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Turbulence of nonlocally coupled oscillators in the Benjamin-Feir stable regime

Dorjsuren Battogtokh and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 19 March 1999!

The small-amplitude equation appropriate for self-oscillatory fields with nonlocal coupling is studied nu-
merically in the Benjamin-Feir stable regime. Depending on the system size, two characteristic forms of
turbulent behavior are observed. For relatively small system sizeL, the whole space splits into two domains
with distinct dynamics, while for largerL the turbulent fluctuations become better characterized by spatial
intermittency with power-law scaling.

PACS number~s!: 05.45.2a, 47.54.1r, 82.20.Fd
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The dynamics of coupled limit-cycle oscillators is re
evant to a wide variety of fields including physics, chemist
biology, and brain sciences, thus representing itself as a
ject of central importance in nonlinear dynamics far fro
equilibrium. Large ensembles of oscillators in fact exhi
various forms of collective dynamics, and such behavior
pends crucially on how the oscillators are mutually coupl
In particular, it has recently been realized that the chang
the range of coupling has some drastic effects on the sys
dynamics. The coupling range may formally be classifi
into three types, i.e., local, global, and intermediate. For s
plicity, the last case will be callednonlocal. Over the last
few decades, a large amount of work has been devoted to
first two types of coupling. Locally coupled limit-cycle os
cillators have predominantly been studied through the co
plex Ginzburg-Landau equation~CGLE! @1,2#, while most
studies on globally coupled oscillators have used the ph
oscillator model @1,3# with some exceptions@4#. Some
people also studied the case where both local and gl
couplings coexist@5#. In contrast, studies on nonlocall
coupled oscillators started only recently@6–8#, and there re-
main a lot of questions yet to be answered.

Recent studies on nonlocally coupled oscillators@6–8# re-
vealed that the system can display a type of turbulence b
ing a strong resemblance to fully developed Navier-Sto
turbulence@9#. More recently, it was found that the sam
type of turbulence can also arise in a certain class
reaction-diffusion systems where the system reduces in p
tice to a nonlocally coupled system with reduced degree
freedom@10#. The type of turbulent behavior thus discover
was interpreted in terms of an interplay between the non
cality of the coupling and strong Benjamin-Feir~BF! insta-
bility ~i.e., instability of the uniform oscillation!.

In this report, we present some results of our numer
study on the nonlocally coupled complex Ginzburg-Land
equation, but in the BFstableregime, contrary to the fore
going works which concentrated on the BF unstable regi
Our numerical results suggest that in the BF stable reg
nonlocal coupling can cause a nonlinear instability tha
stronger where the spatial variation of the amplitude dis
bances is stronger. Specifically, the instability occurs aro
minima of the amplitude profile, and this can initiate loca
ized high-frequency oscillation causing repeated format
of holelike objects. This mechanism, combined with the n
locality of the coupling, can give rise to two different type
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of turbulence depending on the system size. For smaller
tem size, the whole space splits into domains with disti
dynamics, while for larger system size, such splitting is n
seen, but the system comes to exhibit spatial intermitte
characterized by power-law scaling.

In previous papers@6#, it was argued that a comple
Ginzburg-Landau type equation with nonlocal coupling na
rally arises in large assemblies of oscillatory elements w
indirect coupling mediated by a diffusive scalar field. W
start with this type of equation appropriate for a on
dimensional regular array ofN oscillators with spacingd:

]Wj

]t8
5Wj2~11 ic2!uWj u2Wj1k~11 ic1!

3 (
j 851

N

s~ j 2 j 8!~Wj 82Wj !. ~1!

HereWj is a complex variable,s is a coupling function, and
k, c1, andc2 are real parameters.N is supposed to be suf
ficiently large. A systematic derivation of the spac
continuous limit of Eq.~1! can be found in@1#. We assume
periodic boundary conditions and work with an exponen
coupling function, i.e., s( j 2 j 8)5C exp@2g(uj2j8u)d#,
where C is the normalization constant ensuring( j 51

N s( j )
51, andg21 gives the coupling range. As shown in@6#, the
last term in Eq.~1! reduces to the usual diffusion couplin
when W is sufficiently long-waved that the local-couplin
approximation is valid. In addition to the coupling strengthk,
we have the important parameter the reduced system siL
[gNd; d is irrelevant because it simply scales the leng
Numerical integration of Eq.~1! was carried out with use o
the fourth-order Runge-Kutta method with the element
time step of 0.05. The parameters are fixed asc1520.3 and
c253.0, which satisfies the condition for BF stability
1c1c2.0.

