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Green-Kubo relations for granular fluids
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A formulation of response theory for the dynamics of moderately dense granular gases is presented. Some
implications concerning the derivation of constitutive relations for granular gases at finite densities are
presented.

PACS numbgs): 45.70—n, 05.60-k, 83.20.Di

In spite of much recent progress in describing the kineticxable to granular systems as their energy decays at a finite
and hydrodynamics of granular gases, the solution of thisate due to the dissipative nature of the grain interactions.
problem is far from being complete. For instance, the factHHowever, a variant of the above thought experinéiq, in
that the typical expansion parameter in the Chapman-Enskaghich the system is preparedtat 0 in a state of local equi-
expansion of the Boltzmann equation for granular gases ibrium, seems to be appropriate to granular systems. It is the
not small[1] requires that the Burnett and super-Burnett condatter approach that serves as the basis for the formulation
tributions [2] be included in the hydrodynamic description Presented below. A modification of this approach is shown to
[3], the former being the source of the significant normalyield Green-Kubo expressions for the transport coefficients
stress differences in granu|ar ga$6$ As the Burnett and Corresponding to granular f|UIdS The formu|ati0n presented
super-Burnett equations are ill-poded, they can be directly below is restricted, for sake of simplicity, to the case of a
used only for the study of steady states, else one needs fgonodisperse collection of sphef@sthree dimensioi3D)]
“resum” the Chapman-Enskog seri¢d]. Furthermore, in Whose collisions are characterized by a fixed coefficient of
employing the Chapman-Enskog perturbative expansion, theormal restitution.
zeroth-order single-particle distribution function is taken to A key role in the formulation presented below is played
be Gaussiafi3] (when inelasticity is accounted for perturba- by the (idealized homogeneous and isotropic unforced
t|ve|y) or that Corresponding to an unforced decaying f|OWgranu|ar state. As is well known, this state is unstable
[5]. As recent experiments have shoyé] the actual distri- [11,12. However, it has proven useful as a zeroth order in a
bution functions(in vibrated systemsmay be strongly non- perturbative analysis of the Boltzmann equation correspond-
Gaussian and not just small perturbations of a Maxwellianing to the above model of a granular medi@} and it's use
Encouragingly, distribution functions that do correspond to@s a replacement for the equilibrium state in the response
experimenta| findings have been derived from a model oformulation does not create any difficulties. It is rather obvi-
randomly forced grain§7]. ous that the dynamics of this state amounts to a decrease in

The above and other problems arise already in the domaiinerdy alone. It follows that the full many-body distribution
of dilute granular gases. It is no less important to study thdunction corresponding to this state, which we denotegy
dynamics of moderately dense granular fluids. In this domaigatisfies the following scaling relation:
only semiphenomenological approaches, mostly based on the
application of the Enskog-Boltzmann equat{&} have been
implemented. As these approaches fail to account for corre-
lated collisions, which are of importance in nondilute gases,
it is unclear whether they produce reliable equations of mowhere v;(t) is the velocity of particlei at time t, ¢
tion. It is the goal of this article to present a formulation that=v; /v(t), ve(t) is the thermal velocity characterizing the
enables a systematic approach to the description of nondilut@omogeneous ensemhie square root of the granular tem-
granular fluids. To this end we present a modification ofperature,T) and y represents the phase space of the system.
response theor}Q], which has proven to be a powerful tool Sincepy({r;,c}) is time independent, averages of dynami-
in the realm of molecular gases. cal variables which depend only dm;,c}, with respect to

Standard response theof9] is based on the following p,, are time independent. It is convenient to measure time in
thought experiment: a system is prepared in the ‘infinite’ pasthis system by thdaveragé accumulated number of colli-
in a state of equilibrium and a set of adiabatically increasingsions, 7. It is easy to see that, with this definition of ‘time’,
forces is applied to it up to a time=0, at which these forces unequal time correlation functions of properly rescaled fields
are switched off. The hydrodynamic equations are then detsee belowin the ensemble defined kpy, depend on differ-
duced from the dynamics of decay to equilibrium of the stateences of the respective values efand in this sense the
att=0 (assuming Onsager’s regression hypothegisper-  correlations functions are time translational invariamhen
turbation theory to second order in the forces begets theelocity dependent coefficients of restitution are allowed for,
Navier-Stokes equations. This approach is not directly applithe above statements have to be modjfidthe time depen-
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dence of the thermal velocity,(t), in the above homoge- the nonequilibrium average of any dynamical variable can be
neous ensemble, is determined by the energy dissipation ratexpanded in powers of the forcfs}, the “prefactors” being
which depends on the number densityandT(t). Since, by  cumulants of the fluctuations of the fielia}. Upon substi-
assumption, the coefficient of norn_1a| restitutian,is con- tuting the fieldsA(7) for B(t) in the above expression one
stant, the decay rate Gfmust be(as is well known propor-  giains an implicit equation for the chemical potentials,
tional to the collision frequencw(t)oc\/T(t). One can th_us which can be formally invertetbr practically, by employing
define a dimensionless cooling ratg,, by the relationT perturbation theonyto express the chemical potentighg in
=—2y4o(t)T(t), which describes the time dependence ofterms of cumulants of the field$or details see Ref.10]).

