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Self-consistent kinetic simulation of plasmas
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An improved version of a kinetic simulation technique, the convected sct€Beis described. We present
a “long-lived moving cell” version of the convected scheme and describe a recipe for implementation in
detail. In collisional systems, the numerical diffusion in “ballistic motion” does not affect the simulation result
of the regular CS, which can be set up to minimize numerical diffusion in collision processes. With the new
scheme, the numerical diffusion is highly reduced even in nearly collisionless plasma systems, which is
important in the modeling of low-pressure high-density plasma sources.

PACS numbds): 02.70—-c, 52.65-y, 52.25.Dg

[. INTRODUCTION can also lead to nonsensical results, since the ionization rate
may then grow without bounds. It was pointed out that the
Kinetic models are essential for accurate description ofowest energy particles are the most troublesome to simulate.
the energy and velocity distributions of the particle species inThis is perhaps not surprising at one level, since their very
a plasma. There are several kinetic models, each having iflow motion makes the simulation of these particles the most
own advantages and limitations. Several particle type methaumerically “stiff” aspect of the scheme. In addition, the
ods, such as Monte Carlo, direct simulation Monte Carloneed to use an energy conserving scheme causes special
and particle in cel[1] are well developed. The other main problems for particles that do not leave the initial spatial cell,
type of model involves solving the plasma kinetic equation.before they are mapped back. If we do not conserve energy
The convected schen{€S) model has been used in simula- when we update their coordinates, then particles that are put
tions of both fusior{2] and processing3,4] plasmas. Itis a back in a given cellli.e., with spatial coordinate) un-
formidable task to obtain a solution of a realistic dischargechanged can have gained energy. Over many repetitions of
due to the difficulty of describing the charged-particle behavthis mapping back, they can gain a lot of energy, quite arti-
ior consistently with the fields present, the wide range officially. On the other hand, if we do conserve their energy,
time scales present, and limited basic cross-section and rea®en if they are put back in the same spatial cell, they are
tion rate data. Regardless of these obstacles, it was found th@ffectively put back at the cell centésince we cannot dis-
the major source of error in the CS is numerical diffusion. tinguish their location better than this, once they are back in
The purpose of this paper iS, in part, to investigate théhe Celb and so they lose any energy they gained in the last
accuracy of a class of schemes for kinetic simulation of plasstep. This means that they stay in the cell too long, since
mas. The class we consider here are direct solutions of th@eir acceleration is repeatedly negated at the end of each
Boltzmann equation. We thus do not consider simulations ofime step. Because of this dilemma, in particular, and be-
the “particle” type [5]. Such particle simulations allow very cause numerical diffusion is a problem whenever the phase
accurate tracking of individual particles, but suffer from sta-fluid is mapped back, we investigate the use of “long lived
tistical noise and from poor sampling of some regions ofmoving cells” (LLMC). These are simply packets of phase
both physical and velocity space. In the past some of thduid that persist for more than one time step, and they usu-
major sources of error in the most accurate type of Schem@”y |aSt Unt|l the paCket getS out Of Its |n|t|a| Spatlal Ce” or
for solving the Boltzmann equation have been consideredntil a collision time has elapseo the packet is largely
[6]—which are probably schemes based on the method g@mptied out by collisions, as we shall ged/e introduce this
characteristics. The errors associated with the “ballistic’ "ew scheme in kinetic modeling for low-pressure partially
motion (i_e_7 the motion in phase space in the absence opnized plasmas, and summarize it in a detailed reCipe. This
collisions were discussed, as well as the errors involved ind/gorithm is first benchmarked by imposing a constant field
the handling of collisions, and it was argued that different(Swarm configuration and comparing with experiments. A
sets Of phase_space Variab|es were opt|ma| for the hand“r@t Of rf helium diSCharge Simu|ati0nS will alSO be Used as
of each of these two processes. benchmarks.
It was pointed out that conservation of particles and en-
ergy are usually critical for an accurate simulation, and for
these to be implemented, locally in phase space, we need to
track particles leaving an ‘initial’ cell on the mesh and im-  Kinetic models can be divided into two categories: statis-
pose the conservation l&agy whenever those particles are put tical models and direct solutions of the Boltzmann transport
back onto the mesh. Nonconservation of particles is clearly @quation 7]. Monte Carlo, DSMC, and PIC are of the former
severe problem—especially in a simulation where the Poistype. They use random number generators to simulate the
son equation is solved, since if particle numbers grow artifi-effects of collisions; and integrate the equations of motion to
cially, the electric field will almost certainly be greatly in track particle movements. Sometimes statistical noise will
error. However, a small but steady artificial input of energyreduce the quality of the simulation results.

II. KINETIC MODELS
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The other type of kinetic modeling requires us to find the
solution of a kinetic equation directly. One approach is using
a Fourier transform of the kinetic equation, then solving the
dynamic equations for the Fourier coefficief&-10. An-
other approach is to solve the kinetic equations directly, as is
done in the convected scher(®@S method.

The CS uses the method of characteristics to construct
propagator$11—14. After a brief introduction to the meth-
odology of the CS, we will describe the details of the im-
provements we have made to the CS and give the recipe for
its implementation.

FIG. 1. Mesh for three-dimensional phase space.

A. Propagator method the contrary, the CS is free of statistical noise, but the finite

The kinetic behavior of a gas discharge is described byize and the discreteness of the phase space mesh will cause

the Boltzmann (transport) equation numerical diffusionwhen particles from cells are redistrib-
. . . uted after the ballistic motion or after collisions. Tlong-

J J d i i i -

v Tra e, 1) lived moving cel(LLMC) model has been conceived to re

ot X v duce the numerical diffusion, by reducing the number of
times this redistribution occurs.
where, for each specief=f(x,v,t) is the one-particle dis-
tribution function, which statistically describes the number
of particles in the volumelx dv at the position X,v) in the ) ) ) i i
six-dimensional phase space at timeatjs the ensemble The idea of the CS is, given a suitable numerical mesh
averaged acceleration, ar@(f) is the collision operator. th_rougho_ut _p_hase space, to move the partlcles_assomated
The CS is based on using the propagator method to solve tHMth thg |nd|V|du.aI cells of _the mesh to a new Iocatlo.n based
Boltzmann equation for théone-particl¢ distribution func-  On their coordinates(position and velocity, the fields
tion. present, the collision probability, and the time step. We shall
For each particle species the formal solution of the Bolt-9've @ three-dimensional ~example (1D-space and
zmann equation for short time steps can be written as: 2D-ve|00|t)0_ fo.r. the electron palhstlc—mover. Conservation
laws that significantly affect simulation results will be em-
phasized. After describing the design of the mesh, we will
f(X,v.t)=f fP(x,v,t;x’,v’,t’)f(x’,v’,t’)dx’dv’, introduce the CS with LLMC's, as well as how numerical
diffusion can be reduced by this new scheme. Other possi-
t>t’, (2) bilities to improve the current version of the CS with
LLMC'’s will be discussed later. Finally, we will summarize
where the kernel of the integraR(x,v,t;x’,v’,t'), is the  the ion ballistic mover, which is similar but simpler.
propagator for a particle at the phase space positidr() It is assumed that the distance between two plane parallel
at timet’ moving to (x,v) at a later time.. Certain properties ~€lectrodes is much less than the lateral dimensions of the
and conservation laws related to this propagator in the Cc8lectrodes so that fringing effects can be ignored. We use
were noted by Adamst al.[11]. Instead of finding the ex- (z,v,u) to construct the three-dimensional phase-space
plicit form of the propagator in a 14-dimensional space, thenesh(Fig. 1). The position along the spatialaxis, which is
CS propagator is divided into two parts—one for the ballisticPerpendicular to the plates, is denoted yThe speed of
motion and one for collisions. In the ballistic motion colli- €lectrons is denoted by, and the direction cosine of the
sions are neglected, and the Boltzmann equation is reduceélocity relative to thez axis by u. The finite-ranged phase

