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von Neumann equations with time-dependent Hamiltonians and supersymmetric
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Starting with a time-independent Hamiltonirand an appropriately chosen solution of the von Neumann
equationip(t)=[h,p(t)] we construct its binary-Darboux partnef(t) and an exact scattering solution of
ip1(t)=[hy(t),p1(t)], wherehy(t) is time dependent and not isospectralhtoThe method is analogous to
supersymmetric quantum mechanics but is based on a different version of a Darboux transformation. We
illustrate the technique by the example whéreorresponds to a one-dimensional harmonic oscillator. The
resultingh,(t) represents a scattering of a solitonlike pulse on a three-level system.

PACS numbgs): 03.65.Fd, 05.45.Yv, 11.30.Pb

One of the main ideas of supersymmeti®JSY) quan- does not have a counterpart in SUSY QM based on SE. At an
tum mechanic$QM) can be summarized as folloW§]. As-  intermediate stage of the construction we solve the nonlinear
sume we know a ground stafé,) of a stationary Schro VNE
dinger equatior{SE)

H| o) = (Hyint V)| o) =Eo| o), (1

with someV andE,. Using| ;) we construct an “annihila-
tion” operator A= A(i,) satisfying A|¢p)=0 andH—E,
=ATA. Now define|,):=A|) (here|y) is any eigenstate
of H linearly independent ofi), with eigenvalueE) and
H,=AAT=H,,+V,;. H; is the so-called SUSY partner
Hamiltonian ofH. Then, usingAH=AATA=H,A, one finds
that

ip=[H,p?], 3

whereH is a time-independent Hamiltonian. The set of so-
lutions of Eq.(3) contains all the pure states of standard QM
since for p?=p (3) reduces to the linear VNE. Fgr’#p
there exist at least two more classes of solutions. One of
them occurs forp’s satisfying eitherp?—ap=0 with a
eR,a#1, or a weaker conditiofiH,p?—ap]=0 (now a
=1 is acceptable In both casep(t) =e @Hp(0)e'2". The
second class is of the form(t)=e 2"y, (1)t with
‘ _ Pint( — ) # pim( + ). These additional solutions, here called
(Hiin + Vo) [1h2) =El ). @ self-scattering(SS solutions, are fundamental to our con-
In a single step we have produced a new potentigland  Struction because of the following property: Each SS solu-
one solution of the corresponding stationary SE. tion of thenonlinearvNE (3) with a timeindependent Hs
The mapV— V; is known to be a particular example of a Simultaneously a scattering solution ofiaear vNE with a
Darboux transformation(DT) [2]. All DT's transform a  time-dependenHamiltonianh; (t). Both the SS solution and
“potential” V into V; and simultaneously generate an “an- the new Hamiltonian are a_lgebralcally constructed in terms
nihilation” operator A(y,) satisfying A( ) =0, where of the BDT. The construction does not _make use of super-
W, is a solution of some partial differential linear equation charges, and for this reason the resulting partner Hamilto-
associated withv. The physical interpretation of such an Nians will be termed the binary-Darbod®D) partners.
abstract “potential” depends on the problem. The BDT method of solving Eq(3) was described in
SUSY QM deals withinear SE, and for this reason the Refs.[5,6]. We start with the family of Lax pairs, param-
density matrix generalization is not interestirg; can be  €trized byweC,
inserted either into the SE or into the von Neumann equation

(VNE) ip=[H;,p]. However, the vNE has a structure which
is algebraically different from that of the SE, and therefore .
allows for different DT’s. A candidate is the so-called binary i|,)=(Hp+pH—wH?)|4,), (5
DT (BDT) originally constructed in Ref.3], and applied to
optical soliton equations. Quite recently the technique wasvherez, is a complex eigenvalue. Pd#) and(5) is here the
applied to Yang-Mills equationg!] and nonlinear vNE5,6].  analog of Eq.(1); p andh=Hp+pH play the role of the
A tutorial introduction to density-matrix applications was “potentials.”
given in Ref.[7]. There are formal analogies between the The connection of Eq$4) and(5) with Eq. (3) is twofold.
BDT and the “dressing method” of Novikoet al.[8], but  First, the necessary condition for the existence|f) is
technically the two procedures are inequivaléat a discus-  given by Eq.(3). Now assumdat//#} =] ¥,(1)) is any solution
sion, cf. Refs[4,6]). of Egs.(4) and (5) with o= and somez,,. Denote byP,,
The purpose of the paper is to show that the BDT leads téhe projector on| ¥,), and let\ e C be another parameter,
a new kind of SUSY-type QM for density matrices which andp any solution of Eq(3). Defining

z,|¢p,)=(p—wH)|,), (4)
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0 _ 5
M= M _
pr=| LH =P | 1+ P =:U,pUl (6 p(0)= 5 ([k)(k|+[k+2)(k+2[)
5+ 5
P ; + 2f|k+1>(k+1|
lgn 0= —=P, |[)=:A)|¢) (7)
3
— = (|k+2){k| + |k)(k+2]), (13
we find (cf. Refs.[5,6]) 2(| MK F o (k2]
2y ) =(p1—NH)| 1 1), (8) and w=i/e. For later purposes we have introduced the uni-

tary operatoW,(t)=e 2"t Equation(12) is a solution of
i Eq. (3), and therefore the necessary condition for the exis-
— _ 2
il =Hpr+piH=NH) |4 ). ©  tence of | i,.(t)) is satisfied. B in Eq. (12) comes from

