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Plasma oscillations and nonextensive statistics
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The dispersion relations for electrostatic plane-wave propagation in a collisionless thermal plasma are
discussed in the context of the nonextensive statistics proposed by Tsallis. Analytic formulas both for the
undampedBohm-Gross and Landau damped waves are derived and compared with the standard results. In
the extensive limiting caseg& 1), the classical dispersion relations based on the Maxwellian distribution are
recovered. It is shown that the experimental results points to a class of Tsallis’s velocity distribution described
by a nonextensive-parameter smaller than unity.

PACS numbd(s): 52.35.Fp, 05.45-a, 05.20-y, 05.904+m

Some years ago, heuristic arguments based on multifracspirit of Tsallis's entropy [8]. In principle, the
tals concepts inspired Tsallis to propose a generalization aj-nonextensive formalism may be very important for sys-
the Gibbs-Jaynes-Shann@@JS entropy formula for statis- tems endowed with long range interactions as usually hap-
tical equilibrium[1-5]. Tsallis’s nonextensiver-entropy is  pens in astrophysics and plasma physics. In this concern, the
defined by the following expression: equilibrium velocity distribution has been successfully ap-
plied to stellar polytrope$9], two-dimensional Euler and
drift turbulence in a pure-electron plasma colufid®], as
well as to the peculiar velocity function of galaxies clusters
[11]. In particular, Liuet al.[12] showed a reasonable indi-
cation for the non-Maxwellian velocity distribution from
plasma experiments. All these empirical evidences deal, di-
rectly or indirectly, with theg-distribution of velocities for a
massive nonrelativistic gas. Even for massless partiples-
tong some analyses have recently appeared in the literature.
Restrictive bounds on thg-parameter were derived using
data from the anisotropy of the cosmic background radiation
,£13], as well as from primordial nucleossintheses studies,
using the present observed abundances of the light elements

[1-Zip]
(qa—1)

wherekg is the standard Boltzmann constapt,is the prob-
ability of theith microstate, and is a parameter quantifying
the degree of nonextensivity. In the lingjt= 1 the celebrated
GJS extensive formula, namely,

Sq=Ks (1)

S i)

_kBEi piInp;,

is recovered. One the most relevant properties of Tsallis
nonextensive entropy is its pseudoadditivity. Given a com
posite systen\+ B, constituted by two subsystemsandB, ] ) o
which are independent in the sense of factorizability of the [N the present work, we discuss a different application in
microstate probabilities, the Tsallis measure verifig¢A  the field of plasma physics. Our goal is to investigate the
+B)=S,(A) +S4(B) + (1—0)S4(A)S4(B). In the limit g propagz_itlo_n of electrostatic waves in a coII|S|0nIess_, and
—1, S, reduces to the standard logarithmic measure, and th@agnetic-field-free thermal plasma in tlgnonextensive

usual additivity of the extensive statistical mechanics andontext. In principle, to check the validity of a theofthe

thermodynamics is recovered. In other worfi$;-1| is a
measure of the lack of extensivity of the system.

Several consequences of this starting basic assumpti
have already been investigated in the literatlte14]. In

standard dispersion relations for plasma oscillatipitsis
interesting to insert it in a more general framework, herein
aquantified by the fact that thg-parameter may differ from
unity. As we shall see, analytic expressions for the dispersion

this general framework, the nonextensive canonical enrelations in a collisionless plasma may rigorously be derived
semble, associated with the classical many body system, déirough theg-nonextensive velocity distribution functi¢s],
pends on the generalized velocities distribution function. Thehereby obtaining the-generalized formulas both for un-
equilibrium velocity g-distribution may be obtained either damped(Bohm-Grosg and Landau damped waves.

through an adequate variational principle, that is, maximiz- As is widely known, high frequency vibrations in a colli-
ing Sy under the normalization and kinetic mean energy consionless electronic plasma may be described in a highly sim-
straints[ 1], or from a generalized version of the kinetic Bolt- plified manner, where collisions of the electrons with the
zmann’'sH-theorem[7]. As a matter of fact, even Maxwell’s ions and with each other are unimportant, in such a way that
first derivation of the equilibrium velocity distribution func- the collisional integral term in the Boltzmann kinetic equa-
tion for a dilute gas has consistently been generalized in thBon may be neglectefil6,17]. In the first order of approxi-
mation, the distribution function of electrons is modified by a
perturbative signal, while the distribution function of ions
can be considered as an invariable quantity. (&t r,t) be

the resulting electronic distribution function arig(v) the
correspondingy-nonextensive equilibrium unperturbed dis-
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tribution. If the plasma departs slightly from equilibrium, the