Under the conditions specified above, the system beha
obtained numerically from Eq.~1! turned out nontrivial.
When the perturbation given initially to the uniform oscilla
tion is not too small, the system goes directly into a state
spatio-temporal intermittency, which is also the case for
standard~i.e., locally coupled! CGLE @11#. Still, the nature
of the spatio-temporal intermittency in the present ca
seems rather unusual. This is illustrated in Fig. 1, wher
3227 ©2000 The American Physical Society
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typical space-time pattern ofuWu for the system sizeL55 is
shown in gray scale. It is seen that a pair of low-amplitu
~dark! holelike objects emanate periodically from the cent
part of the system. Across each hole, the phase jumps byp.
Our interpretation for such behavior is the following. As
result of a nonlinear instability, an amplitude dip is form
around the middle of the system. Since the oscillators w
smaller amplitude oscillate faster, this amplitude dip pla
the role of a high-frequency pacemaker. The pacemaker
starts to entrain the surrounding medium through perio
production of a pair of holelike objects which propagate o
a certain distance but decelerate and finally vanish. In
way, the system is divided into two domains with distin
dynamics. The inner domain is characterized by succes
production and propagation of holelike objects each acc
panied by a 2p phase slip. Note that this is similar to wh
occurs in excitable media with a source of pulse producti
In contrast, the outer domain, which stays unentrained by
inner domain, is characterized by large-amplitude slow os
lations with relatively smooth spatial variation. We al
found that for largerk multiple wave sources can appear, a
in that case the dynamics in the inner domain become
little more complicated.

We confirmed that similar behavior to the above rema
practically unchanged when we work with a nonloca
coupled phase equation as a reduction of Eq.~1! in the limit
of weak coupling. Such robustness of the peculiar dynam
described above suggests that its principal cause could b
nonlocality of the coupling combined with the localized no
linear instability.

When the scaled system sizeL becomes larger, a numbe
of wave sources appear and their locations are no lon
fixed. Figure 2 shows a typical space-time image ofuWu for
such a situation. Unlike the case of small system size,
division of the system into different space-time patterns
be seen, implying a recovery of spatial translational symm
try in a statistical sense. Our numerical results sh
that the system then comes to exhihit power-law sca
in various moments of the amplitude incrementsy(x)

FIG. 1. Space-time pattern of the amplitudeuWu of 256 oscilla-
tors with time spanT550, where time advances upward. The v
ues of uWu are indicated in gray scale, where the darker~lighter!
regions correspond to larger~smaller! uWu. Parameter values areL
55, k50.3.
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5uW(x01x)2W(x0)u. Power-law behavior is clearly observe
in the parameter range of 0.45<k<0.6. We introduce the
spatial correlationG(x)5^W̄(0)W(x)&. Figure 3 shows the
differenceG(0)2G(x) vs x, which is equivalent to the sec
ond moment ofy as a function ofx, obtained numerically for
L516, i.e., a case giving a good fit to the power law. T
corresponding exponent is nontrivial and estimated to
0.59. We then expect that in nonlocally coupled oscillat
power-law behavior in the moments of the amplitude inc
ments is not limited to the BF unstable regime. It should
noted, however, that the intermittent nature of the patte
which is responsible for the power-law behavior, seems e
stronger in the BF stable regime than in the BF unsta
regime. Such a difference in the nature of the pattern is
flected in the difference in the probability distributionP(y)
in the two regimes, which is shown in Fig. 4. The saturati
of P at smally values is less complete in the BF stable ca
This seems to come from the fact that stronger spatial in
mittency, which implies persistence of almost constant a
plitude over large domains in space, makes smaller am
tude increments more probable, practically down to the z
value. In contrast, in the BF unstable regime, fluctuations
various wavelengths coexist, forming a background of oc

FIG. 2. Space-time pattern of the amplitudeuWu of 256 oscilla-
tors with time spanT550. L58, k50.45.

FIG. 3. Ln-ln plot of the correlation gapG(0)2G(x) for L
516, k50.45, N5512.
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sional sharp changes in the amplitude, so that the probab
of occurrence of small values of amplitude increments
more or less the same as long as they are below the lev
such ‘‘normal’’ fluctuations. In the largey regime, a sudden
drop ofP occurs for the BF unstable case aroundy;1, while
P persists for the BF stable case up toy;1.5. Such persis-
tence of largey is possibly associated with the formation
holelike objects with abrupt amplitude change.

Another feature of the power-law behavior characteris
of the BF stable regime is that the dependence of the sca
exponent on the coupling strengthk is much weaker than in

FIG. 4. Log-log plot of probability distributionsP(y). Solid line
corresponds tok50.45, c1520.3, c253. Dotted line corre-
sponds tok50.85, c1522, c252. L516 andN5512.
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the BF unstable regime. The reason is not clear, but
might have something to do with the fact that in the B
unstable regime the seeming randomness of the pattern
comes stronger with decreasingk, which is natural because
of the stronger BF instability, while in the BF stable regim
the degree of randomness seems insensitive tok once the
nonlinear instability occurs. For intermediate values ofy, P
obeys a power lawP(y);y2(11b) in both the BF stable and
unstable cases, and its origin seems to be common. Fo
particular parameter values assumed,b is estimated to be
0.58 and 0.45 in the BF stable and unstable cases, res
tively.

In summary, for the sake of deeper understanding of
effects of nonlocal coupling, we studied numerically the no
locally coupled complex Ginzburg-Landau equation in t
BF stable regime. For relatively small system size, the wh
space was found to split into inner and outer domains w
distinct dynamics, the inner domain being characterized
generation of holelike objects. We gave a qualitative desc
tion of how such behavior changes with the system size
is connected smoothly to the power-law regime of turbul
fluctuations. Some unique features of the power-law beh
ior discovered in the BF stable regime were pointed out
comparison with the similar behavior already known for t
BF unstable regime.
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