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Interaction-round-a-face density-matrix renormalization-group method applied
to rotational-invariant quantum spin chains
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An interaction-round-a-face density-matrix renormalization-griF-DMRG) method is developed for
higher integer spin chain models which are rotational invariant. The expressions of the IRF weights associated
with the nearest-neighbor spBiinteractionS - S, ; are explicitly derived. Using the IRF-DMRG with these
IRF weights, the Haldane gaps and the ground state energy densiggsor both S=1 andS=2 isotropic
antiferromagnetic Heisenberg quantum spin chains are calculated by keeping up to-08y states.

PACS numbsgps): 02.70—c, 05.50+q, 75.10.Jm, 75.40.Mg

I. INTRODUCTION superblockB++BR is proportional tom?.
Sierra and Nishing10] had applied the DMRG method to
Density-matrix renormalization-groupDMRG) method interaction round a fac€lRF) models and developed the
has been a powerful numerical tool since White's pioneerindRF-DMRG method. The advantage of using IRF-DMRG
works[1]. DMRG is a real space numerical renormalizationmethod in a system which has rotational symmetry is that the
method by using the reduced density matrix of a large sysdimensions of the associated Hilbert spaces are much smaller
tem to approximate the groun@r excited statds) of the  than that in standard vertex-DMRG, since the degeneracy
system with great accuracy. There are many DMRG applicadue to the symmetry has been eliminated. They had demon-
tions for(quasjone-dimensionallD) systems, e.g., quantum strated the power of the IRF-DMRG by calculating the
systems, statistical systems, polymers, €. a review see ground state energies of the solid on solBIOS model,
Ref.[2], and references thergin which is equivalent to spin-1/2 Heisenberg chain, and that of
DMRG is also a variational method and closely related tothe restricted SOERSOS model, which is equivalent to the
the matrix productMP) method[3-6]. In MP method the quantum group invarianXXZ chain. They also had sug-
ground state of a system, which is assumed to be expressgeésted a promising potential of the IRF-DMRG when it ap-
as a matrix product, can be obtained by minimizing the asplies to higher integer quantum spin chains. Such a work has
sociated ground state energy density with respect to variaaot yet been done as far as | know.
tional parameters. On the other hand DMRG method may In this work, the IRF-DMRG method is reviewed and
find the ground state of a large system, which consists ofurther developed for the 1D integer spin antiferromagnetic
Wilsonian blocksBl++BR, by keeping the most probabie  Heisenberg AFH) quantum spin chains. In IRF formulation
states for each blocB"'R. The mostm probable states are the dynamics of a model can be described by a local
selected by using therlargest eigenvalues of the reduced plaquette operatoX;, which operates to théh site of an
density matrixp"'R for each block. For an overview and IRF state as a “diagonal to diagonal transfer matrix” and
some connections to related fields including MP methodtheir matrix elements are calletie IRF weightsas will be
Ref. [6] is recommended. explained in the next section. We hence need the explicit
When a system of interest has a symmetry, the associateskpressions of the IRF weights for the higher integer quan-
eigenvalues of the density matrixare degenerated and one tum spin chain models in order to work with the IRF-
should keep the all states that corresponding to the samBMRG.
eigenvalues. For example, if we consider a rotational invari- The rest of the paper is organized as follows. In the next
ant model, e.g., 1D isotropic Heisenberg spin models, wittsection the IRF-DMRG method is reviewed. After the expla-
the standard vertex-DMRG, we may use third compongnts nation of IRF formulation, the infinite system algorithm of
of spin as basis, then the eigenvalues of the density matrithe IRF-DMRG is discussed. How to target the excited states
are degenerated due to the rotational symmetry. One thusf AFH quantum spin chains are explained and the super-
needs to keep many states to improve numerical accuradylock configuration suited for targeting the excited state of
with s, basis in order to get a real physics at thermodynami¢he AFH spin chain is proposed. In Sec. lll, the power of the
limit. There have been large-scale DMRG calculations withiRF-DMRG is demonstrated by applying it to bdBs 1 and
many states kept, for example, up mo=300[7], m=400 S=2 AFH quantum spin chains. The Haldane gaps are cal-
[8], m=1700[9], to estimate the&s=2 Haldane gap. How- culated by keeping moderate number rof states. Finally
ever, the moren states are kept, the more computational costonclusions are stated. With the help of the Wigner Ekart's
is necessary since the dimension of the Hilbert space for thtneorem summarized in Appendix A, | have derived the ex-
pression of the IRF weights for a nearest neighbor $§pin-
interactionS;- S, 1 in Appendix B. These expressions enable
*Electronic address: wada@ee.ibaraki.ac.jp us to work with the IRF-DMRG.
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FIG. 1. Diagrammatic representation of the operation of a ,I>i;
plaquette operatoX; on a IRF statd/q, .../}, ... /), which 1 ,:--:;I'
is drawn as a zigzag chain of the lattice sifepen circles The '}i\
closed circle stands for the summation over the lattice varigple 0 ’

