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Green-Kubo relations for granular fluids
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A formulation of response theory for the dynamics of moderately dense granular gases is presented. Some
implications concerning the derivation of constitutive relations for granular gases at finite densities are
presented.

PACS number~s!: 45.70.2n, 05.60.2k, 83.20.Di
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In spite of much recent progress in describing the kine
and hydrodynamics of granular gases, the solution of
problem is far from being complete. For instance, the f
that the typical expansion parameter in the Chapman-Ens
expansion of the Boltzmann equation for granular gase
not small@1# requires that the Burnett and super-Burnett co
tributions @2# be included in the hydrodynamic descriptio
@3#, the former being the source of the significant norm
stress differences in granular gases@3#. As the Burnett and
super-Burnett equations are ill-posed@4#, they can be directly
used only for the study of steady states, else one need
‘‘resum’’ the Chapman-Enskog series@4#. Furthermore, in
employing the Chapman-Enskog perturbative expansion,
zeroth-order single-particle distribution function is taken
be Gaussian@3# ~when inelasticity is accounted for perturb
tively! or that corresponding to an unforced decaying fl
@5#. As recent experiments have shown@6# the actual distri-
bution functions~in vibrated systems! may be strongly non-
Gaussian and not just small perturbations of a Maxwelli
Encouragingly, distribution functions that do correspond
experimental findings have been derived from a mode
randomly forced grains@7#.

The above and other problems arise already in the dom
of dilute granular gases. It is no less important to study
dynamics of moderately dense granular fluids. In this dom
only semiphenomenological approaches, mostly based on
application of the Enskog-Boltzmann equation@8# have been
implemented. As these approaches fail to account for co
lated collisions, which are of importance in nondilute gas
it is unclear whether they produce reliable equations of m
tion. It is the goal of this article to present a formulation th
enables a systematic approach to the description of nond
granular fluids. To this end we present a modification
response theory@9#, which has proven to be a powerful too
in the realm of molecular gases.

Standard response theory@9# is based on the following
thought experiment: a system is prepared in the ‘infinite’ p
in a state of equilibrium and a set of adiabatically increas
forces is applied to it up to a timet50, at which these forces
are switched off. The hydrodynamic equations are then
duced from the dynamics of decay to equilibrium of the st
at t50 ~assuming Onsager’s regression hypothesis!. A per-
turbation theory to second order in the forces begets
Navier-Stokes equations. This approach is not directly ap
PRE 611063-651X/2000/61~3!/3241~4!/$15.00
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cable to granular systems as their energy decays at a fi
rate due to the dissipative nature of the grain interactio
However, a variant of the above thought experiment@10#, in
which the system is prepared att50 in a state of local equi-
librium, seems to be appropriate to granular systems. It is
latter approach that serves as the basis for the formula
presented below. A modification of this approach is shown
yield Green-Kubo expressions for the transport coefficie
corresponding to granular fluids. The formulation presen
below is restricted, for sake of simplicity, to the case of
monodisperse collection of spheres@in three dimension~3D!#
whose collisions are characterized by a fixed coefficient
normal restitution.

A key role in the formulation presented below is play
by the ~idealized! homogeneous and isotropic unforce
granular state. As is well known, this state is unsta
@11,12#. However, it has proven useful as a zeroth order i
perturbative analysis of the Boltzmann equation correspo
ing to the above model of a granular medium@5# and it’s use
as a replacement for the equilibrium state in the respo
formulation does not create any difficulties. It is rather ob
ous that the dynamics of this state amounts to a decreas
energy alone. It follows that the full many-body distributio
function corresponding to this state, which we denote byrH ,
satisfies the following scaling relation:

rH~x,t !5
1

v0
3N~ t !

r̃H~$r i ,ci%!, ~1!

