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Universal scaling and nonlinearity in surface layer fragmentation
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We analyze disordered one-dimensional bond-network models and investigate the influence of nonlinear
force-elongation relationg«|x|™ on the fragmentation of coatings under tension. We aim to elucidate the
interplay between the nonlinear forces and the random failure thresholds of the bonds. After an initial stage, the
mean fragment lengttL) scales with the applied strain (L)xe™“, wherea=m/(m+ 1) for weakly disor-
dered andx=m/(m+2) for strongly disordered coatings.

PACS numbegps): 05.40.-a, 46.65-g, 46.50+a

Breakage phenomena range from the damage of macrdation process and then are fixéguienched disordgrthey
scopic objects such as the destruction of glass windows tobey a probability distribution, here denoted [bfuy,).
the failure on smaller length scales, e.g., the formation of From the arrangement depicted in Fify a differential
crazes in polymethylmethacrylate(PMMA). Because of the equation for the elongations(k)=uv, follows. In each
technological and scientific interest in fractures, the subjectloop”
has a long history; recently breaking of coatings has attracted
new attentior[1—16|, particularly the fragmentation of thin Al=eleg=vK—vk+1T Uk 2
brittle films under uniaxial tension. Here cracks once nucle- ) ) )
ated grow perpendicular to the stress direction and fornpolds. Subtracting from Eq2) the corresponding equation
separate, nearly rectangular fragments, see, e.g.,[R&f. for k—1 leads to
This process can be described by a one-dimensional model
[17-20, which allows to a great extent an analytical treat-
ment. We focus on the mean fragment len¢githas a func-
tion of the straine to which the substrate is subjected. o N
Recent studief17—20 have investigated the dependenceWhere we used,=du,. The equilibrium condition for the
of (L) on & based orlinear force-elongation relations, and Kth layer node is giveriin our scalar pictureby
have revealed a scaling law: Fe=f—fy. @

1
Uk+1_2Uk+Uk—1:uk_uk—lza(fk_fk—l)y 3

(Lyce™ . (1) Going to a continuous description, one can replace the left-
hand side of Eq(3) by v"(k)=d?v/dk?, so that we are led

However, for many materialsuch as polymejdinear be-
havior occurs only in a very restricted range of deformations. F(K)
Thus in this paper we analyze the influence nainlinear v”(k)=T. (5)
force-elongation relations on fragmentation. Surprisingly, it
turns out thatL) also scales when the forces are nonlinear.
To fix the ideas, we start from a one-dimensional mode
[17-22, see Fig. 1. The coating consists Mfnodes con-
nected byN—1 breakable springs of equilibrium lengtly,.
Under stress the bonds elongate, which leads to the restori
force f,,=du, due to thekth surface layer springl being the
elastic constant and, the spring’s elongation. The interac-

rAt the boundaries the forcefg vanish, i.e..fo=1y=0; we
may also seuy=uyn=0. From this and Eq(2) one has as
boundary conditions ' (1/2)=v'(N+ 1/2)= — el o

Previous studies on the fragmentation of coatings
rf97,18,2(] and of fiberq 23,24 have focused on purely lin-

tion between coating and substrate is modeled by springs of M d
elongation v, and (non-necessarily Hookeanrestoring 9_9_9 Q_Q_Q
forcesF(v\). These springs are anchored to the substrate at Dy, %,
equidistant nodes. For better illustration, in Fig. 1 the bonds —: - ¢ —
between coating and substrate are shifted vertically. If the i lat Al leg + Al
distance between the substrate’s nodes increases! frpim — >

v1 v2 v3

legt Al (being a relative elongation ef=Al/l,), the bonds

in the coating expand. Increasiagontinuously corresponds g 1. Bond-network model for fragmentation of coatings un-
to stretching the substrate uniaxially. In order to mimic theger yniaxial tension. Herd and D denote the elastic constants of
occurrence of cracks in the coating, we assume thaktie the two types of springs antl, is the equilibrium length. The
surface Iayer bond breaks irreversibly, when its e|0ngati0ré|0ngati0ns of the bonds are denotedupy(d bond, respectively,

