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Plasma oscillations and nonextensive statistics
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The dispersion relations for electrostatic plane-wave propagation in a collisionless thermal plasma are
discussed in the context of the nonextensive statistics proposed by Tsallis. Analytic formulas both for the
undamped~Bohm-Gross! and Landau damped waves are derived and compared with the standard results. In
the extensive limiting case (q51), the classical dispersion relations based on the Maxwellian distribution are
recovered. It is shown that the experimental results points to a class of Tsallis’s velocity distribution described
by a nonextensiveq-parameter smaller than unity.
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Some years ago, heuristic arguments based on multif
tals concepts inspired Tsallis to propose a generalizatio
the Gibbs-Jaynes-Shannon~GJS! entropy formula for statis-
tical equilibrium @1–5#. Tsallis’s nonextensiveq-entropy is
defined by the following expression:

Sq5kB

@12( i pi
q#

~q21!
, ~1!

wherekB is the standard Boltzmann constant,pi is the prob-
ability of the i th microstate, andq is a parameter quantifying
the degree of nonextensivity. In the limitq51 the celebrated
GJS extensive formula, namely,

S52kB(
i

pi ln pi , ~2!

is recovered. One the most relevant properties of Tsall
nonextensive entropy is its pseudoadditivity. Given a co
posite systemA1B, constituted by two subsystemsA andB,
which are independent in the sense of factorizability of
microstate probabilities, the Tsallis measure verifiesSq(A
1B)5Sq(A)1Sq(B)1(12q)Sq(A)Sq(B). In the limit q
→1, Sq reduces to the standard logarithmic measure, and
usual additivity of the extensive statistical mechanics a
thermodynamics is recovered. In other words,uq21u is a
measure of the lack of extensivity of the system.

Several consequences of this starting basic assump
have already been investigated in the literature@1–14#. In
this general framework, the nonextensive canonical
semble, associated with the classical many body system
pends on the generalized velocities distribution function. T
equilibrium velocity q-distribution may be obtained eithe
through an adequate variational principle, that is, maxim
ing Sq under the normalization and kinetic mean energy c
straints@1#, or from a generalized version of the kinetic Bo
zmann’sH-theorem@7#. As a matter of fact, even Maxwell’s
first derivation of the equilibrium velocity distribution func
tion for a dilute gas has consistently been generalized in
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spirit of Tsallis’s entropy @8#. In principle, the
q-nonextensive formalism may be very important for sy
tems endowed with long range interactions as usually h
pens in astrophysics and plasma physics. In this concern
equilibrium velocity distribution has been successfully a
plied to stellar polytropes@9#, two-dimensional Euler and
drift turbulence in a pure-electron plasma column@10#, as
well as to the peculiar velocity function of galaxies cluste
@11#. In particular, Liuet al. @12# showed a reasonable ind
cation for the non-Maxwellian velocity distribution from
plasma experiments. All these empirical evidences deal,
rectly or indirectly, with theq-distribution of velocities for a
massive nonrelativistic gas. Even for massless particles~pho-
tons! some analyses have recently appeared in the literat
Restrictive bounds on theq-parameter were derived usin
data from the anisotropy of the cosmic background radiat
@13#, as well as from primordial nucleossintheses stud
using the present observed abundances of the light elem
@14#.

In the present work, we discuss a different application
the field of plasma physics. Our goal is to investigate
propagation of electrostatic waves in a collisionless, a
magnetic-field-free thermal plasma in theq-nonextensive
context. In principle, to check the validity of a theory~the
standard dispersion relations for plasma oscillations!, it is
interesting to insert it in a more general framework, her
quantified by the fact that theq-parameter may differ from
unity. As we shall see, analytic expressions for the dispers
relations in a collisionless plasma may rigorously be deriv
through theq-nonextensive velocity distribution function@8#,
thereby obtaining theq-generalized formulas both for un
damped~Bohm-Gross! and Landau damped waves.

As is widely known, high frequency vibrations in a coll
sionless electronic plasma may be described in a highly s
plified manner, where collisions of the electrons with t
ions and with each other are unimportant, in such a way
the collisional integral term in the Boltzmann kinetic equ
tion may be neglected@16,17#. In the first order of approxi-
mation, the distribution function of electrons is modified by
perturbative signal, while the distribution function of ion
can be considered as an invariable quantity. Letf (vW ,rW,t) be
the resulting electronic distribution function andf 0(v) the
correspondingq-nonextensive equilibrium unperturbed di
3260 ©2000 The American Physical Society
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tribution. If the plasma departs slightly from equilibrium, th
electron distribution function may be approximated as

f 5 f 0~v !1 f 1~vW ,rW,t !, f 1! f 0 , ~3!

wheref 1 is the corresponding perturbation in the distributi
function. The oscillatory behavior of the plasma is govern
by the Poisson and Vlasov’s collisionless transport eq
tions. Neglecting second-order terms in the expansion of
distribution function one finds

] f 1

]t
1vW •

] f 1

]rW
1

e

m
¹f•

] f 0

]vW
50, ~4!