1 2 3 4
Il. REVIEW OF IRF-DMRG

. ) . FIG. 2. Spin diagram fo6=1 chain. Each vertex represents an
The IRF-DMRG method is briefly reviewed here accord-|RF lattice site. The height of each site represents the total spin

ing to Sierra and Nishino’s papgf0]. It is instructive t0  angular momentumj; summing from the most left vertex
begin with a brief review of graph IRF model in somewhat (vacuum stateuntil theith spin. Admissible vertices are connected
general context. The IRF representation of a rotational inwith lines.

variant quantum spin chain is then explained with the help of

the associated spin graphs. In fact 1D quantum spin chaigerived fromA necessarily has zero IRF weight. It may be
models can be formulated as a special case of graph IRfore convenient to use a graph or diagram associated with
models. The algorithm of the IRF-DMRG is also reviewed. the selection rule, oA, of an IRF model and this is called a
A method how to target the excited states of AFH quanturrgraph IRF (or graph fac¢ model. Each vertex of such a
spin c_hains and the appropriate superblock configurations alGraph represents a lattice sité, which may take values
explained. from 1 ton;, and they are connected with line if they are
admissible.
For a rotational invariant spin chain, the corresponding
A. Graph IRF model selection rule is nothing but theeddition ruleof spin angular
In interaction round a face or face models for short™omenta, each spin state is hence classified V\.'ith t_he total
[11,12, a state is represented with the lattice variabfes spin angular momentum e states Of. nt"r;e .cha.lnnqawnhl
assigned to the lattice sites: spins will be given by the sefin.M) (j SIS ") of
states with total spifiy and the corresponding third compo-
IN=1 010 - N (1) nentM. _O_ne of the graphi_cal representatipns _associated with
the addition rule of spin is the so callepin diagram For
while the associated interaction is defined on a face, ofxample, the spin diagram f&=1 spin chain is shown in
plaquette of the lattice sites Fig. 2. The corresponding lattice variablgs of the spin
diagram are the magnitud@sof spin angular momenta until
Xil .o im0 ) theith spin. The height of each vertex represents the gum
of the spin angular momenta starting from the most left spin
/i until theith spin. Theth and { + 1)th vertices are connected
_2 /iy Jioq if they are admissible, i.e., if they are satisfied with the ad-
< R ) dition rule; |j;—S|<j;+1<];+S, where S=1 for spin-1
E /i chain. Note thaf; takes values fronj™" to j"®, i.e., the
range ofj; is site dependent. An IRF state of tNespin chain
X[ oo icn /i ivas o) (2 is represented by a path in the spin diagram
I* 1202y -« olis - - -»jn) @nd the most left vertex * is cor-
whereR are so calledRF weights which play an important responding to a vacuum stat@). If we know all the IRF
role such as Boltzmann weights in usual statistical modelsweights associated with a spin chain model, we can work in
The dynamics of the model is described by a plaquette opthe IRF formulation. It is hence important to derive the ex-
eratorX;, which consists of the associated IRF weights. Theplicit expressions for the IRF weights of the spin chain
plaguette operatoK; can be viewed as a local “diagonal model to apply the IRF-DMRG. In Appendix B, | have de-
transfer matrix” as shown in Fig. 1 in contrast with a usual rived the expression of the IRF weights for the nearest neigh-
“row to row transfer matrix.” bor spinS interaction and summarized the diagrammatic rep-
IRF model is characterized with a selection rule whichresentations and the corresponding IRF weights as a function
determines whether the adjacent lattice sites of a lattice sitef spinj for the S=1 isotropic AFH case in Fig. 12.
are admissible or not. The selection rule can be described by
its associated incident matrix, ., whose elements are alll
either 0 or 1. IfA, ,,=0, then the lattice variables and ,
/' cannot be assigned to adjacent lattice sites, i.e., not ad- B. Algorithm
missible to each other. Th& characterizes the set of all The DMRG is an iterative algorithm to approximate a
possible configurations which contribute to the Hamiltoniantarget state(the ground or excited statef a large system
or partition function of the IRF model. A configuration not which consists of the two blocks and lattice &jeIn each
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FIG. 3. Schematic diagram of the infinite IRF-DMRG algo-
rithm. Each block(dotted line box is extended by adding single
middle lattice point ¢ in each DMRG iteration. Thick lines represent
renormalized block states.

