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We consider the effects of an external constant force on the one-dimensional transport of a particle whose
velocity stochastically fluctuates between two fixed values, Transport in the presence of a single trap is
analyzed in detail. It is found that in the long time limit the trapping probability is decreased compared to that
for the overdamped diffusion by the factor 141 4/v) whereuv is the average drift velocity.

PACS numbgs): 05.40.Jc, 05.66-k, 02.50.Ey

Discrete velocity kinetic models have been studied intenthat the external field induces additional transitions between
sively in recent years because they provide a conveniertvo velocity states in such a way that the momentum and the
framework for both numerical simulations and analyticalfield at any point would be connected by Newton's second
treatment of complex phenomena. In the simplest onelaw. This is a particular case of the more general model,
dimensional model a “particle” has the velocity fluctuating €xplored by Masoliver and Weigd 2], in which a particle
with a characteristic relaxation timebetween two values ~ SPends more time in one of the states than in the other. The
and—v. This is the continuous-space version of a persistencheme has been used recently in R8l.in the specific
random walk leading to the telegrapher's equafibh The context.of the problem.about stationary response in a weak
model has been applied in many different fields including?'térnating field. The aim of the present paper is to analyze
thermodynamicg2], solid state physic§3,4], diffusion of nonstationary solutions _of this model for 'Fh_e cases of trans-
light in turbid media[5], quantum mechanids], tunneling port on an unbo_unded line and on a seml-_ln_flnlte line in the
diffusion [7], and dispersion of particles suspended in fluigPresence of a single trap located at the origin.

[8]. A subject of recent interest was transport in the presence | "€ basic equations of the two velocity model with exter-
of traps. In continuous phase space the problem is very dif?@! potential are the following:

ficult to solve for arbitrary damping. Enormous literature on + v o4 -

) . . of of "t T —f F
the trapping problem addresses mainly the case of Brownian ————y—— + —f, (1)
motion in the strong damping limit, when inertial effects are ot 2 27 2my
completely washed out, and the reduced distribution function B I
(for position only is governed by the Smoluchowski equa- izvi+f - F f @)
tion. This approximation leads to underestimated results for at X 27 2my

the survival probability since it implies that a particle is

trapped whenever it reaches a trapping site, while a morkleref=(x,t) are the probability densities of the particlexat
general absorbing boundary condition involves only particlegt time t, with velocity +v, f(x,t)=f"+f" is the total
moving with the appropriate velocity. Discretization of the probability density, and-(x) is an external force which is
velocity space leads to a couple of evolution equations whiclassumed to be time independent. The second terms in the
are more suitable for analytical treatment than the underlyingight-hand sides of Eq¢1) and(2) describe stochastic tran-
Fokker-Planck equation while preserving the essential feasitions between two velocity states with the rate constant
tures of the problem. Probably the first exactly solvablel/27. It will be shown thatr is exactly the momentum relax-
model of transport with traps in discrete velocity space hasition time, and therefore parametetr Plays in the model
been analyzed by Wei$9]. More recently, Masoliveet al.  essentially the same role as the damping constant in the
[10] gave a detailed analysis of the telegrapher’'s equatiohangevin equation and in the corresponding Klein-Kramers
subject to a variety of boundary conditions including theequation. The last terms represent the field induced transi-
absorbing one. Bicout and SzaHiil] found the first passage tions (df*/dt)r==Ff/(2mv). It can be derived under the
time distribution as a function of initial velocity and dis- assumption that the local momentum densip(x,t)
cussed also a generalized model with more than two velocity=mv (f *—f~) satisfies Newton’s equation dp/dt)e
states. In all these studies only unbiased transport without mo[(df*/dt)—(df~/dt)]=Ff, and taking into account
external forces had been considered. The possible way tihat (df*/dt)e=—(df /dt)r. The relation with the model
incorporate external potential into the model is to assumef Masoliver and Weis§12] is evident from the fact that the