¹2f524peE f 1d3v, ~5!

wheree, m, andf denote, respectively, the electronic charg
electron mass, and electric field potential. In t
q-nonextensive framework, the one-dimensional equilibri
distribution function,f 0(vx), is given by@7,8#

f 0~vx!5AqF12~q21!
mvx

2

2kBTG1/~q21!

, ~6!

where the normalization constant reads

Aq5

nGS 1

12qD
GS 1

12q
2

1

2D A
m~12q!

2pkBT
, for 21,q<1 ~7!

and

Aq5nS 11q

2 D GS 1

2
1

1

q21D
GS 1

q21D Am~q21!

2pkBT
, for q>1,

~8!

wheren is the number of electrons per unit volume of t
plasma,kB is the Boltzmann constant, andT is the tempera-
ture. As one may check, forq,21, the q-distribution is
unnormalizable. Forq.1, the distribution function~6! ex-
hibits a thermal cutoff on the maximum value allowed f
the velocity of the particles, which is given by

vmax5A2kBT/m~q21!. ~9!

We see that in the limitq→1, vmax goes to infinity and Eq.
~8! reduces toA15nAm/2pkBT, which is the standard one
dimensional Maxwell-Boltzmann normalization constant@8#.
This thermal cutoff is absent whenq,1, that is,vmax is also
unbounded for these values of theq-parameter. It is also
worth mentioning that the spirit of theH-theorem is pre-
served for this nonextensive velocity distribution. If one co
siders a generalized collisional term,Cq( f ), it is possible to
show that the entropy source is positive, and does not va
unless theq-distribution function assumes the above equil
rium form @7#.
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The set of coupled equations~4! and ~5! may be worked
either by the simplified derivation for electrostatic wav
~longitudinal plasma waves!, where the specific dispersio
relation is derived by taking the constraint of null permitti
ity @15#, or by using the more technical method of integr
transform developed by Landau@16,17#.

Let us consider thex-axis along the direction of the wav
vectorkW , with vx5u. The dispersion relation is derived as
pole of the potential, beingpk the poles off, i.e., the roots of
the equation

4p ie2

km E
L

d f0

du

du

~p1 iku!
51, ~10!

whereL stands for the Landau contour, andp is a complex
variable appearing in the argument of the~time-dependent!
Laplace transform.

We now consider the extreme case of long waveleng
(l@lD), or equivalently, the limit of small wave number
(k!kD), where the subindex stands for Debye quantities.
this limit, the pointu5 ip/k has very large absolute value
and since the generalized equilibrium functionf 0(u) de-
creases with increasinguuu, we can integrate Eq.~10! along
the real axis. Thus, expanding the integrand in powers ok,
one obtains

4p ie2

pkm E
2vmax

vmax d f0

du
duF12

iku

p
1S iku

p D 2

2S iku

p D 3

1¯G .
~11!

We call attention to theq-dependence on the limits of inte
gration due to theq-dependent thermal cutoff inherent to th
distribution functionf 0(u) for q.1. Naturally, as discusse
before, the integration limits are6` when theq-parameter is
smaller than unity.

The first term appearing in the expansion of the abo
integral, namely,

E
2vmax

vmax d f0

du
du, ~12!

is identically zero regardless of the values assumed by thq
parameter. This happens because theq-distribution is an
even function of its argument. The next term in the expa
sion is the number of electrons per unit volume of the plas

E
2vmax

vmax
u

d f0

du
du5u f0u

2vmax

vmax 2E
2vmax

vmax
f 0 du52n. ~13!

Therefore, in this order of approximation, one finds

pk52 iv, v5A4pne2

m
5v0 . ~14!

The disturbance corresponds to a plane wave propagatin
the positive direction of thex-axis with natural oscillation
plasma frequency,v5v0 . The next order yields the disper
sion relation including the thermal correction from th
q-nonextensive statistics
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v25v0
213~lDk!2v0

2S 2

3q21D , ~15!

wherelD5AkBT/4pne2 is the electronic Debye-Hu¨ckel ra-
dius, and Eq.~15! has been calculated using the stand
definition for the average value ofu2, that is,

^u2&5E u2f 0 du5
2n

3q21

kBT

m
, ~16!

for all values ofq.1/3. As expected, forq51, Eq. ~15!
reduces to

v25v0
213~lDk!2v0

2, ~17!

which is the standard Bohm-Gross relation@17#. In Fig. 1 we
have plotted, for some selected values of theq, the ratio
v/v0 as a function of the dimensionless parameterklD .
Note that the standard Bohm-Gross relation (q51) is only
marginally compatible with the existing data. We see tha
better fit is provided by aq-distribution withq,1.

