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Analysis of fully developed turbulence in terms of Tsallis statistics
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The analysis of the fully developed turbulence with the help of the binomial multiplicative process is
reinvestigated from the standpoint of Tsallis nonextensive statistics in order to provide some insight in under-
standing the underlying physical meaning of the Tsallis ensemble. The formula is derived which relates Tsallis
indexq with the intermittency exponentm that is a manifestation of multifractality of the sizes of eddies. It is
shown that the probability density function of the local dissipation of turbulent kinetic energy can be repre-
sented by a distribution function of the type in Tsallis statistics with the indexq determined by the experi-
mentally observable quantitym through the derived formula.

PACS number~s!: 47.27.2i, 47.53.1n, 47.52.1j, 05.90.1m
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The study of fully developed turbulence was started
Kolmogoroff @1# with dimensional analysis in order to deriv
the exponent of the energy spectrum in the inertial ran
called the Kolmogoroff spectrum, i.e.,

Ek}e2/3k25/3. ~1!

Here,e is the energy input rate, andk is the wave number
representing the size of eddies in the inertial region. Wit
the log-normal theory@2–4#, the Fourier transformationT of
the dissipative correlation function defines the intermitten
exponentm, i.e.,

T^e~r !e~r1l !& r}e2k23~k/K !m, ~2!

where K is the wave number corresponding to the larg
scaleL, e.g., the size of the grid which produces turbulen
The energy spectrum becomes

Ek}e2/3k25/3~k/K !2m/9, ~3!

which modifies the Kolmogoroff spectrum 5/3 to 5/31m/9.
Introduction of fractal dimensional analysis of the ful

developed turbulence was started by theb model@5#, where
it is assumed that the smaller the size of eddies, the
space is filled with the same fractal dimension. It was furt
developed by thep model@6,7# with the help of multifractal
theory. There, it was assumed that each size of eddies ha
own space filling fractal dimension. The analysis was p
formed with the help of the binomial multiplicative proce
for the energy cascade in the inertial region.

Tsallis @8# introduced the nonextensive entropy

Sq5S (
i

pi
q21D /~12q!, ~4!
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to produce generalized Boltzmann-Gibbs statistics, by tak
their extreme with the constraint indicating the conservat
of probability: ( i pi51, and with the one indicating the con
servation of q-averaged internal energy@9#: Uq

5( i pi
qEi /( j pj

q . Then, one obtains the general form of th
probability distribution function of the Tsallis ensemble
the form

pi5F 12
~12q!b~Ei2Uq!

(
j

pj
q G 1/(12q)

/Z̄q , ~5!

with the partition function

Z̄q5(
i F 12

~12q!b~Ei2Uq!

(
j

pj
q G 1/(12q)

. ~6!

Note that Tsallis statistics reduce to Boltzmann-Gibbs sta
tics taking the limitq→1. Here, we are using the units whe
the Boltzmann constant is unity.

It was shown@10# that the valueq of the parameter ap
pearing in Tsallis statistics is related to the extremesamax
andamin of the multifractal spectrumf d(a) by

1/~12q!51/amin21/amax. ~7!

In the derivation, this fact was used that for one-dimensio
nonlinear maps the sensitivity to initial conditions becom
expressed as@11#

h~ t !5@11~12q!lqt#1/(12q). ~8!

Here Eq.~8! is the solution of the time-evolution equation

dh~ t !

dt
5lqh~ t !q. ~9!

In this paper, we will show how the Tsallis indexq is related
to the intermittency exponentm, and will try to extract a
3237 ©2000 The American Physical Society
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3238 PRE 61BRIEF REPORTS
deeper physical understanding of the Tsallis ensemble f
the multifractal point of view associated with the analysis
fully developed turbulence.