uy exceeds a random failure threshaig(k). The thresholds y, (D bond. The bonds between coating and substrate are shifted
up(k) are chosen randomly at the beginning of the fragmenwertically for better illustration.
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ear force-elongation relations, respectively, on random fusshape(for mvery large. These considerations are valid both

networks with linear current-voltage relatiof&]. In this
context we have previously found that linear

for the initial system and, after replacimgby L, for subse-

one-qguent fragments of length.

dimensional1D) systems reproduce the scaling of linear 2D  Equation(10) leads to a rough estimate for the occurrence

objects quite satisfactorilf19]. Here, in this paper, we in-
troduce quite general, nonlinear forms for the foré€s)

=F,[v(k)]; we assume that the interaction between coating
and substrate is given by a force-elongation relation of the

form

F(v)=Dsgnv) (6)

| |+w
v b y

whereD, b, andm are positive parametersn&1). Equation

of cracks for largee. If a bond breaks, we have(N/2)
~Uprop, SO that

=
holds.

Now let us turn to the fragmentation process. The bonds’
elongationu(k,L)=u, within a fragment of length. attains
its maximum in the middle of each segment. The maximum
of u(k) increases with larges and larger fragment length

u 1/m
prob) N—(m+1)/m. (11)

A

(6) may be viewed as “stress-hardening,” as occurs, e.g., iffor a fixed value of Iarger_fragments break more readily
networks containing nonextensible elements, finite extenth@n shorter ones. We thus introducge) as the length of a

sible nonlinear elasticityFENE).
To obtain the elongationsi(k)=u,, we consider that
from Egs.(3) and(4) we have in the continuum

F(k)=d[u(k)—u(k—=21)]~d[u’(k—=1/2)] (7)
for the kth layer node, which yields
1 (k
u(k)=afo F(n+1/2)dn. (8)

We can now readily evaluatg k) for not too early stages of

fragmentation. Because of symmetry, it suffices to consider

only the left half of the coating, where(k)=0 holds.
Hence, from Eq.(5) alsov”(k)=0 for ke[1/2,(N+1)/2]
follows. Therefore the maximal slope ofk) (largest abso-
lute value is given at 1/2 withv'(1/2)= —el¢q (boundary
condition and its minimal slope is attained atl ¢ 1)/2 with
v'[(N+1)/2]~Upop—eleq as follows from Eq.(2) with
U(N/2)~Upopn, Whereup,, is an estimate fou(N/2)) at
breakage. Using these results, we can estimékd in the
interval[ 1/2,(N+ 1)/2] by considering the lower and the up-
per bound for (k):

—(&leqg Uprop)[K— (N+1)/2]

sv(k)s=—eldk—(N+1)/2]. 9)
Equation (9) is the linear approximation of (k) near (\
+1)/2, wherev '[ (N+1)/2] is estimated by-¢l¢q, respec-
tively Uprop— &l eg-

The relative deviation of these two limits idv/v
=Upron/ (eleg), SO that fore large v (k) is nearly v(k)=
—eled k—(N+1)/2]. Furthermore the (k) get to be large
in the later stages of fragmentation, so that thg" term
dominates in Eq(6). Therefore we find from Eq8)

eq:

u(k)=NM*1eMAg.(2), (10
where we setz=k/N—1/2 andg,(2)=1—12z|™"L. The
constantA is given bylg‘[{[gzb(er 1)2™*1] and the corre-
lation length ¢ is defined by¢=/d/D. From Eq.(10) it
follows that an increase in the nonlinearity.e., in m)
changesi(k) from a parabolic shapdor m= 1) to a plateau

fragment, whose probability to stay intact under straiis
1/2. Now we assume that.(e) is the only relevant length
scale and hence thét (¢)) is proportional toL(e). In the
following, we show howL .(¢) is obtained. We denote by
p(up,) the distribution of the local failure threshol@=nging
from Upin t0 Upa and bchu(ub)zfgbp(u)du the corre-
sponding cumulative distribution function. The probabily
for a fragment of lengtlh to stay intact, until the substrate’s
strain reaches, is