the granular temperature of the homogeneous system. In gelihe resulting expression, to first order in the fluctuations,

eral, yy depends om. In the dilute limit, in 3D, and to first | g5ds: F({5§(T)}):<5;&(T) 5§>ﬁl* SA(7) + O(532( 7)),

order in the degree of inelasticitg=1—¢€?, it is given by RN RN T <R . i
Yo= €/6. The accumulated average number of collisions pe\révgdel;fe@gégr_m?n(g) <A(>) :eazgr??;é fﬁggEe.xA;ntc;“tshgrﬁon-
particle, 7, satisfies:dr=w(t)dt. The thermal velocity de- PNE; P

cays exponentially i vo(t) =p(0)exd — yurl. equilibrium average of any function of the phase variables of

Let {A} denote the set of macrovariablésydrodynamic the system, e.g.,
fields) for which one wishes to obtain equations of motion. - - -
Below we take this set to consist of the number density, (B(1))ne=(B(1))+(SB(t) 5A)* (SA(T) SA) ~* Ja(T)
N(r,t), the momentum density(r,t), and the energy den- =2
sity, E(r,t) (though the latter is not, strictly speaking, +O(53(7)). ©)

“slow” because energy is “lost” in collisions The equa- . .
tions of motion satisfied by the set of macrofields can peWVe shall not dwell here on the nonlinear terms as their ex-

written as follows: d,A(r,t)=—V-J(r,t)—[(r,t), where pressions are rather lengthy. We wish to stress though that

A(r,)=A(r, x()). With the above choice of fields the only the formulation presented above is valid, in principle, “to all

nonzero component df is that corresponding to the energy ohrders inF,” Cf'f also lRe_f.[lO]. Thg ntht Steﬁ. n carryingfouth
equation; it is denoted by, The energy density flux is L€ fesponse formulation towards the achievement of a hy-

; : drodynamic description is a gradient expansion. A standard
denoted byJ®, the (tensorial momentum density flux byP : ) )
and the nfmber density fluxv, is denoted gan_ It%s procedure[9,10] yields from Eq.(3), to first order in the
. . " ~ gradient expansion:
convenient to define rescaled fields as folloW}s?®(r, )

EAa(r,t)/vga(t)}, where the powers of, are given by:

gq"=0, g°=1 andq®=2, corresponding to the number den- (B(rD)ne=(B(r,1)n+ (B, SA(r) >

sity, momentum density and energy density fields, respec- X(SA(r 5, 7) SA(r))g * (ri—r)- VAT, 7),

tively. The corresponding fluxes and dissipation rates are res-

caled according to?]a(r,T)=Ja(r,t)/v8a“(t) andI'3(r,7) @

=T3(r,)/vg (1) ~ where the spatial dependence is now explicitly spelled out.
Following Ref.[10], assume the following initial distribu- ysing  the  spatial  Fourier  transform, B(k,t)

tion function, att=0: = [dr exp(—ik-r)B(r,t), the right hand side of Eq(4)

5 transforms to
PH(X,0)expA*F)

prne(x,t=0)= = 2 .9
(EXAAF)u (B(r,0)ne=(B(r,O)u+ 0 (1) o —
wherepy is the above defined distribution function consid-
ered in a grand canonical ensemble, and the asterisk repre- X M (k,7) VAT, T), (5)
sents integration over space and summation over discrete in- o

dices. It is convenient to chogwithout loss of generalitya

frame of reference in which the total momentum vanishesyhere
As in Ref.[10], the ‘forces’ or chemical potentiald-} are
chosen such that the averages of the{#gtat a predeter-
mined time,t, (which should be large with respect to the
mean-free timg have specified valuea(t)=(A(t))ye and ] , .
the role of the theory is to determine the time derivatives of¥hich corresponds to the hydrodynamic mat(in scaled
these entitiegor the values of the fluxes and the sink te¢mh  variableg whenB(7)=B(t)/vg (t) is substituted for byl or
timet. The basic assumption of this formulation is thati§ e Following standard practice®,10], it is useful to write

far larger than the mean-free time the distribution function at

time t is determined by the abov@veragg values of the .

fields at timet and not by the precise form of the initial |\7|(k,7):|\7|(k,0)+j dr’l\~/lf(k,r’), (6)
condition Eqg.(2) (this issue is explained in some detail in 0

Ref.[10] and Refs. therein The nonequilibrium average of

any dynamical variable,B(t), is given by: (B(t))ne  Where the subscript denotes a derivative with respect to
=Tr B(t)pne(x,0)]. Following this definition and Eq(2)  The isotropy and homogeneity of the homogeneous en-

