cj 8~s8!…&^exp@2 i t•„cj~s!2r …#

3exp@ i t•„cj 8~s8!2r 8…# &xG , ~4.1!

which, in addition to depending on the separationr2r 8, de-
pends on the ‘‘probe’’ wave vectort. The first expectation
value in this construction accounts for the likelihood th
monomers (j ,s) and (j 8,s8) will, respectively, be found
around r and r 8; the second describes the correlation b
tween the respective fluctuations of monomer (j ,s) aboutr
and monomer (j 8,s8) aboutr 8.

Now, the quantityCt(r2r 8) is closely related to an HRS
correlator involving the semimicroscopic order parame
Q( k̂). To see this we introduce Fourier representations of
two d functions and invoke translational invariance, thus
tablishing that@29#
-
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Ct~r2r 8!5
N

V(
k

ei (k1t)•(r2r8)

3F 1

N2 (
j , j 851

N E
0

1

ds ds8^e2 ik•„cj (s)2cj 8(s8)…&x

3^e2 i t•„cj (s)2cj 8(s8)…&xG ~4.2!

5
N

V(
k

eik•(r2r8) lim
n→0

^Q* ~0,k2t,t,0, . . . ,0!

3Q~0,k2t,t,0, . . . ,0!&n11
P . ~4.3!

Having seen thatCt(r2r 8) is closely related to an HRS
correlator involvingQ( k̂) ~which can be computed via theV
field theory!, we now explain in more detail howCt(r2r 8)
detects the spatial extent of relative localization. First, let
dispense with the case oft50. In this caseCt(r2r 8) is
simply (V/N times! the real-space density-density correl
tion function and, as such, is not of central relevance at
amorphous solidification transition. Next, let us consider
small-t limit of Ct(r2r 8). This quantity addresses the que
tion, if a monomer atr is localized ‘‘by hand,’’ what is the
likehood that a monomer atr 8 responds by being localized a
all, no matter how weakly? It is analogous to the correlat
function defined in percolation theory that addresses the c
nectedness of clusters@20#.

To substantiate the claim made in the previous paragr
we examine the contribution from each pair of monomers
the quantityCt(r2r 8). Let us start from the simplest situa
tion, in which no cross-links have been imposed. We assu
that t is small~i.e.,V21/3@utu21@Rg , whereRg is the radius
of gyration for a single macromolecule! and that the macro-
molecular system has only short-range interactions. For e
term in the double summation over monomers there are
cases to consider, depending on whether or not the pa
monomers are on the same macromolecule. For a gen
pair of monomers that are on the same macromolecule~i.e.,
j 5 j 8), we expect that̂ exp (it•„cj (s)2cj (s8)…)&;1, and
that ~for ur2r 8u&Rg) ^d (d)

„r2cj (s)…d (d)
„r 82cj (s8)…&

;V21Rg
2d . Then the total contribution toCt(r2r 8) coming

from pairs of monomers on the same macromolecule is
order (N/V)2Rg

2d . On the other hand, for a generic pair
monomers that are on different macromolecules~i.e., j
Þ j 8), we expect that̂exp(it•„cj (s)2cj 8(s8)…)&;V21, and
that ^d (d)

„r2cj (s)…d (d)
„r 82cj 8(s8)…&;V22. Therefore the

total contribution toCt(r2r 8) coming from pairs of mono-
mers on different macromolecules is of order (N/V)3V21.
Thus, we find that the intrachain~i.e., j 5 j 8) contribution to
Ct(r2r 8) dominates over the interchain~i.e., j Þ j 8) contri-
bution in the thermodynamic limit.

Moving on to the physically relevant case, in which cros
links have been introduced so as to form clusters of mac
molecules, we see that what were the intrachain and in
chain contributions become intracluster and interclus
contributions. With the appropriate~slight! changes, the pre
vious analysis holds, which indicates that the intraclus
contribution dominatesCt(r2r 8) in the thermodynamic
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limit. In other words, in the small-t limit a pair of monomers
located atr and r 8 contribute unity toCt(r2r 8) if they are
on the same cluster and zero otherwise. This view allows
to identify the small-t limit of Ct(r2r 8) with the pair-
connectedness function defined in~the on-lattice version of!
percolation theory@20#.

What aboutCt(r2r 8) in the case of generalt? In this
case it addresses the question, if a monomer nearr is local-
ized on the scalet21 ~or more strongly!, how likely is a
monomer nearr 8 to be localized on the same scale~or more
strongly!? This additional domain of physical issues asso
ated with the strength of localization results from the effe
of thermal fluctuations, and is present in the vulcanizat
picture but not the percolation one.

Let us illustrate the significance ofCt(r2r 8) by comput-
ing it in the setting of the Gaussian approximation to t
liquid state in three dimensions. To do this, we use Eq.~2.6b!
to expressCt(r2r 8) in terms of the~Gaussian approxima
tion to the! correlator ^V( k̂)V( k̂8)&S , which has the
Ornstein-Zernicke form given in Eq.~3.4!. Thus, we arrive at
the real-space Yukawa form

uCt~r2r 8!u}
exp„2ur2r 8u/zeff~ t !…

ur2r 8u
, ~4.4a!

1

zeff
2 ~ t !

[
1

z2 1b̄t2, ~4.4b!

where the correlation lengthz is defined byz22[22āt.
Hence, we see the appearance of a probe-wavelen
dependent correlation lengthzeff(t). The physical interpreta
tion is as follows: in thet→0 limit, Ct(r2r 8) is testing for
relative localization, regardless of the strength of that loc
ization and, consequently, the range of the correlator
verges at the vulcanization transition. This reflects the inc
ence of an infinite cluster, due to which very dista
macromolecules can be relatively localized. By contrast,
generict it is relative localization on a scalet21 ~or smaller!
that is being tested for. At sufficiently large separations, e
if a pair of macromolecules are relatively localized, this re
tive localization is so weak that the pair does not contrib
to Ct(r2r 8). This picture is reflected by the fact thatzeff(t)
remains finite at the transition.

Given that we have identified a correlator that is beco
ing long ranged at the transition, it is natural to seek
associated divergent susceptibilityQ t . To do this, we inte-
grateCt(r2r 8) over space and obtain

Q t[E ddr ddr 8

V
Ct~r2r 8!

5N lim
n→0

^Q* ~0,t,2t,0, . . . ,0!

3Q~0,t,2t,0, . . . ,0!&n11
P . ~4.5!

Passing to thet→0 limit, we have

lim
t→0

Q t;~2t!2g, ~4.6!
s

i-
s
n

th-

l-
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n
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-
n

where the final asymptotic equality is obtained from a co
putation of the~field-theoretic! correlator^V( k̂)V( k̂8)&n11,c

F

@see Eq.~2.6b!#. This quantity is a measure of the spati
extent over which pairs of monomers are relatively localiz
no matter how weakly, and thus diverges at the vulcaniza
transition. At the Gaussian level of approximation, Eq.~3.4!,
this susceptibility diverges with the classical exponentg
51. By contrast, for generict the susceptibilityQ t remains
finite at the transition, even though an infinite cluster
emerging, due to the suppression of contributions toQ t from
pairs of monomers whose relative localization is sufficien
weak ~i.e., those that lead to the divergence in the smat
limit !.

