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Self-consistent kinetic simulation of plasmas

J. Feng and W. N. G. Hitchon
Electrical and Computer Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706-1691

~Received 11 October 1999!

An improved version of a kinetic simulation technique, the convected scheme~CS!, is described. We present
a ‘‘long-lived moving cell’’ version of the convected scheme and describe a recipe for implementation in
detail. In collisional systems, the numerical diffusion in ‘‘ballistic motion’’ does not affect the simulation result
of the regular CS, which can be set up to minimize numerical diffusion in collision processes. With the new
scheme, the numerical diffusion is highly reduced even in nearly collisionless plasma systems, which is
important in the modeling of low-pressure high-density plasma sources.

PACS number~s!: 02.70.2c, 52.65.2y, 52.25.Dg
o
s i
g
et
rlo
in
n

a-

rg
av
o
e
t
.

th
las

t
o

y
ta
o
th
m
re

c’

i
n
li

en
fo
d
-

ut
ly
oi
tifi
n
gy

rate
he
late.
ery
ost
e
ecial

ell,
rgy
put

of
rti-
y,

are

in
last
nce
ach

be-
ase
ed
se
su-
or

lly
his

eld
A
as

tis-
ort
r
the
to

will
I. INTRODUCTION

Kinetic models are essential for accurate description
the energy and velocity distributions of the particle specie
a plasma. There are several kinetic models, each havin
own advantages and limitations. Several particle type m
ods, such as Monte Carlo, direct simulation Monte Ca
and particle in cell@1# are well developed. The other ma
type of model involves solving the plasma kinetic equatio
The convected scheme~CS! model has been used in simul
tions of both fusion@2# and processing@3,4# plasmas. It is a
formidable task to obtain a solution of a realistic discha
due to the difficulty of describing the charged-particle beh
ior consistently with the fields present, the wide range
time scales present, and limited basic cross-section and r
tion rate data. Regardless of these obstacles, it was found
the major source of error in the CS is numerical diffusion

The purpose of this paper is, in part, to investigate
accuracy of a class of schemes for kinetic simulation of p
mas. The class we consider here are direct solutions of
Boltzmann equation. We thus do not consider simulations
the ‘‘particle’’ type @5#. Such particle simulations allow ver
accurate tracking of individual particles, but suffer from s
tistical noise and from poor sampling of some regions
both physical and velocity space. In the past some of
major sources of error in the most accurate type of sche
for solving the Boltzmann equation have been conside
@6#—which are probably schemes based on the method
characteristics. The errors associated with the ‘‘ballisti
motion ~i.e., the motion in phase space in the absence
collisions! were discussed, as well as the errors involved
the handling of collisions, and it was argued that differe
sets of phase-space variables were optimal for the hand
of each of these two processes.

It was pointed out that conservation of particles and
ergy are usually critical for an accurate simulation, and
these to be implemented, locally in phase space, we nee
track particles leaving an ‘initial’ cell on the mesh and im
pose the conservation law~s! whenever those particles are p
back onto the mesh. Nonconservation of particles is clear
severe problem—especially in a simulation where the P
son equation is solved, since if particle numbers grow ar
cially, the electric field will almost certainly be greatly i
error. However, a small but steady artificial input of ener
PRE 611063-651X/2000/61~3!/3160~14!/$15.00
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can also lead to nonsensical results, since the ionization
may then grow without bounds. It was pointed out that t
lowest energy particles are the most troublesome to simu
This is perhaps not surprising at one level, since their v
slow motion makes the simulation of these particles the m
numerically ‘‘stiff’’ aspect of the scheme. In addition, th
need to use an energy conserving scheme causes sp
problems for particles that do not leave the initial spatial c
before they are mapped back. If we do not conserve ene
when we update their coordinates, then particles that are
back in a given cell@i.e., with spatial coordinate~s! un-
changed# can have gained energy. Over many repetitions
this mapping back, they can gain a lot of energy, quite a
ficially. On the other hand, if we do conserve their energ
then if they are put back in the same spatial cell, they
effectively put back at the cell center~since we cannot dis-
tinguish their location better than this, once they are back
the cell! and so they lose any energy they gained in the
step. This means that they stay in the cell too long, si
their acceleration is repeatedly negated at the end of e
time step. Because of this dilemma, in particular, and
cause numerical diffusion is a problem whenever the ph
fluid is mapped back, we investigate the use of ‘‘long liv
moving cells’’ ~LLMC !. These are simply packets of pha
fluid that persist for more than one time step, and they u
ally last until the packet gets out of its initial spatial cell
until a collision time has elapsed~so the packet is largely
emptied out by collisions, as we shall see!. We introduce this
new scheme in kinetic modeling for low-pressure partia
ionized plasmas, and summarize it in a detailed recipe. T
algorithm is first benchmarked by imposing a constant fi
~swarm! configuration and comparing with experiments.
set of rf helium discharge simulations will also be used
benchmarks.

