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Double-hump solitary waves in quadratically nonlinear media with loss and gain
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We report the existence of a family of bright chirped localized waves in quadratic media with loss and gain.
It is shown that the fundamental field component of the symbiotic solitary wave may exhibit a double-hump
shape. The conditions of the solitary wave's existence are identified. Numerical experiments disclose different
scenarios of instability as well as domains of rather robust behavior of these objects upon propagation.

PACS numbses): 42.65.Tg, 03.50.De, 52.35.Sb

It is now widely accepted that optical media with a qua- The system of equations describing pulse or beam propa-
dratic, ory(®, nonlinearity exhibit a diversity of phenomena gation in a quadratically nonlinear medium with loss and
which can be exploited in all-optical signal processing, am-gain, which in Ref.[14] was calledy‘®) Ginzburg-Landau
plification, pulse compression, etsee Refd1,2], and ref-  equations, has the form
erences therejn Recent investigations also reveal many in- ) )
teresting fundamental properties @) media. In particular, iAx+D1Asst 2ATB+iyA=0, (1a
different types of dichromatic solitary wavesnutually
locked fundamental fiel¢FF) and second harmoni&H)] in

conservative quadratic media were identified and their poten- : . : .
: . . . . wherex is the propagation distancejs the transverse coor-
tial use for signal routing and steering was discudsk:d).

. ) - . ._dinate in the spatial or retarded time in the temporal case,
The experimental observation of spatial soliton propagatior)

in quadratic bulk medi#5] and film waveguide§6], includ- andB are normalized envelopes of the first and second har-
ing their interactiong7], as well as the existence of narrow mor]:;_cs_,k ;S thedghaieDrplimatﬁchx,l,z are Ilmlear galm gr Iosfs
temporal[8] and spatiotemporal solitor$ight bullets [9], coetlicients, an L2712 1D1,aré compliex vajued coet-
are additional stimulating factors for further studies of soli-fICIENts, whereD; , accounts for dispersion and diffraction
tonic regimes in the¢® environment. and D7 , for bandwidth-limited amplification or filtering in
Many realistic physical systems exhibit inherent losseghe temporal case. In the spatial c&¥, occurs in the equa-
which may lead to adiabatic soliton shaping or even solitorfions for the mean flelds_ if the o_pt|cal axis fluctuates around
decay[10]. Recently it was numerically shown by Torner @ zero mearithe fluctuating spatial walk offf 13]. .
[11] that a linear gain experienced by the FF is redistributed System(1) has double-humgin the fundamental field
between harmonics, and this process can be used for solitéiirped bright solitary wave solutions
amplification. To realize dquas)stable solitonic regime in . Cotieni(Oxter)
nonconservative systems, optical amplifiers are required for A=asinh(As)[coshirs)] e,
loss compensation. Thus the study of solitary wave propaga-
tion under the combined action of gain and loss is a practi-

cally relevant issue. In cubic media such investigations havgvhere the amplitudes and the relative phase are given by
a long history. In this environment the evolution is governed

iB,+kB+D,B.t+A%+iy,B=0, (1b)

B:b[cosh)\s)]72+2isei(2QX+<p2), (2)

by the complex Ginzburg-Landau equation. A survey on dif- a’=4b2\*|D,|%(4e*+ 1362 +9),

ferent solutions to this equation and to its modified versions

can be found in Ref.12]. Very recently taking loss and gain b?=\*D,|%(e*+ 13e2+36)/4, (3)
effects into account it was shown that robust, but eventually

unstable, dichromatic shocklikg13] and single-hump 6—&°—5d,¢

chirped bright solitanf14] waves may exist in a quadratic tan(e,—2¢1)= 4.6—c%)15: (4)
medium. !

In this paper, we aim to identify double-hump chirped yhere the chirp parameteris a solution of
solitary waves in nonconservative quadratic media, and to

prove their robustness numerically. We emphasize that the 2(d,+d,)(e*—20s2+9)+15d;d,—1)(e3—3¢)=0.
Ginzburg-Landau equation admits shocklike and bright soli- (5)
tary solutions, but no double-hump ones. As far as conserva-

tive systems are concerned, double-hump solitary wave$he width parameter and soliton wave vector are

have been shown to exist in homogenedis] as well as

corrugated 16] x® media. They are unstable with various N?=1y,/D](e%+2ed;—-1)>0, (6)
decay scenariofl5] in the former case, whereas they are . 5
stable in Bragg waveguidd46]. Q=\“Dj[di(e°—1)—2¢], (7)
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FIG. 2. Robust evolution of the FF and SH of soluti@®);

FIG. 1. Amplitude and phase profiles of the soluti@j system
parameters:y,=0.07, y,=—0.05,d,=d,= -2, D} =-0.5, D}
=—0.25, andk=—0.06, resulting in the soliton parametets
=1.03,A=0.18,a=0.16,b=0.13, ¢, =0, and tang,)=—3.25.

respectively, where we have introducet ,=D; /D ,.
This exact solution exist if the constraints

parameters as in Fig. 1.

