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Noise scaling of phase synchronization of chaos
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We investigate the effect of noise on phase synchronization of coupled chaotic oscillators. It is found that
additive white noise can induce phase slips in integer multiples of 2p’s in parameter regimes where phase
synchronization is observed in the absence of noise. The average time duration of the temporal phase synchro-
nization scales with the noise amplitude in a way that can be described assuperpersistent transient. We give
two independent heuristic derivations that yield the same numerically observed scaling law.
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The phenomenon of synchronous chaos has attra
much attention since the work of Pecora and Carroll in 19
@1#. Typically, when two chaotic oscillators are coupled t
gether, synchronization between them can occur when
coupling strength is large enough. Recently, a more delic
type of synchronization phenomenon was discovered
Rosenblum, Pikovsky, and Kurths@2#. This is the phase syn
chronization of chaotic oscillators which occurs at sma
coupling strength than that required for complete synchro
zation. Briefly, if trajectories in each chaotic oscillator can
regarded as a rotation, then the phase angle of the rota
increases steadily with time:u(t)5vt1f(t), wherev is the
average rotation frequency andf(t) is a term characterizing
chaotic fluctuations. As such, the rate of increase of ph
can be modeled as a driftv plus a zero mean chaotic proces
In the absence of coupling, the phase angles of the two
cillators u1(t) and u2(t) are uncorrelated. That is, if on
measures the differenceDu(t)[uu1(t)2u2(t)u, one finds
that Du(t) increases steadily with time. However, when
small amount of coupling is present,Du(t) can be confined
within 2p, while the amplitudes of the rotations are st
completely uncorrelated. The bifurcation that leads to t
phase synchronization was subsequently investigated@3–5#.
The ability of chaotic systems to have phase synchroniza
has implications on digital communication with chaos us
the natural chaotic symbolic dynamics@6#. In such a case, i
is highly desirable to suppress phase diffusions between
otic communication channels to ensure proper timing for
coding.

In this Brief Report, we address to what extent pha
synchronization can be observed in laboratory experime
by investigating the effect of noise on phase synchronizat
Our principal results are~1! additive white noise, a type o
noise encountered commonly in experimental situations,
induce phase slips in units of 2p between the coupled osci
lators, which would otherwise be synchronized in phase
the absence of noise, and~2! the average time duration be
tween successive phase slips appears to obey a scaling
with the noise amplitudee,

t;exp~Ke2a!, ~1!

where a.0 is the scaling exponent depending on syst
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parameters such as the coupling strength, andK.0 is a con-
stant. An implication of this is that in the presence of only
small noise, the average time duration to observe phase
chronization can be extremely long. Phase synchronizatio
robust in this sense. In what follows, we first report our n
merical experiments with the system of two coupled Ro¨ssler
oscillators. We then give two independent heuristic deri
tions for scaling law~1!.

We consider the following system of two coupled Ro¨ssler
oscillators, the one that was originally used in Ref.@2# to first
report phase synchronization:dx1,2/dt52v1,2y1,22z1,2
1C(x2,12x1,2), dy1,2/dt5v1,2x1,210.15y1,2, and dz1,2/dt
50.21(x1,2210.0)z1,2, where C is the coupling strength
and we choose (v1 ,v2)5(1.015,0.985), so that the two os
cillators are slightly different in order to mimic a typica
experimental situation where the oscillators cannot be p
fectly identical. The Ro¨ssler chaotic attractor@7# has the
property that its~x,y! variables represent a chaotic rotatio
with well-defined phase angles@2#. To compute the phase
angles associated with the two oscillators, we find it con
nient to use the polar coordinates (r ,u) to replace the~x,y!
coordinates. In the cylindrical coordinate (r ,u,z), the
Rössler equations become

dr1,2

dt
50.15r 1,2sin2 u1,2

1@C~r 2,1cosu2,12r 1,2cosu1,2!2z1,2#cosu1,2,

du1,2

dt
5v1,210.15 sinu1,2cosu1,2

2
1

r 1,2
@C~r 2,1cosu2,12r 1,2cosu1,2!2z1,2#sinu1,2,

~2!

dz1,2

dt
50.21~r 1,2cosu1,2210.0!z1,2.