P=[1-Fc,(U(1)]X[1~Fey(u(2))]
X X [1=Fg(u(L—1))]
L-1

—ex k§_jl In[l—Fcu(u(k))]]. (12)

As discussed in Ref22], only the behavior of(up) for
up, close tou,, is essential, most of the, [ u(k)] are small

compared to one, and one has Rby reverting to integra-
tion and expanding the logarithm:

L
Pwexp[—f Fcu[u(k,L)]dk}. (13
0
InsertingP=1/2, we are led to
LC
J' Felu(k,Le)ldk=In2. (19
0
Moreover the change of variable=k/L.— 1/2 yields
1/2
ch FolLM1eMAgy(z)]dz=In2, (15)
-1/2

whereg,(2) is a function ofz only. From Eq.(15) the scal-

ing laws for different forms of the probability distribution
p(u,) follow. Knowing that the behavior gp(u,) close to
Umin determines the fragmentation kinetics, we assume the
following power-law forms forp(uy):

K(ub_ umin)ﬁ for UpminSUps Umint W

p(up) =[ (16)

0 otherwise
with k= (B+1)W~#*1 and B=0. Aroundu,,, Eq. (16) is
representative for many other forms in use, e.g., the Weibull
distribution. In the case of weak disorder, i.e., for small
W/unmi, or B large, p(up) is centered in a small domain of
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FIG. 2. The function(L(&)) in homogeneous systems for dif- o
ferent values ofn. The parameters atd=215 ¢2/N?=0.1,b=6 107 e
X 10%, u,=0.008, andle=1. Them values are indicated in the F o am 3
figure. i @%?&O ]
—1 .
up ; then the integral in Eq$14) and(15) is nonzero only if > 10 3
LM 1eMAg,(0)~ Ui, Thus we find 5\ 3 3
1 R J
L e ™, (17) v w0° L \
i.e., 2 N ]
<L>OCLCOC8—m/(m+l)_ (18) 10_3 i 1
W TTTT N R TTTT W T TTT/ B AT - i

1
~

1
The casen=1, corresponding to a linear spring, reproduces 10 10

the previously established restilt)o e~ 2 for the hierarchi- € (%)
cal fragmentation proce$$7,18]. Interestingly, no'F only in FIG. 3. Mean fragment lengt{L(¢)) in a strongly disordered
the case o_f purely !lnear bpnds, but also for nonllnear bond§ystem (n=0,8=0) for two sets of parameters. Each curve is
exact scaling solutions exist. In the case of strong disordegpained by simulations with ten different realizations of the prob-
namely, largeW/up, (€.9., Uyin=0), and B=0 leading to  apjlity distribution Eq.(16). The slopes of the dashed lines &ag
p(up) =1W for O<u,<W, we getF(uy) =u,/W, andL.  3/5 and(b) 5/7. Parametersa) N=25 ¢2/N2=10°, b=120, W
is given by =1, m=3, andle4=1. (b) N=25, £/N?=10°, b=120, W=0.5,
m=5, andl=1.
Al
LM+ 2gM— = const, (19) _ o
W eters, such as the elastic constants of the materials, influence
a. Because om>1 the power-law exponent ranges between
1/3 and 1, depending on the valuesrofand 8. For linear
bonds fn=1) the maximum value fow is 1/2.
(LyorL g~ m(m+2) (20) The onset of the scaling regime is given by a crossover
c .
length ¢ for (L). The mean fragment lengifiL(¢)) scales,
Equation (20) reproduces the strong disorder res(it) when the elongations (k) are a linear function ok. For
oe "3 for linear springs in the case @=0 [17,18. The small segments, the deviation of the linear approximation
probability distributions withu,,,=0 starting in a power-law Ed. (9) and the solutiorv (k) at 1/2 is roughly given by
fashion for small values ofi,, i.e., p(u,)*uf, lead to v"(1/2)N?/8. If this deviation is small with respect to