FIG. 4. Diagrammatic representation for the construction of the
uper block HamiltoniaBL*Br; each diagram is corresponding to

iteration each block is extended by adding one lattice site bU%aCh term in Eq(4).

keeping only the mostn probable states, which are selected

with the density matrix constructed from the target state. The
superblock[15] is formed by the left blockB", the middle W)= b ®b® 5
block which consists of a lattice point ¢ or of two points ee, Vo) E Vg € ) ®
and the right bloclBR, which is not necessarily the reflection
of BL.

Let me first review the infinite system algorithih0] of
the IRF-DMRG. A Hilbert space of the superblo&+BR ,
can be written as a

4 b b b
L.gR a = ,
HEB ={|§a®b® "7c>|Aa,b=Ab,c=1}v 3 pga ;c zrlfgal"]clr/,gﬁ"nc’ ©)

The left density matrimBL' is readily constructed as

i.e., a space spanned by a left block sthfg), a middle

lattice point statdb), and a right block statgn.) (see Fig.

3), where the three lattice pointa,b,0 must be connected in  The right density matrixp® ™ is constructed in the similar
an associated spin diagram. These lattice points take valu®gy if necessary.

from j™" to | wherei=a,b,c. The next step is to dlagonallzcé3 to obtain the eigen-

The superblock Hamiltoniaki®B" can be constructed Valuesw® and the associated agenvectb:%) Keeping the
from the two block HamiltoniangB" , HB® and the IRFE M states associated with-largestw® (m=X,m,) in order to

weightsR using the following relation: form the projection operatoF'T.
a/ b! C/
— b b_ b b
H§;vb’v7lé * * T—; T , T _;a |U§a><U§a|. (7)
fa b7 a b ¢
The operatofT truncates the Hilbert spade B™ into HB'L,

a’' whereB’" represents a block with one more lattice site than
el bls s A s the blockB\. A new left block Hamiltonian is then formed
S a b.b"e,c’72b,c%a.n by using the projection operator a8 =T(HB™)TT. In

each IRF-DMRG iteration the system is extended by adding
) single middle site ¢ to both blocks as shown in Fig. 3.
b The infinite system algorithm for the IRF-DMRG with the
vs s Rl 2 cls s superblockBt+BR is summarized as follows:
&¢'%aal b c.c’ % n’ (i) find the ground state of the superblock Hamiltonian,
Eq. (4),
(i) form the left (right) reduced density matrix
c’ L. R
%" (p°7), Eq.6),
+5§,§’5a,a’5b,b’Aa,bHZ, b 1 (iii) diagonalizep® " (p®™) to obtain the eigenvalues
c wP and the associated eigenvectmge) (|uk,’,c>),

