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Turbulence of nonlocally coupled oscillators in the Benjamin-Feir stable regime
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The small-amplitude equation appropriate for self-oscillatory fields with nonlocal coupling is studied nu-
merically in the Benjamin-Feir stable regime. Depending on the system size, two characteristic forms of
turbulent behavior are observed. For relatively small systemlsiziee whole space splits into two domains
with distinct dynamics, while for large the turbulent fluctuations become better characterized by spatial
intermittency with power-law scaling.

PACS numbdps): 05.45—a, 47.54+r, 82.20.Fd

The dynamics of coupled limit-cycle oscillators is rel- of turbulence depending on the system size. For smaller sys-
evant to a wide variety of fields including physics, chemistry,tem size, the whole space splits into domains with distinct
biology, and brain sciences, thus representing itself as a suldynamics, while for larger system size, such splitting is not
ject of central importance in nonlinear dynamics far fromseen, but the system comes to exhibit spatial intermittency
equilibrium. Large ensembles of oscillators in fact exhibitcharacterized by power-law scaling.
various forms of collective dynamics, and such behavior de- [N previous paperg6], it was argued that a complex
pends crucially on how the oscillators are mutually coupled Ginzburg-Landau type equation with nonlocal coupling natu-
In particular, it has recently been realized that the change ifglly arises in large assemblies of oscillatory elements with
the range of coupling has some drastic effects on the systeffidirect coupling mediated by a diffusive scalar field. We
dynamics. The coupling range may formally be classifiedstart with this type of equation appropriate for a one-
into three types, i.e., local, global, and intermediate. For simdimensional regular array & oscillators with spacing:
plicity, the last case will be calledonlocal Over the last
few decades, a large amount of work has been devoted to the IW,

j : .
first two types of coupling. Locally coupled limit-cycle os- ?:Wi_(1+'02)|wj|zwj +k(1+icy)

cillators have predominantly been studied through the com-

plex Ginzburg-Landau equatiofCGLE) [1,2], while most N

studies on globally coupled oscillators have used the phase X 2 a(j—]" (W) —W). (&N
oscillator model[1,3] with some exceptiond4]. Some ji'=1

people also studied the case where both local and global _ ) ) ) _
couplings coexist{5]. In contrast, studies on nonlocally HereW; is a complex variabley is a coupling function, and
coupled oscillators started only recenff-8], and there re- K. C1, andc, are real parametersl is supposed to be suf-
main a lot of questions yet to be answered. ficiently large. A systematic derivation of the space-

Recent studies on nonlocally coupled oscillaf@s8] re-  continuous limit of Eq(1) can be found iff1]. We assume
vealed that the system can display a type of turbulence beakeriodic boundary conditions and work with an exponential
ing a strong resemblance to fully developed Navier-Stoke§oupling function, i.e., o(j—j")=Cexd—A|j—j')dl,
turbulence[9]. More recently, it was found that the same Where C is the normalization constant ensurid’, o (j)
type of turbulence can also arise in a certain class of=1, andy ' gives the coupling range. As shown([i], the
reaction-diffusion systems where the system reduces in pratast term in Eq.(1) reduces to the usual diffusion coupling
tice to a nonlocally coupled system with reduced degrees ovhen W is sufficiently long-waved that the local-coupling
freedom[10]. The type of turbulent behavior thus discoveredapproximation is valid. In addition to the coupling strenigth
was interpreted in terms of an interplay between the nonlowe have the important parameter the reduced systenisize
cality of the coupling and strong Benjamin-F¢BF) insta- =7yN4&, 6 is irrelevant because it simply scales the length.
bility (i.e., instability of the uniform oscillation Numerical integration of Eq1) was carried out with use of

In this report, we present some results of our numericathe fourth-order Runge-Kutta method with the elementary
study on the nonlocally coupled complex Ginzburg-Landauime step of 0.05. The parameters are fixed¢ ss — 0.3 and
equation, but in the Bitableregime, contrary to the fore- ¢,=3.0, which satisfies the condition for BF stability 1
going works which concentrated on the BF unstable regime+c,c,>0.
Our numerical results suggest that in the BF stable regime Under the conditions specified above, the system behavior
nonlocal coupling can cause a nonlinear instability that isobtained numerically from Eq(1) turned out nontrivial.
stronger where the spatial variation of the amplitude disturWhen the perturbation given initially to the uniform oscilla-
bances is stronger. Specifically, the instability occurs arountion is not too small, the system goes directly into a state of
minima of the amplitude profile, and this can initiate local- spatio-temporal intermittency, which is also the case for the
ized high-frequency oscillation causing repeated formatiorstandard(i.e., locally coupledl CGLE [11]. Still, the nature
of holelike objects. This mechanism, combined with the non-of the spatio-temporal intermittency in the present case
locality of the coupling, can give rise to two different types seems rather unusual. This is illustrated in Fig. 1, where a
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FIG. 1. Space-time pattern of the amplityd¥| of 256 oscilla-
tors with time sparT =50, where time advances upward. The val-
ues of|W| are indicated in gray scale, where the darkighter)
regions correspond to largésmalle) |W|. Parameter values ate
=5, k=0.3. =|W(Xo+X)—W(Xo)|. Power-law behavior is clearly observed

in the parameter range of 04%=<0.6. We introduce the

typical space-time pattern ¢dV| for the system size=5is  gpatiq] correlatiorG(x) = (W(0)W(x)). Figure 3 shows the

shown in gray sqale. It is seen thaF a_pair of |°W'amp”wdedifferenceG(0)—G(x) vs x, which is equivalent to the sec-
(dark holelike objects emanate periodically from the centraly,q moment of as a function ok, obtained numerically for

part of the system. Across each hole, the phase jumpsmy 2| _ 16 je. a case giving a good fit to the power law. The
Our interpretation for such behavior is the following. As @ corresponding exponent is nontrivial and estimated to be

result of a nonlinear instability, an amplitude dip is formed 59 \we then expect that in nonlocally coupled oscillators

FIG. 2. Space-time pattern of the amplitud®| of 256 oscilla-
tors with time sparm=50. L=8, k=0.45.