H,p(0)?]=5[H,p(0)], and the resulting equalities
The “Hamiltonians” p—\H andp;—AH possess the same [H.p(0)71=5[H.p(0)] ged

eigenvalue, , and their eigenvectors are related by the “an o . _
nihilation operator”A [note thatA(y,,)|#,,)=0]. However, lp=[Hp+pH,p]=5[H.p]=[h.p].
these are not the physical BD partners we are interested in
The BDT transforms the two “potentials’p—p; and h
—h; in such a way that

(14)

h=5H can be regarded as the first element of the pair of BD
partner Hamiltonians we are going to find. The initial condi-
tion for Egs.(4) and(5) is

ip1=[Hp1+piH,p1]=[h1,p1l, (10)
0 k+1
since this condition has to be satisfied whenevfgr,) ex- 191 0)= Vi1 | )
ists. The BD-transformed Lax pai8) and(9) can be used to
repeat the procedurg;— p, andh;—h,. n a ( i [3+ \/§| k)
To explicitly show that the construction df; is non- J1+a? 6
trivial, we have to make an assumption about the Hamil-
tonianH. We shall concentrate on the isospectral family of 2
the one-dimensionallD) harmonic oscillator(HO), since + 9+3\/§|k+2> .

for Hamiltonians with equally spaced spectra a strategy lead-
ing to nontrivial solutions was worked out in detail in Ref.
[5]. An alternative strategy was described in R, and
applied to a concrete example in RET]. In both cases the
result is a SS solution.

InsertingP;,., which projects ony;,(t)), into Eq.(6) with
pm=ile, and normalizing the resulting solution to obtain
Trp,=1, we finally obtain the density matrix

We take the Hamiltoniall = eN, wheree is some param- 2
eter,
iD= 2 pr(D1cusilktupktol, (19
:nzo (r+n)[r+n)r+n|, (1) \where the matrix of coefficients in E(L5) is
andr R (e.g., for a 1D HOy = 1/2; for a 3D isotropic HO, 1 > RN
r=23/2). In the Hilbert space spanned fiy +n)},_,, con- pi(t) =——— Et) 5+\5 &) . (16
sider a 3D subspace spanned by three subsequent excited O 15+(5\ — — 5
states|k),|k-+1), and|k+2). It should be stressed that the (v &

same strategy can be applied to adywith discrete spec- )
trum, provided there exist three eigenvaluesHo$atisfying with

Ek_E|:E|_Em. ) :
In order to obtain a SS solutiop,(t), one has to start _(2+3i —5i)V3+ \/_a - 1
with an appropriate(t). The problem of how to select such &( J3(evot5+ o2e~ thIS) ' (17)

ap was discussed in great detail in RE5]. The fact that Eq.

(15) does indeed solve E¢3) with H given by Eq.(11) can "

be verified by a straightforward calculation. £(t)=— 9e20%+ (1+4./5i) o2iogt (19)
We consider a one-parameter family of solutions, param- 3(e2¢051 o2) '

etrized bya e R. Physically the parameter turns out to con-

trol the scattering process. Mathematically it parametrizes agnd w,= 10e/(15+ \/5). Writing Eq. (15) as

initial condition for the solution of the Lax pai@) and (5).

We solve Eqs(4) and(5) with pi(t)=e@oNp (t)el@oNt (19

p(t)=e " 1%Htp(0)e'SH = W5p(0)WL, (12 one finds, for 6<|a|<c,
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This shows that Eq(15) is a SS solution.

The BD partnerh; occurring in Eqg.(10) is nonunique,
and defined up to an operator commuting with This free-
dom is useful. Set

hlz(H“F6C11)p1+pl(H+ECll)+6021, (20)

with constantsc; andc,. Denotingo; =|j)(k|, and using
the above explicit solution, we find

hy(t)=H+Hy(1), (21)
whereH = wy(N+c,1) + ec,1 and

Wo
5

wo(k 1
+€ +Cl+§

Hi(t)= —=(k+c1+1)oys1xs1

[ED) o s 1t E(D) oes 1]

+ %(k+ cit+ 1)[§(t)0k,k+2+2(t)0'k+2,k]

wo ’ 3 —
t5 k+C1+§ [E(D) oy 1xr 2T E(D) Oxs 2411
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&(t) and{(t) are essentially the Rabi frequencies. The nonu-
nigueness oh; was used again to extend the nonperturbed
part of Eqg.(21) beyond the 3D subspace. Our construction
guarantees that E@L5) is a scattering solution of the corre-
sponding time-dependetiinear VNE ip;=[h,(t),p,]. Let

us note here that the dynamicsgfis related tgp(0) by the
unitary transformationU;, Ws. In general, taking arbitrary
U, and W,, we can alternatively define the scattering

reo .
Hamiltonian as

hy=iU U’ +au, HU. (22)
h, is a nontrivial scattering Hamiltonian provided(t) is a
SS solution of Eq(3).

