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Effect of periodicity restrictions on the ground state of quantum systems with periodic potentials
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We investigate the effect of periodicity restrictions on the ground state of a quantum system. For a system
whose potential is periodic ib and whose wave function is restricted to be periodiailn wheren is an
integer such that=1, we prove that observables periodiclirtalculated at zero temperature are independent
of the value ofn. As a result the winding number may be restricted to a valuevef0 in ground state
calculations, as has been suggested by the numerical results of HesielilgPhys. Rev. B57, 13382
(1998].

PACS numbeg(s): 05.30—d

Periodic systems in quantum mechanics have always bedtifferent homotopy classes, each class labeled by a different
of great interest. An example that has received considerablalue of the winding number. Paths in the same homotopy
attention recently is the quantum anisotropic planar rotorclass are deformable into each other. The value of the wind-
(QAPR) model[1], developed in an effort to understand the ing number for a given path may be defined as the net num-
quantum effects in the orientational ordering of diatomic ad-ber of times the path winds around the cir¢@&5]. The
sorbates on inert surfaces. The model consists of rigid diwinding number incorporates the effect of the periodicity
atomic molecules that are constrained to rotate on a plangstriction on the wave function into the path-integral repre-
due to the presence of the surface. Another system that cantation.
be described by a lattice of coupled one-dimensional rotors is  gchulman has showfip] that for systems whose paths fall
that of coupled Josephson oscillat¢®. The list provided intg different homotopy classes, the partition function may
here is far from complete, other examples abound in thgge eyajuated by path-integrating in each homotopy class, and
literature([3]. o o then summing over each resulting contribution.

A_system of rotors Is Q'St.m.Ct from_a_general periodic sys- In calculating the properties of periodic systems, care
tem in that there is a periodicity restriction on the wave func-must be taken in incorporating the periodicity restrictions on

tion. In the case of molecular rotors, the periodicity of the :
potential is such that it satisfies the periodicity restriction onthe wave function. For general quantum many-body systems

the wave function, but the value in which the potential iSat finite te_mperatures, numerical results may be obtained by
periodic may in general be different from the value in whichth_e path-mtegral Monte _Carlb6—8] (Pl.MC) method. _The

the wave function is restricted to be periodi.g., homo- Wlnd|ng number may be mcorpor.at.ed into the PIMC,'” Sev-
nuclear diatomic moleculgsFor systems such as an electron €ra! different wayd9,10]. Thus, finite temperature simula-

in the field of a periodic lattice, the potential is periodic, butions of coupled rotors is possible. In the limit of zero tem-
there is no periodicity restriction on the wave function. perature it has been conjectured based on numerical evidence

In this report, we concentrate on a particular class of peby Heneliuset al.[11] that the winding number may be fixed
riodic systems. We restrict the potential energy of a systen?t w=0. Proof for this assertion was only provided for the
to be periodic inL for all coordinates. Furthermore, we re- case of free rotors. Fixing the winding numbemat0 cor-
strict the wave function to be periodic mL, wheren is an  responds to simulating a system that does not have periodic-
integer such thab=1. Many examples of periodic systems ity restrictions on its wave function. If it was proven that the
fall into this class of systemge.g., molecules performing winding number can be fixed at= 0, then zero-temperature
one-dimensional rotation, an electron in a periodic laltice methods such as the diffusion Monte Cafl@MC) [12-14
Although observables may be defined arbitrarily, in mostmethod or the Green's function Monte Carl@&GFMC)
cases observables that characterize the class of systems @&7,18 would not need to be modified to account for peri-
fined above are periodic ih. odicity restrictions due to rotation.

In the study of one-dimensional rotation a helpful concept The purpose of this Brief Report is to investigate the as-
is that of the winding number. In the Feynman description ofsertion of Heneliust al. mentioned above, and the role of
quantum statistical mechani¢d], the partition function is winding numbers for periodic systems at zero temperature.
obtained by integrating over all cyclic paths in configurationWe prove that restricting the winding numberve=0 (i.e.,
space. In Cartesian space cyclic paths are all deformable inteeglecting the periodicity restriction on the wave funcjign
each other. This is not so in the case of one-dimensionappropriate in the calculation of observables at zero tempera-
rotation. Paths that wind around the circle a different numbeture. The proof consists of two steps. First, we write the
of times are not deformable into each other. They fall intopartition function of a periodic system as defined above in

terms of the winding number, and argue that in thec
case the winding number may be fixednat O for any tem-
*Present address: Department of Chemistry, Princeton Universityperature. Second, we prove that in the ground state observ-
Princeton, NJ 08544, ables are independent of
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Consider a particle with mass in a potential that is In the limit n—o0 only thew=0 winding number contrib-
periodic inL and whose wave function is restricted to be utes to the partition functiofEq. (5)], and we recover the
periodic innL, wheren is an integer such that=1. We  partition function of a system whose wave function is not
treat a one-dimensional system here, but the concepts arestricted to be periodic. We now prove that ground state
trivially generalizable to the many-dimensional case. Basedbservables are independentrof
on the considerations above, and based on the results of Theorem: Consider a many-body Hamiltonian operator

Schulman5], we may write the partition function as
H=T+V.