B. Convected scheme using long-lived moving cells

to the Vlasov equation space is divided into cells. Each cell, labeled by indices
(j,1,k) on the phase-space mesh, is associated with a single
df of of of set of @]; ,v];, /). We will use the terms “mesh cell” to
i

describe a cell fixed on the mesh, “initial cell” a cell before
the ballistic motion carries it away from its mesh cell, “mov-
In the CS, the Vlasov equation is numerically integrateding cell” the same cell during or after the ballistic motion,
along thecharacteristic curveswhich are determined by the and “final cells” those mesh cells overlapped by a moving
equations of motiondx/dt=v anddv/dt=a. After this bal-  cell at the end of its ballistic motion. The particles in the
listic motion step is complete for all particle speciéss = mesh cell {,I,k) have uniquev|, and u|, values, and are
adjusted according to the collision processes described bgistributed uniformly in the spatial rangkz|; with average
the collision operator€(f) as well as chemical reactions. value z|;. Similarly, the particles in each moving cell are
While particle methods, such as Monte Carlo and particleassumed distributed uniformly in space but with constant
in-cell models, use super particles, the CS uses cells. Thandu instead of over a range ofandu values. Figure 2 is
superparticles aréusually) unbreakable entities and collide a schematic of the movement of the phase-space cells during
statistically by using random number generators. Statisticad time step.
noise in the number of particles in a small region of phase- The initial cell centered at(’,v’
space can be a significant issue in such particle methods. Qa the equations of motion:

—=—+40p- + a-
dt at ox Jv

!

,#") is moved according
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FIG. 2. Schematic of “ballistic” propagator in three dimen- FIG. 3. Launching a new moving cell.

sions.
dx phase space. Typically, moving cells do not correspond ex-
—=p (4)  actly to mesh cells; particles with a unique position in the
dt phase space have to be shared among neighboring mesh
cells, and this gives rise to the artificial numerical diffusion.
d_U: E(E+v>< B) 5) To reduce the numerical diffusion during the ballistic move,
dt m a train of LLMC's is launched, one cell usually being the

most launched at each time step for each mesh cell. Other
to a new position £’,v’,1") in the phase space, where it techniques, which launch LLMC's less often, are also inves-
overlaps with neighboring final cells a,¢,«). The Euler  tigated and will be described in more detail laté3ee Fig.
scheme is employed to integrate these two equations of thg) Since the number ofunscatteredparticles in a moving
motion, i.e.,E andB are evaluated at the initial cell cen®r  cell decays exponentially with time, the number of particles
in Eqg. (4) and Eq.(5), except that the finat component of  that remain in the last moving cell depends on the length of
the velocityv, is computed by energy conservation. Specifi-the train. Particles in the leading moving cell of each train
cally, for this one-dimensional system, we know that ttee “ will be remapped back to the mesh cells when a new moving
component” of the total energy is conserved in the ballisticcell is added to the train. For particles in these LLMC's,

motion, so which are as yet unscattered, the remapping happens less
1 L frequently compared to the regular CS, so numerical diffu-
T2 m2 o / sion due to ballistic motion will be highly reduced. Ideally,
oMz =M, P2 —q® (), ® the leading moving cell of the train will have existed for

about 1 to 2 collision times, so 60—90 % of the particles that
where ®(z") and ®(z’) are based on the initial potential were in it initially will have scattered out before it is
profile andv,=v'u'" vi=0v"u". remapped. The errors involved in remapping those particles
In this numerical enforcement of the conservation of en-that have collided make it pointless to follow the unscattered
ergy, the initial potential profile was interpreted as a staircas@articles for much more than one collision time.
potential in the regular C8hat is, the potential is considered ~ As shown in Fig. 4, electrons in the moving cell at
constant in each spatial celHowever, using the CS with (z',v’,u') are shared between the neighboring cells on the
LLMC's can affect the convergence of some simulation re-(z,v) mesh, cellsA, B, C, andD. Particle number and kinetic
sults, especially when the parameters of the discharge are @mergy are conserved, if the fractions of particles for each
the boundary of the working range—that is, when the reafinal cell are:
discharge is only marginally able to sustain itself. To model
particle dynamics more precisely, a curve-fitted potential (z|- _Z,)((U/)z_vyz)
i+1 i j

(CFP is sometimes used when calculating the energy at the Fa=

location of the centers of LLMC's. If the CFP at the final cell

center,®(z'), implies that the locatiorz’ is energetically

forbidden, the electrons retrace their trajectory by using a v ! !

smaller time step. This reduction of time step has to be ter- A ! .

minated after several orders if the desired accuracy is not \ e I !

achieved. Other time integration methods, such as the leap- ; | |

frog scheme or the Runge-Kutta schefb& can replace the ' '

Euler scheme. Although the leap-frog scheme has a wider v, | |

range of numerical stability for different simulation param- vl + x

eters or time steps, the simulation results from it are essen- J

tially the same as those from the Euler scheme. The numeri-

cal enforcement of the conservation of energy has a more

profound effect on the simulations than the integration .

scheme does. 7l
Due to the limitation of computer memory the regular CS

requires periodic remapping of the particles in a moving cell FIG. 4. Redistributing particles in a moving cell back to the

onto the mesh cells, which have discrete coordinates in thmesh cellsA, B, C, andD.
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b Z|i+1_z|i U|j2+l_v|j2 ' (10 FIG. 5. Procedure for launching a new moving cell.

