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Analytical solution of Maxwell’s equations in lossy and optically active crystals
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Analytical solution of Maxwell’s equations is obtained for general linear optical materials: lossy and opti-
cally active crystals. Explicit expressions are obtained for the dispersion relation and the propagating eigen-
modes. In general, four rather than two distinct modes are present. The results are useful in describing light
propagation in optically complex media.

PACS number~s!: 42.25.Bs
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Light propagation in isotropic materials and simple cry
tals is well understood classically in terms of solutions
Maxwell’s equations@1#. There exists today considerable i
terest in both experimental and theoretical work on optica
active and other optically complex materials@2–9#. Analytic
solutions of Maxwell’s equations in such materials are
readily available.

Light propagation in lossy uniaxial crystals is discussed
detail in Ref.@10#. The problem is more formidable in loss
biaxial crystals, especially in the case where the real
imaginary parts of the dielectric tensor are not co-diagon
and in materials where both natural and magnetically
duced optical activities are present. Analytic solutions
Maxwell’s equation in lossy biaxial crystals are first given
the work of G. Szivessy@11# ~the original work is in Ger-
man; we are not aware of translations in existence!; similar
results have been obtained subsequently@12#. Light propaga-
tion in a special case of lossless biuniaxial materials w
natural and magnetically induced optical activity is cons
ered in Ref.@5#; the general solution even in the lossless c
is not known.

Solutions of Maxwell’s equations describe the optic
eigenmodes of the system, obtained by solving the eig
value problem for the fields. The eigenvalues are invers
proportional to the square of the wave vector; the solution
the secular equation gives the dispersion relation. Since
the propagating modes the electric displacement is norm
the wave vector, the solution manifold is the plane norma
it. The secular equation for lossless materials is there
biquadratic. For lossy materials, as has been shown@11#, the
eigenvectors span the space normal to a complex wave
tor. For optically active materials, the dielectric tensor is
function of the wave vector, leading to a nonstandard eig
value problem which has not been solved. Our contribut
is to solve this problem for the case when the dielectric t
sor depends linearly on the wave vector.

In this paper, we give explicit analytical expression f
the solutions to Maxwell’s equation in the most general h
mogeneous linear optical media: the lossy optically act
biaxial crystal. Since our formalism allows a simple a
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compact description, we expect our results to be useful
variety of applications, such as modelling light propagati
in dye doped liquid crystals and the optics of magne
optical storage materials.

The dielectric tensor. The nature of the solutions of Max
well’s equations is determined by the optical response
plicit in the dielectric tensor which relates the electric fieldE
and displacementD in the constitutive relation. In an infinite
macroscopically homogeneous medium, linear respo
gives @13,14#

Di5« ik~v,k!Ek , ~1!

wherev andk are the angular frequency and the wave ve
tor, and

« ik~v,k!5d ik1E
0

`E f ik~t,r!ei (vt2k•r)d3r dt,

where f ik(t,r) is the susceptibility in real space, wheret
and r are time and position. The spatially and tempora
nonlocal response leads to the dependence of the permitt
on the wave vectork and frequencyv. We note that in
general« ik is complex, but is neither symmetric, nor Herm
ian. The generalized principle of symmetry of kinetic coe
ficients @15# leads to the symmetry condition

« ik~v,k,B!5«ki~v,2k,2B!, ~2!

whereB denotes an external static magnetic field. Dissc
sions of the symmetry of the dielectric tensor elsewhere@16–
18# are in agreement with Eq.~2!. The dielectric tensor may
be written approximately as@13#

« ik~v,k!5« ik
(0)~v!1 ig ikl~v!kl , ~3!

which may be regarded as a Taylor’s series expansion of« ik

to first order ink. As a consequence of Eq.~2!, « ik
(0)(v) is a

complex symmetric second rank tensor, whileg ikl is a com-
plex third rank tensor, both independent ofk; the product
g iklkl is a second rank antisymmetric tensor which can
written as
3264 ©2000 The American Physical Society
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g iklkl5eiklgl ,

whereeikl is the Levi-Civita symbol, andgl denotes the gy-
ration pseudovector describing natural optical activity. H
gl depends onk and can be written as a product of a pseud
ensorglm andk

gl5glmkm .

