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Analytical solution of Maxwell’'s equations in lossy and optically active crystals
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Analytical solution of Maxwell's equations is obtained for general linear optical materials: lossy and opti-
cally active crystals. Explicit expressions are obtained for the dispersion relation and the propagating eigen-
modes. In general, four rather than two distinct modes are present. The results are useful in describing light
propagation in optically complex media.

PACS numbd(s): 42.25.Bs

Light propagation in isotropic materials and simple crys-compact description, we expect our results to be useful in a
tals is well understood classically in terms of solutions ofvariety of applications, such as modelling light propagation
Maxwell’s equationg1]. There exists today considerable in- in dye doped liquid crystals and the optics of magneto-
terest in both experimental and theoretical work on opticallyoptical storage materials.

active and other optica”y Comp|ex materiég_g]_ Ana|ytic The dielectric tensorThe nature of the solutions of Max-
solutions of Maxwell's equations in such materials are notwell's equations is determined by the optical response im-
readily available. plicit in the dielectric tensor which relates the electric figld

Light propagation in lossy uniaxial crystals is discussed inand dlsplaqemerm in the constitutive rellanon..ln an infinite
detail in Ref.[10]. The problem is more formidable in lossy Macroscopically homogeneous medium, linear response
biaxial crystals, especially in the case where the real angives[13,14
imaginary parts of the dielectric tensor are not co-diagonal,
and in materials where both natural and magnetically in-
duced optical activities are present. Analytic solutions Ofwherew andk are the angu|ar frequency and the wave vec-
Maxwell’s equation in lossy biaxial crystals are first given in tor, and
the work of G. Szivessy11] (the original work is in Ger-
man; we are not aware of translations in existgnsanilar * (or—k.
results have been obtained subsequdid}. Light propaga- ei(@,K)= G+ JO f fi(r.p)e ™ Pdp dr,
tion in a special case of lossless biuniaxial materials with
natural and magnetically induced optical activity is consid-where f; (7,p) is the susceptibility in real space, where
ered in Ref[5]; the general solution even in the lossless casand p are time and position. The spatially and temporally
is not known. nonlocal response leads to the dependence of the permittivity

Solutions of Maxwell's equations describe the opticalon the wave vectok and frequencyw. We note that in
eigenmodes of the system, obtained by solving the eigergenerals;, is complex, but is neither symmetric, nor Hermit-
value problem for the fields. The eigenvalues are inverselyan. The generalized principle of symmetry of kinetic coef-
proportional to the square of the wave vector; the solution oficients[15] leads to the symmetry condition
the secular equation gives the dispersion relation. Since for
the propagating modes the electric displacement is normal to eik(w,k,B)=¢j(w,—k,—B), )
the wave vector, the solution manifold is the plane normal t

it. The secular equation for lossless materials is thereforgionS of the symmetry of the dielectric tensor elsewliz6e-
biquadratic. For lossy materials, as has been shiddh the 18] are in agreement with E@2). The dielectric tensor may

eigenvectors span th_e space normal toa com_plex wave Vef'\ rittan approximately ag3]
tor. For optically active materials, the dielectric tensor is a
function of the wave vector, leading to a nonstandard eigen- gik(w,k)zgi(g)(w)ﬂ%kl(w)kl ) 3
value problem which has not been solved. Our contribution
is to solve this problem for the case when the dielectric tenwhich may be regarded as a Taylor's series expansiasof
sor depends linearly on the wave vector. to first order ink. As a consequence of E(R), si(l?)(w) is a

In this paper, we give explicit analytical expression for complex symmetric second rank tensor, whjjg is a com-
the solutions to Maxwell's equation in the most general ho-plex third rank tensor, both independent lafthe product
mogeneous linear optical media: the lossy optically activey;k; is a second rank antisymmetric tensor which can be
biaxial crystal. Since our formalism allows a simple andwritten as

Di=gi(w,K)Ey, 1

QuhereB denotes an external static magnetic field. Disscus-
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YikiKI= €9, Ge=—i(BygB)X=—i(TgB)X=—iggX,

whereey, is the Levi-Civita symbol, and, denotes the gy- o )
ration pseudovector describing natural optical activity. Herednd substitution into Eq8) gives[20], after some algebra,

g, depends ok and can be written as a product of a pseudot- . . )
ensorg,,, andk ENTF ENTHENTHEN+ =0, (10

91 = GimKm - where

The pseudotensad;,, depends on the properties of the me- — —
dium, it is in general complex and need not be symmetric. §4=deles) —ggesUs,

Symmetry considerations lead to a similar contribution
from a static external magnetic fieR},, and one obtains the =
general expression for the dielectric tensor §3= 208859k

gi(®,kB)=2{)(0) +iegikntiewdFBm, (4 £,=Ke2R—tr (s ke K— Gee Gi+ [R— (kTsB)?],

where gf,}ﬁ is the pseudotensor responsible for the natural
optical activity andgf,ﬁ) is the tensor responsible for induced E1=2[ g gB—(lA<~ gk)(R- oe) 1,
magnetic optical activity or Faraday effect.