where @{)?=(v")?+(20/m)®(z')—(2a/m)®(z];) and quently does not give a convergent result, so the staircase
(v!/.)?=(")?*+(2g9/m)®(z')— (29/m)P(z|;;,). (Note potential must be employed. The LLMC method seems to be
the order of remapping: we spread the particles over spacenaffected by use of the CFP for finding the kinetic energy
then we conserved kinetic energy in each spatial )cBlbr ~ of scattered particles but the use of the staircase to find the
each spatial cell, particles are in addition distributed aver energy for replacement on the mesh may be more accurate.
and u cells such that the “parallel component” and “per- The staircase potential is always used when replacing unscat-
pendicular component” of the averaged kinetic energy ardered particles on the mesh.
unchanged. If one of the spatial cells is energetically forbid- In addition to the above, we now describe other possibili-
den,sm(u'v')%2+qd(z')<qd(z|;) or qd®(z, 1), the par- ties to implement the CS with LLMC’s. To avoid launching
ticles are remapped to the other spatial cell, with newly cala moving cell for each mesh cell at each time step, in one
culatedv andv,. In the case of reflection, the sign of is  version a new moving cell is launched only if the moving
reversed. cell deviates from the original mesh cell too much. As shown
After the ballistic motion step, to calculate the rates ofin Fig. 5, the moving cell in position 1 can still represent the
collision processes and chemical reactions, the velocities ahesh cell(marked X), so distributed particles from other
electrons for each moving cell are determined in the overmoving cells are placed in this moving cell instead (of
lapped final cells. For the regular CS, the kinetic energyafter being put ihthe mesh cell. When the moving cell de-
corresponding to the velocity determines collision rates owiates from the mesh cell such that the “center” of the mov-
chemical reaction rates in a final cell, using the staircaséng cell is not in the range of the mesh cell, a new “moving
potential. In Fig. 4, the percentage of scattered particles focell” is launched as shown in Fig(B). Since this new cell is
the part of the moving cell overlapped with the final o&]l meant to represent the mesh cell at the moment, it is held
Eq.(7), is based on the energy; ., and that with the final fixed in phase space at first, and distributed particles from
cell B, Eq. (8), is based orv|;. Similarly, the percentages other moving cells go into this new cell instead of the
according to Eq(9) and Eq.(10) can be obtained for the almost-left moving cell. In Fig. &), as the moving cell
scattered particles within final cels and D. Usually, after reaches position 2, it has totally left the range of the mesh
the collision, the fraction of scattered particles for the part ofcell markedX, so the newly launched moving cell begins to
the moving cell overlapped with the spatial ceJj will be  join the motion. In Fig. 5 the criteria for the transitions from
different from that for the part of the moving cell overlapped phase&(a) to phasgb) and from phaséb) to phasgc) depend
with the spatial celkz|;, ;, because the scattering rates wereon how cells are moved in the ballistic motion.
different in the different spatial cells.
For the CS with LLMC's, when the moving cell moves to
a new position after the next time step, the particle density in
the moving cell will be assumed uniform over space. The Two cases have been considered: the spatial cell
inconsistency can be removed if the kinetic enefgythe  boundaries/faces at|;—Az|;/2 and z|;+Az[;/2 can be
velocity v) based on the CFP at positian is used to de- moved eithexi) together according to the initial velocity and
termine the number of scattered particles. After this CFHocal electric field at the cell center dii) independently
adjustment, the particle density will always be uniform according to the initial velocity and local electric field at
within a moving cell since the density of the scattered pareach face position. In the first caie two spatial faces of a
ticles is removed uniformly within a moving cell. For the cell are moved togethgrif a cell with initial coordinates
regular CS implementation, the CFP adjustment is not nectz,v,u) moves to ¢’,v’,u’), the final spatial position is
essary. If moving cells are used, the result with the CFPobtained from Newton’s law:
adjustment will be much smoother than the result without it,
where bumps and spikes in _the density profile are observed. 7' =7+ (vp)At+ iE(z)(At)z,
However, energy conservation can be violated when scat- 2m
tered particles are put back to the mesh cells whose poten-
tials are different from the potential at the center of the
LLMC, if their kinetic energy is that found based on the CFP
at z’' (the center of the moving cell Especially in high-
pressure cases, high collision rates exacerbate the violation
of conservation of energy, which occurs with the CFP used _ m,_ LA
in this way. Using the CFP in this way, the regular CS fre- e=ad(2)+ Evz—qu(z ) E(vz) ' (12)

C. Cell faces or cell centers

and the conservation of thez“component of energy’e,
gives:
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where v,=vXu, vi=v'Xu', and v[1—(u)?]¥?=v’'[1  formity to do the mapping would destroy this “uniformity”
—(x")?]¥2is the perpendicular velocity. Similarly, # is assumptior_(or else it would Igad to nonconservation_ of en-
energetically forbidden, the particles retrace their trajector'd. etc., if we enforced uniformityunless more variables

to the previous spatial céfi.e., the cell next to the cell where a'€ used to record this nonuniformity for each cell. But as
the particles first are forbidden to heeversing the sign of ©On€ can see in the simple one-dimensional water-bag model
v,. Since the potentiakI)(z|j), is constant in space in the by Berk_et al. [15], the number of required reco_rdl_ng vari-
spatial cellj, d(z) and (z') correspond todb(z|j) and ables will soon exceed the computer memory limit. Hence,

®(z]!), respectively. There are spatial gaps between thwe treat a cell as a single point in velocity but with a finite
) L ) xtent in space.
moving cells originating from the same mesh cell, if the two P
spatial faces of a cell move based on the information at the

cell center. However, this phenomenon cannot easily be o _ o _
eliminated even when the two spatial faces are moved inde- The “ballistic” move for ions is similar to that described
pendently. The criterion for the phaga-to-phase(b) tran-  above, however, the final velocity for the ions is found using
sition is intended to check if the faces of the moving cellthe equation of motion without total energy conservation,
pass thecenterof the mesh cell in space. The criterion for SiNCe conservation of momentum is more important for ion
the phaséb)-to-phase(c) transition is to check if the faces of dynamics. Thedion) particles of a moved ceII_ are instead put
the moving celltotally leave the mesh cell in space. PhasePack to the overlapped mesh cells according to the conser-
(a)-to-phase (b) and phase (b)-to-phase (c) transitions vation of momentum. The ion distribution function has only

may occur at the same time since cells are treated as discre%ﬂ0 phase-space _d!mensmns,_ namelg/_,,v §). The compo-
. . nents of the velocities of the ions which are not explicitly
values in velocity.

. tracked are assumed to have a Maxwellian distribution at the
In the second casé&he two spatial faces of a cell are