V. VULCANIZATION TRANSITION BEYOND
MEAN-FIELD THEORY

A. Ginzburg criterion for the vulcanization transition

To begin the process of analyzing the vulcanization tr
sition beyond the mean-field~i.e., tree! level, we estimate the
width dt of reduced constraint densitiest within which the
effects of order-parameter fluctuations about the saddle-p
value cannot be treated as weak, i.e., we construct the
zburg criterion. To do this, we follow the conventional stra
egy ~see, e.g., Ref.@30#! of computing a loop expansion fo
the two-point vertex function to one-loop order and exam
ing its low-wave-vector limit~i.e., the inverse susceptibility!.
Note that in the present setting the loop expansion amo
to an expansion in the inverse monomer density. Our star
point is the minimal model, Eq.~2.7b!, for which the bare
correlator is given by Eq.~3.4!. Then the one-loop correction
to the two-point vertex function comes from the diagra
shown in Fig. 1, which is calculated in Appendix A. B
choosing k̂P31RS ~i.e., in the HRS but not in the two
replica sector! @31# we obtain for the inverse susceptibilit
J21 the result

~NJ!21522āt118g2
V

NE ddp

~22āt1b̄p2!2
, ~5.1!

in which a large wave-vector cutoff atuk̂u5L is implied. The
~one-loop! shifted critical pointtc marks the vanishing of
J21, i.e., solves

0522ātc118g2
V

NE ddp

~22ātc1b̄p2!2
. ~5.2!

FIG. 1. One-loop correction to the two-point vertex functio
Full lines indicate bare HRS correlators; dashed lines indicate
putated external bare HRS correlators.
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Now, in mean-field theory the transition occurs att50, with
positive ~respectively, negative! values corresponding to th
amorphous solid~respectively, liquid! states. From Eq.~5.2!
we see that that inclusion of fluctuations enlarges the reg
of cross-link densities in which the liquid state is stable,
one would expect on general physical grounds. Howeve
is worth noting, in passing, that without the exclusion of t
one-replica sector the converse would occur~i.e., fluctua-
tions would enlarge the region of stability of the amorpho
solid state!. By subtracting Eq.~5.2! from Eq. ~5.1! in the
standard way, replacingtc by its mean-field value~of zero!
in the loop correction, and rescaling the integration varia
p2 according tob̄p2522ātk2, we arrive at

~NJ!21522ā~t2tc!

3„1218g2~V/N!b̄2d/2~22āt!(d26)/2Jd…,

~5.3!

where Jd is a dimensionless number dependent ond ~and
weakly onL, at least in the regime of interest, i.e.,d below
6!. Equation~5.3! shows that ford,6 a fluctuation domi-
nated regime is inevitable for sufficient smallt, and hence
that the upper critical dimension for the vulcanization tra
sition is 6, in agreement with naı¨ve power-counting argu
ments applied to then→0 limit of the cubic field theory, Eq.
~2.7b!. The Ginzburg criterion amounts to determining t
departure oft from its critical value such that in Eq.~5.3! the
one-loop correction is comparable in magnitude to the me
field-level result.

To determine the physical content of the Ginzburg cri
rion, we invoke the values of the coefficients of the minim
model appropriate for the semimicroscopic model
RCMSs, Eqs.~2.8a!–~2.8d!, and we exchange the macromo
ecule density N/V for the volume fraction w
[(N/V)(L/ l ) l d. Thus we arrive at the following form of the
Ginzburg criterion: ford,6, fluctuations cannot be ne
glected for values oft satisfying

Um22mc
2

mc
2 U&~L/ l !2(d22/62d)~w/g2!2(2/62d), ~5.4!

from which we see that the fluctuation-dominated regime
narrower for longer macromolecules and higher densi
~for 2,d,6). Such dependence on the degree of polym
ization L/ l is precisely that argued for long ago by d
Gennes on the basis of a percolation-theory picture@32#.

In addition to the fields and vertices featured in the mi
mal model, there are other symmetry-allowed fields and v
tices that are generated by the semimicroscopic theory
RCMSs. Examples are provided by the 1RS field, which
scribes density fluctuations, along with vertices of cub
quartic, or higher order that couple the 1RS field to the H
field. In Appendix B we investigate the effect of these fiel
and vertices, which are omitted from the minimal model, a
show ~i! that the inclusion of their effects~at the one-loop
level! does not change the Ginzburg criterion derived in
present section; and~ii ! that the HRS critical fluctuations d
not provide any singular contributions to the 1RS dens
density correlation function~at least to one-loop order!.
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B. Renormalization-group procedure and its subtleties

We now describe the RG procedure that we are usin
schematic depiction of which is given in Fig. 2. The ma
thrust of our approach is the standard ‘‘momentum-she
RG, via which we aim to determine how the parameters
the theory,t andg, flow under the two RG steps of coars
graining and rescaling. However, in the present context th
are some significant subtleties owing to the need to const
the fields to lie in the HRS.

In the coarse-graining step, we integrate out the rapi
varying components ofV( k̂) ~i.e., those corresponding t
wave vectors satisfyingL/b,uk̂u,L). Here, the constrain
that only the HRS field is a critical field demands that o
treat the HRS and the 1RS distinctly. We handle this
working with a large but finite~replicated! system contained
in a hypercubic box of volumeVn11 on which periodic
boundary conditions are applied. As a consequence,
wave vectors are ‘‘quantized,’’ and therefore we can direc
make the appropriate subtractions associated with the
moval of the zero- and one-replica sectors. Having made
necessary subtractions, we compute the various Feyn
diagrams~for the construction of the Ginzburg criterion an
the coarse-graining step of the RG! by passing to the con
tinuous wave-vector limit~so that wave-vector summation
become integrations!.