1063-651X/2000/6()/32075)/$15.00 PRE 61 3207 ©2000 The American Physical Society



3208 BRIEF REPORTS PRE 61

last two terms in Egs1l) and(2) can be written in the form af=(x,0) v dé(x—X%g) F(Xo)
FfY2r, 17 /27_, where 1/2.=1/2r¥F/2mv. We will - +3 ax + 5mo
demonstrate below that this is a reasonable way to incorpo-

rate dynamics into the two velocity modelee also Ref3]).  Here the first equation reflects the assumption that initially
At this point, however, one can see that the model has athe particle is located at, with equal probability to be in
inherent restriction because the above derivation implies thatach of two states. The second equation follows from the
both of the states are not empty. It is easy to guess that thigst one and the requirement that the functidrigx,t) ini-
condition does not hold automatically. In fact, in our simpli- ja|ly satisfy Eqs.(1) and (2). The initial conditions for the

fied scheme, field-induced transitions, tending to deplete ongya| distribution functionf (x,t) and for the functionp(x,t)
of the states, are proportional to the total local density ratheyjj| pe, respectively, the following:

than to the population of particular states. Therefore, one

S(X—Xg). (9)

must worry that sooner or later the force will completely af(x,0)

deplete one of the states. On the other hand, stochastic tran- f(x,00=8(x=xXo), ——=0, (10
sitions tend to equate the populations of states, and one can

anticipate that the state populations will always be positive if dp(x,00 1

the frequency of stochastic transitionsr1is sufficiently @(X,0)=6(x—Xg), pn =2—T(S(x—x0) (12

large. Throughout the paper the inequality

[we identify the arbitrary lower limit of the integral in Eqg.
f=—<1 3) (5) with the initial coordinatex, of the particld.
mo Let us consider first the transport in an unbounded one-

) ) dimensional space in a field of constant fofeen this case
will be assumed to hold. It will be shown that at least for athe functiong(x) [Eq. (7)] becomes a constant

linear potential this condition guarantees the positiveness of

distribution functionsf=(x,t), provided that initially both 1 = 1-¢2
states are filled with the same probabilities. We will show G?=—-— 5= 5 (12
that in the case of large dampingr#f|F|/mv (£<1) the 47% (2mu)? 47

model leads in the long time limit to the same result as the , . . . .
Smoluchowski equation. Fortunately, inequali8y does not wh|c:1 'ﬁ potshltlvfe due ft(t)hassurg_[?_tlddﬁt). lThen th;(B) for i
put constraints that are too strong, but cover also the mor@?(x' ) has the form of the modified telegrapher’s equation

: : . o hose solution is well knowrisee, e.g., Ref{13]). Using
interesting regime of moderate dampingi¢ less but com- - i
parable v?ith gwhen inertial effects cparr?lo(;t be ignored. boundary conditiong11) and turning back fromp(x,t) to

It is easy to obtain from Eqg1) and (2) the following the distribution function, we have
equation for the total distribution functioin="f*+f: i EX
f(X,t):eX% — E_'i‘ m

[(P]_(X,t) + ()DZ(XIt)

32f+1af , f a(F ) @
— D=2 — | —f],
g2 mdt g oxim + ea(X,0], (13
which reduces to the telegrapher’s equatiof # —dU/dx  where
=0. In the stationary state the solution of this equation is
given by the Boltzmann distributiof= fgexf —U(X)/(KT)] if p1(X,t) =[6(X—vt) + 8(X+vt)]/2,
we identify v with the thermal velocity,= VkT/m. 1 G
Using the transformation or(X,t) = m'o(;m O (vt—|X)),

t 1 (x
f(x,t)zgp(x,t)exp( 5t zf dxF(x)), ©) Gt G
T 2mv X0 (ps(x,t): Wll(;\ U2t2_xz)®(vt_|x|);

Eq. (4) can be somewhat simplified: (14)
P P X=X—Xgq, lo(z) and1,(z) are the modified Bessel func-
F:,ﬂﬁﬂ;(x)% (6)  tions, and®(z) is the Heaviside step function. If the damp-

ing is strong €<1), the functionf(x,t) in the long-time
limit (t> 7,vt>X) behaves asymptotically exactly as a so-