moved independent]ythe two spatial faces can have totally background gas temperature.
different behavior. Before a time step of the ballistic motion,
if an initial cell is launched at the mesh ce]l,[,k), the two
faces of this initial cell have the same perpendicular velocity Helium plasma illustrates the typical processes taking
U||\/1—,u|k2 and the same-component of velocity | u|; place in a discharge. The collision part of the propagator in
however, later on the two faces of an initial cell will “keep the CS is straightforward once the collision operator is con-
track” of their own velocities, i.e., a moving cell might have structed[6]. Since particles are placed on mesh cells after
different velocities for its two faces. Similar to the first case, ballistic motion and collisions, a pre-computed collision op-
the velocity of each face of a moving cell after a time step iserator for discrete values of and u can be very efficient.
determined by conserving thez‘component of energy,” Elastic collisions of electrons with neutral atoms are typi-
as in equatior{11). In other words, each spatial face has itscally anisotropic in nature. Two versions of the elastic colli-
own position in the three-dimensional spazev(w). Since  sion operator are used. The “full” version provides an an-
cell faces are moving independently and the electrostatic pdsotropic distribution with recoil cooling also. In the center
tential is (often) step-function like, there might exist gaps of mass(C) frame the differential cross section only depends
between moving cells. For example, the back face of one cepn the initial relative velocity of the electron with the re-
is the front face of another cell initially, but they move ac- duced massmMg/(m+M,), and the scattering angle,
cording to the potential associated with different cells. At thewhere m is the electron mass anMly is the background
end of the time step, the front face of the cell and the backieutral mass. The azimuthal scattering angle is uniformly
face of the next cell will have different velocities. Gaps will distributed, so we are only concerned with the polar angle to
develop at the end of the next time step. This is one of thevhich the electron scattered. For incident electrons with ini-
finite mesh size effects. Sometimes a moving cell may octial velocity v into the background neutrals with temperature
cupy many final spatial cells, is assumed to vary linearly T, in the lab(L) frame, the average relative kinetic energy in
between two facegince we do not calculatg, except at the the C frame is given by
faceg. The same assumption also allows us to find the per-

pendicular component of velocity. The different parts of the - :} mMy
moving cell in different final spatial cells have theirand » 072 m+ Mg
determined by the linearly interpolated perpendicular com-

ponent of the velocity[1— «?]¥? and thez-component of where kg is the Boltzmann constant anfy, is the back-
velocity v, which is calculated from the linearly varying ground gas temperature. The fraction of electrons elastically
€,. The motion of faces of the moving cell gives the samescattered out of a cell with coordinates«, 1) during a time
criterion for phaséa)-to-phaseb) and phaséb)-to-phasec) ~ StepAt is

transitions. If one of the faces has its velocity pointing one

D. lon ballistic motion

E. Collisions and gas phase processes

3ksTq
M

2

: (12

g

way out of the mesh cell but the other face has its velocity Nsc = AtNy(o(7re1)Ure) (13)
the other way, then we invoke the phag®-to-phase(b) Neell g\ frel/Trel

transition. If both faces have their velocities out of the mesh

cell in the same direction, then we invoke the phéseto- ~AtNy(o(79)) Vv +3kgTy/ My, (14)

phase(c) transition.
Had we allowed particles to be uniformly distributed over whereNy is the number density of the background gas and
v andu, remapping after the ballistic motion using this uni- (-) averages over the background Maxwellian neutrals.
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Since the elastic collision is kinetic energy conservative, the 274 12
transformation between the scattering angie the L frame vf:l/«oh( US— F) , (22
and the anglé® in the C frame is given by
) wherery is the energy given up in the collision. Because the
tang= sin® (15) lack of the information as to differential cross-section data,
(M/Mg)+cosO the parameteh would, based on simple physical arguments,
vary from near zero at threshold energies to near unity at
The final kinetic energy of the scattered electrons inlthe high energies. For the “simplified” version, an isotropic
frame is given by treatment is employed.
Once the electron velocity is less than the characteristic
m m 2mM atomic velocityZe?/4 ey, which corresponds to about 27.3
Sv'2=5v% 1-———(1-cos®) |. (16) eV, the polarization scattering affects the elastic collisi
2 2 ( 2 , p g affects the elastic collisions

m+Mg) between electrons and neutrals with the poterfiél

For electron collisions with neutralsy<M, and we obtain q2a’

0~ 0. If the differential scattering cross section is constant U(r)=-— . (23
with respect to the angl®, we can construct the average 8meor?

cosine of the scattering angefrom

For electrons with higher energy, hard sphere collisions ap-
ply. Similarly, the Coulomb scattering between charged par-

1 (1 do(r) . . : .
(u(70))= f w du’ (17)  ticles is described by the well-known formulas:
(7)) -1 du’ ,
dv
T a\By.,,a\B
wheredo(7g)/du’ is the differential cross section, and the dt (14 ma /mg)h(x* 5 v "o, (24

total cross section is given by
d(va_<va>)i

1d
G'(TO):J»il ZE::O)dﬂ, (18) dt

=2[(1—1/2x*B) (x> P)

+ o (x ) Jwg Fol (25

Averaged ove# the kinetic energy of the scattered electrons

. 2
is proportional to: d(ve—(va))]

It =[x ) IxBlvg PoZ  (26)

a

dt

2m
2=y 11— (' )]). (19 dv?
v v( Mg {'(70)) Y =2[(m, /mg) Y(x*B)— ' (x*B) Jw§ Pv2, (27)

This “simplified” version provides isotropic distribution of
scattered electrons with energy transfer due to recoil duriny’here
electron-atom collisions. We note that the definition of the

242
momentum transfer cross section can be expressed in terms pO\B— 4mqaGpngIn Agp 28)
=

of (' (o)) as (4meg)2mZp?
1 , do(rg) | ) X P=mgu2/2kgT (29)
ourtro)= [ (1) = o)L~ ()] Bl 2K s
- M
2 X
(20 W(X) = = f dt tY%et (30
0
We emphasize that we will use(r,) to determine the col- 4
lision rate, and in most caseg ) > oy 1( 7). The speed of do
the electron will on average change, due to elastic recoil w’(x)zd—, (31
cooling, to a value given by X
41 12 and InA 4 is the Coulomb logarithm. In general, kinetic ef-
v = Uz_[1—<ﬂ'(7'o)>]m(§m02_ EkBTg _ fects of a collison process can be described by
21 dv,
Y TR (32

Unlike elastic electron-neutral atom collisions, differential

cross sections are rarely available for inelastic electron- d(v,—(v >)2

neutral atom collisions. We introduce a paramétexhich is * - vf\Bvi (33

the fraction of the averagemomentum of the electron that dt

is conserved in inelastic collisions. The average final velocity 2

component along the incident direction for this set of elec- d("a—<va>)\| _a\B, 2 34
. = VH U, ( )

trons can be cast into the form dt
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dvi For example, in a cylindrical system the radial distance and
at =V‘§\Bvi, (35 the angular momentum would be better thraand 0, since
the angular momentum is conserved but the azimuthal angle
0 is not.

where the collsion frequenciess *, v, v{*#, andv# _ o
are averaged over the distribution of the background par-h (3) Chr?‘?se rge_sh SI'ZEhe IovI\[/)er kwenc-energy bqund of
ticles 8. As we can see, the theoretical diffusion in pitch ("€ Mesh is obviously zero, but the upper kinetic-energy

angleu is predicted by Eq(33), and the diffusion in velocity E_OL::]d cannot be_ ilnfin_itelin a simulation. Th? pog(ljj_la_\tion ﬁf
v is predicted by Eq(34). The drag force due to the back- '9N-€nergy particles s low in most cases. In addition, the

ground particles is represented as E2f). The elastic cool- Cross section approaches a constant Va.IL.'e' usually zero, at
ing amounts to the energy loss, E5). From Eq.(34), if high energy. For these reasons it is justified to use a finite
the energy mesh is fine e,nough. such th&bz/’vg range for the velocity mesh. However, the mesh range should