Mk, 7)=(B(k,7) SA(—K))n- (SA(K,7) SA(—K))5t,
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semble imply that thé derivative ofM(k,0) vanishes for where the integrations overhave been extended to infinity,
B=J as well as foB=I"®. The time derivative oM, which  anticipating rapid convergence of the corresponding inte-

appears in Eq(6), equals: grals. In molecular fluids, the last term in H41), involving
the dissipation rate, vanishes, and since the relevant variables
M. (k,7)=(B,(k,7) SA(—K))y- (SA(K,7) SA(—K)) are conseived, i.e.,0A(0,t)=06A(0) or equivalently
_ _ _ S6A(0,7)=S6A(0), the second term reduces to the standard
—(6B(k,7) SA(—K))y-(S5A(k,7) Green-Kubo expression. In the realm of granular fluids the

~ P time dependence ofSA(k,7)SA(—k)),?! is consequential
X 5A(_k)>Hl'<AT(k’T) as it Iea%s to non-r?(;glig(]ible) cor(recti)gEH&S]. |

R (BB, @, Conader Tt e NaerSkes om0 e o
Next, the time translational invariance of time correlations ofthe entity:
the scaled fields in the homogeneous scaling ensemble, i.e.,
(d/d7")(B(7+ 7' )A(7'))y=0, makes possible a “switch-
ing” of the r derivative in correlations:(B,(7)A(0)) mn
=—(B(7)A,(0)). Using this property, one obtains from Eq. =eXpyTIV -

(7):
where momentum conservation was used in the first equality.
9, M(k,7)=—(Bp(k,7)A(—K))y-(SAK,7) SA(—K))5 The factor expgy 7) reflects the relative instability of the
@) conserved quantityyG#(0) as compared to the decaying
5 thermal velocityv(t) (a fact that is related to the spontane-
where the dissipative paBp(7), is defined(as usualas its  ous appearance of vortices and clustering in undriven granu-
projection orthogonal to the relevant fluctuatiaii(z), i.e.,  1ar fluids[11,12). To first order ine, we then find
Bp(7)=B(7) —(B(7) A)y* (SA(7) SA) 1+ SA(7). At this 21,02(1)
stage it is convenient to express the general equations of (Ie(r t))yg=(I"%(r,t))y— 070

motion for the rescaled fields in terms or the rescaled fluxes. mV
A straightforward calculation yields:

(8D (0,7) SAZ(0))y=exXpl Y14 7)( P 4(0) SAL(0) )y

5 3p,ad (12)

a,p:

drexp(—yy7)
0

X(T'8(0,7)3(0)) V- u(r,t). (13
— H a a a
Ak )= =lol Tk Jk, )+ Tk T 1+ 4Py, 7) whereJ(0)=3J" _(0) (the trace of the momentum currgnt
— —Io[ik-J3(k,7)+ STk, 7) ]+ 4Py SAK, 7), In the dilute limit the second term in Eq13), which is
O(e€)V -u, vanishes due to the fact thi{0) = (2/3)E(0) has
©) no dissipative part. Density corrections due to collisional
~  ~ ~ transfer give rise to a dissipative part of the pressure. These
where sI'@=I"*—(T'%),;. The lengthly=v(t)/w(t) is the  opservations are consistent with results from Chapman-
(time independentmean free patliin the homogeneous en- Enskog expansions of the Boltzmaf#5] and the Enskog-
semblg. Note that the right hand side of E(Q) vanishes Boltzmann equatioril4]. Applying Eq. (11) to the energy
upon averaging over the homogeneous ensemble, as it showgrent density(J%(r,t))ye, We recover, e.g., thé(e)Vn
smce(A(k 7))y is time independeniactually, it is also zero contribution, whose existence is well-known from Chapman-

except fork=0). Using Eq.(9) together with(Bp(k,7)sA  Enskog expansion result8,5]. Consider next the expression

(—K))4=0, we obtain for the shear viscosity, for which E@ll) yields
= ~ 2l t
<BD(k,T)AT(_k)>H n= Omvi)/( ) j dTeXF( '}/HT)<I >H y (14)

=—1o(Bp(k, N[ —ik-I(—k,n)+ T(—k, 7]y, (10 5 B B
where J}, (0)=J},(0)=1. A (resummed perturbative cal-

which, together with Eqs(8) and (6), yields for Eq.(5) culation of the shear viscosify15,16| involves the splitting
. of T into a kinetic part,lx=m=/cic,, and a collisional
(B(r,t))ne=(B(r,t))u—lovg (1) transfer part. Only the contribution of the kinetic part sur-
. vives in the dilute limit, in which case the resulting value of
% f d7(Bp(0,7)3,(0))y-(SA(0,7) 7 equals the Chapman-Enskog value. An efficient nonpertur-
0 bative method for computing the Green-Kubo expression for

- b finite densities is afforded by molecular dynamics simula-
X SA(0)) - V A, 7) + v (1) tions. This is relegated to a future publication.
. P An important issue not discussed above is the conver-
Xf dr—— ((Bp(k,7) 8T (—k))( SA(K, 7) gence problem induced by the existence of long-time tails.
o dik, The latter can be especially harmful for the higher-order-
- . g gradient terms(though they are, most probably, rather
X SA(=K)) k=0 Vaalr, 1), (1) smal). This important issue will be taken up elsewhere.
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