with J= l_/ﬁ,zgm(z)dz, from which it immediately follows
that

Feu(Up)uf ™, and thus v(1/2)~Nel¢2, then the crossover takes place. Defining
the crossover by, safv"(1/2)/(4elcq)=1/8, we find from
L(LMteM) AT 1= const, (21)  Eq.(5), neglecting on the right-hand side the linear term in
Uy
from which « of Eq. (1) follows readily:
m(B+1) No"(1/2)  N™eled™ ' 1 23
T mrn(Br DL 22 4eleq gp2ms 8

The two previous results, EqeL8) and(20), are obtained in - ysing Eq.(11) we obtain for the crossover length
this general case as the limits =0 (flat distribution or

B— (concentrated distributionFrom Eq.(22) we see that
the power-law exponent simply is a function of the nonlin- (= —
earity characterized bgn and the disorder. No other param- [2(m+1)Upron]

&b 1(m+1)

(29)
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Hence the scaling regime sets in as sooflagyets smaller =10°, b=120, m=5. For each set of parameters we have
than (. chosen ten different realizations of the probability distribu-
In order to exemplify these findings, we have simulatedtion, so that each of the curves in Fig. 3 corresponds to ten
the fragmentation process for various sets of parameters ifalizations. Once again the mean fragment length scales for
systems withN=2'°=32768 bonds. We solve numerically |arge values of the strain. From a least-squares fit we obtain
Eq. (5) with the given boundary conditions. Starting wigh  for (a) «=0.594 and for(b) «=0.712; the corresponding
=0, we increase incrementally. At each step the elonga- sjopes are depicted in Fig. 3 as dashed lines, and the values
tions of the surface layer bonds are given by B).in the  may pe compared to the analytical results=3(5600 and
continuous limit, which isu(k) =eleqt v’ (k+1/2). Ifu(k) 570714 In conclusion, the simulations agree quantita-
exceeds its specific failure thresholg(k), the kth layer tively with our analytical considerations.
bond is irreversibly removed. Then for each new fragment |4 summary, we have studied the influence of nonlinear
Eq. (5) is solved again with the incrementally increased val-forces on the fragmentation of coatings under uniaxial ten-

ues fore. sion. Our analysis shows that the mean fragment letigth

The results of the numerical simulations are shown inversus applied straire decays as a power law(L)
Figs. 2 and 3. Figure 2 shows the mean fragment lefigth g ~MB+ DM+ DB+1+1] \wherem is the highest nonvan-

in a homogeneous systdW=0 in Eq.(16)] for the param-  jsping hower in the force-elongation relation aficcharac-
eter§ub=0.008, &N ='O.1, N=,2 ' and b.=6>< 10%. The terizes the lower end of the failure threshold distribution. For
nonlinear force-elongation-relatidi(v) is given by Eq.(6) large values of the strain, this power law is exact and only
with m= 3,5, 7 9, respectively 25. Least-squares fits of thedepends on two parameters. Hence timesoscopic deter-
curves in the final stage large) show that(L(s)) decays  mination of(L) is a powerful tool in order to determine the

indeed algebraically with the values afgiven by Eq.(18).  microscopic behavior of forces acting in surface layer frag-
Moreover we have also performed simulations for two set§yantation.

of parameters in the strongly disordered case, namely, Eq.

(16) with u,;,=0 andB=0. The results are plotted in Fig. 3  We greatly appreciate the support of the DFG through
for the parameteréa) W=1, N=2%° £2/N°=10°, b=120, SFB 428, of the Fonds der Chemischen Industrie, and of the
m=3 and for the parameterb) W=0.5, N=215 ¢2/N2  Procope-DAAD program.
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