. e . : I h to incl I h invol i
— Ao, v, < V‘T\ﬁm' then the physical diffusion will domi- be large enough to include electrons that are involved in

te th ical diffusion. Thi hieved by choosi important processes. For example, in an rf discharge with
nate the numerical difiusion. This was achieved by ¢ Oos_'n%riving voltage of 100 Volts, the highest energy cell should
a longer time step_msteaq of decreasujg the mesh cell Slzerepresent particles with kinetic energy of 100 eV at least.
The total and differential cross-section data for electron

. ) . (Particles with energy greater than the maximum are re-
helium elastic scattering are taken from LaBahn and Ca”ablaced with the maximum.The mesh size should also be

way [17,18. The differential elastic cross section has an €S%ine enough in the regions of intere€Typically we choose

. 0 e L
tm??tgd acc_urac;ﬁS . F(()jr . elgct:pn h.eI|urtn Lonlfa;loon \%v/u=constantA,u=constant, and use 10 to 20-cells. If
cotisions, since e second lonization 1s at abou €\we use Av,/v,=constant, Av, /v, =constant, we have

where the electron population is small, only single ionizationWhat is probably worse resolution for the same number of

?S (t:_onsiderec[lg]i_ Thca eilectrortl-rll(eliu? ex}t;iltﬁ:ion anililon- mesh pointg.0On the spatial mesh, the mesh size may need to
Izalion Cross section data are taken irom a2 be kept at the order of the Debye length to resolve the sheath

inelastic scattering processes are assumed isotropic. Trangj- ; : :
. namics correctly. To resolve the velocity mesh appropri-
tions 1!S-n'S, 1!S—n'D, 1'S-n3S, 1!'S-n°D, and 1'S- gilely[G] such tha%/ y pprop

n3P, where 2<n<5 and is allowed by the selection rules,
are included, though transitions between excited states are Av
ignored. The semi-empirical inelastic cross sections have an —=C, (36)
uncertainty of=25% at low impact energies antd5% at
higher energies where the Born approximation is reliable
For rf discharges, simulations under the same pressures a
driving voltages are also carried out using benchmark cross-
section formulas from Ref.21] for elastic electron-helium
scattering, for electron-helium ionization scattering, and for
electron-helium excitation scattering. )

Total cross sections for electron transitions between exVherec’ is phosen to make the _consta@tabout 0.1. The
cited states of helium are taken from Fenal. [22]. The lowest cell is atv=0; the next is usually at about room

2
charge exchange cross section of Hend He is taken from temperature such thgmo,,~0.026 eV. _ _
Helm [23]. (4) Remapping rulesParticles are assumed uniformly dis-

tributed over space, within each moving cell. The various
spatial parts of a moving cell can have different velocities
(v,,v,), if they are in different spatial cells. If conservation

The recipe given here will be used as a guideline for CSf energy is the most important conservation law, then we
implementation. Analysis and justification of steps in thecan transform to an energy mesh instead of a velocity mesh
recipe will be given afterwards. when we map particles from various parts of the moving cell

Recipe: to their corresponding final cells with the same spatial posi-

(1) Find constants of motioriThese conserved quantities tion. (This is equivalent to the rule given above—see Fig. 4.
should remain constant for both the ballistic motion and theSince particles are remapped to the mesh cells, which are
remapping rules. It may be impossible to satisfy all conserdiscrete, this may cause other constants of the motion to be
vation laws due to the finite mesh size effects; that is, whilechanged.
we are conserving one quantity the discreteness of the mesh (5) Ballistic motion The equations of motion can be inte-
leads to a change of another. Hence, the priority of thesgrated using the Euler scheme, or others. Since conservation
constants of motion is important and usually is determinecf energy is emphasized for electrons, the value of the ve-
by the particular physical problem. For example, in a modelocity used to do remapping of electrons is not determined by
with one dimension in spadg) and two dimensions in ve- integrating the equations of motion, but by conservation of
locity (v,,v, ), the perpendicular component of kinetic en- energy. The conservation of momentum law is usually em-
ergyv? is a constant of motion. ployed for ions.

(2) Choose mesh coordinatel§ a mesh coordinate is a (6) Collisions Differential scattering cross-section data
constant of the motion, the re-mapping procedures in the C&re rarely available, so inelastic scattering, like ionization
should not distribute particles across different volumes ofand excitation, is usually assumed to be isotropic.
that coordinate. In this case, the numerical diffusion either (7) Time step For the simulation of a plasma, at least
during collisions or during ballistic motion can be reduced.three basic characteristic frequencies restrict the time step

the boundaries of the velocity cells can be obtained by sim-
y “integrating” the above equation:

v=vmnexpC'l}, 1=0,...n, (37

F. Numerical implementation
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At. To avoid running out of particles, there should be at G. Merging moving cells
most one collision in a time step; the time stap must We have considered limiting the number of moving cells
satisfy the relation by merging nearby(in phase spagemoving cells, which

originate from the same initial cell, into a composite cell,
using conservation laws to determine the characteristics of
the new moving cell. It is essential to ensure that such a
merging does not move the particles in spéce, the den-

sity in each spatial cell must be the same before and after the

At<vg '=[Nv e iotoi(vre) ] (39)

whereN is the density of scatterers,, is the relative speed,

and gyoi(v,e) is the total cross section. The total collision
1

time 7=~ can be obtained as merge. This is to ensure that artificial currents are not
q allprocesses, created—including displacement currents, and spurious elec-
- 2 = tric fields. This merging is in some sense very similar to
T i Ti simply remapping moving cells onto the fixed mesh, and

. then (as usuagl launching moving cells from the fixed cells.

UsuallyAt~0.2r<e”*7<r. To resolve the dynamic behav- as |ong as the fixed mesh has adequate resolution, remap-
ior of electrons, which are the fast species in a processinging is more straightforward, since it uses the existing pro-
plasma, the time step should be less than plasma charact@dures, and so is probably preferable. The low-energy mov-
istic time scale, ing cells are unlikely to merge because the velocity does not

stay within the fixed cell. The high-energy cells are unlikely
, (39) to merge because moving cells leave the fixed cell in space.

However, merging does not always seem to give a stable

result. As an alternative, it was found that launching moving
wherem is the electron mass is the electron number den- cells only every second time step produced no noticeable

sity, ande is the electron charge. Finally, if an external field effect on the simulation; further delays in launching appear

is presentAt should be much less than the time scale of theig glter the simulation.

external field:At<2#/w, wherew is the angular frequency

_of the ex_ternal fie_ld. If the electromagnetic_fie_ld:_; vary rap- H. Numerical diffusion

idly in a time-varying system, the time step is limited by the ) ) o )

field period. However, this restriction is imposed by the elec- Since the moving cells are remapped periodically, if a

tromagnetic field solver, not by the CS. moving cell should sta}y at roug_hly _the same velocity during
The choice of these independent variables (1) to de- its !n‘enme, the numerical dlffuspn in veloc_lty space can be

scribe the electron distribution function is somewhat arbi-€Stimated by a random-walk picture of diffusion with the

trary. Another choice for phase-space coordinates i§liffusion coefficientin velocity space:

2 ne2 -1/2

At<—= 277(—
We Eom

(z,v,,v,). It has some advantages in ballistic motion for 1/Ap\2
constant field cases, but complicates the collision processes. Du:—<—) Viep: (40)
Most of the difficulty in programming comes from the finite 2\ 2

mesh size effects. The variables ) and ©,,v,) give rise
to different amounts of diffusion if one considers a “ballis-
tic” move or a “move” due to a collision.

