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Analysis of fully developed turbulence in terms of Tsallis statistics
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The analysis of the fully developed turbulence with the help of the binomial multiplicative process is
reinvestigated from the standpoint of Tsallis nonextensive statistics in order to provide some insight in under-
standing the underlying physical meaning of the Tsallis ensemble. The formula is derived which relates Tsallis
index g with the intermittency exponent that is a manifestation of multifractality of the sizes of eddies. It is
shown that the probability density function of the local dissipation of turbulent kinetic energy can be repre-
sented by a distribution function of the type in Tsallis statistics with the irgledetermined by the experi-
mentally observable quantity through the derived formula.

PACS numbeps): 47.27—i, 47.53+n, 47.52:+j, 05.90+m

The study of fully developed turbulence was started byto produce generalized Boltzmann-Gibbs statistics, by taking
Kolmogoroff[1] with dimensional analysis in order to derive their extreme with the constraint indicating the conservation
the exponent of the energy spectrum in the inertial rangepf probability: =;p;=1, and with the one indicating the con-

called the Kolmogoroff spectrum, i.e., servation of g-averaged internal energy[9]: U,

=3;p{'E;/Z;p{!. Then, one obtains the general form of the
Eyoc €353, (1)  probability distribution function of the Tsallis ensemble in

the form

Here, € is the energy input rate, ardis the wave number U(i-q)

representing the size of eddies in the inertial region. Within (1-9)B(Ei—Ug) -

the log-normal theory2—4], the Fourier transformatiof of pi=| 1= IZq, (5)

the dissipative correlation function defines the intermittency 2 P?

exponentu, i.e.,

‘ with the partition function
Te(r)e(r+/))x e’k 3(kIK)*, (2

where K is the wave number corresponding to the largest ©6)
scaleL, e.g., the size of the grid which produces turbulence. 2 p?
i

The energy spectrum becomes

B - 1/(1-q)
73 [ 1 A-WBE-UY |

Note that Tsallis statistics reduce to Boltzmann-Gibbs statis-

2/3,-5/3 — ul9
By ek >AKIK) 75, 3 tics taking the limitgq— 1. Here, we are using the units where
, . the Boltzmann constant is unity.
which modifies the KOImOgorOff Spectrum 5/3 to 5‘/&,/9 It was ShOWﬂ[lO] that the Va|ua‘_1 of the parameter ap-

Introduction of fractal dimensional analysis of the fully pearing in Tsallis statistics is related to the extremgs,
developed turbulence was started by fenodel[5], where  and g, .. of the multifractal spectrunfiy(a) by
it is assumed that the smaller the size of eddies, the less

space is filled with the same fractal dimension. It was further U(1—-q)=Uamn— Lama- (7)
developed by th@ model[6,7] with the help of multifractal

theory. There, it was assumed that each size of eddies has I the derivation, this fact was used that for one-dimensional
own space filling fractal dimension. The analysis was pernonlinear maps the sensitivity to initial conditions becomes
formed with the help of the binomial multiplicative process expressed afl1]

for the energy cascade in the inertial region.

Tsallis[8] introduced the nonextensive entropy ”(t):[1+(1_Q)7‘qt]1/(1_q)- ®)
Here Eq.(8) is the solution of the time-evolution equation
Sq:(Ei pi—l)/(l—q» (4) dn(t)
—dr =Nam(®" ©
*Electronic address: arimitsu@cm.ph.tsukuba.ac.jp In this paper, we will show how the Tsallis indeys related
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deeper physmal upderstgndlng of Fhe ngllls ensemble_ from Dg= log,[ pd+ (1— p)q]l/(l—q)_ (17)
the multifractal point of view associated with the analysis of
fully developed turbulence. The multifractal spectruni(£) and the exponent(&) are

Now let us remember how the intermittency is introduceddefined, respectively, through
within the p model with the help of the multiplicative bino-

mial proces$6,7]. By making use of the scale invariance of Np(&)=L"@/1O= 5 18 (19
the Navier-Stokes equation in the inertial range for high Rey-
nolds number limit, it was introduced the scaling exponent un(&)=72O1 O = 528 (19

associated with the local dissipation of turbulent kinetic en-

ergy €, which is averaged over a domain of siz¢7], i.e., Comparison of the first equation in E(L5) with Eq. (18),
€,~r? 1. Then, the total dissipation enerdy; associated and of Eq.(16) with (19) give us[12]

with this domain size scales & ~r*~**9 whered repre-

sents the dimension of physical spdd@ The multifractal f(§)=—[£logz §+(1—§)logx(1- )], (20
spectrumfy(«a), representing how the set with the scaling B
exponent lying betweer and a+da distributes, is related a(§)=—[£logp+(1-£)log,(1-p)]. (2D

to the mass exponent(q) by the Legendre transformation |t can be checked thd(£), (&) andDy, satisfy the relations
(100—(13) for d=1. Forp>1/2, Eq.(21) tells us thatan,

fo(a)=ag+rq(q), (10 andap,yare, respectively, given by
with the definition of the new variablg: amin=a(é=1)=—10g, p=Dqy- ; -, (22
dfg(@)/da=q. (1D Uma= @(£=0)=—logy(1-p)=Dg= ., (23