Now let us remember how the intermittency is introduc
within the p model with the help of the multiplicative bino
mial process@6,7#. By making use of the scale invariance
the Navier-Stokes equation in the inertial range for high R
nolds number limit, it was introduced the scaling exponena
associated with the local dissipation of turbulent kinetic e
ergy e r which is averaged over a domain of sizer @7#, i.e.,
e r;r a21. Then, the total dissipation energyEr associated
with this domain size scales asEr;r a211d, whered repre-
sents the dimension of physical space@7#. The multifractal
spectrumf d(a), representing how the set with the scalin
exponent lying betweena anda1da distributes, is related
to the mass exponenttd(q̄) by the Legendre transformatio

f d~a!5aq̄1td~ q̄!, ~10!

with the definition of the new variableq̄:

d fd~a!/da5q̄. ~11!

We use here the notationq̄ to avoid any confusion with the
Tsallis indexq. Note that the mass exponent is related to
fractal dimensionDq̄ through

td~ q̄!5~12q̄!Dq̄1~d21!q̄. ~12!

The variablea is defined by the mass exponent as

a52dtd~ q̄!/dq̄. ~13!

Let us restrict ourselves here to the analysis on the m
sured time series of the streamwise velocity component o
isotropic turbulence behind grids. Then, the dimension
physical spaced will be 1 @7#. At thenth stage of the cascad
within the multiplicative binomial process model (p model!
@6#, the partition functionEr ,q̄ in a box of sizer;l n5dnL
(dn522n) is given by

Er ,q̄5 (
0<j<1

Nn~j!Er~j! q̄, ~14!

with

Nn~j!5S n

jnD , Er~j!5mn~j!EL , ~15!

wherej5k/n (k50,1,2,•••,n21) and

mn~j!5@pj~12p!12j#n. ~16!

EL is the total dissipation of turbulent energy in a box of t
largest sizeL. Er(j) represents the turbulent dissipation e
ergy in a box of sizer due to the eddies labeledj.

The mass exponentt(q̄) for the fully developed turbu-

lence is defined byEr ,q̄5EL
q̄dn

2t(q̄)@6#. Since Eq.~14! is cal-

culated asEr ,q̄5EL
q̄@pq̄1(12p) q̄#n, we have the expressio

of t(q̄) which gives us@6#
m
f

-

-

e

a-
n
f

-

Dq̄5 log2@pq̄1~12p! q̄#1/(12q̄). ~17!

The multifractal spectrumf (j) and the exponenta(j) are
defined, respectively, through

Nn~j!5L f (j)/l n
f (j)5dn

2 f (j) , ~18!

mn~j!5l n
a(j)/La(j)5dn

a(j) . ~19!

Comparison of the first equation in Eq.~15! with Eq. ~18!,
and of Eq.~16! with ~19! give us@12#

f ~j!52@j log2 j1~12j!log2~12j!#, ~20!

a~j!52@j log2p1~12j!log2~12p!#. ~21!

It can be checked thatf (j),a(j) andDq̄ satisfy the relations
~10!–~13! for d51. For p.1/2, Eq. ~21! tells us thatamin
andamax are, respectively, given by

amin5a~j51!52 log2 p5Dq̄51` , ~22!

amax5a~j50!52 log2~12p!5Dq̄52` , ~23!

with f (amin)5f(amax)50. Note that

q̄5@ ln j2 ln~12j!#/@ ln p2 ln~12p!#. ~24!

The intermittency exponentm for d51 is given by@7#

m522
dDq̄

dq̄
u q̄5052~a02D0!, ~25!

with a05a q̄50 and D05Dq̄50. As Eq. ~24! tells us thatq̄
50 is realized byj5j051/2, we see from Eqs.~21! and
~17! that

a052 log2Ap~12p!5~amin1amax!/2, ~26!

andD051. Then, Eq.~25! reduces to

m52 log2@p~12p!#225amin1amax22. ~27!

The same result can be derived by the direct differentiat
of Eq. ~17! as it should be.

Now we will show how to derive the relation Eq.~7!
within thep model, and then we can obtain a formula whi
gives us the relation between the intermittency exponenm
and Tsallis indexq.