where vi(t) is the velocity of particle i at time t, ci
5vi /v0(t), v0(t) is the thermal velocity characterizing th
homogeneous ensemble~the square root of the granular tem
perature,T! andx represents the phase space of the syst
Sincer̃H($r i ,ci%) is time independent, averages of dynam
cal variables which depend only on$r i ,ci%, with respect to
rH , are time independent. It is convenient to measure tim
this system by the~average! accumulated number of colli
sions,t. It is easy to see that, with this definition of ‘time
unequal time correlation functions of properly rescaled fie
~see below! in the ensemble defined byrH depend on differ-
ences of the respective values oft and in this sense the
correlations functions are time translational invariant~when
velocity dependent coefficients of restitution are allowed f
the above statements have to be modified!. The time depen-
3241 ©2000 The American Physical Society
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dence of the thermal velocity,v0(t), in the above homoge
neous ensemble, is determined by the energy dissipation
which depends on the number density,n, andT(t). Since, by
assumption, the coefficient of normal restitution,e, is con-
stant, the decay rate ofT must be~as is well known! propor-
tional to the collision frequencyv(t)}AT(t). One can thus
define a dimensionless cooling rate,gH , by the relationṪ
522gHv(t)T(t), which describes the time dependence
the granular temperature of the homogeneous system. In
eral,gH depends onn. In the dilute limit, in 3D, and to first
order in the degree of inelasticity,e512e2, it is given by
g05e/6. The accumulated average number of collisions
particle, t, satisfies:dt5v(t)dt. The thermal velocity de-
cays exponentially int : v0(t)5v0(0)exp@2gHt#.

Let $A% denote the set of macrovariables~hydrodynamic
fields! for which one wishes to obtain equations of motio
Below we take this set to consist of the number dens
N(r ,t), the momentum density,P(r ,t), and the energy den
sity, E(r ,t) ~though the latter is not, strictly speakin
‘‘slow’’ because energy is ‘‘lost’’ in collisions!. The equa-
tions of motion satisfied by the set of macrofields can
written as follows: ] tA(r ,t)52“•J(r ,t)2G(r ,t), where
A(r ,t)[A„r ,x(t)…. With the above choice of fields the onl
nonzero component ofG is that corresponding to the energ
equation; it is denoted byGe. The energy density flux is
denoted byJe, the ~tensorial! momentum density flux byJp

and the number density flux,nv, is denoted byJn. It is
convenient to define rescaled fields as follows:$Ãa(r ,t)

[Aa(r ,t)/v0
qa

(t)%, where the powers ofv0 are given by:
qn50, qp51 andqe52, corresponding to the number de
sity, momentum density and energy density fields, resp
tively. The corresponding fluxes and dissipation rates are

caled according to:J̃a(r ,t)5Ja(r ,t)/v0
qa11(t) and G̃a(r ,t)

5Ga(r ,t)/v0
qa11(t).

Following Ref.@10#, assume the following initial distribu
tion function, att50:

rNE~x,t50!5
rH~x,0!exp~Ã* F!

^exp~Ã* F!&H

, ~2!

whererH is the above defined distribution function consi
ered in a grand canonical ensemble, and the asterisk re
sents integration over space and summation over discret
dices. It is convenient to chose~without loss of generality! a
frame of reference in which the total momentum vanish
As in Ref. @10#, the ‘forces’ or chemical potentials$F% are
chosen such that the averages of the set$A% at a predeter-
mined time, t, ~which should be large with respect to th
mean-free time! have specified valuesa(t)[^A(t)&NE and
the role of the theory is to determine the time derivatives
these entities~or the values of the fluxes and the sink term! at
time t. The basic assumption of this formulation is that ift is
far larger than the mean-free time the distribution function
time t is determined by the above~average! values of the
fields at timet and not by the precise form of the initia
condition Eq.~2! ~this issue is explained in some detail
Ref. @10# and Refs. therein!. The nonequilibrium average o
any dynamical variable,B(t), is given by: ^B(t)&NE
[Tr@B(t)rNE(x,0)#. Following this definition and Eq.~2!
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the nonequilibrium average of any dynamical variable can
expanded in powers of the forces$F%, the ‘‘prefactors’’ being
cumulants of the fluctuations of the fields$Ã%. Upon substi-
tuting the fieldsÃ(t) for B(t) in the above expression on
obtains an implicit equation for the chemical potentia
which can be formally inverted~or practically, by employing
perturbation theory! to express the chemical potentials$F% in
terms of cumulants of the fields~for details see Ref.@10#!.
The resulting expression, to first order in the fluctuatio
reads: F($d ã(t)%)5^dÃ(t)dÃ&H

21
* d ã(t)1O„d ã2(t)…,

wheredÃ(t)[Ã(t)2^Ã&H andd ã[^dÃ&NE . As this pro-
cedure determinesrNE , one can use it to expand the no
equilibrium average of any function of the phase variables
the system, e.g.,

^B~ t !&NE5^B~ t !&H1^dB~ t !dÃ&H* ^dÃ~t!dÃ&H
21

* dã~t!