Q= E Quw ., (1) Let V be the potential energy operator, and assume that this
W= operator is periodic irL for all coordinates. Lefl be the
kinetic energy operator. Le&b be an observable that is peri-
odic in L for all coordinates. Consider the following two
systems, both of which have Hamiltoni&h System Athe

whereQ,, is the contribution to the partition function from
one homotopy class,

x+wnL wave function is restricted to be periodicrirk for all coor-
Quw= f de T)exp —S), (2)  dinates, whera is an integer anth=1; System Bthe wave
function is restricted to be periodic infor all coordinates.
whereSis the Euclidean action If these conditions hold, then the expectation valuebof

taken over the ground state of systéms equal to the ex-
B pectation valueb taken over the ground state of syst@&n
S= f o dr ) Note that the Hilbert space of syste®ns a subspace of the
Hilbert space of systerA.
In the above equationg, denotes the coordinate of the par- ~ Proof: Let ¥, denote the ground state wave function of
ticle, w denotes the winding number, agidenotes the in-  SystemA. We may write
verse temperature. Note that the paths contributing jare
not cyclic, unless the winding number is zero. HW4(x) =Eg¥¢(x), (@)
Qu is defined as the integral over all paths that end at
value that is displaced bwnL compared to their starting
point. The set of all such paths can be generated from the se
of all cyclic paths by the transformatidi6]

m 2

2

IX(7)
T

+VX(7)]|.

Fi'lvhereE is the ground state energy, and the vectoepre-
sents the coordinates of the system collectively.
U et R denote the operator that translates ttiecoordi-
nate bymL, wheremis an integer. Operating off, with R},
~ nLr produces a new function that satisfies EQ.
X(7)=X(7)+ —=W, 4 We construct a new function

B

n
wherex(7) denotes a member of the set of cyclic paths. The v (x)=C >, , Z R i \[fg(x), 8)
transformation of Eq(4) allows us to write the partition m;=1 =1

function in a different form, ) o .
whereC is the normalization constant. By construction, the

* mw2n2L 2 X _ function'’ is periodic inL for all coordinates, and is there-
Q= > exp - T) f de Dx(7)exp(—Sw), fore a member of the Hilbert space of syst@nFurther-
W= X ®) more, V' satisfies
where HW' (X)) =Eq¥'(X). 9

Since the space of all functions that are periodit. iis a

Su= f (6) subspace of all functions that are periodiaib, the ground
state energy of the system that is restricted to be periodic in
L cannot be less than the ground state energy of the system

Note, that the paths that enter the Euclidean aciipare the  periodic innL. SinceW’ is periodic inL, and its energy is

cyclic pathsx(7). Eq., it follows thatE, is the ground state energy of syst&n

Upon inspecting the Gaussian term expfwn’L%28) in  The ground state energy of the two systeAsnd B are

Eg. (5), we can deduce the behavior of the system in variousherefore equal.

limits. At high temperaturesd—0), only thew=0 term For observables periodic in, one can couple the observ-

contributes to the partition functiofEq. (5)]. In this tem-  able to a constant fielffl5] and add it to the Hamiltonian.

perature range, the periodicity restriction on the wave funcSince the observable is periodiclin the theorem also holds

tion may be neglected. As the temperature is lowered, windfor the ground state energy of the system that is coupled to

ing numbers other than zero begin to contribute and thehe field. Since the expectation value of the observable in the

periodicity restriction can no longer be neglected. In fhe ground state is equal to the derivative of the ground state

— o0 (zero temperatupdimit, all winding numbers of a given energy of the coupled system at zero field, it follows that

coordinate contribute with equal probabilities to the Gausseobservables are also equal for systefnandB.

ian term. For this reason, the assertion of Henediual.[11] In making the connections between physical systems and

is not obvious. cases relevant to the theorem we need to consider the mean-

+V

(ax( 7)

X +"_LT)
X(7) IBW.
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ing of the parameten. In the simplest case=1 the period- responds to systems with no periodicity restrictions on the
icity associated with the rotation and the periodicity of thewave function. As we have pointed out earlier, in this case
potential are equal. A physical example ofran 1 system is only thew=0 term contributes to the partition function. It

adsorbed heteronuclear diatomics on a surface constrained f@Jlows that in the zero-temperature limit, the winding num-

rotate on the p|ane. A System Composed of homonuclear dper can be neglected in a simulation. This is in contrast to

atomics that are allowed to interconvert betweetho- and  finite temperature simulation methods, where the winding
parastatescorresponds to the case=2. In this case the number needs to be included in the simulation. The assertion

periodicity of the rotation is twice the periodicity of the po- ?f H?r;ﬁhusgt al. |st}|r1ergfore trut.e' prowc:ﬁd that the s;t/rr:]me—
tential. An electron in an infinite periodic lattice is also sub- ry of the observables In question are the same as the sym-

ject to a periodic potential, but there are no restrictions on itgnetry of the potential.

wave function due to periodicity. Hence, the= case cor- The author wishes to thank Professor Bruce J. Berne for

responds to particles in infinite periodic lattices. stimulating discussions and making suggestions on the
An important implication of the theorem concerns groundmanuscript. This work was supported by an NSF grant to

state simulation methods. Time=« case of the theorem cor- Professor Bruce J. Berne.
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