1 F2 14dF 4 lution of the Smoluchowski equation for diffusion in a field
9(x)= 472 4m2p2 2mdx’ (@ of constant force:
For many physical applications the appropriate initial 1 (X—Vgt)?
" al ap f(x,t)~ ———exp — ——0 |, (15)
conditions can be written in the form m 4Dt
+ 1 whereD = rv? is the diffusion coefficient, an4=F 7/m is
P x0=3ox=xo), ®  ihe drift velocity.
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It can be seen from Eq¢l) and (2) that the momentum V(t)"+(Ur)V(t)' =0 (23
densityp(x,t)=muv (f* —f ) is connected witlfi by the con-
tinuity equationdf/gt+m~19p/9x=0 and satisfies and to solve it with initial conditionsvV(t=0)=0 , and
V' (t=0)=F/m=Vy/r

?p laop ,3*p F(x)ap
o= —— V(1) =V4(1—e V7). 24
_ This result can be easily generalized for the case of nonzero
as long as the force does not depend on time. Because thjsitial velocity V/(t=0)=V,. The corresponding initial con-

equation and Eq(4) for f=f"+f~ have different forms, ditions for the functions *(x,t) are the following:
generally there is no way to write down uncoupled equations

separately forf ¥ and f . However, for the cas& = const f=(x,00=a" 5(x—Xo), (25
such decomposition is possible:

af=(x,00 . dé(x—xg) [at—a” F
PfT 19t AT F oof* Trav + -
_2+_E:UZ_2_E el (17) Jat dx 27 2mu
& i o X 8(X—Xo), (26)

These equation can be solved using relat@rfor the trans-  \yhere parametera® satisfy the relations™+a =1 and
formation of the functiong™ andf~ through the new func- at—a =V, /v. Using Eq.(26) one can find the second ini-

tions¢™ ande", tial condition for the average velocityV'(t=0)= (V4
£ = o= exp — t/27+ FX/2mu2), (18) {)r\:ﬁ)/r. Then the solution of Eq(23) has the expectable
and taking into account that the initial conditions for the V(1) =Vy+e V7(Vy—Vy) 27)
= o )

functions¢ ™ are
Let us consider now the process in the presence of one
o (x 0)235()() trapping point located ak=0, provided that initially the
2 ' particle is to the right from the trap, i.exg>0. In this case
the appropriate boundary condition is

—i—) 8(X). f(01)=0, (28)

(199  which implies that there is no reflection from the point
) i i =0. As we have seen, in the presence of the external field
The corresponding solutions have the following form: generally there is no way to obtain uncoupled equations
separately forf © and f ~. We concentrate here on the case
F=const when such decomposition is possible, and calcula-
tions can be carried out in the manner of Masolie¢ral.

S =exp(—tR2r+ FXI2mu?) (@1 + @5 + @3),

¢1 (X, D=[dX-vt)+o(X+v1)]/4, (20 [10]. Just as for the case of a freely diffusing particle, one
1/1 F G can consider only the equation fbr since according to Eq.
+ - + I
05 (X,t)= % (?i_mv) IO(;\/vztz—ﬁ) O(vt—|X]), (1) f~ may be found fromf ™ through the relation

oft  of* 1 N F !
oy )= Gt 1+X)| G re—e 27 2muv/|\27 2mv '
(103( ’ )_4\/m ~ot 1 v (29)

Using again transformatiofi8), we come to the following

-

X0O(vt— . i
O(vt=|X)) 2Y) equations for the one-trap problem:
One can see thdt" are always positive since we assughe > 4 > 4
< 1. For the average velocity(t) we have ¢ 202(9 b + G20t (30)
at? ax? '
Vi = [t 0001 () (o a1 F
F (ot T TV ax 27 T 2mo
4ml) ffvtdx ( )
with the initial conditions(19) and boundary conditions
t FX G + = i i ier-si
bt C mm— ¢ (0,t)=0. Using a combined Fourier-sine and Laplace
Xexp( 27'+2m 5 Io(v\/ tc—X ) (22 transform