Solution of Maxwell's equations For convenience, we

use the notation wher&eb=A.s-b yielding a scalar.
We start with the relation of Eq1)

&o= IA<8=s|A<7L (FKR)Z_ (&?kr()z,

and the dependence of the dielectric tensor on the wave vec-
tor has been taken into account. Our approach avoids the
introduction of spurious roots into the secular equation, and

the results show that when the dependence of the dielectric
tensor on the wave vector is linear, the secular equation is at

D(K, ) =s0¢ (k,0)E(k, ), (5)

whereg is the permittivity of free space. Maxwell's equa-

tions give . : )
most quartic, which may be solved analytically.
(1 —kkye D=\2D, ©6) The eigenvector® are simply obtained from Ed6):
where A =(w/ck) and c is the speed of lightk is a unit D-k=0,
vector alongk; sincek may be complex, we definke=k/k
wherek= yk-k. o D-n  dele)\2—nenksk+nekken
The secular equation is —= (11

- D-m Mmekken—menkek
def (1 —kk)e " *—\?%1]=0,

and using a representation with the complex orthogonal basis _ [deles) — ge (gIN2— Negnke K+ (Ne k) 2+ (g-n)?
m, n, andk, this gives at once for the modes with#0, = pr—a sTac=r

12

M= (e~ M+ e ~TA)N2+ (e ~1m)(Ne —1N)

A= A A ~ h = +0g.
—(me~n)(ne "tm)=0. 7 el G /X + G

The expressiongl0), (12) constitute the general solution
of Maxwell’s equations in homogeneous media, and are our
main result. We note that the coefficients of the linear and
cubic terms in the quartic secular equation, EtQ), are
nonvanishing if both natural and magnetically induced opti-
cal activities are present. In general, therefore, the secular
equation has four distinct roots; and consequently, in gen-
Oclaral, four, rather than two, distinct optical eigenmodes exist.
= ] ) To examine these four modes, we consider the simple
€ (_)n)\. In the most general case, the dielectric tensor can b@xample of an isotropic medium where both natural optical
written, see Eq(4), as activity and Faraday effect are present. Here we write the

— — — — dielectric tensor as
e(w,k,B)=¢e¢(w)+G(w,k)+Gg(w,B), 9

On making use of the Cayley Hamilton theor¢h®], it fol-
lows [20] that

det(e)\*+ (Ke2k—tr (s)kek)\2+Kkek=0.  (8)

This expression for the secular equation is our first result.
Next we consider the dependence of the dielectric tens

where o= 8|:—i'yk>< —iygBX, (13

wheree, andyg are scalars, ang is a pseudoscalar. Letting

= . wlCc = 1= 1
G= i (X =i (k)X =~ g, I'e=(w/c)y andT'g=Byg, it follows that
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1= 8(82_1%), For a slightly more complex example, consider an isotro-
pic material with an additional symmetric term proportional
o= —2£FkFB(R- é) to k- B in the dielectric tensor to give

(e+ yg(B- k)l —ivykX —iygBX

&=—2e2—el2+T3[1—(k-B)?],
§1=0,

fo=¢.

1 . .
= STk +TgBX |, 17

1 - \=
s+kaB(k-B))l—i

_ . . . whereT',,I'g are as before anfl,z= v,gB(w/c). The di-
and assuming further thatis alongB, the secular equation electric tensor is still of the general form of EG).
becomes Assumingk-B=1 as before, the solution is again ob-
(82_FZB))\4_2FKFB)\3_(28+FE))\2+ 1=0 (14 taineq by factor@ng intp quadratics with four solutions which
constitute the dispersion relations

which can be factored into the two quadratics with four so-

lutions which constitute the dispersion relations Kio (M= Te) = V(T —Typ)?+4(e —Tp) 19
k 2 '
kiz —TiTE+4(e—Te) s ’
ko 2 ’ ksa_ (Dt Typ)* V(T +Typ)*+4(e+Tg) (19
Ko 2 '
Kss Tz \TZ+4(s+Tg) °
ko 2 : (18) If T g is complex, the absorption for two modes with

propagating alond will differ from the absorption of the

modes propagating opposite o The above behavior corre-
sponds to experimentally observed “magnetochiral anisotro-
py” and “magnetochiral dichroism’[2,3]. Other illustrative
examples will be discussed elsewhg2é)].
_ = In conclusion, we have obtained analytic solutions to
D-m e2\>-T{-2A[\Tg—AT3—¢ Maxwell's equations in general linear media. The explicit
expressions are useful for understanding optical behavior in
=i for Ny complex optical media where both natural and magnetical
optical activities may be present.

where ko= w/c. Substituting the eigenvalues into E{.1)
gives the polarizations of the eigenmodes

1
D'ﬁ_ |(Krk+FB

=—i for N3g4.
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