The replica technique has the following curious featu
In the infinite-volume limit the different sectors are spaces
different dimensionalities, and thus the contributions fro
the lower replica sectors appear to be sets of measure
relative to the contributions from the HRS. However, in t
replica limit, the contributions from different sectors a
comparable and, hence, the lower sectors cannot be
glected. The coarse-graining step is followed by the resca
step, in which the aim is to return the theory to its origin
form. The field- and length-rescaling aspects of this step~to
recover the original wave-vector cutoff and form of the gr
dient term! are standard, but there is a subtlety associa
with the fact that the original theory is defined on a fin
volume~in order that the wave vectors be quantized and
various replica sectors thereby be readily identifiable!. This
subtlety is that upon coarse graining and rescaling one
rives at a theory that isalmostof the original form, but is

FIG. 2. Schematic one-dimensional depiction of the basic st
of the RG procedure~the field variables are defined only at th
hatch marks denoting the quantized wave vectors!: from ~a! to ~b!
integrate out the fields at the quantized wave vectorsk in the
‘‘momentum shell’’ ~shaded!; from ~b! to ~c! rescale lengths to
restore the wave-vector cutoff, and rescale the field to restore
gradient term; from~c! to ~d! restore the density of the degrees
freedom.~In practice, we employ a momentum shell of infinitesim
width.!
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defined on a coarser lattice of quantized wave vectors a
ciated with the reduced~real-space! volume. If we wish to
return the theory to its truly original form, we are required
increase the density of the coarsened wave-vector lattice
accomplish this, we choose to make use of the extensio
(n11)d dimensions of the following one-dimensional rel
tion, exact in the thermodynamic~i.e., large real-space siz
B) limit:

(
kP$2p jb/B%

f ~k!'b21 (
kP$2p j /B%

f ~k!. ~5.5!

One way to understand this is to regard the two sides of
~5.5! as providing different discrete approximations to t
same continuous-wave-vector~i.e., infinite-volume! limit.
Thus, we expect the difference between them to be unim
tant in the thermodynamic limit. Another way is to regard t
right-hand side of Eq.~5.5! as pertaining to a system with
larger number of degrees of freedom than the left-hand s
but that the factorb21 appropriately diminishes the weigh
of each degree of freedom. It would be equally satisfactor
we chose, in our RG scheme,not to restore the wave-vecto
lattice spacing, which would amount to our using the le
hand side of Eq.~5.5!.

C. Expansion around six dimensions

In the previous two subsections we have established
the upper critical dimension for the vulcanization transiti
is 6, and we have described an RG procedure capabl
elucidating certain universal features of the transition. W
now examine the RG flow equations near the upper crit
dimension that emerge from this procedure, and discuss
resulting fixed-point structure and universal critical exp
nents. To streamline the presentation we have relegated
technical details of the derivation of the flow equations
Appendix C.

1. Flow equations

As with the mean-field theory and the Ginzburg criterio
our starting point is the replicated cubic field theory, E
o-

To
to

q.

r-

e,

if

-

at

of
e
l

he
-
the

,
.

~2.7b!. By suitably redefining the scales ofV( k̂) and k̂ we
can absorb the coefficientsā and b̄, hence arriving at the
Landau-Wilson effective Hamiltonian

Sn~$V%!5N (
k̂PHRS

S 2t1
1

2
uk̂u2D uV~ k̂!u22Ng

3 (
k̂1 ,k̂2 ,k̂3PHRS

V~ k̂1!V~ k̂2!V~ k̂3!d k̂11 k̂21 k̂3 ,0̂ ,

~5.6!

in which all wave vector summations are cut off beyo
replicated wave vectors of large magnitudeL, from which
we can read off the bare correlator

G0~ k̂!5
1

22t1uk̂u2
. ~5.7!

We shall be working to one-loop order and, correspon
ingly, the diagrams that contribute to the renormalization
the parameters of the Landau-Wilson effective Hamilton
are those depicted in Figs. 3~a! and 3~b!. The resulting flow
equations are

FIG. 3. Contributing one-loop diagrams. Full lines indicate ba
HRS correlators for short-wavelength fields~i.e., fields lying in the
momentum shell!; wavy lines indicate long-wavelength fields.
dt/d ln b52t2C0g22C08tg22C1tg21O~t2g2,t«g2,«g2,g4!, ~5.8a!

dg/d ln b5gX«/22C3g22
3

2
C1g21O~tg2,«g2,g4!C, ~5.8b!

dz/d ln b5
1

2
~d122C1g2!1O~tg2,«g2,g4!, ~5.8c!
of

ed
where «[62d, b is the length-rescaling factor,z is the
field-rescaling factor, and the~constant! coefficients in the
flow equations are given by

~C0 ,C08 ,C1 ,C3!5
V

N

S6

~2p!6
~9L2,36,26,72!, ~5.9!
in which S6 is the surface area of a 6-dimensional sphere
unit radius.

2. Fixed-point analysis and its consequences

We proceed in the standard way by first finding the fix
points (t* ,g* ) of the flow equations, at which
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d(t,g)/d ln b5(0,0). We linearize the flow equations about each of the resulting fixed points,

d

d ln b S t2t*
g2g*

D'S 22~C081C1!g
*
2 22C0g*

0
1

2
«23S C31

3

2
C1Dg

*
2 D S t2t*

g2g*
D , ~5.10!
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where we have dropped higher-order corrections. We t
establish the RG eigenvalues at each fixed point by find
the eigenvalues of the linearized RG transformation ma
ces. Finally, we solve Eq.~5.10! to obtain the flow near eac
fixed point.

For « both negative and positive~i.e., for d both above
and below 6! we find a Gaussian fixed point ~GFP!:
(t* ,g* )5(0,0). Solving Eq.~5.10! about this fixed point
gives the flow

S t~b!

g~b!
D'S t~1!by1

g~1!by2
D , ~5.11!

with the RG eigenvaluesy1 and y2, respectively, given by
yt52 andyg5«/2.

As one can see from Eq.~5.11!, above six dimensions th
GFP is unstable in thet direction and stable in theg direc-
tion. However, below six dimensions the GFP also becom
unstable in theg direction, and a new fixed point—th
Wilson-Fisher fixed point~WFFP!—emerges, located a
(t* ,g

*
2 )5$(L2/28),(1/126)@(2p)6/S6#(V/N)21%«. ~Let us

mention, in passing, that if we had not correctly implemen
the constraint that wave-vector summations exclude con
butions for the 1RS then the structure of the flow equati
would have been utterly different; e.g., the WFFP wou
have occurred at a complex value ofg.! By solving Eq.
~5.10! for the WFFP we find the flow

S t~b!2t*
g~b!2g*

D'S „t~1!2t* …2C4„g~1!2g* …

0 D by1

1S C4„g~1!2g* …

g~1!2g*
D by2, ~5.12!

where C4[(3/A14)$(V/N)@S6 /(2p)6#%1/2(L2«1/2) and the
RG eigenvalues are given byy1522(5«/21) and y25
2«.

We now proceed to obtain the critical exponents
physical quantities from the RG eigenvalues at each fi
point. The homogeneity relation for the correlatorG( k̂), fol-
lowing from a standard RG analysis@33#, reads

G~ k̂,t!5z2b2dG~bk̂,by1t!. ~5.13!

We eliminateb by choosingbuk̂u51; then comparison with
Eq. ~3.5! leads ton51/y1 andh5C1g

*
2 . Thus, for the GFP

we have

n2152, h50, ~5.14!

and for the WFFP we have, to first order in«,
n
g
i-

s

d
i-
s

r
d

n21522~5«/21!, h52«/21. ~5.15!