In a “ballistic” move in a one-dimensional system is
constant, sou,,v ) are useful—since the, variable need
not be remapped. Howevel {,v, ) yields low resolution of
pitch angle for low-energy cells and uneven resolution for
high-energy cells.(Pitch angle resolution ofAu~0.1 is
probably adequate for adl.)

In a purely collisional move, wherne is exactly equal to a . . .
value tﬁat Ii}és on the mesh, thennﬁ the colliéio(r:i does noyvhere_&x is the distance traveled by the moving cell before
changev, only u varies so only it has to be remapped. For Mapping 'bacl_<. . . . .
moving cells, if we follow the moving cell for about a colli- The diffusion in velocity spa(?e for particles moving
sion time,v is not likely to match a value on the mesh. Thus across the system can be cast as:
when we remap after the collision there is some diffusion in _—
v as well asu. For this reason, there is no great advantage to v =2D,tai,
following the moving cell for longer than a collision time—
collisions are already introducing errors. The £&) pair still
offer an advantage, in this case—because the phase space is

where v, (set tov/dx or vg) is the replacement frequency
of mapping back moving cells in the CS. From the velocity
resolution Eq.(36), if the parallel(z component of the ve-
locity is in reality nearly constant, then the above equation
can be expressed as:

1 C%3u
T8 ox

(41)

(42)

and

more efficiently partitioned using these variables. When t it = N7eol
LLMC’s are used, the collisions cause most of the numerical L2
diffusion. It is thus helpful to usez(v, ), which sometimes == Tcol
reduces numerical diffusion in collisions. The main reason A
these variables reduce diffusion, however, is thatiheari- L2
able needs fewer cells thasay v, , freeing memory for == Vel

better resolution irv.
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whereN=L2?/\? is the number of collisions before the par- 10"
ticles diffuse across the systein,is the system dimension,
and\ is the elastic scattering mean-free path. So the numeri-

cal diffusion inv, before particles cross the system, will 10'% ———-ggﬂlﬁgark
changev by 2 -
k|
LAv 2
ov= 7\/ VrepYcolls (43 c 10%% E

wherevg,=v/6x or v (see belowand vy = 1/7¢y is the 10" "/, | , | , | ,
elastic-scattering frequency. This expressionfowas used ' ' '
to check that numerical diffusion gave a smaller changein [ = experiment
than the dominant physical processes, in the simulations that ~ 6.0x10° - ggﬁ;ﬁﬂ ark
follow. —_ - 7
2 IS -
E 4.0x10°=7 =7
. ]
I. Number of moving cells é L d
The number of moving cells on the train for an initial cell V2 0x10°- .
is chosen as the minimal of the number of the time steps in a
collision time, and the number of the time steps for the cell 0.0 , | . | , | .
to travel one spatial cell based on the initial velocity. How- 0.000 0.005 0.010 0.015 0.020

ever, to reduce moving cells to a reasonable number for

those initial cells with loww value, an upper limit is also

imposed: usually, 30 moving cells will highly reduce the G, 6. Electron density and average velocity: The solid line

numerical diffusion and give good simulation results. Moregenotes the result using detailed cross-section data, the thicker

moving cells can be used depending on the computedashed line indicates the result using benchmark cross-section data.

memory resource and on computation time. The other dashed line is read from experimental da&aN
=200 Td.

Distance from cathode z (m)

Ill. SIMULATION RESULTS AND DISCUSSION L .
excitation processes have been separated into two groups.

We will present two sets of benchmark tests, for the CSThe transition from the ground state to théSXstate has the
with LLMC’s: a “swarm” experiment, which is a discharge threshold energy 19.82 eV. The loss of electron energy for
with a spatially uniform electric field, and rf capacitive dis- other excitation processes is averaged over all the above
charge simulations. We shall see that the use of LLMC’srransitions and set up with the threshold energy 21.5 eV. In
produces an improvment in accuracy, in less collisionakhe benchmark cross-section data, all excitation processes are
cases. simplified to one representative process with threshold 19.8

Helium gas is used in these benchmark tests, since thev [21]. The convergence criterion is set such that the elec-
physical and chemical processes involved are relativelyron density fraction changes less thanm 1 one time step.
simple so that we can concentrate on the effects of the C$he separation of the two parallel plates is 2 cm, and the dc
with LLMC'’s. voltage drop between them is 400 Volts for all simulations.

Changing the background gas pressure will give the desired
A. Swarm simulation range ofE/N. However we note that exact voltages and gas
pressures in the experiments are not always available. Using
different pressures, while keeping the saBI®&\ ratio, may
Pesult in different swarm parameters.

The simulation result for th&/N=200 Td case is shown
in Fig. 6 to Fig. 7. Results from swarm experiments com-
piled by Kicukarpaciet al.[24] are also displayed. Care has
been taken to ensure a proper comparison of the flow veloc-
(v,) from the CS with the experimentally-obtained drift
locity v 4 (often denoted a®V). Even though there is some
bate about the velocities measured in experiments, the two
locities are related by the following equation:

A typical swarm experiment is a one-dimensional axially
symmetric system. The electrons are accelerated by the a
plied electric field in a weakly ionized gas. We shall simulate
swarm experiments, using the CS with LLMC's, for the pa-
rameterE/N in the range from 8 to 282 Tdwhere 1 Td
=101V cm?) at room temperature, 293.15 K. Since ion
dynamics are not important in these swarm simulations, the
are ignored and the secondary electrons are assumed to
emitted from the cathode monoenergetically. Rigorously, th%e
secondary electron energy should be spread in a Certa\p
range. To speed up the convergence, a constant number oF
electrons are assumed to be ejected from the cathode with (v,)=vq—D_a, (44)
energy equal to that of the lowest energy cell, and along the
positive z-direction (u=1). The differential cross section whereD, is the longitudinal diffusion coefficienty is the
for anisotropic elastic scattering is integrated over the scaffirst Townsend ionization coefficiereind the operatof - )
tering angle, as Eq(20) to give an isotropic momentum averages over the velocity distribution. We take the mean
transfer cross section. Elastic scatterings are treated as beinglue of the average kinetic energies before collisions and
isotropic but using the momentum transfer cross section tafter collisions. Then the valu®, /u, can be easily con-
yield the correct drift velocity for electrons. For simplicity, structed from the Einstein relation:
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101 X bench (cross section)
5 - 0 @ bench {density profile)
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AN E/N (Td)
300 \|
Lo e experiment i FIG. 8. The ratio of the first Townsend coefficient to the neutral
= 200 detailed _ density: Detailed cross-section data are used in these swarm experi-
E ———-benchmark ments. The first Townsend coefficient is also obtained by two dif-
8 ferent methods ofv/N calculation, using benchmark cross-section
100 7 data. The solid line is read from experimental data.
é’ooo 0 0'05 ' 0 0‘10 ' o 0'15 0.020 longer satisfied. If we interpret the slope the density profile