The pseudotensorglm depends on the properties of the m
dium, it is in general complex and need not be symmetri

Symmetry considerations lead to a similar contributi
from a static external magnetic fieldBm , and one obtains the
general expression for the dielectric tensor

« ik~v,k,B!5« ik
(0)~v!1 ieiklglm

(1)km1 ieiklglm
(2)Bm , ~4!

where glm
(1) is the pseudotensor responsible for the natu

optical activity andglm
(2) is the tensor responsible for induce

magnetic optical activity or Faraday effect.
Solution of Maxwell’s equations. For convenience, we

use the notation whereA«̄̄b[A• «̄̄•b yielding a scalar.
We start with the relation of Eq.~1!

D~k,v!5«0«̄̄~k,v!E~k,v!, ~5!

where«0 is the permittivity of free space. Maxwell’s equa
tions give

~ Ī̄ 2 k̂k̂!«̄̄21D5l2D, ~6!

where l5(v/ck) and c is the speed of light.k̂ is a unit
vector alongk; sincek may be complex, we definek̂5k/k
wherek5Ak•k.

The secular equation is

det@~ Ī̄ 2 k̂k̂!«̄̄212l2 Ī̄ #50,

and using a representation with the complex orthogonal b
m̂, n̂, and k̂, this gives at once for the modes withlÞ0,

l42~m̂«̄̄21m̂1n̂«̄̄21n̂!l21~m̂«̄̄21m̂!~ n̂«̄̄21n̂!

2~m̂«̄̄21n̂!~ n̂«̄̄21m̂!50. ~7!

On making use of the Cayley Hamilton theorem@19#, it fol-
lows @20# that

det~ «̄̄ !l41~ k̂«̄̄2k̂2tr ~ «̄̄ !k̂«̄̄ k̂!l21 k̂«̄̄ k̂50. ~8!

This expression for the secular equation is our first resul
Next we consider the dependence of the dielectric ten

«̄̄ on l. In the most general case, the dielectric tensor can
written, see Eq.~4!, as

«̄̄~v,k,B!5 «̄̄s~v!1 Ḡ̄~v,k!1 Ḡ̄B~v,B!, ~9!

where

Ḡ̄52 i
v/c

l
~ ḡ̄ k̂!352 i

1

l
~ Ḡ̄kk̂!352 i

1

l
gk3,
e
-

l

is

or

e

Ḡ̄B52 i ~Bḡ̄BB̂!352 i ~ Ḡ̄BB̂!352 igB3,

and substitution into Eq.~8! gives @20#, after some algebra,

j4l41j3l31j2l21j1l1j050, ~10!

where

j45det~ «̄̄s!2gB«̄̄sgB ,

j352gB«̄̄sgk ,

j25 k̂«̄̄s
2k̂2tr ~ «̄̄s!k̂«̄̄sk̂2gk«̄̄sgk1@gB

22~ k̂Ḡ̄BB̂!2#,

j152@gk•gB2~ k̂•gk!~ k̂•gB!#,

j05 k̂«̄̄sk̂1~ Ḡ
¯

kk̂!22~ k̂Ḡ̄kk̂!2,

and the dependence of the dielectric tensor on the wave
tor has been taken into account. Our approach avoids
introduction of spurious roots into the secular equation, a
the results show that when the dependence of the diele
tensor on the wave vector is linear, the secular equation
most quartic, which may be solved analytically.