Both above and below six dimensions, the critical expone
n andh ~andb, to be discussed below! are identical to those
governing analogous quantities in percolation theory~at least
to first order in«), as computed via the Potts field theo
@35#. We discuss the significance of this result and the re
tionship between the present approach and percolat
gelation-based approaches in Sec. VI.

We have focused on the cubic interaction in the vulca
zation field theory. There are, of course, addition
symmetry-allowed interactions, such as the quartic inter
tion. Near to six dimensions, however, the fact that su
interactions are irrelevant at the GFP can be shown by n¨ve
power-counting arguments, which hold in the replica lim
~and remain uncompromised at the WFFP, owing to its pr
imity to the GFP!.

D. Scaling for gel fraction and wave-vector-dependent
order parameter

In order to relate properties of the amorphous solid st
to those computed in the liquid and critical states, we n
follow the standard scaling analysis. To do this, we add
the minimal model, Eq.~5.6!, a source field that couple
linearly to the order parameter:2N( k̂PHRSV( k̂)U(2 k̂).
We assume thatU contains only long wavelength compo
nents, so that it does not couple to any field featuring in a
momentum-shell integrations. Then the renormalization
U(2 k̂) comes only from the rescalings ofk̂ andV( k̂), and
thus we have

U8~ k̂8!5zb2dU~ k̂!. ~5.16!

To obtain the exponentb, which describes the scaling of th
gel fractionq, the conventional method prescribes the app
cation of auniform source field. In the present theory, th
~zero replica sector! field variable V(0̂), which would
couple to such a uniform source, is excluded, and instead
chooseU( k̂)5hd k̂1 k̂0 ,0̂ , where k̂0 lives in the HRS but is
otherwise arbitrarily small.~This prescription is consisten
with the notion that the gel fraction follows from the long
wavelength limit of the order parameter, the limit bein
taken via wave vectors in the HRS.! Hence we arrive at the
recursion relation forh:

h85zh5byh; yh5~d122h!/2. ~5.17!

As we are already in possession ofh at the GFP and the
WFFP, we thus arrive at the scaling dimensionyh of the
source fieldh.
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Having obtainedyh , we now use it, together withyt , yg
and the singular part of the free energy densityf, to deter-
mine b, in the following way. According to homogeneity,f
has the form

f ~t,g,h!5b2df ~tbyt,gbyg,hbyh!. ~5.18!

By taking the derivative with respect toh so as to form the
order-parameter equation of state, choosingh50, and pass-
ing to the smallk̂0 limit, one finds the following scaling
behavior of the gel fraction:

q~t,g,0!; lim
k̂0→0̂

] f /]huh50;b2d1yhM ~tbyt,gbyg,0!

5t (d2yh)/ytM ~1,gt2yg /yt,0!. ~5.19!

Let us first consider the regimed.6, for which the ap-
propriate fixed point is the GFP and, therefore one expe
the exponents to take on their classical values. Now, as
can see from the mean-field value for the order parameteV̄
~and thus the gel fractionq), Eq. ~3.1a!, both of which are
proportional tog21, the cubic interaction is dangerously i
relevant at the GFP, and thus one has

M ~1,g,0!;
1

g
, for g→10. ~5.20!

Hence, near the GFP one has

q~t,g,0!;tb, for g→10, ~5.21a!

b5
d2yh

yt
1

yg

yt
5

d2
d12

2
1

62d

2

2
51, ~5.21b!

which is precisely the mean-field value of the exponenb
given in Sec. III A.

Now let us turn to the regimed,6, for which the expo-
nents are nonclassical. The appropriate fixed point is now
WFFP, at which the cubic interaction is irrelevant but n
dangerously so. Thus, in this regime one has the stan
scaling relation

b5
d2yh

yt
512~«/7!, ~5.22!

where the second equality holds only to order«.
In fact, under the~not unreasonable! assumption that there

is only one characteristic length scale in the ordered s
~i.e., that the fluctuation correlation length does not provid
length scale independent from the localization length sca!,
we can go beyond the establishing of the scaling of the
fraction ~i.e., the long-wavelength limit of the order param
eter! and propose a more general scaling hypothesis, wh
incorporates the scaling of the~singular part of the! wave-
vector-dependent order parameter@36#. This takes the form
of the scaling hypothesis:

^V~ k̂!&S}tbw~ k̂2t22n!. ~5.23!
ts
ne

e
t
rd

te
a

el

h

The quantitytn, which plays the role of the fluctuation cor
relation length in the liquid state, is here seen to play the r
of the characteristic scale for the localization lengths in
ordered state. Presumably, it also governs the scale
which ~amplitude-type! fluctuations are correlated in th
solid state. Let us note that the mean-field result for the or
parameter not only obeys this scaling relation~with b52n
51) but also provides an explicit form for the functionw.
There are, however, fascinating possibility of multifractal
in the characterization of vulcanized matter, say, along
lines of that are found in randomly diluted spin and resis
systems by Harris and Lubensky@38#.

VI. CONCLUDING REMARKS: CONNECTIONS
WITH OTHER APPROACHES AND THE ROLE

OF THERMAL FLUCTUATIONS

Having constructed an RG theory for the liquid and cri
cal states of vulcanized matter, we now examine the res
of this RG theory and discuss the relationship between th
results and the results of other approaches to the vulcan
tion transition. As we have seen in Sec. V C, via an exp
sion around six spatial dimensions our minimal model for
vulcanization transition yields values for certain critical e
ponents that characterize the behavior of the system ne
and at the transition. These exponents turn out to be num
cally equal to those characterizing physically analogo
quantities in percolation theory, at least to first order in t
departure« from six dimensions. We have not proven th
the equality between exponents holds beyond first order in«,
although there are hints in the structure of the theory s
gesting that it does.

This equality between exponents seems reasonabl
view of the intimate relationship between percolation theo
and theconnectivityof the system of cross-linked macromo
ecules, this connectivity pertaining to thestatisticsof sys-
tems formed according to the Deam-Edwards distribution
quenched randomness~and hence to the statistical mechani
of the uncross-linked macromolecular liquid! @37#. Indeed, a
connection between the percolation and vulcanization tra
tions already shows up at the level of mean-field theory:
dependence of the gel fractionq on the cross-link-density
control parameterm2 obtained via the semimicroscopic ap
proach~in the case of RCMSs!, viz., thatq obeys

12q5exp~2m2q!, ~6.1!

is identical to the mean-field-percolation dependence of
fraction of sites participating in the infinite cluster, obtain
by Erdős and Re´nyi in their work on random graphs@39,40#,
this identity holding not just near the transition, where t
dependence ofq on m22mc

2 is linear, but for all cross-link
densities. Moreover, the mean-field result emerging from
minimal model of the vulcanization transition yields this lin
ear dependence~but cannot, of course, be applied beyond t
transition regime!. The relevance of percolation theory to th
vulcanization transition also manifests itself beyond t
mean-field level in the physicalmeaning of the order-
parameter correlator, as we have discussed in Sec. IV.
connection has long been realized, and supports the us
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percolative approaches as models of certain aspects o
vulcanization transition@15–20#.