System(1) admits some interesting particular solutions.
Here we mention three of them permitting an explicit repre-
sentation of the soliton parameters in terms of system param-
eters. The first one is a chirp-free solutiens 0, existing for
d,=—d,, including the dispersionless limit;=d,=0. For

d,=—d,, e.g., opposite signs of dispersion, the expressions

2y,D5(1—ed,) = 72Dg(82+ 2ed;— 1), (8) for the FF and SH amplitudes and width parameter simplify
to
k=2\%[(1—&?)D;+2eD]+D,+&D} 9
b?= | Ha?=9y2(1+d?), A= lr=_12>0.
D] 2Dj

are satisfied. These constraints ensure the balances between
gain and loss and between up and down conversion which
are necessary for stationary solutions to exist. An analysis ofVe note that the existence of chirp-free solutions is a re-
the constraints reveals that solutions exist in different domarkable fact for a non-conservative system, e.g., they do
mains of parameter space. not appear in thecubic Ginzburg-Landau equation. The
Both the shapes and the phases of the double hump solevolution of this solution is shown in Fig. 4. It is evident that
tions (2) are shown in Fig. 1 for a particular set of systemthe soliton preserves its shape, but that its amplitude and
parameters. We note a nonzero relative phase shift in theidth oscillate upon propagation until the soliton breaks up,
soliton centefcf. Eq. (4)]. The stability of the solitary wave (not shown in Fig. %
solution was checked numerically. For this purpose we have Other particular solutions occur if th@) SH or (ii) FF
performed extensive numerical experiments by using the exabsorption or gain equal zerg/{=0 or y, =0, respectively,
act soliton solution(2) for various consistent combinations and the net gain of either wave vanishes, i.e., the peak gain
of the relevant system parameters as initial conditions for thequals the losses. In cafi¢ the solution parameters are
system(1). Strictly speaking, all solutions turned out to be
unstable exhibiting different instability scenarios. But our (a) (b)
studies also revealed domains where the solutions proved 20 20
quite robust. A typical evolution of the FF and SH compo-
nents in the domain of robustness is displayed in Fig. 2. The
anticipated onset of background instability has been ob-
served for large propagation distances, i.e., more than ten
diffraction or dispersion lengths. This instability manifests
itself by creating new peaks on the soliton tails which are 0
spread away from the main part of the soliton, eventually -100 0 100 -100 0 100
leading to a stochastic field pattern. Another kind of evolu- 5 "
tion is shown in Fig. 3, where an initially single hump SH
field splits into two parts, this process being initiated by the  FIG. 3. Evolution of the FF and SH of solutid8); parameters:
double hump FF. These two double-hump fields create §,=-0.39, y,=0.1,d,;=d,=—-2, D¥=-0.5, D5 =—0.25, and
bound state that propagates up to a distance where the badk= —0.27 leading toe=—2.90, A\=0.2, a=0.56, b=0.34, ¢,
ground instability comes into play. =0, and tang,)=3.25.
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FIG. 4. Evolution of a chirp-free soliton for the parametets 0 ﬁ . . 0.0
=-0.05, y,=0.05, d;=—d,=—2, D¥=-0.5, D} =-0.25, k 0 1 2
=0.1,A=0.316,a=0.33,b=0.33, ¢; =0, and tang,)=—0.5. d,

2 2 FIG. 5. Normalized soliton widthv as a function of the disper-
v1d5(27d5—2) 0 sion parameted, for y,=0.

= -1 2: >
e=lz s N =pradZi2)3di-1)

hump solitary-wave solutions to the system of equations de-
and the relatiomll=d2[(18d§—13)]/[(27d§—2)] must be  scribing the wave propagation in quadratic nonlinear media

satisfied. The normalized widiki= ) ~* /—| y,/D7] as a func- with loss and gain. The system parameter constraints for the
tion of the parameted, is shown in Fig. 5 for ,D})>0 solutions to exist are the consequences of the mutual balanc-

As can be inferred from Fig. 5, the solution exists for 0 ing of gain and loss as well as up and down conversion

<|d,| <2727 and|d,|>1W3. In caselii) there are two so processes. Numerics reveal various instability scenarios, but
2 2 . -

. . . . also domains of fairly robust behavior of these waves.
lutions with the respective chirp.=—d;=* \/1+d21 and y

width parameterskzizy2/[2Dg(1—std2)]>O. Equation The authors gratefully acknowledge a grdito. SFB
(5) provides the relation between the paramethrandd,. 196) from the Deutsche Forschungsgemein-schaft, Bonn,
In conclusion, we find a family of exact chirped double- and INTAS Grant No. 96-0339.
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