plot asa, then we get a considerably better fit to the experi-
mental data(Recently, a set of swarm parameters, such as
drift velocity and ionization coefficient were obtained with a

solid line denotes the result using detailed cross-section data, tHaEW t€chnique using photoelectrons induced by a pulse laser
thicker dashed line indicates the result using benchmark crosg26)- Under different helium gas pressures, the electron drift
section data. The other dashed line is read from experimental daty€!0City may show an order of 3 difference in some ranges of

e
E/N=200 Td. E/N.) _ _ _
From these simulation results, the CS with LLMC'’s ap-

pears to agree with experimental data well. However, errors
in scattering cross section data and the effect of pressure
difference between simulations and experiments may cause
. . the deviation of simulation results from the experimentally-

wherevy, is the momentum transfer collision rate amnd  heagyred values. The regular CS shows similar simulation
q are the electron mass and charge, respectively. Originallyegyjts with differences being of the order of 5%. Since

the ionization coefficient is defined through the_relat|on: swarm experiments are performed under high pressures, high
| =1oexpla(d—dp)}, wherel is the current at the distance  cqjjision rates suppress the advantage of the CS with

from the cathode, and, is the effective distance, which || Mc's over the regular CS. The regular CS is more effi-
accounts for the fact that electrons emitted from the cathodgient for simulating discharges at high pressures.

attain a steady state, determined by the valu&/® in the
gas, only after a number of collisions. Alternatively/N4
can be approximatel®5], if diffusion is neglected, as:

Distance from cathode z (m)

FIG. 7. Average kinetic energy and ionization coefficient: The

D|_ _ kBTe/me o <mU2>
w  almy,  3q

: (49)

B. RF discharges

As pointed out by Levitski[27], at low rf discharge volt-
ages ionization is provided by plasma electrons, which is
called thea mode, while at high discharge voltages ioniza-
tion is maintained by fast electrons initiated at the rf elec-
whereNj is the helium atom number density, anglis the  trodes(including the secondary electrgnsvhich is called
ionization cross section. the y mode. In what follows, we study discharges in e

As shown in Fig. 6, the density of electrons grows expo-mode, since this calls for an accurate simulation of the heat-
nentially with distance from the cathode. The results usingng of electrons from low energies until they reach the ion-
the benchmark momentum transfer cross section foization threshold, which is a stringent test of the simulation
electron-helium elastic scattering are somewhat lower thatechnique.(In the y mode, the electrons that do the ioniza-
the detailed momentum transfer cross section. The ionizatiotion are energetic as soon as, or very soon after, they enter
coefficients from both simulations are essentially the samehe discharge.In all the one-dimensional simulations of rf
(see Fig. 7. The drift velocityv 4 is higher in the case where helium discharges here, when choosing the number of mov-
the benchmark cross-section data are used. The same efféot) cells on each train we base this on the number of time
is also reflected in the average kinetic enetgge Fig. 7. steps in a collision time. For simulations in higher dimen-
The measured data agree better with the simulations atons, the number of LLMC's on each train is limited by
higher pressures, where it is a good approximation thatomputer resources.
swarm parameters are functionseEfN. The first Townsend While the kinetic model we shall use for electrons is the
coefficient expressed as a functionEN is shown in Fig. 8. same as in the previous section, the ions are also treated
In the low E/N range, where the pressure is high, thekinetically by using a two-dimensional CS. The variabtes
premise of low diffusion, made to obtain E46), is no andv, are used to design the mesh for ions. A room tem-

£_<Ui(v)v>

(46)

Ng <Uz> '
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FIG. 9. Instantaneous ion density profiles and time-averaged 0 10 20 30 40 50

ionization rate: Rf helium discharge at phase 0 after 120 rf cycles,
p=30 mTorr, V=220 V.

energy (eV)

FIG. 10. Time-averaged electron energy probability function at
. T . the center of the system and the blow-up for the energy range from
perature Maxwellian distribution is assumed in the PErPeNy ey to 50 ev: Rf helium discharge at phase 0 after 120 rf cycles
dicular direction for ions. The regular CS is used for ions andp:30 mTorr, V=220 V. '
the zcomponent of velocity is determined from Newton’s o
second law instead of conservation of energy. This procedure Usually, if the particle distribution functiofi(v) is ex-
for finding velocity will guarantee the conservation of mo- pressed in terms of energyas f(s), then theelectron en-
mentum. The momentum transfer cross-section data are usgﬂgy distribution functioris defined as:

in the elastic collision process for ions and neutrals. Besides

elastic scattering, the dominant scattering for high-energy g(e)=1f(e)\2e (47)
ions is charge exchange scattering. In the CS simulations, B 3

charge exchange cross-section data are increased proportion- =4mn{27kg T}~ “exp( —&/kgT)

ally for low-energy ions to compensate for the elastic ion- %2 if Maxwellian, 48)

neutral scatteringwhich is omitted.

Helium has two metastable levels'@and Z’S levels  \heren andT are the particle number density and tempera-
which can lead to multistep lonization. However, since theyre, respectively. To examine the difference of the electron
property of the CS with LLMC’s is the focus of investiga- gistribution function from the Maxwellian distribution, the
tion, these metastable species are not tracked at the currefjtciron energy probability functiofEEPH is defined as
stage. _ , _ gp(e)=¢"Y%g(e) and is plotted on a log scale. Thus, the

All rf discharge benchmark simulations are carried out for
the system of two parallel plates 6.7 cm apart. Three differ- 11
ent pressures are tested with various driving voltages: 30 L
mTorr, 100 mTorr, and 300 mTorr. The experimental mea- 1
sured values are listed in Table IV of RE28]. The relevant
parameters are, rf voltage amplitutle; , plasma density in
the center of the discharge), and average electron energy
in the center of the dischar@ngﬁ. While experimental
measurements are carried out under constant rf current,
simulations are usually based on constant driving voltage
Y,

s
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At 30 mTorr (with driving voltage 220 Volty the rf dis- g
charge is less collisional, and the numerical diffusion might '
significantly affect the simulation since it might change par-
ticle velocities as fast as collisions do. The ion density profile  FIG. 11. Time-averaged electron “temperature” profile: Rf he-

and the time-averaged ionization rates for the regular CS anglm discharge at phase 0 after 120 rf cycless 30 mTorr, Vg
the CS with LLMC’s are shown in Fig. 9. =220 V.
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FIG. 12. Time-averaged electron energy probability function at
the center of the system: Rf helium discharge at phase 0 after 120 rf
cycles,p=30 mTorr, V=220 V.