These percolative approaches include direct applicat
of percolation theory@15–18#, mentioned in the precedin
paragraph, as well as the approach given by Lubensky
Isaacson@19,20#. The latter approach extends the connect
between the statistics of linear macromolecules and the z
component limit of a spin system@41,42#. In this way, a
correspondence is established between the statistic
branched, polydisperse, macromolecules and a multicom
nent field theory. This field theory reduces to the one-s
limit of the Potts model under circumstances appropriate
the transition to a physical gel~i.e., a state in which one is
certain to find a reversibly bonded, infinite, branched mac
molecule! @43#.

An essential ingredient of the approaches discussed in
previous paragraph is the Potts model in its one-s
limit—a representation of percolation@44,45#. It is therefore
worth considering similarities and differences between
minimal field theory of the vulcanization transition focus
on in the present paper, Eq.~2.7b!, and the minimal field
theory for the Potts model. The minimal field theory for t
Potts model is then→0 limit of the cubicn-component field
theory, the Landau-Wilson Hamiltonian for which is

E
V
ddxX(

a51

n S 1

2
rca

21
1

2
u¹cau2D

2w(3) (
a,b,g51

n

labg
(3) cacbcgC, ~6.2!

wherer controls the bond-occupation probability~and hence
the percolation transition!, w(3) is the nonlinear coupling
strength, andlabg

(3) is the ‘‘Potts tensor’’~which controls the
internal symmetry of the theory; for a discussion of th
theory see, e.g., Sec. 2.7 of Ref.@20#!.

How does this Potts field theory compare the vulcani
tion field theory that we have been analyzing in the pres
paper? The Potts field theory has a cubic interaction, as d
the vulcanization field theory, and therefore its upper criti
dimension is also 6. If we examine the RG analysis of
Potts field theory~in an expansion around six dimension!
@46# we see that, at the one-loop level, diagrams identica
form ~i.e., those shown in Fig. 3! enter the renormalization o
the various vertices. Moreover, in then→0 limit the RG
flow equations for the two theories turn out to be identic
This striking result is connected to the following observ
tions.

~i! In the Potts case, aside from thed-dimensional inte-
grals corresponding to the diagrams, the coefficients in
flow equations are determined by the contractions of Po
tensor indices associated with each cubic vertex, these
tractions being the origin of then-dependence of the coeffi
cients in the flow equations.

~ii ! In the vulcanization case, the diagrams intrinsica
correspond to (n11)d-dimensional integrals but, due to th
constraints on the summations over wave vectors, these
grams produce (n11)d-dimensional integrals ~which
smoothly reduces tod-dimensional integrals in then→0
limit !, together withd-dimensional integrals@see Eqs.~A2!
and ~C9!#.
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~iii ! Despite the explicit differences in the forms of th
two theories, it turns out that, in then→0 limit, the integrals
and the combinatorics conspire to produce precisely
same flow equations. In some delicate way, which we do
fully understand, the constraints on the wave-vector sum
tions in the vulcanization theory play a similar role to th
field-index contractions in the Potts theory.

Having discussed the similarities of the Potts and vul
nization approaches, let us now catalogue the many dist
tions between them.

~i! The Potts field theory has a multiplet ofn real fields on
d-dimensional space; the vulcanization field theory has a
singlet field living on (n11)-fold replicatedd-dimensional
space.

~ii ! The Potts field theory represents a setting involving
singleensemble@21#, the ensemble of percolation configur
tions, whereas the vulcanization field theory describe
physical problem in whichtwo distinct ensembles~thermal
and disorder! play essential roles. As such, the vulcanizati
field theory is capable of providing a unified theory not on
of the transition but also of the structure, correlations, a
~e.g., elastic! response of the emerging amorphous so
state. This is already manifested at the mean-field level,
asmuch as the vulcanization field theory presents an o
parameter that is far richer in its physical content that the
presented by the Potts model.

~iii ! The entire symmetry structures possessed by the
colation and vulcanization field theories are quite differe
The Potts field theory has translational and rotational inv
ance~in unreplicated space!, along with the discrete symme
try of (n11)-fold permutations of the nonlinear potentia
The vulcanization field theory has the symmetries of the
dependent translations and rotations of the (n11) replicas of
space, along with the discrete symmetry of (n11)-fold per-
mutations among the replicas.

~iv! The nature of the spontaneous symmetry breaking
the percolation and vulcanization phase transitions is
tinct. The percolation transition~in its Potts representation!
involves the spontaneous breaking of the (n→0 limit! of a
discrete(n11)-fold permutation symmetry. By contrast, th
vulcanization transition involves the spontaneous breaking
the (n→0 limit of the! continuoussymmetry of relative
translations and rotations of then11 replicas; the permuta
tion symmetry remains intact in the amorphous solid state
does the symmetry of common translations and rotations
replicated space. Thus, the vulcanization transition is ass
ated with the appearance of low-energy, long-waveleng
Goldstone-type excitations@28#, which we expect to lead to
the restoration of the broken continuous symmetry in a
below a lower critical dimension of two. By contrast, flu
tuations destroy the percolation transition only at and be
the the lower critical dimension of unity.

While there are these apparent distinctions between
percolation and vulcanization approaches, especially in
dimensions, there is also evidence in favor of some sor
sharp correspondence between the physics of percolation
vulcanization coming from the computation of critical exp
nents near the upper critical dimension. This apparent
chotomy can, however, be reconciled if we carefully del
eate between three logically distinct physical propert
pertaining to RCMSs and other randomly constrained s
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tems:~i! macroscopic network formation~by which we mean
that constraints are present in sufficient density to conne
nonzero fraction of the constituents into a giant random m
ecule!; ~ii ! random localization~by which we mean the
change in thermal motion of a nonzero fraction of the co
stituents from wandering throughout the container to fluc
ating only over finite distances from their random mean
sitions!; and ~iii ! the acquisition of rigidity~by which we
mean the emergence of a nonzero static shear modulus!.

Within mean-field theory~and hence above six spatial d
mensions!, these three properties go hand in hand, emerg
simultaneously at the phase transition. At and below six
mensions they appear to continue to go hand in hand~al-
though, strictly speaking, we have not yet investigated
issue of the acquisition of rigidity beyond mean-field theo!
until one reaches two dimensions where we believe
broad picture will change~as we shall discuss shortly!. Thus,
it appears that, within the limited sphere of issues concern
amorphous solidification that percolation-based approac
are capable of addressing, such approaches do not lead
astray. In other words, the superposition of thermal fluct
tions on the positions of the constituents of the macrosco
network that emerges as the constraint density is increa
towards the phase transition does not lead to any chang
the critical exponents governing percolation-type quantit
disorder fluctuations appear to play a more important r
than do thermal fluctuations, as far as the percolative asp
of the critical phenomenon are concerned.