electron distribution function may be approximated as

f=f0(v)+f1(17,r,t), f1<f0, (3)
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The set of coupled equatiori$) and (5) may be worked
either by the simplified derivation for electrostatic waves
(longitudinal plasma waveswhere the specific dispersion
relation is derived by taking the constraint of null permittiv-
ity [15], or by using the more technical method of integral

wheref, is the corresponding perturbation in the distributiontransform developed by Land6,17.
function. The oscillatory behavior of the plasma is governed | et us consider the-axis along the direction of the wave

by the Poisson and Vlasov's collisionless transport equay,
tions. Neglecting second-order terms in the expansion of th

distribution function one finds

ot 0t e oo _, ,
G teve G o “)
V2¢=—47-reff1d3v, (5)

wheree, m and¢ denote, respectively, the electronic charge,
and electric field potential. In the

electron mass,

vectork, with vy=U. The dispersion relation is derived as a
Bole of the potential, being, the poles ofp, i.e., the roots of
the equation

4mie? [ dfy du _, 10
km J_du (p+iku) (10
wherelL stands for the Landau contour, apds a complex
variable appearing in the argument of ttiene-dependent
Laplace transform.
We now consider the extreme case of long wavelengths

g-nonextensive framework, the one-dimensional equilibrium(*>*p). or equivalently, the limit of small wave numbers

distribution function,fy(v,), is given by[7,8]

: (6)

mo2 r/(q—l)

fo<vx)=Aq[1—<q—1> T

where the normalization constant reads

1
nF(
~l1-q \/m(l—q)
A= 1 1 FrkaT for —1<qg<1l (7)
1-q 2
and
r 1 1
1+q §+q—1 \/m(q—l) . L
= =
=M 72 (1) 2mkgT ' O 9T
1" -
q-1
(8)

wheren is the number of electrons per unit volume of the
plasmakg is the Boltzmann constant, afdis the tempera-

ture. As one may check, fog<—1, the g-distribution is
unnormalizable. Fog>1, the distribution function(6) ex-

(k<kp), where the subindex stands for Debye quantities. At
this limit, the pointu=ip/k has very large absolute value,
and since the generalized equilibrium functiég(u) de-
creases with increasing|, we can integrate Eq10) along
the real axis. Thus, expanding the integrand in powers of

one obtains
iku (iku)2 (iku)3 }
1——+|—| —|—| +---|.
p p p

(11)

47ie? Umax dfo
f du

pkm du

Umax

We call attention to the-dependence on the limits of inte-
gration due to thej-dependent thermal cutoff inherent to the
distribution functionfy(u) for g>1. Naturally, as discussed
before, the integration limits arec when theg-parameter is
smaller than unity.

The first term appearing in the expansion of the above
integral, namely,

(12

is identically zero regardless of the values assumed by the
parameter. This happens because thdistribution is an
even function of its argument. The next term in the expan-

hibits a thermal cutoff on the maximum value allowed for sjon is the number of electrons per unit volume of the plasma

the velocity of the particles, which is given by

Uma= V2kgT/m(g—1). 9

We see that in the limigg— 1, v 4 g0e€s to infinity and Eq.
(8) reduces tA;=n{m/27kgT, which is the standard one-

dimensional Maxwell-Boltzmann normalization constg8it
This thermal cutoff is absent whep< 1, that is,v IS also

unbounded for these values of tlgegparameter. It is also

Umax dfo v Umax
J, umdu=ufo|j;anfax— L fodu=—n. (13
Therefore, in this order of approximation, one finds
) 4mne
p=—"lw, w= o= @o- (14

worth mentioning that the spirit of thel-theorem is pre-

served for this nonextensive velocity distribution. If one con-The disturbance corresponds to a plane wave propagating in
siders a generalized collisional ter@y(f ), it is possible to  the positive direction of the-axis with natural oscillation
show that the entropy source is positive, and does not vanighilasma frequencyw = wy. The next order yields the disper-
unless theg-distribution function assumes the above equilib-sion relation including the thermal correction from the
rium form [7]. g-nonextensive statistics
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Inserting py=—iw—1vy, in Eq. (19, and solving by
means of successive approximations, we obtain the follow-
ing generalization for the-damping decrement