We use here the notatiaqnto avoid any confusion with the With f(amin)=f(ama)=0. Note that
Tsallis indexg. Note that the mass exponent is related to the

fractal dimensiorDy, through q=[In&=In(1-&1/[Inp-In(1-p)]. (24)
Td(a)=(1—a)Da+(d—1)a (12) The intermittency exponent for d=1 is given by[7]
The variablew is defined by the mass exponent as = de_Daa|q=0:2(a0_ Do), (25
a=—dry(q)/dq. (13

Let us restrict ourselves here to the analysis on the mea- |E)h igor;;iqzzeod ag‘)%zgfffzoy' vﬁi sEgé(frf)f) mtellzlsé;éc,l;h:rt%
sured time series of the streamwise velocity component of a 7) that
isotropic turbulence behind grids. Then, the dimension o
physical space will be 1[7]. At the nth stage of the cascade __ [C71 ) — ,
within the multiplicative binomial process modgb fnode) 0=~ 1082 VP(1=P) = (@it a2, (29
[6], the partition functiorE,  in a box of sizer ~/,=§,L andD,=1. Then, Eq.(25) reduces to
(8,=27") is given by
pm=—=10g[P(1—pP)]=2= @mint @max— 2. (27)

Erg= nggq Nn(€)E(§), (14 The same result can be derived by the direct differentiation
of Eq. (17) as it should be.
with Now we will show how to derive the relation Eq7)

within the p model, and then we can obtain a formula which
n gives us the relation between the intermittency exponent
Nn<§>=( gn) L EdO=palOEL, (15  and Tsallis indexy.
Let us interpret the measue,(¢) by means of points
distributed according to the relation
whereé=k/n (k=0,1,2;--,n—1) and
un(8)=Bn(£)/By, (28)

pa(€)=[p*(1—p)*~ <" (16) ,
whereB, (&) represents a number of points labeledndB,,

E, is the total dissipation of turbulent energy in a box of theis the total number of points:
largest sizd.. E, (&) represents the turbulent dissipation en-
ergy in a box of size due to the eddies labeled

The mass exponervt(a)_ for the fully developed turbu-
lence is defined by, ;=E@5, "¥[6]. Since Eq(14) is cal-
culated as; ;=E[[p+(1—p)“]", we have the expression
of 7(g) which gives ug6] Bn(§)=/791/(6)*O=(8,15,(6)*®, (30

Bn=§ Np(€)Bn(é). (29)

The mean distancg,,(£) of B,(£) points can be defined by
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where we introduceds,(£) by 7,(&€)=6,(£)L. With the
help of Eq.(19), we see that Eq$28) and (30) reduce to

1/By=/n(§)*WIL* O = 5,(£)“9. 31

This indicates that each box of sizg(¢)*® contains one
point.
Differentiating Eq.(31), we have

_& ( )_Lg)dg( )
" a@ o6 @ T 5 et
(32
For fixedB,,, Eq.(32) reduces to
dén(é) InB,
da(®)  a)? On(£), (33
which gives us
8u(£=0)18,(£=1) =Bl “max, (39

by the integration from§(é=1) to 6(£=0) (from a, to
amay- On the other hand, sineg¢) does not depend dg,,,
we obtain from Eq.(32) the time-evolutionequation for

Sa(é)

do,(6)
dB, _a(f)

(8n(£)"HF 0, (39
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_L+ptlogy(1+1-27%)-logy(1-1-27#)
logy(1+y1—2"#)—logy(1—1—-27#)

(39

q=1

By making use of the observed value of the intermittency
exponentu=0.235[7,13] into Eqs.(38) and(27), we obtain
g=0.237 andp=0.694.

Now we will show how Tsallis distribution function de-
scribes the probability density function of the local dissipa-
tion €, of turbulent kinetic energy with the indexobtained
by the measured intermittency exponent. The probability
density functionP (¢,) of the local dissipation of turbulent
kinetic energy is given by7]

r\Po~fale) €
PE(er)d(er/e)x<E) md(fr/f)
da
_ sDo—f(e 9%
8, ag ¢ (39

Sinceda/dé¢ does not depend aofy we will inspect the prob-
ability density functionPg(&;n) defined by
Pe(&n)dé=P(€)d(e /€)

=7, 2£8(1- )€ "d¢ (40)

based upon the binomial multiplicative process, wh&fe
= [pde[2£5(1—&)* .

In their analysis, Meneveau and Sreenivasgrapproxi-

This shows how the mean distance among the points labela@iatef(¢) by

¢ changes asime B, evolves. The solution of EQ35) is
consistent with Eq(34) for B,>1.