This brings up the interesting issue of the nature of
vulcanization transition and its relationship with the perco
tion transition as the dimensionality of space is reduced
the neighborhood of two spatial dimensions, two being
lower critical dimension of the vulcanization transition.~The
ideas reported in this paragraph result from an ongoing
laboration with H. E. Castillo@47#.! Indeed, the case of two
dimensions is especially fascinating in view of the fact th
there is a conventional percolation transition in two dime
sions, whereas the thermal fluctuations are expected to
sufficiently prominent to destablize the amorphous so
phase, in which case the macroscopic network formation
longer occurs simultaneously with the random localization
constituents of the network. It is tempting to speculate@47#
that in two dimensions an anomalous type of vulcanizat
transition~not accompanied by true localization! continues to
happen simultaneously with percolation transition. As
constraint density is tuned from below to above criticali
the amorphous solidification order parameter would rem
zero, whereas the order-parameter correlations would cha
from decaying exponentially to decaying algebraically w
distance. One might say that~constraint-density controlled!
cluster fragmentation~rather than the thermal excitation o
lattice defects, as in regular two-dimensional melting! would
be mediating the melting transition. If this scenario sho
happen to be borne out, then, at sufficiently high cross-
densities one would have a quasiamorphous solid state—
random analog of a two-dimensional solid@48#—exhibiting
quasi-long-range positional order but of a random rather t
regular type. By implementing these ideas via an effect
field theory that describes low-energy excitations of
a
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amorphous solid state, we hope to construct a picture of
vulcanization transition and the emergent rigid state in t
spatial dimensions.
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APPENDIX A: INVERSE SUSCEPTIBILITY
AND GINZBURG CRITERION

In order to calculate the one-loop correction to the tw
point vertex functionG (2)( k̂), we first calculate the self-
energy Sn( k̂) ~i.e., the sum of all two-point one-particle
irreducible amputated diagrams!, in terms of whichG (2)( k̂)
[G0( k̂)212Sn( k̂)un→0. To one-loop order,Sn( k̂) is given
by the amputated diagram shown in Fig. 1,

Sn~ k̂!518g2 (
k̂1PHRS

( k̂2 k̂1PHRS)

G0~ k̂1!G0~ k̂12 k̂!. ~A1!

Let us emphasize the meaning of the notation: one is dire
to sum over all replicated wave vectorsk̂1PHRS subject to
the constraint thatk̂2 k̂1PHRS; one should also bear i
mind the fact that the external wave vectork̂ lies in the HRS.
This constrained summation can be expressed in term
several unconstrained summations~for cases in whichk̂ has
nonzero entries in at least three replicas, i.e., lies in
31RS! as

(
k̂1PHRS

( k̂2 k̂1PHRS)

X~ k̂1!5(
k̂1

X~ k̂1!

2 (
a50

n

(
p

X~ k̂1!u k̂15pêa1nX~ k̂1!u k̂150̂

2 (
a50

n

(
p

X~ k̂1!u k̂15pêa1 k̂

1nX~ k̂1!u k̂15 k̂ , ~A2!

for anyX( k̂1). Here,$êa%a50
n is the collection of unit vectors

in replicated space, so that, e.g., a generic vectorp̂ can be
expressed as(a50

n paêa. When k̂ belongs to the 2RS@e.g.,

k̂5( l1,l2,0, . . . ,0)] there is a slight modification of Eq.~A2!
and, instead, we have
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(
k̂1PHRS

( k̂2 k̂1PHRS)

X~ k̂1!5(
k̂1

X~ k̂1!

2 (
a50

n

(
p

X~ k̂1!u k̂15pêa1nX~ k̂1!u k̂150̂

2 (
a50

n

(
p

X~ k̂1!u k̂15pêa1 k̂1nX~ k̂1!u k̂15 k̂

1X~ k̂1!u k̂15 l1ê11X~ k̂1!u k̂15 l2ê2. ~A3!

For the moment, let us focus on the case ofk̂P31RS. By
making use of Eq.~A2!, and subsequently transforming ea
unconstrained summation into an integral, we obtain

Sn~ k̂!518g2S Vn11E d(n11)dk1G0~ k̂1!G0~ k̂12 k̂!

22 (
a50

n

VE ddp G0~pêa!G0~pêa2 k̂!

12nG0~ 0̂!G0~ k̂!D . ~A4!

The limit of the validity of the Landau theory~i.e., the
tree-level approximation! can be ascertained by enquirin
when the loop corrections to the inverse susceptibility
come comparable its tree-level value. Thus we take the lo
wavelength limit of the correction~A1! via a sequence o
wave vectorsk̂ lying in the HRS, obtaining

Sn~ k̂!u k̂→0̂518g2S Vn11E d(n11)dk1G0~ k̂1!2

22~n11!VE ddp G0~p!212nG0~ 0̂!2D .

~A5!

At this stage, then→0 limit may be taken@the reason for
this is discussed in Sec. II D, shortly after Eq.~2.7b!#. In
addition, the integral over the (n11)-fold replicated space
goes smoothly into an integral over the ordinary~i.e., unrep-
licated! space. Thus, we arrive at

S~ k̂!u k̂→0̂[ lim
n→0

Sn~ k̂!u k̂→0̂

518g2S VE ddp G0~p!222VE ddp G0~p!2D .

~A6!

From this expression, we see an example of what turns o
be a typical effect of the exclusion of the 1RS, viz., tha
reverses the sign relative to the unconstrained version.
collecting this loop correction together with the tree-lev
inverse susceptibility, we arrive at the result that we shall
to establish the Ginzburg criterion:
-
g-

to
t
y

l
e

~NJ!21[N21G (2)~ k̂!u k̂→0̂

5G0~ 0̂!212N21S~ k̂!u k̂→0̂

522āt118g2
V

NE ddp

~22āt1b̄p2!2
. ~A7!

We mention, in passing, that whenk̂ lies in the 2RS, we
need to use Eq.~A3! instead of Eq.~A2! in evaluating the
constrained summation. The resulting two extra terms
J21 turn out to be nonextensive and nondivergent at
transition, and thus do not change the result for the Ginzb
criterion. ~The appearance of nonextensive terms may se
strange, but also occurs in the semimicroscopic theory
RCMSs, where the free energy for the saddle-point value
the order parameter has a nonextensive part; for a discus
of this issue see Sec. 2.6 of Ref.@4#.!

APPENDIX B: SUBLEADING ELEMENTS:
ADDITIONAL SEMIMICROSCOPICALLY

GENERATED FIELDS AND VERTICES

The inspiration for the minimal model, Eq.~2.7b!, dis-
cussed in Sec. II D, comes from experience with detai
statistical-mechanical investigations of various sem
microscopic models of RCMSs and related syste
@3,4,11,12#. The field theories obtained in these investig
tions contain additional fields and vertices beyond those
tured in the minimal model. Among them are the 1RS fie
@variously denoted asV(kêa) or Va(k)], which describes
density fluctuations; various vertices that couple the 1
field to itself and to the HRS field; and quartic or highe
order HRS vertices. In the present section we discuss the
of these additional fields and vertices. We shall confine
attention to effects that show up at the one-loop level.
avoid confusion we shall, in this section, denote the b
HRS and 1RS correlators respectively, byG0

HRS andG0
1RS.