1O„d ã2~t!…. ~3!

We shall not dwell here on the nonlinear terms as their
pressions are rather lengthy. We wish to stress though
the formulation presented above is valid, in principle, ‘‘to a
orders inF,’’ cf. also Ref.@10#. The next step in carrying ou
the response formulation towards the achievement of a
drodynamic description is a gradient expansion. A stand
procedure@9,10# yields from Eq.~3!, to first order in the
gradient expansion:

^B~r ,t !&NE5^B~r ,t !&H1^dB~r ,t !dÃ~r2!&H*

3^dÃ~r2 ,t!dÃ~r1!&H
21

* ~r12r !•“ ã~r ,t!,

~4!

where the spatial dependence is now explicitly spelled o
Using the spatial Fourier transform, B(k,t)
5*dr exp(2ik•r )B(r ,t), the right hand side of Eq.~4!
transforms to

^B~r ,t !&NE5^B~r ,t !&H1v0
qb

~ t !
]

] ika

3M̃ ~k,t!U
k50

•¹aã~r ,t!, ~5!

where

M̃ ~k,t![^dB̃~k,t!dÃ~2k!&H•^dÃ~k,t!dÃ~2k!&H
21,

which corresponds to the hydrodynamic matrix~in scaled

variables! whenB̃(t)[B(t)/v0
qb

(t) is substituted for byJ̃ or

G̃e. Following standard practice@9,10#, it is useful to write

M̃ ~k,t!5M̃ ~k,0!1E
0

t

dt8M̃ t~k,t8!, ~6!

where the subscriptt denotes a derivative with respect tot.
The isotropy and homogeneity of the homogeneous
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semble imply that thek derivative ofM (k,0) vanishes for
B5J as well as forB5Ge. The time derivative ofM̃ , which
appears in Eq.~6!, equals:

M̃ t~k,t!5^B̃t~k,t!dÃ~2k!&H•^dÃ~k,t!dÃ~2k!&H
21

2^dB̃~k,t!dÃ~2k!&H•^dÃ~k,t!

3dÃ~2k!&H
21

•^Ãt~k,t!

3dÃ~2k!&H•^dÃ~k,t!dÃ~2k!&H
21. ~7!

Next, the time translational invariance of time correlations
the scaled fields in the homogeneous scaling ensemble,
(d/dt8)^B̃(t1t8)Ã(t8)&H50, makes possible a ‘‘switch
ing’’ of the t derivative in correlations:^B̃t(t)Ã(0)&
52^B̃(t)Ãt(0)&. Using this property, one obtains from E
~7!:

]t M̃ ~k,t!52^B̃D~k,t!Ãt~2k!&H•^dÃ~k,t!dÃ~2k!&H
21,

~8!

where the dissipative part,B̃D(t), is defined~as usual! as its
projection orthogonal to the relevant fluctuationsdÃ(t), i.e.,
B̃D(t)[B̃(t)2^B̃(t)dÃ&H* ^dÃ(t)dÃ&H

21
* dÃ(t). At this

stage it is convenient to express the general equation
motion for the rescaled fields in terms or the rescaled flux
A straightforward calculation yields:

Ãt~k,t!52 l 0@ ik• J̃a~k,t!1G̃a~k,t!#1qagHÃ~k,t!