Changing the variable to B, through the relatiorB,
=(1—q)\qt, Eq.(9) reduces to

dn(Bp) 1
- q
dBn 1_q7](Bn) 1

(36)

which has the same structure as E2p). Although Eq.(35)
describes théime-evolutionof mean distancesg,(£) among
the points distributed according to the measurg€é) when
the number of point8,, are increased, Eq9) or (36) is the

time-evolution equation derived by the original nonlinear

f(£)=Do+ (£~ &) (207), (42)
with
oh=—u(daldg) 2
BT
=—n (lanp) In[4p(1—p)], (42

which was derived by fitting Eq41) at é=&,=p where

df(a) 1 43

Tda lee=h

equation which describes a real time-evolution of the system

under consideration. As was inspected in Rgf0], the

with a;=a(&;). We see from Eq920), (21), (24), and(17)

smallest splitting between two nearby orbits whose distancenat f(¢,) = ay = Dy-1. Then, the probability density func-

is of the order of the minimum mean distangg(£{=1)

=6,(£=1)L should become at most a splitting of the order

of the maximum mean distane€,(£=0)=5,(£=0)L. We
put the time when this happensBy{>1. Equating the solu-
tion (8)

7(Bn)=8n(£=0)/5,(=1)~B"Y  (37)

with (34), we have the relatiofi7) derived in Ref[10]. Note

tion reduces to the Gaussian fof
Pa(&n)=2, ¢ exd — (£—&)*/207],

which gives us((In &), —(In &)?=u In(L/r), which is the
definition of the intermittency exponept introduced in Eq.
(2) within the log-normal mode]2—4]. The partition func-
tion Z, g for n>1 is given byZ, s=+27o,.

Now, we propose that the probability density function

(44

that in the case of _turbulence larger eddies are brokgn ir)t %0) can be well approximated by the Tsallis type distribu-
smaller eddies as time goes on. Here, we are investigatingy, function of the form:

the situation in the reversed time direction.
Substituting the obtained,;, and a5, into Eq. (7) and

with the help of Eq(27), we have the formula which relates

w andq in the form:

PH&N)=2,7 , (45

L (1—_q> (f—go)zl”’“‘f”

n Z(Tﬁ
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Reinvestigation of the data observed by experiments and nu-
merical simulation$7,13,14 based on the analysis given in
this paper is greatly required. Although the proposed prob-
ability density functionP+(&;n) describes thérue probabil-

ity density Pg(&;n) quite accurately for all the region<0¢

=<1, we do not know yet its detailed background mechanism.
In order to see the underlying dynamics supporting Tsallis
statistics(45) in connection with multifractality, we are in-
vestigating dynamical systems whose time evolution is
driven by measure preserving maps havipg &) as an in-

FIG. 1. The probability density functions of the dissipation of variant measure. This might give us some relationship be-
turbulent kinetic energy fon=>5. Pg(£) is the one based on the tween Eqgs(35) and(36). Note that the value of the Tsallis
binomial multiplicative processP+(£) on Tsallis statistics, and index q=0.237 derived in this paper is very close to the
Ps(£) on the Gaussian approximation. They are normalized by thesalue 0.244510] associated with the chaos threshold of the
peak height, and have, respectively, the smallest, middle, and thggistic map. There is a possibility that the background
largest values at the originé¢=0). Parameters arg=0.237 and  mechanism of the fully developed turbulence is in fact based
p=0.694.Pg(¢) and P7(¢) intersect each other neg=0.05 and  ypon the Tsallis ensemble characterized by the probability
§=0.95. density function(45) instead of Eq.(40) which is the one
based upon the binomial multiplicative process. These future
problems will be reported elsewhere.

Let us close this paper by noting the cage=0 (p

with the Tsallis indexq given by Eq.(38). For n>1, the
partition functionZ,, t satisfiesZ,, =2, . In Fig. 1, we put
the probability density function§40), (44), and (45) for n =1/2) for the present model. In this case, we see Dt

=5 with the parameterg andp given below Eq(38). There  —1 ,—1, andf(a)=1. Therefore, the multifractal spec-

is only a negligiblen dependence for the difference among {yym consists of a single point meaning that no multifractal-
these functions besides their values in logarithmic scale, i.jty appears. The same feature of the spectrum comes out for
the larger the value, the values of the probability functions pe Kolmogoroff mode[1] and even for the3 model [5].

at both ends §&=0 andé=1) become smaller. We see the Note that the latter model gives#0. In these cases, the

superiority of the Tsallis distribution functiofd5) in the
analysis of the probability densit#0) of dissipative kinetic
energy within the present model.

In this paper, we succeeded in deriving form{&s) to
determine the Tsallis indeg from the experimentally ob-
servable quantityu, the intermittency exponent, and pro-
posed the explicit fornt45) of the probability density func-

tion of the local dissipative kinetic energy in turbulence.

analysis of the present paper is not applicable because Eq.
(7) has been deduced under fliraplicit) assumption of con-
tinuity of the f («) multifractal spectrum, which is not true if
=0 [15].

The authors would like to thank Professor C. Tsallis for
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agement.
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