1. Subleading influences on the higher replica sector

We begin by considering the possible corrections to
HRS self-energySn( k̂)u k̂→0̂ arising from the additional fields
and vertices. At the one-loop level, the only contributio
arising from an omitted vertex are those associated with
quartic vertex, for which there are two situations to consid
depending on whether the loop wave vector lies in the 1
or the HRS. Figure 4 shows the relevant diagram.

Let us first look at the contribution of this diagram whe
the loop wave vector lies in the HRS. In this case, evaluat
the diagram involves the constrained summation:

FIG. 4. Example of a one-loop correction to the self-energy d
to a vertex omitted from the minimal model.
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(
k̂PHRS

G0
HRS~ k̂!

5(
k̂

G0
HRS~ k̂!2 (

a50

n

(
k

G0
HRS~kêa!1nG0

HRS~ 0̂!

5(
k̂

G0
HRS~ k̂!2~n11!(

k
G0

HRS~k!1nG0
HRS~ 0̂!,

~B1!

which vanishes in then→0 limit.
Let us now look at the contribution of this diagram wh

the loop wave vector lies in the 1RS. In this case, no criti
bare correlators feature, so that the resulting contribution
Sn( k̂)u k̂→0̂ is finite. There are also contributions t
Sn( k̂)u k̂→0̂ arising from one-loop diagrams involving two cu
bic vertices, in which either one or both loop-wave vecto
lie in the 1RS. None of these contributions alters the G
zburg criterion established in Sec. V A.

2. Absence of feedback of critical fluctuations
on the density-density correlator

As we have discussed in Sec. III, the 1RS fieldV(kêa),
which describes density fluctuations, remains ‘‘massive’’
the vulcanization transition~i.e., the coefficient of the term
quadratic in this field remains positive at the transition!, and
the corresponding bare correlator is nonsingular at the
canization transition. We now examine the effects of H
critical fluctuations on the correlator of the 1RS field. W
approach this issue by studying those one-loop diagrams
the 1RS self-energy in which at least one internal wave v
tor lies in the HRS; there are three types of contribution
consider.

~i! There is the contribution associated with the diagr
shown in Fig. 4 but with the external wave vectors now lyi
in the 1RS. By the same reasoning that we applied to
~B1!, this contribution vanishes in then→0 limit.

~ii ! There are the two contributions associated with
type of diagram shown in Fig. 1. When one of the intern
wave vectors lies in the 1RS and the other lies in the HR
the contribution involves a constrained summation ovek̂

with k̂PHRS and (pêa2 k̂)P1RS~wherek̂ is the loop wave
vector andpêa is the external wave vector!. In this case, the
constraints on the summation require thatk̂P2RS andk̂

5pêa1 lêb, wherebÞa andlÞ0. Then, the contribution to
the 1RS self-energy reads

(
k̂PHRS

(pêa2 k̂P1RS)

G0
HRS~ k̂!G0

1RS~pêa2 k̂!

5 (
b(Þa)

(
lÞ0

G0
HRS~pêa1 lêb!G0

1RS~2 lêb!

5n(
lÞ0

G0
HRS~pêa1 lêb!G0

1RS~2 lêb!ubÞa ,

~B2!
l
to

s
-

t

l-

or
c-
o

q.

e
l
,

which evidently vanishes in then→0 limit. On the other
hand, when both internal wave vectors lie in the HRS,
contribution involves the constrained summation overk̂ with
k̂PHRS and (pêa2 k̂)PHRS. In this case, the contributio
to the 1RS self-energy reads

(
k̂PHRS

(pêa2 k̂PHRS)

G0
HRS~ k̂!G0

HRS~pêa2 k̂!

5 (
k̂PHRS

G0
HRS~ k̂!G0

HRS~pêa2 k̂!

2 (
k̂PHRS

(pêa2 k̂P1RS)

G0
HRS~ k̂!G0

HRS~pêa2 k̂!

}n, ~B3!

which also evidently vanishes in then→0 limit. @In the last
step we have used Eq.~B2!, as well the strategy for handling
constrained summations employed in Eq.~B1!.#

We conclude that, to one-loop order, the 1RS self-ene
does not acquire any singular contributions due to criti
fluctuations in the HRS. In this sense, the two sectors
well separated in the neighborhood of the vulcanization tr
sition. However, it is straightforward to show@49# that there
are 1RS correlators, such as those involving four 1RS fie
but only two replica indices, which do become long rang
at the vulcanization transition and are thus capable of sig
ing the transition.

APPENDIX C: DERIVATION OF FLOW EQUATIONS
WITHIN THE EPSILON EXPANSION

1. Implementation of the momentum-shell RG

The first step in the momentum-shell RG approach t
we are adopting is to integrate out Fourier components of
field V( k̂) having wave vectors in the shellL/b,uk̂u,L.
To do this, we defineV, andV., respectively, as the long
and short wavelength components ofV( k̂), by

V,~ k̂!5H 0, for L/b,uk̂u,L;

V~ k̂!, for 0,uk̂u,L/b;
~C1a!

V.~ k̂!5H V~ k̂!, for L/b,uk̂u,L;

0, for 0,uk̂u,L/b.
~C1b!

Then, by exchangingV( k̂) for V.( k̂) and V,( k̂) in Eq.
~5.6! we can reexpress the effective Hamiltonian as

Sn~$V%!5Sn~$V,%!1N (
k̂PHRS

S 2t1
1

2
uk̂u2D

3uV.~ k̂!u22V~$V%!, ~C2a!
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V~$V%![Ng (
k̂1 ,k̂2 ,k̂3PHRS

d k̂11 k̂21 k̂3 ,0̂„V
.~ k̂1!V.~ k̂2!V.~ k̂3!13V,~ k̂1!V.~ k̂2!V.~ k̂3!13V,~ k̂1!V,~ k̂2!V.~ k̂3!….

~C2b!

Now, focusing on the partition function, we integrate out the aforementioned short-wavelength field componentsV. in the
context of a cumulant expansion inV. Thus, Eq.~2.7a! becomes

@Zn#}E D̄†V, exp~2S n
,,eff!, ~C3a!

S n
,,eff~$V,%![Sn~$V,%!2 ln^expV&. , ~C3b!

ln^expV&.[ ln5 E D̄†V.expX2N (
k̂PHRS

S 2t1
1

2
uk̂u2D uV.~ k̂!u2CexpV

E D̄†V.expX2N (
k̂PHRS

S 2t1
1

2
uk̂u2D uV.~ k̂!u2C 6

'^V&.1
1

2!
~^V2&.2^V&.