Let us interpret the measuremn(j) by means of points
distributed according to the relation

mn~j!5Bn~j!/Bn , ~28!

whereBn(j) represents a number of points labeledj, andBn
is the total number of points:

Bn5(
j

Nn~j!Bn~j!. ~29!

The mean distancel n(j) of Bn(j) points can be defined by

Bn~j!5l n
a(j)/l n~j!a(j)5~dn /dn~j!!a(j), ~30!
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where we introduceddn(j) by l n(j)5dn(j)L. With the
help of Eq.~19!, we see that Eqs.~28! and ~30! reduce to

1/Bn5l n~j!a(j)/La(j)5dn~j!a(j). ~31!

This indicates that each box of sizel n(j)a(j) contains one
point.

Differentiating Eq.~31!, we have

dBn5
ln Bn

a~j!dn~j!a(j)
da~j!2

a~j!

dn~j!a(j)11
ddn~j!.

~32!

For fixedBn , Eq. ~32! reduces to

ddn~j!

da~j!
5

ln Bn

a~j!2
dn~j!, ~33!

which gives us

dn~j50!/dn~j51!5B
n

amin
21

2amax
21

, ~34!

by the integration fromd(j51) to d(j50) ~from amin to
amax). On the other hand, sincea(j) does not depend onBn ,
we obtain from Eq.~32! the time-evolutionequation for
dn(j)21:

ddn~j!21

dBn
5

1

a~j!
~dn~j!21!12a(j). ~35!

This shows how the mean distance among the points lab
j changes astime Bn evolves. The solution of Eq.~35! is
consistent with Eq.~34! for Bn@1.

Changing the variablet to Bn through the relationBn
5(12q)lqt, Eq. ~9! reduces to

dh~Bn!

dBn
5

1

12q
h~Bn!q, ~36!

which has the same structure as Eq.~35!. Although Eq.~35!
describes thetime-evolutionof mean distancesdn(j) among
the points distributed according to the measuremn(j) when
the number of pointsBn are increased, Eq.~9! or ~36! is the
time-evolution equation derived by the original nonline
equation which describes a real time-evolution of the sys
under consideration. As was inspected in Ref.@10#, the
smallest splitting between two nearby orbits whose dista
is of the order of the minimum mean distancel n(j51)
5dn(j51)L should become at most a splitting of the ord
of the maximum mean distancel n(j50)5dn(j50)L. We
put the time when this happens atBn@1. Equating the solu-
tion ~8!

h~Bn!5dn~j50!/dn~j51!;Bn
1/(12q) ~37!

with ~34!, we have the relation~7! derived in Ref.@10#. Note
that in the case of turbulence larger eddies are broken
smaller eddies as time goes on. Here, we are investiga
the situation in the reversed time direction.

Substituting the obtainedamin andamax into Eq. ~7! and
with the help of Eq.~27!, we have the formula which relate
m andq in the form:
ed

r
m

e

r

to
ng

q512
11m1 log2~11A1222m!• log2~12A1222m!

log2~11A1222m!2 log2~12A1222m!
.

~38!

By making use of the observed value of the intermitten
exponentm50.235@7,13# into Eqs.~38! and~27!, we obtain
q50.237 andp50.694.

Now we will show how Tsallis distribution function de
scribes the probability density function of the local dissip
tion e r of turbulent kinetic energy with the indexq obtained
by the measured intermittency exponent. The probabi
density functionPe(e r) of the local dissipation of turbulen
kinetic energy is given by@7#

Pe~e r !d~e r /e!}S r

L D D02 f d(a) e

e r ln~r /L !
d~e r /e!

5dn
D02 f (j) da

dj
dj. ~39!

Sinceda/dj does not depend onj, we will inspect the prob-
ability density functionPB(j;n) defined by

PB~j;n!dj5Pe~e r !d~e r /e!

5Zn
21@2jj~12j!12j#2ndj ~40!

based upon the binomial multiplicative process, whereZn

5*0
1dj@2jj(12j)12j#2n.