II. KINETIC MODELS

Kinetic models can be divided into two categories: sta
tical models and direct solutions of the Boltzmann transp
equation@7#. Monte Carlo, DSMC, and PIC are of the forme
type. They use random number generators to simulate
effects of collisions; and integrate the equations of motion
track particle movements. Sometimes statistical noise
reduce the quality of the simulation results.
3160 ©2000 The American Physical Society
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PRE 61 3161SELF-CONSISTENT KINETIC SIMULATION OF PLASMAS
The other type of kinetic modeling requires us to find t
solution of a kinetic equation directly. One approach is us
a Fourier transform of the kinetic equation, then solving
dynamic equations for the Fourier coefficients@8–10#. An-
other approach is to solve the kinetic equations directly, a
done in the convected scheme~CS! method.

The CS uses the method of characteristics to const
propagators@11–14#. After a brief introduction to the meth
odology of the CS, we will describe the details of the im
provements we have made to the CS and give the recipe
its implementation.

A. Propagator method

The kinetic behavior of a gas discharge is described
the Boltzmann (transport) equation:

] f

]t
1v•

] f

]x
1a•

] f

]v
5C~ f !, ~1!

where, for each species,f 5 f (x,v,t) is the one-particle dis-
tribution function, which statistically describes the numb
of particles in the volumedx dv at the position (x,v) in the
six-dimensional phase space at time t,a is the ensemble-
averaged acceleration, andC( f ) is the collision operator.
The CS is based on using the propagator method to solve
Boltzmann equation for the~one-particle! distribution func-
tion.

For each particle species the formal solution of the Bo
zmann equation for short time steps can be written as:

f ~x,v,t !5E E P~x,v,t;x8,v8,t8! f ~x8,v8,t8!dx8dv8,

t.t8, ~2!

where the kernel of the integral,P(x,v,t;x8,v8,t8), is the
propagator for a particle at the phase space position (x8,v8)
at timet8 moving to (x,v) at a later timet. Certain properties
and conservation laws related to this propagator in the
were noted by Adamset al. @11#. Instead of finding the ex-
plicit form of the propagator in a 14-dimensional space,
CS propagator is divided into two parts—one for the ballis
motion and one for collisions. In the ballistic motion coll
sions are neglected, and the Boltzmann equation is redu
to theVlasov equation:

d f

dt
5

] f

]t
1v•

] f

]x
1a•

] f

]v
50. ~3!

In the CS, the Vlasov equation is numerically integrat
along thecharacteristic curves, which are determined by th
equations of motion:dx/dt5v anddv/dt5a. After this bal-
listic motion step is complete for all particle species,f is
adjusted according to the collision processes described
the collision operatorsC( f ) as well as chemical reactions.

While particle methods, such as Monte Carlo and partic
in-cell models, use super particles, the CS uses cells.
superparticles are~usually! unbreakable entities and collid
statistically by using random number generators. Statist
noise in the number of particles in a small region of pha
space can be a significant issue in such particle methods
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the contrary, the CS is free of statistical noise, but the fin
size and the discreteness of the phase space mesh will c
numerical diffusion, when particles from cells are redistrib
uted after the ballistic motion or after collisions. Thelong-
lived moving cell~LLMC ! model has been conceived to r
duce the numerical diffusion, by reducing the number
times this redistribution occurs.