The eigenvectorsD are simply obtained from Eq.~6!:

D• k̂50,

D•n̂

D•m̂
5

det~ «̄̄ !l22n̂«̄̄n̂k̂«̄̄ k̂1n̂«̄̄ k̂k̂«̄̄n̂

m̂«̄̄ k̂k̂«̄̄n̂2m̂«̄̄n̂k̂«̄̄ k̂
~11!

5
@det~ «̄̄s!2g«̄̄sg#l22n̂«̄̄sn̂k̂«̄̄sk̂1~ n̂«̄̄sk̂!21~g•n̂!2

m̂«̄̄sk̂k̂«̄̄sn̂2m̂«̄̄sn̂k̂«̄̄sk̂1~g•n̂!~g•m̂!2 i k̂ «̄̄sg
,

~12!

whereg5gk /l1gB .
The expressions~10!, ~12! constitute the general solutio

of Maxwell’s equations in homogeneous media, and are
main result. We note that the coefficients of the linear a
cubic terms in the quartic secular equation, Eq.~10!, are
nonvanishing if both natural and magnetically induced op
cal activities are present. In general, therefore, the sec
equation has four distinct roots; and consequently, in g
eral, four, rather than two, distinct optical eigenmodes ex

To examine these four modes, we consider the sim
example of an isotropic medium where both natural opti
activity and Faraday effect are present. Here we write
dielectric tensor as

«̄̄5« Ī̄ 2 igk32 igBB3, ~13!

where«, andgB are scalars, andg is a pseudoscalar. Letting
Gk5(v/c)g andGB5BgB , it follows that
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j45«~«22GB
2 !,

j3522«GkGB~ k̂•B̂!,

j2522«22«Gk
21GB

2@12~ k̂•B̂!2#,

j150,

j05«.

and assuming further thatk̂ is alongB̂, the secular equation
becomes

~«22GB
2 !l422GkGBl32~2«1Gk

2!l21150 ~14!

which can be factored into the two quadratics with four s
lutions which constitute the dispersion relations

k1,2

k0
5

2Gk6AGk
214~«2GB!

2
, ~15!

k3,4

k0
5

Gk6AGk
214~«1GB!

2
, ~16!

where k05v/c. Substituting the eigenvalues into Eq.~11!
gives the polarizations of the eigenmodes

D•n̂

D•m̂
5

i S 1

l
Gk1GBD

«2l22Gk
222lGkGB2l2GB

22«

5 i for l1,2

52 i for l3,4.

This indicates that four circularly polarized eigenmodes e
in this medium with four different velocities.
m

-

t

For a slightly more complex example, consider an isot
pic material with an additional symmetric term proportion
to k•B in the dielectric tensor to give

«̄̄5„«1gkB~B•k!…Ī̄ 2 igk32 igBB3

5S «1
1

l
GkB~ k̂•B̂! D Ī̄ 2 i S 1

l
Gkk̂31GBB̂3 D , ~17!

where Gk ,GB are as before andGkB5gkBB(v/c). The di-
electric tensor is still of the general form of Eq.~3!.

Assuming k̂•B̂51 as before, the solution is again ob
tained by factoring into quadratics with four solutions whi
constitute the dispersion relations

k1,2

k0
5

2~Gk2GkB!6A~Gk2GkB!214~«2GB!

2
, ~18!

k3,4

k0
5

~Gk1GkB!6A~Gk1GkB!214~«1GB!

2
. ~19!

If GkB is complex, the absorption for two modes wi
propagating alongB̂ will differ from the absorption of the
modes propagating opposite toB̂. The above behavior corre
sponds to experimentally observed ‘‘magnetochiral aniso
py’’ and ‘‘magnetochiral dichroism’’@2,3#. Other illustrative
examples will be discussed elsewhere@20#.

In conclusion, we have obtained analytic solutions
Maxwell’s equations in general linear media. The expli
expressions are useful for understanding optical behavio
complex optical media where both natural and magnet
optical activities may be present.

This work was supported in part by the NSF und
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der MURI Grant No. F49620-17-1-0014.
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