>
occurrence of different “temperatures” can be observed [~
from the slope of the EEPF log plot. The time-averaged £
EEPF’s are shown in Fig. 10. From the EEPF plot, the requ- W
lar CS shows a larger curvature, which presumably means
particles tend to move to the boundaries of the energy mesh

by numerical diffusion. Since inelastic collisions and recoil
cooling of elastic collisions will bring electrons to the low-
energy cells(Fig. 10, the CS with LLMC's will help the
electrons accelerated by the electric field leave the initial £ 14, Time-averaged temperature profile and EEPF for two
mesh cell, while the regular CS frequently remaps Iow-schemes: LLMC and LLMC with launching every second time step,

energy electrons back to the zero energy cell. This can bgt phase 0 after 80 rf cyclep=30 mTorr, V=220 V.
confirmed by the time-average temperature prafiig. 11).

Since this remapping causes more low-energy particles t\(/)vith a coarser velocity mesh, whetev/v=0.2, numerical

pile up in the system, this partially explains why the regular ... : ;
CS has a higher density. The velocignergy mesh used in d|ffu3|9n can affect the simulation result, even though
the above simulations hasv/v=0.1. As shown in Fig. 12 LLMC's are used.
veE 9. 14 The ranges of the energy mesh for particle species have to
be at least 220 eV. Changes of any particle species’ dynam-
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FIG. 13. Time-averaged density profile and ionization rate for
two schemes: LLMC and LLMC with launching every second time  FIG. 15. Time-averaged density profile and ionization rate at
step, at phase 0 after 80 rf cyclgs:30 mTorr, V=220 V. various timeg(rf cycles: p=100 mTorr,V=140 V.
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TABLE |. Plasma parameterd43.56 MHz,L=6.7 cm).
2.0x10"
p \ Ng SkoTe" les
(mTorn V) (m™3) (ev) (Am™?) o~ 1.5x10"
£
30 220 2.810" 9.6 10.0 g .
100 140  1.x10% 6.2 10.0 2 1.0x10
300 85 2.%x10'° 4.5 10.0 g
5.0x10"

—LLMC
————regular

ics will affect the discharge dramatically. If the range of 0.0 —— 1
energy mesh for ions is limited to too small a value, ions A N 1
: - 7 19 \ / \
may stay in the system too long and cause the density to e 4107 'l \ —LLMC / \‘ f
grow incorrectly. It was necessary to expand the ion energy *~ Tl \ ———-regular / { ]
mesh to 220 e(the same as the electron energy mesh ® 3x10°r | \ / T
obtain these simulation results. 5 -l M / .
If LLMC's are launched every two time steps, the results % 2x10"- ! A 7 .
shown from Fig. 13 to Fig. 14 are obtained. Comparing the & | S -
EEPF from both casesee Fig. 1% launching every two S 1x10% | b
time steps will halve the replacement frequency of LLMCs, - ,’ 1
if we use the same number of moving cells in a train, so that A
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

the numerical diffusion is highly reduced.
At 100 mTorr, the discharge is more collisional than cases
at 30 mTorr.(See Table )l Since the plasma density is

z (m)

FIG. 17. Time-average ion density profile and ionization rate

higher, the spatial mesh cell size has to be reduced to thszter 20 1f cyclesp=300 mTorr, V=85 V

order of Debye length to keep the simulation stable. Due to

the higher pressure, the ionization collision frequency isexcitation(from ground statethresholds are about 20 eV, so
higher, such that a lower driving voltage can be used talectrons are depleted right after that region in the distribu-
sustain the discharge. We use 140 V for the driving voltagetion function. As a result, electrons above those thresholds
The evolution of various physical quantities is shown in Fig.exhibit different “temperatures.” This is also seen in the
15 to Fig. 16. The effect of the threshold energy of variousdata from experimental measuremef28].

scattering processes can easily be seen from the EEPF plot. At 300 mTorr the regular CS does not converge, if the
For helium gas, the single ionization threshold and variousCFP is used to determine the final kinetic energy of scattered
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FIG. 16. Time-average temperature profile and EEPF at various FIG. 18. Time-average temperature profile and EEPF after 20 rf

times (rf cycles: p=100 mTorr, V=140 V.

cycles:p=300 mTorr,V;=85 V.
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particles. Since the scattered electrons in this case are ptlte correct particle distribution functions, the particle tem-
back to the mesh cells with kinetic energy based on the CFRerature profiles, and many other scattering rates and chemi-
violating the conservation of energy, the energy nonconsercal reaction rates. The CS with LLMC's is suitable for mod-
vation of these scattered electrons will dominate the dis€ling long-mean-free path particles, for example in low-
charge behavior at high pressures and high scattering ratggi€ssure high-density plasmas. The regular CS is very
Using the staircase potential, energy is conserved, and ttRfficient, consumes fewer resources and is faster than the CS
regular CS gives a convergent result. As shown in Fig. 17 tavith LLMC’s. However, the LLMC version reduces to the

Fig. 18, the regular CS and the CS with LLMC'’s give similar regular CS if only one moving cell is used. Both can provide
results. self-consistent kinetic modeling without usiragl hoc as-

sumptions. The use of both methods, for comparison to each
other, is probably optimal, to ensure the results obtained are

_reasonable.
The contrast between the “regular” CS and the CS with

LLMC's can be drawn from these benchmarks. The regular
CS with a staircase potential profile converges in all cases.
The CS with LLMC’s with a curve-fitted potential profile We presented a detailed recipe to implement the CS with
(for use in handling collisions, onlyhas advantages in re- long-lived moving cells(LLMC’s). An estimate of the nu-
ducing the numerical diffusion. In most cases, they givemerical diffusion for moving cells with different kinetic en-
comparable results, the difference in every respeensity, ergies was given. Numbers of LLMC's on trains are assigned
temperature, electrostatic potentiabeing about 10% in accordingly to maintain the efficiency and accuracy of the
steady state for rf simulations. Especially at lower pressuresimulations. From the simulation results of the two sets of
it is argued that launching LLMC every second time step  benchmark tests, swarm experiments and rf discharges, it is
even less frequentlyis appropriate. For swarm experiments seen that the CS with LLMC's can significantly reduce nu-
and rf helium discharges at 100 mTorr or above, the highmerical diffusion. At high pressures, where the physical dif-
neutral gas pressure makes the discharge highly collisionalusion usually dominates the numerical diffusion, the regular
The physical diffusion will dominate numerical diffusion, so CS consumes fewer computing resources and, hence, is more
that the CS with LLMC and the regular CS will give similar suitable. High density plasma sources, such as electron cy-
results in those situations. The LLMC method can reduce thelotron resonance systems, usually run at low pressures,
numerical diffusion on both the spatial mesh and the energtyherefore, the CS with LLMC’s has an advantage in simula-
(velocity) mesh. In fact, this is crucial at low pressure to gettions of these systems.

C. Discussion

IV. CONCLUSIONS
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