(iv) keep them statedu§a> corresponding to thm largest
(4) eigenvectorsv® to form the projection operatdF, Eq. (7),
Figure 4 shows the diagrammatic representation of the above (V) renormalize the block operators by usifg He"
equation. =T(HB™)TT, etc.,
We then may find the grountbr excited state of the (vi) extend each block by adding one site -,
superblock by using a Lanczos or similar method: (vii) repeat the processes for new blocks.
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FIG. 7. Schematic diagram of the proposed infinite IRF-DMRG

FIG. 5. (@) Spin diagram of the superblock for targeting the gigorithm. The left(right) block is extended by adding single
excited state or the ground state of e 1 open spin chain ended iqgie left (right) point  in each IRF-DMRG iteration.

with S=1/2 spins.(b) The corresponding spin chain bif=4 spin-
1 spins(large hatched circlesended with spin-1/2 spingsmall
open circles For targeting the excited states, which has total spi
S'=1, ferromagnetic coupled two spin-1/2 spins are attached.

highestj of the left block, which is constructed from the left
Mvacuum by adding spins, coincides with that of the right
block, which is constructed from the right vacuum, at the
middle point in the spin graph. However the situation is
Next let me explain how to target the excited state of thesomewhat different for targeting the excited state which lies
AFH spin chain before discussing the superblock configurain S;=1 sector. From Fig. ®), we noticed that no single
tion suited for the excited state. Figure 5 shows how to targemiddle point at which the highegbf the left block coincides
the excited state of the AFH spin-1 spin chain ended withwith that of the right one and that there is no reflection sym-
spin-1/2 spins. In order to fix the total sgi} of the chainin  metry. Hence it is better to use the superblock configuration
S;=1 sector, two spin-1/2 spins that ferromagneticallyof Bt««BR, at least when we use the infinite system method,
coupled with the coupling constadi<0 are attached as and renormalizeB- (BR) with the middle left(right) site
shown in Fig. Bb). Note that the attached two spins, which individually as shown in Fig. 7. The associated superblock
energetically favor a triplet state, are not coupled with theHamiltonian can be constructed in the way diagrammatically
chains. Since the whole systdthe chain and the two spipns shown in Fig. 8.
is set to a singlet state (0 segtathe triplet state of the two
spins enforceS;=1 on the chaif13].

Now let us consider the superblock configuration that Il. APPLICATION TO S=1 AND S=2
suited for targeting the excited state. In the infinite system ANTIFERROMAGNETIC HEISENBERG
algorithm of the IRF-DMRG with the superblock configura- QUANTUM SPIN CHAINS

tion of BL+BR, the middle point is singléare siteand plays

an important role to successively improve the renormalized The supremity of the IRF-DMRG method is demonstrated
block Hamiltonians. In each IRF-DMRG iteration both by applying to bothS=1 and S=2 quantum spin chains.
blocks are renormalized with the middle site as shown in FigHaldane’s conjecturgl4] that the physics of isotropic anti-

3. In Ref.[10] the superblock configuration &-+BR was ferromagnetic quantum spin chains depend substantially on
used and it is suited for targeting the ground states of AFHvhether the spin is integer or half-integer, has been motivat-
spin chains, because the highgssite always lies in the ing many physicists to study quantum spin chaifs: 1
middle of the superblock as shown in Fig. 6. Since theAFH chain have been widely studied with various methods
ground state of an AFH quantum spin chain with ew¢n [16]. It is a well known fact that the ground state of an open
spins lies in the total spin 0 sectgg=0 and obviously the S=1 quantum spin chain has an effectie=1/2 spin at
vacuum states has zero spin, i.ej,=0. Furthermore the €ach end. Whit¢17] had obtained the ground state energy
system is reflection symmetric with respect to the middleper site ofey,=—1.401484038971(4) witim=180 states
point in the spin diagram. Thus the middle point always hakept and the Haldane gap df;=0.41050(2) withm= 160

the highesj in the IRF-DMRG formulation when targeting

the ground state of the AFH spin chain. In other words, the ap by by afy
(@ =
j=712
5/2 a, b, by a;