B. Convected scheme using long-lived moving cells

The idea of the CS is, given a suitable numerical me
throughout phase space, to move the particles assoc
with the individual cells of the mesh to a new location bas
on their coordinates~position and velocity!, the fields
present, the collision probability, and the time step. We sh
give a three-dimensional example (1D-space a
2D-velocity! for the electron ballistic-mover. Conservatio
laws that significantly affect simulation results will be em
phasized. After describing the design of the mesh, we w
introduce the CS with LLMC’s, as well as how numeric
diffusion can be reduced by this new scheme. Other po
bilities to improve the current version of the CS wi
LLMC’s will be discussed later. Finally, we will summariz
the ion ballistic mover, which is similar but simpler.

It is assumed that the distance between two plane par
electrodes is much less than the lateral dimensions of
electrodes so that fringing effects can be ignored. We
(z,v,m) to construct the three-dimensional phase-sp
mesh~Fig. 1!. The position along the spatialz axis, which is
perpendicular to the plates, is denoted byz. The speed of
electrons is denoted byv, and the direction cosine of th
velocity relative to thez axis bym. The finite-ranged phase
space is divided into cells. Each cell, labeled by indic
( j ,l ,k) on the phase-space mesh, is associated with a si
set of (zu j ,vu l ,muk). We will use the terms ‘‘mesh cell’’ to
describe a cell fixed on the mesh, ‘‘initial cell’’ a cell befor
the ballistic motion carries it away from its mesh cell, ‘‘mov
ing cell’’ the same cell during or after the ballistic motion
and ‘‘final cells’’ those mesh cells overlapped by a movi
cell at the end of its ballistic motion. The particles in th
mesh cell (j ,l ,k) have uniquevu l and muk values, and are
distributed uniformly in the spatial rangeDzu j with average
value zu j . Similarly, the particles in each moving cell ar
assumed distributed uniformly in space but with constanv
andm instead of over a range ofv andm values. Figure 2 is
a schematic of the movement of the phase-space cells du
a time step.

The initial cell centered at (z9,v9,m9) is moved according
to the equations of motion:

FIG. 1. Mesh for three-dimensional phase space.
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dx

dt
5v ~4!

dv
dt

5
q

m
~E1v3B! ~5!

to a new position (z8,v8,m8) in the phase space, where
overlaps with neighboring final cells at (z,v,m). The Euler
scheme is employed to integrate these two equations of
motion, i.e.,E andB are evaluated at the initial cell centerz9
in Eq. ~4! and Eq.~5!, except that the finalz component of
the velocityvz8 is computed by energy conservation. Spec
cally, for this one-dimensional system, we know that thez
component’’ of the total energy is conserved in the ballis
motion, so

1

2
mvz8

25
1

2
mvz9

21qF~z9!2qF~z8!, ~6!

where F(z9) and F(z8) are based on the initial potentia
profile andvz85v8m8,vz95v9m9.

In this numerical enforcement of the conservation of e
ergy, the initial potential profile was interpreted as a stairc
potential in the regular CS~that is, the potential is considere
constant in each spatial cell!. However, using the CS with
LLMC’s can affect the convergence of some simulation
sults, especially when the parameters of the discharge ar
the boundary of the working range—that is, when the r
discharge is only marginally able to sustain itself. To mo
particle dynamics more precisely, a curve-fitted poten
~CFP! is sometimes used when calculating the energy at
location of the centers of LLMC’s. If the CFP at the final ce
center,F(z8), implies that the locationz8 is energetically
forbidden, the electrons retrace their trajectory by usin
smaller time step. This reduction of time step has to be
minated after several orders if the desired accuracy is
achieved. Other time integration methods, such as the l
frog scheme or the Runge-Kutta scheme@5#, can replace the
Euler scheme. Although the leap-frog scheme has a w
range of numerical stability for different simulation param
eters or time steps, the simulation results from it are ess
tially the same as those from the Euler scheme. The num
cal enforcement of the conservation of energy has a m
profound effect on the simulations than the integrat
scheme does.