Instead of calculating this integral, it is much easier to derive ot (k)= J'wdxfxdtsin(kx)exp(—st)go*(x,t) (32)
from Eq. (16) the equation 0 0
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we get
R + +
et (k,s)= © R):Snz(tzo;kzichgs(kxo) , (33
whereG is defined by Eq(12) and
1 F
R= 57 + P (39
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which holds for smalk. SinceP..=limg_ s P(s), we finally
have

B exg —XoVq/D]
Pm—l——1+§ : (40)

where, as in Eq(15), D=7v? andVq=F 7/m.
In the strong friction limit the problem is reduced to solv-
ing the Smoluchowski equation

Making the inverse Fourier transform, one can obtain the

Laplace transformp * (x,s) = [gdt exp(—st e’ (xt):

~ (s)x1
P (08— —ext = 0(5) (o= x)]
-1
PO o0 0). (@9

Taking into account relatiofR9), we find the Laplace trans-

form for the “total” function e=¢* +¢:

?(X,5)=— %5(X_XO)+B(Z):1 ( 1+ SIPF\ES)U)
-1 _

xXexg £e(s)(Xg—X)]— 'B(Z)U (1+ S PFES)U)

Xexgd —o(s)(Xg+x)]. (36)

af_DaZf Vaf a1
a7t P2 Vag (41)

with initial condition f(x,0)=d(x—Xg) and the boundary
conditionf(0,t)=0. The corresponding solution is

V3 (x—
f(x,t)zexp( — 2—Dd+ %
X [fo(X,t[Xg) = Fo(X,t| =X0) ], (42
where fo(X,t|Xo) = (1/\47Dt)exd — (x—X,)%/(4Dt)]. Re-

spectively, for the escape probability one can fiad=1
—exd —%Vy/D]. Comparison of this result with Eq40)
shows that in the diffusiofoverdampepapproximation the
probability of trapping (+ P..) is overestimated by the fac-

In Egs. (35) and (36) the upper and lower signs correspond tor 1+&=1+uvq4/v, while its dependence on initial position

to the regionsx>x, and x<x,, respectively, and function
o(s) and B(s) are defined by

1 +R
Q9= VG pe= ey (D

Using Eq. (5), the Laplace transform for the distribution

function f(x,t) can be written as

- - 1
f(x,s)=exp FX/2mv?)e x5+ -], (38

wherep(x,s) is given by Eq.(36). One can perform inver-

sion of this equation in terms of known functions, but the

and external field is the same as for the case of two velocities
stochastic process at moderate damping.

The presented discrete kinetic model is probably the sim-
plest one to treat random motion in an external field beyond
the strong damping approximation. It can be improved and
generalized in many different waymore than two velocity
states, two- and three-dimensional space).eAn extension
of presented consideration on the case of nonlinear potential
would be of much interest because it could give more insight
into many important problems requiring a solution of the
Klein-Kramers equation in the presence of absorbing bound-
aries (escape from a metastable state, transport in biomol-
ecules, etg. It is not certain, however, that the conditign

result is somewhat complicated and is therefore omitted. In~~1 guarantees the positiveness of the state populations for

stead we concentrate on the analysis of survival probabilit

P(t)=[5f(x,t)dx . In contrast with freely diffusing on a

line particle, the functiorP(t) in the presence of an external

field has a nonzero long-time limR., provided the force is

directed away from the trap. In this case integration of Eq
(38) gives for the Laplace transform of the survival probabil-

ity P(s) the following asymptotic form:

Bie)= 27 1+&—exd —Fxo/(mv?)] 39
(_52(1+§) —1+\1+4rs/g2

ok arbitrary potential. Further work is needed to clarify this

question. For the case>1 the presented model leads to the
modified Klein-Gordon equations for the functiogs (x).

Its solutions take an unphysical negative values at titnes
=te=mv/F. One should note, however, that the model can

be regarded as a reasonable approximation even in the un-

derdamped regimeéé>1) for processes with a characteristic
time of less tharig [3]
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