\/; 1
. 'yq=w0 quW

25 L —--g=15 oo . |

o s

(2-q)/(q—1)
X|1-(q—1)| — , 20
( )( 2<kAD>2” 20
where
1
L F 1_ q
! 1.5 Log=——7 17 Ji—q, for g=1 (21)
I —— =
o : : o (q -1 2)
FIG. 1. Thermal dispersion relations for Tsallis velocity distri-
bution. The selected values of tlenonextensive parameter are gng
shown in the picture. The data points are taken from Van Hoven
[19]. The solid line is the extensive Bohm-Gross result based on the 1 1
Maxwellian distribution ¢=1). Forg>1 the curves increase less 1+ r §+ a-1
rapidly than in the Maxwellian case, and clearly depart from the Ly= q) q vg—1, forg=1. (22
experimental results. We see that a nonextensive distribution with 2 r 1
g<1 is strongly suggested by these results. g-1
2 Therefore, instead of an exponential decaying, the gener-
w2=wg+ 3()\Dk)2w§<3q_1), (15 alized g-damping decrement diminishes as a power law for

decreasing values d{ In particular, taking the limig—1,
and using that lip_..z *[I'(a+2)/I'(2)]=1 (see[18]),

where\p = VkgT/47n€” is the electronic Debye-Hikel ra- dwe obtain the Landau expression for the damping decrement,

dius, and Eq.(15) has been calculated using the standar
definition for the average value of, that is,

a 1 _ 2
71=wo\/;m39 vakao), (23)

We recall that formulag20)—(23) are valid fory<w, which
leads tokAp>1. In Fig. 2 we show a plot of the damped
for all values ofg>1/3. As expected, fog=1, Eq. (15  g-dispersion relatior(at the limit of long wavelengthsfor
reduces to some selected values of the nonextensive parameter.

Now we consider the inverse limiting case of short wave-

%= wi+3(Apk)2ws, (17)  lengths @ <\p), or equivalently the limit of long wave
numbers k>kp). In this case, it is readily seen that the

which is the standard Bohm-Gross relat[d]. In Fig. 1 we  frequency and the damping decrement are given by
have plotted, for some selected values of thethe ratio

2n  kgT

<U2>=f szoduzmw, (16)

wl/wg as a function of the dimensionless paramekip . 0= /kB_TE 1 tar{w(q_l)} (24)
Note that the standard Bohm-Gross relatigi=() is only m &(g—1) 2-q)/
marginally compatible with the existing data. We see that a
better fit is provided by @-distribution withq<1. [kgT

On the other hand, as originally discovered by Landau, V= ka’ (25

the vibrations are damped, and the damping coefficient is
small for small wave numbeis This means that in the limit  with ¢=y/w¢k\p. This result means that in this limit the

k—0, the real part op, also goes to zero, with the imagi- damping decrement of the vibrations is independent of the
nary part remaining finit€Landau’s rule[16]). Following  nonextensive parameter.

standard lines, we define In conclusion, we stress that due to the long range of the
. Coulombian interaction, the standard Maxwell-Boltzmann
p=—lw—1vq, (18 distribution may provide only a very crude description in

plasma physics, even in the collisionless limit. In the nonex-
where vy, is the extended damping coefficient<{G/;< ). tensive formalism proposed by Tsallis, the longitudinal dis-
In this approximation Eq(10) can be put in the form persion relations for a collisionless and magnetic-free-field
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FIG. 2. Dispersion relations
for damped electrostatic vibra-
tions. The selected values of the
g-nonextensive parameter are
shown in the picture. The solid
line is the standard Landau-
damping result based on the Max-
wellian equilibrium distribution
(g=1). For a fixed value of the
dimensionless paramet&i the
nonextensive curves are slightly
shifted relatively to the extensive
case[see Eq.(20)].
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electronic plasma, are significantly modifiesee Eqs(15) Naturally, independent probes of tlgenonextensive statis-
and (20)]. These extendedk relations may experimentally tics, including another physical effect based on Vlasov equa-
be verified using the standard technics designed to measutien applied to collisionless plasmas or to a system of par-
electrostatic wave excitations and detectj@®—-21. As we ticles interacting gravitationally take on even greater interest.
have seen, the existing data provide a strong evidence A more detailed account for vibrations in this enlarged
favor of a generalized Bohm-Gross nonextensive relatioframework will be presented elsewhere.

where theg-parameter is smaller than unifgee Fig. L We

argue here that such experiments done more than 30 years The authors are grateful to A. R. Plastino for helpful dis-
ago, and whose original objectives were basically to demoneussions. This work was supported by Pronex/FINERant
strate the reality of the standard Landau damping, shoultNo. 41.96.0908.00 Conselho Nacional de Desenvolvimento
carefully be repeated as a crucial test for the validity of theCientfico e Tecnolgico—-CNPq and CAPE®Brazilian Re-
standard Maxwellian distribution in collisionless plasmas.search Agencigs
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