Due to the limitation of computer memory the regular C
requires periodic remapping of the particles in a moving c
onto the mesh cells, which have discrete coordinates in

FIG. 2. Schematic of ‘‘ballistic’’ propagator in three dimen
sions.
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phase space. Typically, moving cells do not correspond
actly to mesh cells; particles with a unique position in t
phase space have to be shared among neighboring m
cells, and this gives rise to the artificial numerical diffusio
To reduce the numerical diffusion during the ballistic mov
a train of LLMC’s is launched, one cell usually being th
most launched at each time step for each mesh cell. O
techniques, which launch LLMC’s less often, are also inv
tigated and will be described in more detail later.~See Fig.
3.! Since the number of~unscattered! particles in a moving
cell decays exponentially with time, the number of partic
that remain in the last moving cell depends on the length
the train. Particles in the leading moving cell of each tra
will be remapped back to the mesh cells when a new mov
cell is added to the train. For particles in these LLMC
which are as yet unscattered, the remapping happens
frequently compared to the regular CS, so numerical dif
sion due to ballistic motion will be highly reduced. Ideall
the leading moving cell of the train will have existed fo
about 1 to 2 collision times, so 60–90 % of the particles t
were in it initially will have scattered out before it i
remapped. The errors involved in remapping those partic
that have collided make it pointless to follow the unscatte
particles for much more than one collision time.

As shown in Fig. 4, electrons in the moving cell
(z8,v8,m8) are shared between the neighboring cells on
(z,v) mesh, cellsA, B, C, andD. Particle number and kinetic
energy are conserved, if the fractions of particles for ea
final cell are:

FA5S zu i 112z8

zu i 112zu i
D S ~v i8!22vu j

2

vu j 11
2 2vu j

2D ~7!

FIG. 3. Launching a new moving cell.

FIG. 4. Redistributing particles in a moving cell back to th
mesh cellsA, B, C, andD.
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FB5S zu i 112z8

zu i 112zu i
D S vu j 11

2 2~v i8!2

vu j 11
2 2vu j

2 D ~8!

FC5S z82zu i
zu i 112zu i

D S ~v i 118 !22vu j
2

vu j 11
2 2vu j

2 D ~9!

FD5S z82zu i
zu i 112zu i

D S vu j 11
2 2~v i 118 !2

vu j 11
2 2vu j

2 D , ~10!

where (v i8)
25(v8)21(2q/m)F(z8)2(2q/m)F(zu i) and

(v i 118 )25(v8)21(2q/m)F(z8)2(2q/m)F(zu i 11). ~Note
the order of remapping: we spread the particles over sp
then we conserved kinetic energy in each spatial cell.! For
each spatial cell, particles are in addition distributed ovev
and m cells such that the ‘‘parallel component’’ and ‘‘pe
pendicular component’’ of the averaged kinetic energy
unchanged. If one of the spatial cells is energetically forb
den, 1

2 m(m8v8)21qF(z8),qF(zu i) or qF(zu i 11), the par-
ticles are remapped to the other spatial cell, with newly c
culatedv andvz . In the case of reflection, the sign ofvz is
reversed.

After the ballistic motion step, to calculate the rates
collision processes and chemical reactions, the velocitie
electrons for each moving cell are determined in the ov
lapped final cells. For the regular CS, the kinetic ene
corresponding to the velocity determines collision rates
chemical reaction rates in a final cell, using the stairc
potential. In Fig. 4, the percentage of scattered particles
the part of the moving cell overlapped with the final cellA,
Eq. ~7!, is based on the energyvu j 11, and that with the final
cell B, Eq. ~8!, is based onvu j . Similarly, the percentage
according to Eq.~9! and Eq.~10! can be obtained for the
scattered particles within final cellsC andD. Usually, after
the collision, the fraction of scattered particles for the part
the moving cell overlapped with the spatial cellzu i will be
different from that for the part of the moving cell overlapp
with the spatial cellzu i 11, because the scattering rates we
different in the different spatial cells.