2 !1
1

3!
~^V3&.23^V&.^V2&.12^V&.

3 !1O~V4!. ~C3c!
te
us
th
ua

-

en
on
igi
d
C
te

w

es
Sec.
on
-
e:

ns

ion
of
the

a

Note that we have not explicitly given the factor associa
with Gaussian fluctuations in the wave-vector shell beca
it is nonsingular and, therefore, does not contribute to
quantities that we are focusing on, viz., the RG flow eq
tions.

Next, we calculateS n
,,eff to the one-loop level by com

puting the cumulant expansion toO(V3) and discarding op-
erators that are irrelevant in the vicinity ofd56. This
amounts to retaining only terms of the form of those pres
in the original minimal model, and thus we are in a positi
to begin the task of recasting the resulting theory in its or
nal form. The terms that must be considered correspon
the diagrams shown in Fig. 3, and are computed in Sec.
When included, they produce the following intermedia
form for the effective coarse-grained Hamiltonian:

S n
,,eff5S n

,2 (
k̂PHRS

f 2~ k̂!uV,~ k̂!u2

2 (
k̂1 ,k̂2 ,k̂3PHRS

f 3~ k̂1 ,k̂2 ,k̂3!

3V,~ k̂1!V,~ k̂2!V,~ k̂3!d k̂11 k̂21 k̂3 ,0̂ , ~C4!

where the functionsf 2 and f 3 can be found in Sec. C 2. In
fact, only their long wavelength parts are needed, i.e.,
shall only need the constantsf 2

(0), f 2
(1), andf 3

(0) in the Taylor
expansions

f 2~ k̂!' f 2
(0)1

1

2
f 2

(1)uk̂u21O~ k̂4!, ~C5a!

f 3~ k̂1 ,k̂2 ,k̂3!' f 3
(0)1O~ k̂1

2 ,k̂2
2 ,k̂3

2 ,k̂1• k̂2 ,k̂1• k̂3 ,k̂2• k̂3!.
~C5b!

The next step is to rescaleV, and k̂ via
d
e
e
-

t

-
to
2.

e

V,~ k̂!5zV8~ k̂8!, ~C6a!

k̂85bk̂. ~C6b!

The recasting of the theory in its original form also involv
the restoration of the wave-vector lattice, as discussed in
V B. Having made this restoration, we arrive at recursi
relations fort andg, along with the condition that the coef
ficient of the gradient term be restored to its original valu

t85~t1 f 2
(0)/N!z2b2(n11)d, ~C7a!

g85~g1 f 3
(0)/N!z3b22(n11)d, ~C7b!

15~12 f 2
(1)/N!z2b2(n11)d22. ~C7c!

The computation of the coefficients in the recursion relatio
simplifies under the convenient choice ofb511x with x
positive and very small, because it allows the approximat
of the shell integrals by the product of end-point values
the integrands and the shell volumes. Thus, we arrive at
differential RG recursion relations~i.e., flow equations!
given in the main text in Eqs.~5.8a! and ~5.8b!, along with
the coefficients~5.9!.

2. Evaluation of two diagrams

The renormalizations oft and the gradient term acquire
nontrivial contribution associated with diagram~a! of Fig. 3,
which determinesf 2( k̂) in Eq. ~C4!. Thus, including the
symmetry factor of the diagram, we need to evaluate

f 2~ k̂!59g2 (
k̂1PHRS

( k̂12 k̂PHRS)

G0~ k̂1!G0~ k̂12 k̂!. ~C8!
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We have encountered this kind of constrained summatio
Appendix A, and we use the recipe given there, together w
the facts that the external wave vector satisfiesuk̂u
P(0,L/b) whereas the internal wave vectors satisfyuk̂1u
P(L/b,L) and uk̂12 k̂uP(L/b,L). In practice, we are con
cerned with the small-k̂ behavior off 2( k̂), in which case the
latter two constraints are equivalent~the difference in their
effects being subdominant!. Thus, by invoking Eq.~A2! we
arrive at

f 2~ k̂!59g2S Vn11

~2p!(n11)dEL/b,uk̂u,L
d(n11)dk1

3G0~ k̂1!G0~ k̂12 k̂!

22 (
a50

n
V

~2p!dEL/b,upu,L
ddp G0~pêa!G0~pêa2 k̂!D.

~C9!

Then, by expanding for smallk̂ and taking then→0 limit,
we obtain

f 2
(0)52

9

4
g2V

Sd

~2p!dEL/b

L kd21dk

~2t1k2/2!2
1O~g4!,

~C10a!
s.
in
h f 2

(1)52
9

4
g2V

Sd

~2p!d S 2E
L/b

L kd21dk

~2t1k2/2!3

1
2

dEL/b

L kd11dk

~2t1k2/2!4D 1O~g4!, ~C10b!

where Sd is the surface area of ad-dimensional sphere o
unit radius.

The renormalization ofg acquires a nontrivial contribu
tion associated with diagram~b! of Fig. 3, which determines

f 3( k̂1 ,k̂2 ,k̂3) in Eq. ~C4!. Thus, including the symmetry fac
tor of the diagram, we need to evaluate

f 3~ k̂1 ,k̂2 ,k̂3!5
8

3!
~3g!3 (

k̂PHRS
( k̂1 k̂2PHRS)

( k̂2 k̂1PHRS)

G0~ k̂!G0~ k̂1 k̂2!

3G0~ k̂2 k̂1!. ~C11!

This constrained sum is similar to the one analyzed in
context of Eq.~A2!, but is more lengthy, yielding
f 3~ k̂1 ,k̂2 ,k̂3!536g3S Vn11

~2p!(n11)dEL/b,uk̂u,L
d(n11)dk G0~ k̂!G0~ k̂1 k̂2!G0~ k̂2 k̂1!

2 (
a50

n
V

~2p!dEL/b,upu,L
ddp G0~ k̂!G0~ k̂1 k̂2!G0~ k̂2 k̂1!u k̂5pêa

2 (
a50

n
V

~2p!dEL/b,upu,L
ddp G0~ k̂!G0~ k̂1 k̂2!G0~ k̂2 k̂1!u k̂5pêa2 k̂2

2 (
a50

n
V

~2p!dEL/b,upu,L
ddp G0~ k̂!G0~ k̂1 k̂2!G0~ k̂2 k̂1!u k̂5pêa1 k̂1D . ~C12!
nse-
ut

ory
In fact, what we need is then→0 limit of f 3(0̂,0̂,0̂), which
is given by

f 3
(0)529g3V

Sd

~2p!dEL/b

L kd21dk

~2t1k2/2!3
1O~g5!. ~C13!
It is worth emphasizing that, once again, the essential co
quence of the exclusion of the 1RS from the theory. Witho
it, even signs of all three coefficients,f 2

(0) , f 2
(1) , and f 3,

would be reversed, and the fixed-point structure of the
would be completely changed.
s.
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