3/2

12

O—o—o—* + *_._‘_Q(
b o—O0—0—~0—0—0—0—o0
® + +
FIG. 6. (a) Spin diagram o5=1 chain ended witl$= 1/2 spins.
AKLT state is corresponding to the horizontal line jat 1/2. (b)

The corresponding spin chain bf=6 spin-1 spinglarge hatched FIG. 8. Diagrammatic representation for the construction of the
circles ended with spin-1/2 spin@mall open circles super block Hamiltoniar BL"*Br,
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FIG. 9. () Spin diagram of opei$=2 spin chain ended with s m=36
S=1 spins. The totaS'=1 state is targeted to find the excited ®  m=40
state.(b) The corresponding spin chain bf=4 spin-2 spinglarge i @ m=50 ]
closed circles ended with spin-1 spinghatched circles The at- 04105 - x ,_ i
tached two spin-1/2 spinémall open circlesare coupled ferro- min
magnetic or antiferromagnetic depending on the target state.
0.4100

states kept by using the standagbase DMRG.

S=2 AFH quantum spin chains have also been studied
[7,8], although the numerical calculations are much more
elaborative than that dd=1 case due to the longer correla-  FiG. 10. The gagr}(m,N) in the unit of the coupling constant
tion length & and due to the larger number of degrees ofj as a function of the number of state=3;m; kept in the IRF-
freedom per spin because the degeneracy due to the SPDMRG calculations and the spin chain lengthEach cross denotes
symmetry. The longer correlation length means that muchhe position of minimum for a givem curve.
longer chaingmore than one thousandre required to reach

0 0.001 0.002 0.003 0.004 0.005 0.006
/N

the convergence regime to exclude the finite size effects. 2 1
Schollwack et al [7] estimated that the gap of, A(m=o,N)=Agt — 4 (_) 9)
=0.085(5) and the ground state energy density taejwe 2AgN? N3

—4.761248(1) by using the standard DMRG with upnto

=210 states kept. Wanet al. [8] systematically analyzed \yherey is the spin wave velocity anfls the Haldane gap of
and estimated that the gap,=0.0876-0.0013 with up t0  the spinS AFH spin chain at the thermodynamic limit. Fig-
m=400 states kept during DMRG calculations. ure 10 indicates the gap,(m,N) as measured by the differ-
Following Schollwak et al, | also consider the open gnce hetween the lowest energySf=1 states and that of
spinS AFH quantum spin chain terminated with s  gT—( states, as a function of the spin chain lengtand the
spins to cancel out the effective spif2 spins: number of statesn kept in the IRF-DMRG iterations. The
excited states were obtained by using the method explained
i=N_2 in the previous section as shown in Figs. 5 and 7. With the
_ . ) . simultaneous extrapolation fon and 1N, the Haldane gap
H=JendSr S+ 22 S-St dendh-1Se - ®) for the S=1 AFH chain is estimated to b&;=0.41045).
Wang et al. [8] pointed out that one cannot use the ex-
trapolation with respect to i/ to obtain the gap value at the
where both the coupling constar@sndJg,qare set to unity thermodynamic limit whemm is not sufficiently large: the
for simplicity. The spin diagram for th8=1 ground state is minimum of each curve foAg(m,N) deviates from the ver-
shown in Figs. 6 and 9. | have obtained the comparable resulical axis asm decreases; while E¢) tells us the minimum
of ep=—1.40148403897 with the IRF-DMRG by keeping should be located just on the vertical axis in the limit
only m=80 states, which consist of 25€1/2), 31 —o, DMRG involves a systematic error associated with the
=3/2), 19(=5/2), and 5{=7/2)m; states, without resort- truncation or keeping a finiten states of the renormalized
ing to a scaling technique. Note that sinoestates inj base  Hilbert space. They thus remarked that these errors are not so
correspond to (P+1)m; in s, base, the aboven=80 corre-  serious forS=1/2 or S=1 AFH chains but the errors be-
spond tom=328 in's, base. For thés=2 chain with N come crucial for higher spin chains and scalingfoshould
~200, | have found that the ground state energy density i®e carefully carried out. In standard DMRG calculations the
eo=—4.7612481(6) by keepingn= 90 states, which consist multiplicity 2S+ 1 of spinS is not eliminated. Then in order
of 9(j=0), 24(=1), 27G=2), 19(G=3), 9(j=4), and to treat the higher spin chain, the larger numbeof states
2(j=5)m; states, hence correspondingrte=452 states in  should be kept. The IRF-DMRG, however, has a great merit
s, base. to eliminate the degeneracy due to the spin symmetry. We
The finite size correction to the Haldane ghgwith open  can hence keep effectively larger states.
boundary conditions is proportional to the inverse of the Figure 11 shows the gafy,(m,N), as measured by the
square chain length according to the 1D field thgd§,19: difference between the lowest energy ®f=1 states and
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S 013 [umeess : ? ] VOV 2H3 | S JF1
) 5 ] Vi(i+2) J 2j+3
S e 2 il Rl ¢z 231k 5.2
< 042
o m=32 FIG. 12. The diagrammatic representations and corresponding
0.11 3 --; s m=40 H expressions for the IRF-weights of tie=1 nearest-neighbor inter-
[ R i o m=48 ] actionS;- S, 1. In each diagram the hight of a vertex represents the
o1k D : mfgg k magnitude of the spin angular momentum assigned to the vertex.
I aat m: ] The height of thglower) middle vertex is assumed to e
[ A m=90 ]
J +mi[1 ] . . . . .
0-09*{ o Ay=0.0894 [] discussions. Most of the computations were carried out with
1 * A=00862 |] newmat09[21] matrix library and Standard Template Li-
oos——rt——r o b brary (STL) in C++ (egcs-1.1.722]) on both Linux-Alpha
(Stataboware 2.04[23]) and NetBSD-Alphd24] machines.
0 0.004 0.008 0012 0.016 | further thank Goto Kazushige for providing a stable and
IN powerful Linux-Alpha OS, Stataboware.