52 l 0@ ik• J̃a~k,t!1dG̃a~k,t!#1qagHdÃ~k,t!,

~9!

wheredG̃a[G̃a2^G̃a&H . The lengthl 0[v0(t)/v(t) is the
~time independent! mean free path~in the homogeneous en
semble!. Note that the right hand side of Eq.~9! vanishes
upon averaging over the homogeneous ensemble, as it sh
since^Ã(k,t)&H is time independent~actually, it is also zero
except fork50!. Using Eq.~9! together with^B̃D(k,t)dÃ
(2k)&H50, we obtain

^B̃D~k,t!Ãt~2k!&H

52 l 0^B̃D~k,t!@2 ik• J̃~2k,t!1dG̃~2k,t!#&H , ~10!

which, together with Eqs.~8! and ~6!, yields for Eq.~5!

^B~r ,t !&NE5^B~r ,t !&H2 l 0v0
qb

~ t !

3E
0

`

dt ^B̃D~0,t!J̃a~0!&H•^dÃ~0,t!

3dÃ~0!&H
21

•¹aã~r ,t!1 l 0v0
qb

~ t !

3E
0

`

dt
]

] ika
„^B̃D~k,t!dG̃~2k!&H^dÃ~k,t!

3dÃ~2k!&H
21

…uk50•¹aã~r ,t!, ~11!
f
e.,

of
s.
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where the integrations overt have been extended to infinity
anticipating rapid convergence of the corresponding in
grals. In molecular fluids, the last term in Eq.~11!, involving
the dissipation rate, vanishes, and since the relevant varia
are conserved, i.e.,dA(0,t)5dA(0) or equivalently
dÃ(0,t)5dÃ(0), the second term reduces to the stand
Green-Kubo expression. In the realm of granular fluids
time dependence of̂dÃ(k,t)dÃ(2k)&H

21 is consequential
as it leads to non-negligible corrections@13#.

Consider first the Navier-Stokes contributions to the e
ergy dissipation rate. In the second term in Eq.~11!, we need
the entity:

^d p̃b~0,t!dÃa
a~0!&H5exp~gHt!^d p̃b~0!dÃa

a~0!&H

5exp~gHt!V
m2n

2
db,ada,p , ~12!

where momentum conservation was used in the first equa
The factor exp(gH t) reflects the relative instability of the
conserved quantitydGb(0) as compared to the decayin
thermal velocityv0(t) ~a fact that is related to the spontan
ous appearance of vortices and clustering in undriven gra
lar fluids @11,12#!. To first order ine, we then find

^Ge~r ,t !&NE5^Ge~r ,t !&H2
2l 0v0

2~ t !

mV E
0

`

dt exp~2gHt!

3^G̃D
e ~0,t!J̃~0!&H“•u~r ,t !. ~13!

whereJ(0)[ 1
3Jaa

p (0) ~the trace of the momentum current!.
In the dilute limit the second term in Eq.~13!, which is
O(e)“•u, vanishes due to the fact thatJ(0)5(2/3)E(0) has
no dissipative part. Density corrections due to collision
transfer give rise to a dissipative part of the pressure. Th
observations are consistent with results from Chapm
Enskog expansions of the Boltzmann@3,5# and the Enskog-
Boltzmann equation@14#. Applying Eq. ~11! to the energy
current densitŷ Je(r ,t)&NE , we recover, e.g., theO(e)¹n
contribution, whose existence is well-known from Chapma
Enskog expansion results@3,5#. Consider next the expressio
for the shear viscosity, for which Eq.~11! yields

h5
2l 0v0~ t !

mV E
0

`

dt exp~2gHt!^ Ĩ ~t! Ĩ &H , ~14!

where J̃xyD
p (0)5 J̃xy

p (0)[ Ĩ . A ~resummed! perturbative cal-
culation of the shear viscosity@15,16# involves the splitting
of Ĩ into a kinetic part,Ĩ K5m( i

Ncixciy , and a collisional
transfer part. Only the contribution of the kinetic part su
vives in the dilute limit, in which case the resulting value
h equals the Chapman-Enskog value. An efficient nonper
bative method for computing the Green-Kubo expression
finite densities is afforded by molecular dynamics simu
tions. This is relegated to a future publication.

An important issue not discussed above is the conv
gence problem induced by the existence of long-time ta
The latter can be especially harmful for the higher-ord
gradient terms~though they are, most probably, rath
small!. This important issue will be taken up elsewhere.
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