For the CS with LLMC’s, when the moving cell moves
a new position after the next time step, the particle densit
the moving cell will be assumed uniform over space. T
inconsistency can be removed if the kinetic energy~or the
velocity v8) based on the CFP at positionz8 is used to de-
termine the number of scattered particles. After this C
adjustment, the particle density will always be unifor
within a moving cell since the density of the scattered p
ticles is removed uniformly within a moving cell. For th
regular CS implementation, the CFP adjustment is not n
essary. If moving cells are used, the result with the C
adjustment will be much smoother than the result withou
where bumps and spikes in the density profile are obser
However, energy conservation can be violated when s
tered particles are put back to the mesh cells whose po
tials are different from the potential at the center of t
LLMC, if their kinetic energy is that found based on the CF
at z8 ~the center of the moving cell!. Especially in high-
pressure cases, high collision rates exacerbate the viola
of conservation of energy, which occurs with the CFP us
in this way. Using the CFP in this way, the regular CS f
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quently does not give a convergent result, so the stairc
potential must be employed. The LLMC method seems to
unaffected by use of the CFP for finding the kinetic ener
of scattered particles but the use of the staircase to find
energy for replacement on the mesh may be more accu
The staircase potential is always used when replacing uns
tered particles on the mesh.

In addition to the above, we now describe other possib
ties to implement the CS with LLMC’s. To avoid launchin
a moving cell for each mesh cell at each time step, in o
version a new moving cell is launched only if the movin
cell deviates from the original mesh cell too much. As sho
in Fig. 5, the moving cell in position 1 can still represent t
mesh cell~marked3), so distributed particles from othe
moving cells are placed in this moving cell instead of~or
after being put in! the mesh cell. When the moving cell de
viates from the mesh cell such that the ‘‘center’’ of the mo
ing cell is not in the range of the mesh cell, a new ‘‘movin
cell’’ is launched as shown in Fig. 5~b!. Since this new cell is
meant to represent the mesh cell at the moment, it is h
fixed in phase space at first, and distributed particles fr
other moving cells go into this new cell instead of th
almost-left moving cell. In Fig. 5~c!, as the moving cell
reaches position 2, it has totally left the range of the me
cell marked3, so the newly launched moving cell begins
join the motion. In Fig. 5 the criteria for the transitions fro
phase~a! to phase~b! and from phase~b! to phase~c! depend
on how cells are moved in the ballistic motion.

C. Cell faces or cell centers

Two cases have been considered: the spatial
boundaries/faces atzu j2Dzu j /2 and zu j1Dzu j /2 can be
moved either~i! together according to the initial velocity an
local electric field at the cell center or~ii ! independently
according to the initial velocity and local electric field
each face position. In the first case~the two spatial faces of a
cell are moved together!, if a cell with initial coordinates
(z,v,m) moves to (z8,v8,m8), the final spatial position is
obtained from Newton’s law:

z85z1~vm!Dt1
q

2m
E~z!~Dt !2,

and the conservation of the ‘‘z-component of energy’’ez
gives:

ez5qF~z!1
m

2
vz

25qF~z8!1
m

2
~vz8!2, ~11!

FIG. 5. Procedure for launching a new moving cell.
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where vz5v3m, vz85v83m8, and v@12(m)2#1/25v8@1
2(m8)2#1/2 is the perpendicular velocity. Similarly, ifzu j8 is
energetically forbidden, the particles retrace their traject
to the previous spatial cell~i.e., the cell next to the cell wher
the particles first are forbidden to be!, reversing the sign of
vz . Since the potential,F(zu j ), is constant in space in th
spatial cell j, F(z) and F(z8) correspond toF(zu j ) and
F(zu j8), respectively. There are spatial gaps between
moving cells originating from the same mesh cell, if the tw
spatial faces of a cell move based on the information at
cell center. However, this phenomenon cannot easily
eliminated even when the two spatial faces are moved in
pendently. The criterion for the phase~a!-to-phase~b! tran-
sition is intended to check if the faces of the moving c
pass thecenterof the mesh cell in space. The criterion fo
the phase~b!-to-phase~c! transition is to check if the faces o
the moving celltotally leave the mesh cell in space. Pha
~a!-to-phase ~b! and phase ~b!-to-phase ~c! transitions
may occur at the same time since cells are treated as dis
values in velocity.