FIG. 11. The gapr?(m,N) in the unit of the coupling constant
J as a function of the number of state=>;m; kept in the IRF-
DMRG calculations and the spin chain len¢thEach cross denotes APPENDIX A: WIGNER-ECKART'S THEOREM
the position of minimum for a givem curve. The open and solid
diamonds denote upper estimated valug and lower oneA| ,
respectively.

The Wigner-Eckart’s theorem is briefly reviewed to de-
rive the IRF weights associated with general spimterac-
tion in the form ofS-S' in the next appendix. Most of the

] . . results presented here are already known and can be found in
that of S'=0 states, as a function of the spin chain lenlyth Ref. [4].

and the number of stateskept in the IRF-DMRG iterations. Let T{ be an irreducible tensor operator with an angular
The extrapolations are performed for bathandN simulta-  mementunrk and the third compone = —k, . . . k). T
neously and the upper estimated valig and lower one\.  commutes with the total angular momentum operdtof a
are obtained by using the polynomial fits with second Orde%ystem considered as

and third order, respectively. The estimated Haldane gap for

the S=2 AFH chain isA,=0.0878+0.0016. [3,, T&=MT{, (A1)

[3,xidy, TP1=Vk(k+1)-M(M=1)T{. . (A2)
V. CONCLUSIONS ie., T(h},‘) is transformed as a tensor under a rotational opera-
The IRF-DMRG is reviewed and developed for highertion for the system. For example, each component of spin
integer quantum spin chain models which has a rotationabperatorS is expressed as
symmetry. The explicit expressions of the IRF weights for

the nearest neighbor spiinteraction have been derived as TV=s5,,
a function of total spirj. Using these IRF weights the IRF-
DMRG has been applied to botB=1 and S=2 isotropic F1
in chai i TH=—s (A3)
AFH quantum spin chains. With the moderate num{ogrto *1 \/f *

m=90) of states kept in the IRF-DMRG iterations, the
Haldane gaps and ground state energy densities were readily The inner product of a pair of irreducible tensar& and
calculated since the degeneracy due to the spin symmety() is defined with
had been eliminated.
k
T<k>-u<k>zM:2_k (—1) " MTRUK,. (A4)
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part, which expressed as Wigner’'sj 3ymbols or Clebsh- APPENDIX B: IRF WEIGHTS
Gordon (CG) coefficients, and a configuration independent

part: | here derive the IRF weights for the following Hamil-

tonianH, which is invariant under rotations.