- . i e , however, that the intermittent nature of the pattern,
starts to entrain the surrounding medium through periodiGyhich is responsible for the power-law behavior, seems even

production of a pair of holelike objects which propagate OVelgironger in the BF stable regime than in the BF unstable
a certain distance but decelerate and finally vanish. In thi?egime. Such a difference in the nature of the pattern is re-

way, the system is divided into two domains with distinCl fiocteq in the difference in the probability distributiet(y)
dynamics. The inner domain is characterized by SUCCESSIM@ e 1o regimes, which is shown in Fig. 4. The saturation

production and propagation of holelike objects each accomas p ot smally values is less complete in the BF stable case.

panied by a 2r phase slip. Note that this is similar to what tis seems to come from the fact that stronger spatial inter-

occurs in excitable media v_vith a source of pulse PrOdUCtionmittency, which implies persistence of almost constant am-
In contrast, the outer domain, which stays unentrained by thBIitude over large domains in space, makes smaller ampli-

inner domain, is characterized by large-amplitude slow oscily, e increments more probable, practically down to the zero
lations with relatively smooth spatial variation. We als0 5,6 |n contrast, in the BF unstable regime, fluctuations of

found that for largek multiple wave sources can appear, and, arigus wavelengths coexist, forming a background of occa-
in that case the dynamics in the inner domain becomes a

litle more complicated.

We confirmed that similar behavior to the above remains
practically unchanged when we work with a nonlocally
coupled phase equation as a reduction of @gin the limit
of weak coupling. Such robustness of the peculiar dynamics
described above suggests that its principal cause could be the
nonlocality of the coupling combined with the localized non-
linear instability.

When the scaled system sikebecomes larger, a number
of wave sources appear and their locations are no longer P
fixed. Figure 2 shows a typical space-time imagéwf for
such a situation. Unlike the case of small system size, no
division of the system into different space-time patterns can —3-50 0 1'0 2'0 3'0 2.0
be seen, implying a recovery of spatial translational symme- ) ) lnfx) ' '
try in a statistical sense. Our numerical results show
that the system then comes to exhihit power-law scaling FIG. 3. Ln-In plot of the correlation ga(0)—G(x) for L
in various moments of the amplitude incrementéx) =16, k=0.45, N=512.
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T the BF unstable regime. The reason is not clear, but this
might have something to do with the fact that in the BF
unstable regime the seeming randomness of the pattern be-
R comes stronger with decreasikgwhich is natural because

of the stronger BF instability, while in the BF stable regime
the degree of randomness seems insensitivk ¢mce the
nonlinear instability occurs. For intermediate values/oP

10° | . obeys a power law?(y)~y~ (*#) in both the BF stable and

‘ unstable cases, and its origin seems to be common. For the
particular parameter values assumgdjs estimated to be
L 0.58 and 0.45 in the BF stable and unstable cases, respec-
10” 10° tively.

y In summary, for the sake of deeper understanding of the
effects of nonlocal coupling, we studied numerically the non-
locally coupled complex Ginzburg-Landau equation in the
BF stable regime. For relatively small system size, the whole
space was found to split into inner and outer domains with

) ) ) __distinct dynamics, the inner domain being characterized by
sional sharp changes in the amplitude, so that the probabilityeneration of holelike objects. We gave a qualitative descrip-
of occurrence of small values of amplitude increments iSjon of how such behavior changes with the system size and
more or less 'E’he same as long as they are below the level f .,nnected smoothly to the power-law regime of turbulent
such "normal” fluctuations. In the largg regime, a sudplen fluctuations. Some unique features of the power-law behav-
drop ofP occurs for the BF unstable case aroynell, while ior discovered in the BF stable regime were pointed out, in

Eeﬁfés(')sftlsa?r thse I?)Zss'glibI:sg?)i?atue%we'tlﬁst.hSl:‘cc)?mpaet'rslns-of comparison with the similar behavior already known for the
gey is possibly ' wi : BF unstable regime.

holelike objects with abrupt amplitude change.

Another feature of the power-law behavior characteristic D.B. was supported by a Monbusho Grant-in-Aid. He also
of the BF stable regime is that the dependence of the scalintpanks members of the Nonlinear Dynamics Group of Kyoto
exponent on the coupling strendtis much weaker than in  University for their warm hospitality.
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FIG. 4. Log-log plot of probability distributionB(y). Solid line
corresponds tok=0.45, ¢c;=—-0.3, ¢c,=3. Dotted line corre-
sponds tk=0.85, c;=—2, ¢c,=2. L=16 andN=512.
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