In their analysis, Meneveau and Sreenivasan@7# approxi-
mate f (j) by

f ~j!5D01~j2j0!2/~2sn
2!, ~41!

with

sn
252m~da/dj!22

52n21S ln
p

12pD 22

ln@4p~12p!#, ~42!

which was derived by fitting Eq.~41! at j5j15p where

d f~a!

da
ua5a1

51, ~43!

with a15a(j1). We see from Eqs.~20!, ~21!, ~24!, and~17!
that f (j1)5a15Dq̄51. Then, the probability density func
tion reduces to the Gaussian form@7#

PG~j;n!5Zn,G
21 exp@2~j2j0!2/2sn

2#, ~44!

which gives us^(ln er)
2&r2^ln er&r

25m ln(L/r), which is the
definition of the intermittency exponentm introduced in Eq.
~2! within the log-normal model@2–4#. The partition func-
tion Zn,G for n@1 is given byZn,G5A2psn .

Now, we propose that the probability density functio
~40! can be well approximated by the Tsallis type distrib
tion function of the form:

PT~j;n!5Zn,T
21F12S 12q

n D ~j2j0!2

2sn
2 G n/(12q)

, ~45!
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with the Tsallis indexq given by Eq.~38!. For n@1, the
partition functionZn,T satisfiesZn,T5Zn,G . In Fig. 1, we put
the probability density functions~40!, ~44!, and ~45! for n
55 with the parametersq andp given below Eq.~38!. There
is only a negligiblen dependence for the difference amo
these functions besides their values in logarithmic scale,
the larger the valuen, the values of the probability function
at both ends (j50 andj51) become smaller. We see th
superiority of the Tsallis distribution function~45! in the
analysis of the probability density~40! of dissipative kinetic
energy within the present model.

In this paper, we succeeded in deriving formula~38! to
determine the Tsallis indexq from the experimentally ob-
servable quantitym, the intermittency exponent, and pro
posed the explicit form~45! of the probability density func-
tion of the local dissipative kinetic energy in turbulenc

FIG. 1. The probability density functions of the dissipation
turbulent kinetic energy forn55. PB(j) is the one based on th
binomial multiplicative process,PT(j) on Tsallis statistics, and
PG(j) on the Gaussian approximation. They are normalized by
peak height, and have, respectively, the smallest, middle, and
largest values at the origin (j50). Parameters areq50.237 and
p50.694.PB(j) and PT(j) intersect each other nearj50.05 and
j50.95.
.,

.

Reinvestigation of the data observed by experiments and
merical simulations@7,13,14# based on the analysis given i
this paper is greatly required. Although the proposed pr
ability density functionPT(j;n) describes thetrue probabil-
ity density PB(j;n) quite accurately for all the region 0<j
<1, we do not know yet its detailed background mechanis
In order to see the underlying dynamics supporting Tsa
statistics~45! in connection with multifractality, we are in
vestigating dynamical systems whose time evolution
driven by measure preserving maps havingmn(j) as an in-
variant measure. This might give us some relationship
tween Eqs.~35! and ~36!. Note that the value of the Tsalli
index q50.237 derived in this paper is very close to th
value 0.2445@10# associated with the chaos threshold of t
logistic map. There is a possibility that the backgrou
mechanism of the fully developed turbulence is in fact ba
upon the Tsallis ensemble characterized by the probab
density function~45! instead of Eq.~40! which is the one
based upon the binomial multiplicative process. These fut
problems will be reported elsewhere.

Let us close this paper by noting the casem50 (p
51/2) for the present model. In this case, we see thatDq̄
51, a51, and f (a)51. Therefore, the multifractal spec
trum consists of a single point meaning that no multifract
ity appears. The same feature of the spectrum comes ou
the Kolmogoroff model@1# and even for theb model @5#.
Note that the latter model givesmÞ0. In these cases, th
analysis of the present paper is not applicable because
~7! has been deduced under the~implicit! assumption of con-
tinuity of the f (a) multifractal spectrum, which is not true i
m50 @15#.

The authors would like to thank Professor C. Tsallis f
his kind and useful comments along with continuous enco
agement.
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