J/
M,}(JIITMHJ’). Hii 1= S, (B1)
(A6)

K17/ mp/\ — (7 _1\J—M
<‘]M|T,u |J’'M")=(—-1)

-M

whereS and S, are not necessarily the same. The IRF
where ||T®[|J’) are called reduced matrix elements, Weights for theH are expressed as the matrix elements

which is independent of the configuratiovi or M'. Wig-
ner's 3§ symbol is related with CG coefficient as ((JiS+D):di1Mi11S S+ 13/ S 1), M4 1),
(B2)

J k J (_1)J7K7M’ ’ ’
-M o M - 20 +1 (I=Mku[J'=M"). Where|(JiSHl),Ji+1M_i+1>. is a state that the sum of spin
(A7) angular momenta until the ¢ 1)th spin isJ; ., and the cor-

responding third component i, ., ;. TheJ; . ; consists ofJ;

Once the reduced matrix elements are known, one gets #nd @ SPinS;..; spin.
the matrix elements with only calculations for CG coeffi-  USing Eq.(A10) one finds
cients. For example one easily finds the reduced matrix ele-

ment for spin operatd by applying the theorem E@A8) to (381, 3i+1Mi11]S S 11l S 1), 3 1M1 1)
S, which is corresponding th=1 andu =0, as the follow-
ing: 3 +J~+S[ Ji Sit1 Ji+1]
:(—1) i+17 i ,
< Siv1 i 1
(SMITEISM)=(-1s™ o M,}<S||S||S>. X(SiallSlIS+ ) (lIS3). (83)

(A8)
Sincel|J;) can be expressed as a tensor product; of and
Since the left hand side ¥ 8y, y+, one gets spinS, the last reduced matrix element in the above equation

may be written, with the help of EqA1l), as
(919|S) = VS(S+1)(2S+1). (A9)

The following relationg4] are used to derive the expres-
sion for the IRF-weights of general sp#hehain in the next

Jil[S)13)) = (3i-1SIil[913{-1SI])

— 6‘]i71\]{_1( _ 1)‘]i +§+J_1+1

section:
(11 2IM[TE-T]j1j20'M") oS i
o J s 1
= 83y Sy (— 1)J2* %01 e
= 033 Omm’ ik X(23;+1)(23] +1)
XTI GAITRN), (A10) X (SlI8/]S)- (B4)
Gad 23l T8145597) Hence the final expression is obtained as
T ’
=5jjf(—1>11“2“’*k{]f y JZ] g
22 Ik Rl Ji—1 Jit1
X \(23+1)(23 1) (j4l [TV, Ji
(A11) =((JiSi+1):3i+1S-S+1(I S 41).3i+1)
(122378152537 (= 1) SN At
s .,(_1)11+j§+J+k[j2 J jl] X S(S+1)(25+1)(23;+1)(23 +1)
Jljl J' Y k
2 X{ J S mHs 3 JH]
X \(23+1)(23"+ 1)l I TPIj ). S« 1) s 1)

(A12) (B5)
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1. S=1 nearest-neighbor interaction j

There are thirteen nontrivial IRF-weighBfor the S=1
nearest neighbor spin interactior: S, ;. They can be ob- .
tained by substitutings=S;, ;=1 in Eq. (B5) and the re- J
sults as a function of are summarized in Fig. 12 with dia-
grammatic representation. In each diagram the magnitude of
spin angular momentum for the middle vertex is assumed to
bej, and the height of each vertex represents the magnitud@imilar results forS=2 case are readily obtained with
of the spin angular momentum that assigned to the vertexhe help of a symbolic manipulation language such as
The first diagram, for example, stands for MATHEMATICA .
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