In the second case~the two spatial faces of a cell ar
moved independently!, the two spatial faces can have total
different behavior. Before a time step of the ballistic motio
if an initial cell is launched at the mesh cell (j ,l ,k), the two
faces of this initial cell have the same perpendicular veloc
vu lA12muk

2 and the samez-component of velocityvu lmuk ;
however, later on the two faces of an initial cell will ‘‘kee
track’’ of their own velocities, i.e., a moving cell might hav
different velocities for its two faces. Similar to the first cas
the velocity of each face of a moving cell after a time step
determined by conserving the ‘‘z-component of energyez’’
as in equation~11!. In other words, each spatial face has
own position in the three-dimensional space (z,v,m). Since
cell faces are moving independently and the electrostatic
tential is ~often! step-function like, there might exist gap
between moving cells. For example, the back face of one
is the front face of another cell initially, but they move a
cording to the potential associated with different cells. At t
end of the time step, the front face of the cell and the b
face of the next cell will have different velocities. Gaps w
develop at the end of the next time step. This is one of
finite mesh size effects. Sometimes a moving cell may
cupy many final spatial cells;ez is assumed to vary linearly
between two faces~since we do not calculateez except at the
faces!. The same assumption also allows us to find the p
pendicular component of velocity. The different parts of t
moving cell in different final spatial cells have theirv andm
determined by the linearly interpolated perpendicular co
ponent of the velocityv@12m2#1/2 and thez-component of
velocity vm, which is calculated from the linearly varyin
ez . The motion of faces of the moving cell gives the sam
criterion for phase~a!-to-phase~b! and phase~b!-to-phase~c!
transitions. If one of the faces has its velocity pointing o
way out of the mesh cell but the other face has its veloc
the other way, then we invoke the phase~a!-to-phase~b!
transition. If both faces have their velocities out of the me
cell in the same direction, then we invoke the phase~b!-to-
phase~c! transition.

Had we allowed particles to be uniformly distributed ov
v andm, remapping after the ballistic motion using this un
y
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formity to do the mapping would destroy this ‘‘uniformity’
assumption~or else it would lead to nonconservation of e
ergy, etc., if we enforced uniformity! unless more variables
are used to record this nonuniformity for each cell. But
one can see in the simple one-dimensional water-bag m
by Berk et al. @15#, the number of required recording var
ables will soon exceed the computer memory limit. Hen
we treat a cell as a single point in velocity but with a fini
extent in space.

D. Ion ballistic motion

The ‘‘ballistic’’ move for ions is similar to that describe
above, however, the final velocity for the ions is found usi
the equation of motion without total energy conservatio
since conservation of momentum is more important for
dynamics. The~ion! particles of a moved cell are instead p
back to the overlapped mesh cells according to the con
vation of momentum. The ion distribution function has on
two phase-space dimensions, namely, (z,vz). The compo-
nents of the velocities of the ions which are not explici
tracked are assumed to have a Maxwellian distribution at
background gas temperature.

E. Collisions and gas phase processes

Helium plasma illustrates the typical processes tak
place in a discharge. The collision part of the propagato
the CS is straightforward once the collision operator is c
structed@6#. Since particles are placed on mesh cells af
ballistic motion and collisions, a pre-computed collision o
erator for discrete values ofv andm can be very efficient.

Elastic collisions of electrons with neutral atoms are ty
cally anisotropic in nature. Two versions of the elastic co
sion operator are used. The ‘‘full’’ version provides an a
isotropic distribution with recoil cooling also. In the cent
of mass~C! frame the differential cross section only depen
on the initial relative velocity of the electron with the re
duced mass,mMg /(m1Mg), and the scattering angleQ,
where m is the electron mass andMg is the background
neutral mass. The azimuthal scattering angle is uniform
distributed, so we are only concerned with the polar angle
which the electron scattered. For incident electrons with
tial velocity v into the background neutrals with temperatu
Tg in the lab~L! frame, the average relative kinetic energy
the C frame is given by

t05
1

2

mMg

m1Mg
S v21

3kBTg

Mg
D , ~12!

where kB is the Boltzmann constant andTg is the back-
ground gas temperature. The fraction of electrons elastic
scattered out of a cell with coordinates (z,v,m) during a time
stepDt is

nsc

ncell
5DtNg^s~t rel!v rel& ~13!

'DtNg^s~t0!&Av213kBTg /Mg, ~14!

whereNg is the number density of the background gas a
^•& averages over the background Maxwellian neutra
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Since the elastic collision is kinetic energy conservative,
transformation between the scattering angleu in theL frame
and the angleQ in the C frame is given by

tanu5
sinQ

~m/Mg!1cosQ
. ~15!