Equation (21) represents a complicated time-dependent
three-level perturbation of a HO. In order to better under-
stand the kind of interaction we have produced, s&et
=1, ¢;+k+1=0, ec,=—wec;, and d=3+5(2+3i
—/5i)/(2+/3). The Hamiltonian now reads

wodeiwot
hy(t)=woN— W(Uk,wf Tkt 1k+2)
wod* efiwot

B m(okﬂ,k*("kﬂ,ku)- (23

One can think ofh; as describing a 1D HO located at

=0 and interacting with the well-known McCall-Hahn
“sech” optical soliton[10]. Let us recall, however, that the
result is more general and valid for aRlywith discrete spec-
trum provided the 3D subspace corresponds to three equally
spaced eigenvalues. Taking different parameter$jirwe
obtain additional terms reminiscent of the “sech-tanh” pulse
occurring in inhomogeneously broadened three-level media
[112]. It is interesting that forc; +k+ 1+ 0 the perturbation
H,(t) contains a time-independent term proportional to
|k+1)(k+1|. Redefining the nonperturbed part by

FIG. 1. (x) as a function of time and the pa-
rametera, 5< «=<100, which controls the initial
condition. The moment of SS moves toward the
future (pas) as |«| grows (decreases For |«f
=xo(a=0) SS is shifted tot+ (—) (no scatter-
ing).
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FIG. 2. Probability density in position space as a function of
time fork=2.5, «=5, 0<t<20. The asymmetry of the probability for
density is responsible for the oscillation ©f) seen in Fig. 1.

FIG. 3. Contour plot of the probability distribution from Fig. 2
—25<t<60. The continuous transition between the two
asymptotic stategwith symmetric probability distributionsis
clearly visible.
~ w
H' =woN+ —O(k+cl+ 1)|k+1)(k+1], (24 The asymptotic probability densities in position space
V5 o(x,t)=(x|p1(t)|x) are symmetrigimplying (x)=0) (Fig.

we break the equal spacing of the nonperturbed Hamiltoniarlzj)ut(iil:: rseeperezgr.ltﬁasgg\?v ttg?):g?%%?\ﬂﬁzgf ;%%i?'“ty distri-

simultaneously Qetuning thg .highe"st and lowest levels from The above effects can be extended to higher-dimensional
o and generating a transition with a doubled frequenCysubspaces. One of the possibilities is related to the “weak

2(,00. - 1 . . . . .
. superposition” principle: For any family of solutiodg,} of
A geQera' property of Eq.(3) is the fact that(H), Eq. (3) satisfying pyp,=0 for k#1, the combinationp(t)
~ TI‘.Hp are mtegra'ls of mOF'OT‘ for. any naturaland any =3, Prpr(Pkt) is also a solution of Eq3). One can gener-
solutionp [9]. In particular, this implies that the sum of the alize the procedure to many noninteracting HO's and consid-

Eelréur?edtﬁlgenvalues o is tlTeTlnhdeFendfntHThe SAME aration of systems with degeneracy, such as HO’s with spin,
olds for the average energf) = Trh,(t)ps(t). However, leads to a nontrivial second iteration of the BDg+ p;

the eigenvalues themselves may be time dependentc For —.p, andh—h,—h,. Another possibility is related to the

;}k;é: 052:0' the e(;gen(\j/alues of the restriction lof to Yang-Mills (YM) case. The result of Ref4] shows that a
€ subspace are U an class of YM equations can be integrated by BDT. The anti-

2aotl5, 2 self-dual YM case is algebraically related to Euler-Arnold
iﬁ\/25+4 € “ equationg 12], which are a particular case of E@) as dis-
5 (e2@054 42)2 cussed in Ref[5].

Exactly solvable equations with time-dependent Hamilto-

This implies that the BD partners=5H and h; are not nians are a rarity in quantum mechanics. The technique we
isospectral, a situation that may occur in higher-dimensionahave described leads to a broad class of such equations. The
SUSY QM. example we have discussed, in spite of its simplicity, shows

The figures illustrate properties of the scattering solutionsthe richness and efficiency of the method. The resulting
Figure 1 shows the average position of the 1D K  three-level dynamics is highly nontrivial and physically in-
=(1/y2) Trp,(a+a") as a function of time andv. In the  teresting. We expect the method to prove useful in many
asymptotic regions the average is 0. For times wHefe  branches of quantum physics.
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