On the other hand, as originally discovered by Land
the vibrations are damped, and the damping coefficien
small for small wave numbersk. This means that in the limi
k→0, the real part ofpk also goes to zero, with the imag
nary part remaining finite~Landau’s rule@16#!. Following
standard lines, we define

pk52 iv2gq , ~18!

wheregq is the extended damping coefficient (0,gq!v).
In this approximation Eq.~10! can be put in the form

FIG. 1. Thermal dispersion relations for Tsallis velocity dist
bution. The selected values of theq-nonextensive parameter ar
shown in the picture. The data points are taken from Van Ho
@19#. The solid line is the extensive Bohm-Gross result based on
Maxwellian distribution (q51). Forq.1 the curves increase les
rapidly than in the Maxwellian case, and clearly depart from
experimental results. We see that a nonextensive distribution
q,1 is strongly suggested by these results.
d

a

,
is

2
4pne2

mp2 1 i
4p2e2

mk2

d f0~2p/ ik !

du
51, ~19!

Inserting pk52 iv2gq in Eq. ~19!, and solving by
means of successive approximations, we obtain the follo
ing generalization for theq-damping decrement

gq5v0Ap

8
Lq

1

~klD!3

3F12~q21!S 2
1

2~klD!2D G ~22q!/~q21!

, ~20!

where

Lq5

GS 1

12qD
GS 1

q21
2

1

2D A12q, for q<1 ~21!

and

Lq5S 11q

2 D GS 1

2
1

1

q21D
GS 1

q21D Aq21, for q>1. ~22!

Therefore, instead of an exponential decaying, the ge
alized q-damping decrement diminishes as a power law
decreasing values ofk. In particular, taking the limitq→1,
and using that limuzu→` z2a@G(a1z)/G(z)#51 ~see @18#!,
we obtain the Landau expression for the damping decrem

g15v0Ap

8

1

~klD!3 e21/2~klD!2
. ~23!

We recall that formulas~20!–~23! are valid forg!v, which
leads toklD@1. In Fig. 2 we show a plot of the dampe
q-dispersion relation~at the limit of long wavelengths! for
some selected values of the nonextensive parameter.

Now we consider the inverse limiting case of short wav
lengths (l!lD), or equivalently the limit of long wave
numbers (k@kD). In this case, it is readily seen that th
frequency and the damping decrement are given by

v5AkBT

m

k

j

1

~q21!
tanFp ~q21!

~22q!G , ~24!

g5AkBT

m
kj, ~25!

with j5g/v0klD . This result means that in this limit th
damping decrement of the vibrations is independent of
nonextensive parameter.

In conclusion, we stress that due to the long range of
Coulombian interaction, the standard Maxwell-Boltzma
distribution may provide only a very crude description
plasma physics, even in the collisionless limit. In the non
tensive formalism proposed by Tsallis, the longitudinal d
persion relations for a collisionless and magnetic-free-fi
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FIG. 2. Dispersion relations
for damped electrostatic vibra
tions. The selected values of th
q-nonextensive parameter ar
shown in the picture. The solid
line is the standard Landau
damping result based on the Max
wellian equilibrium distribution
(q51). For a fixed value of the
dimensionless parameterklD the
nonextensive curves are slightl
shifted relatively to the extensive
case@see Eq.~20!#.
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electronic plasma, are significantly modified@see Eqs.~15!
and ~20!#. These extendedwk relations may experimentally
be verified using the standard technics designed to mea
electrostatic wave excitations and detection@19–21#. As we
have seen, the existing data provide a strong evidenc
favor of a generalized Bohm-Gross nonextensive rela
where theq-parameter is smaller than unity~see Fig. 1!. We
argue here that such experiments done more than 30 y
ago, and whose original objectives were basically to dem
strate the reality of the standard Landau damping, sho
carefully be repeated as a crucial test for the validity of
standard Maxwellian distribution in collisionless plasma
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Naturally, independent probes of theq-nonextensive statis
tics, including another physical effect based on Vlasov eq
tion applied to collisionless plasmas or to a system of p
ticles interacting gravitationally take on even greater intere
A more detailed account for vibrations in this enlarg
framework will be presented elsewhere.
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