When there is no coupling, the phase anglesu1(t) andu2(t)
are uncorrelated and, hence, the phase differenceDu(t)
5uu2(t)2u1(t)u increases steadily with time. Phase sy
chronization occurs whenC is increased through the critica
valueCp'0.029, in which we haveDu(t)<2p. The lower
3230 ©2000 The American Physical Society
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trace in Fig. 1 shows such a situation forC50.03, where
Du(t) versust is plotted. To model noise, we add differe
realizations of the termses r ,u,z(t) to each of the six vari-
ables in the coupled Ro¨ssler system@Eq. ~2!# at each step of
integration, wheree is the noise amplitude and thes’s are
random variables uniformly distributed in@21, 1#. The upper
trace in Fig. 1 showsDu(t) versust for C50.03, where the
noise amplitude ise'1023. We see that noise induces o
casional phase slips in units of approximately 2p in Du(t).
However, these phase slips are rare and become extre
infrequent as the noise amplitude is decreased further.

To quantify the 2p phase slips in Fig. 1, we compute ho
the average time intervalt @8# between successive pha
slips changes as the noise amplitude is changed. For the
rameter setting described above, we find thatt can be so
prohibitively long that numerical computation of it becom
infeasible when the noise amplitudee is smaller than, say
1024. Figure 2 shows log10t versus e2a for 1023.5&e
&1021.5 ~approximately two orders of magnitude ine!,
wherea'0.31 is a fitting parameter. The approximate line
scaling behavior in Fig. 2 suggests scaling relation~1!, which
implies that the average time interval to observe thep
phase slips behaves likee` as e→0. This is similar to the
behavior of the superpersistent chaotic transients obse
previously@9,10,3#.

To qualitatively understand the scaling behavior in Fig.
we perform the following numerical experiment. First we s
e50 and plot, in the coordinate (r[Ar 1

21r 2
2,Du), the at-

tractors that result from two different initial conditions wit
0,Du,2p and 2p,Du,4p, respectively, as shown in
Fig. 3~a!. Note that the variableDu is in fact a lifted angle
variable@4#, by which differences of the integer multiples o
2p are considered distinct. We see that initial conditio
with 2p differences inDu result in attractors that live in
different basins of attraction. Depending on the initial con
tions, there is an infinite number of these attractors separ
from each other by 2p in Du. In the absence of noise, thes
attractors are completely isolated, corresponding to the s

FIG. 1. For a system of two coupled Ro¨ssler oscillators: phase
synchronization without noise~lower trace!; and 2p phase slips
induced by the noise of the amplitudee'1023 ~upper trace!.
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ation of phase synchronization whereDu remains within 2p
if it starts with a value less than 2p. Next we examine the
influence of noise on the phase-space structure in Fig. 3~a!,
as shown in Fig. 3~b! for e51022. We see that the basins o

FIG. 2. For a system of two coupled Ro¨ssler oscillators atC
50.03: log10 t vs e2a, wherea'0.31 is a fitting parameter. Eac
point represents an average over 100 time intervals.

FIG. 3. Using the lifted phase variableDu for the system of two
coupled Ro¨ssler oscillators:~a! two isolated phase-synchronized a
tractors in 0,Du,2p and 2p,Du,4p in the absence of noise
and ~b! tunneling between the previously isolated attractors due
noise.
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attraction of the previously isolated attractors are now c
nected. There is now a nonzero probability that a traject
can switch to different attractors separated by 2p in Du, cor-
responding to the 2p phase slips observed in Fig. 1. Th
switch occurs when the trajectory falls into an open ‘‘tu
nel’’ connecting the basins. The widths of these tunnels m
be exponentially small, so that the probability for the traje
tory to fall into a tunnel is extremely small, leading to th
superpersisitent transient behavior observed in Fig. 2.

The numerically observed scaling law, as in Fig. 2, is o
indicative of the dynamical characteristic of the nois
induced phase slips. It is difficult to extend the range
numerical computations because of the extremely long t
sient behavior between the phase slips. It is thus importan
be able to derive heuristic theories to account for the sca
law. In what follows, we provide two independent theorie
one based on the dynamical system approach and anoth
statistical mechanical methodology. Both theories yield
same scaling law.

~1! Dynamical system approach. Note that in Eq.~2!, the
scales of the time variation of the amplitude variablesr 1,2(t)
and phase variablesu1,2(t) are generally distinct. Since, o
average, we haveu1,2(t);v0t, we see that the phase angl
u1,2(t) are ‘‘fast’’ variables. The amplitudesr 1,2(t) are, how-
ever, slow variables because the Ro¨ssler chaotic trajectorie
have approximately a circularly rotational structure. Th
one can average over rotations of the phase angles to s
rate out the dynamics of the slow variables. Lettingu1,2(t)
5v0t1f1,2(t), and performing averaging in the time inte
val tP@0,2p/v0#, yields @11#

dF~ t !

dt
'2dv1CG~r 1 ,r 2!sinF~ t !1white noise term,

~3!

where F(t)[f2(t)2f1(t)5u2(t)2u1(t), dv[v12v2 ,
andG(r 1 ,r 2) is a function that depends on the chaotic a
plitudesr 1,2(t). Equation~3! thus describes the dynamics
a chaotically driven limit-cycle oscillator. While the specifi
form of Eq. ~3! is suitable for the system of coupled Ro¨ssler
oscillators, we note a general feature of the pha
synchronization problem:a limit-cycle oscillator driven by
chaos.

To facilitate analysis, we construct the following model
two-dimensional maps incorporating the general dynam
features of phase synchronization@11#:

xn115 f ~xn!,
~4!

Fn115e1pg1~xn!Fn1g2~xn!Fn
21g3~xn!Fn

3,

where f (x) is a chaotic map in which the variablex models
the chaotic amplitudes in Eq.~3!, e*0 models the combina
tion of the small noise and the slight parameter misma
between the two coupled chaotic oscillators,g1,2,3(x) are
smooth functions, andp is a parameter that is proportional
the coupling strength. Assume thatf (x) generates a chaoti
attractor with an infinite number of unstable periodic orb
embedded in it, and that phase synchronization occurs
p.pc . In theF direction, these periodic orbits can be stab
or unstable. Forp*pc , all periodic orbits are stable in theF
direction in the absence of noise, soF remains approxi-
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mately constant~phase synchronization!. Under the influence
of noise, however, some of the periodic orbits become
stable in theF direction and, as such, a set of ‘‘tongues
opens at the locations of these periodic orbits, allowing
trajectory to escape from one approximately constantF state
to another~2p phase slips!. Typically, these orbits have low
periods and the sizes of the tongues are exponentially s
@9,10#, which accounts for the extremely long time duratio
between the successive 2p phase slips. Letl.0 be the
Lyapunov exponent of thex chaotic attractor and letT be the
time for a trajectory to tunnel through one of the tongu
We have, for the typical size of the opening of the tong
d;e2lT. The average time between the successive ph
slips is then

t;
1

d
;elT. ~5!

The tunneling timeT can be estimated by noting that whe
T is large, the map equation inF in Eq. ~4! can be
approximated as: dF/dt'e1@pg1(x)21#F1g2(x)F2

1g3(x)F3, which yields

T'E
0

2p dF

e1@pg121#F1g2F21g3F3 . ~6!

The dependence ofT on e thus depends on the specific fun
tions g1,2,3(x). For instance, since we know that most pe
odic orbits embedded in thex chaotic attractor are stable i
the F direction, we havepg1(x)&1. A possible condition
for a limit cycle oscillator isg2(x)'1 andg3(x)'0. Under
these conditions, we haveT;e21/2. If, however, we have
g2(x)'0 andg3(x)'1, we haveT;e22/3. In general, we
expectT;e2a and we obtain the scaling law~1!.

~2!. Statistical mechanical approach@12#. Note that Eq.
~3!, in the absence of noise, models the motion of a class
particle in a potential of the following form:V(F)5
22dvF1CG(r 1 ,r 2)cosF. When the coupling strength i
large enough, the potential functionV(F) possesses an infi
nite number of local minima separated by 2p in the phase
variableF. On average, these minimum values of the pot
tial function V(F) decrease linearly because of the line
term22dvF. The chaotic amplitude factorG(r 1 ,r 2) models
the fluctuations of the minimum potential values. When the
minima are present, a particle starting near one of the lo
minima is trapped in its vicinity forever in a noiseless situ
tion, signifying sustained phase synchronization. In the pr
ence of noise, however, a particle originally in one of t
local minima can be kicked into one of the adjacent minim
giving rise to a 2p phase jump. The probability for this to
occur isP;e2DE/T, whereDE is the typical height of the
potential barrier that separates neighboring minima, andT is
the ‘‘temperature’’ that is determined by the noise. Typ
cally, we haveT;ea, wherea.0. The average time for a
2p phase jump to occur is thus given byt;1/P
;exp(DEe2a), which is the scaling law@Eq. ~1!#.

In summary, we have studied the effect of small rand
noise on phase synchronization of coupled chaotic oscilla
@13#. Under the influence of noise, indefinite phase synch
nization is no longer possible@14#. Instead, 2p phase slips
between the oscillators occur. When the noise amplitud
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small, these phase slips are extremely rare. Thus we
expect to be able to observe phase synchronization for
times in well-controlled laboratory experiments where no
is small.
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