The final kinetic energy of the scattered electrons in thL
frame is given by

m

2
v825

m

2
v2S 12

2mMg

~m1Mg!2
~12cosQ!D . ~16!

For electron collisions with neutrals,m!Mg and we obtain
u'Q. If the differential scattering cross section is consta
with respect to the angleQ, we can construct the averag
cosine of the scattering angleu from

^m~t0!&5
1

s~t0!
E

21

1

m8
ds~t0!

dm8
dm8, ~17!

whereds(t0)/dm8 is the differential cross section, and th
total cross section is given by

s~t0!5E
21

1 ds~t0!

dm8
dm8. ~18!

Averaged overu the kinetic energy of the scattered electro
is proportional to:

v825v2S 12
2m

Mg
@12^m8~t0!&# D . ~19!

This ‘‘simplified’’ version provides isotropic distribution o
scattered electrons with energy transfer due to recoil du
electron-atom collisions. We note that the definition of t
momentum transfer cross section can be expressed in t
of ^m8(t0)& as

sMT~t0!5E
21

1

~12m8!
ds~t0!

dm8
dm85s~t0!@12^m8~t0!&#.

~20!

We emphasize that we will uses(t0) to determine the col-
lision rate, and in most casess(t0).sMT(t0). The speed of
the electron will on average change, due to elastic re
cooling, to a value given by

v85Fv22@12^m8~t0!&#
4

M S 1

2
mv22

3

2
kBTgD G1/2

.

~21!

Unlike elastic electron-neutral atom collisions, different
cross sections are rarely available for inelastic electr
neutral atom collisions. We introduce a parameterh, which is
the fraction of the averagez momentum of the electron tha
is conserved in inelastic collisions. The average final veloc
component along the incident direction for this set of el
trons can be cast into the form
e

t

g

ms

il

l
-

y
-

v f5m0hS v0
22

2tg

m D 1/2

, ~22!

wheretg is the energy given up in the collision. Because t
lack of the information as to differential cross-section da
the parameterh would, based on simple physical argumen
vary from near zero at threshold energies to near unity
high energies. For the ‘‘simplified’’ version, an isotrop
treatment is employed.

Once the electron velocity is less than the characteri
atomic velocityZe2/4pe0, which corresponds to about 27.
eV, the polarization scattering affects the elastic collisio
between electrons and neutrals with the potential@16#

U~r !52
q2a3

8pe0r 4
. ~23!

For electrons with higher energy, hard sphere collisions
ply. Similarly, the Coulomb scattering between charged p
ticles is described by the well-known formulas:

dva

dt
52~11ma /mb!c~xa\b!n0

a\bva ~24!

d~va2^va&!'
2

dt
52@~121/2xa\b!c~xa\b!

1c8~xa\b!#n0
a\bva

2 ~25!

d~va2^va&! i
2

dt
5@c~xa\b!/xa\b#n0

a\bva
2 ~26!

dva
2

dt
52@~ma /mb!c~xa\b!2c8~xa\b!#n0

a\bva
2 , ~27!

where

n0
a\b5

4pqa
2qb

2nb ln Lab

~4pe0!2ma
2va

3
~28!

xa\b5mbva
2/2kBTb ~29!

c~x!5
2

Ap
E

0

x

dt t1/2e2t ~30!

c8~x!5
dc

dx
, ~31!

and lnLab is the Coulomb logarithm. In general, kinetic e
fects of a collison process can be described by

dva

dt
52ns

a\bva ~32!

d~va2^va&!'
2

dt
5n'

a\bva
2 ~33!

d~va2^va&! i
2

dt
5n i

a\bva
2 ~34!
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dva
2

dt
5ne

a\bva
2 , ~35!

where the collsion frequencies,ns
a\b , n'

a\b , n i
a\b , andne

a\b

are averaged over the distribution of the background p
ticles b. As we can see, the theoretical diffusion in pit
anglem is predicted by Eq.~33!, and the diffusion in velocity
v is predicted by Eq.~34!. The drag force due to the back
ground particles is represented as Eq.~32!. The elastic cool-
ing amounts to the energy loss, Eq.~35!. From Eq.~34!, if
the energy mesh is fine enough such thatDva

2/va
2

5Dva /va,n i
a\bDt, then the physical diffusion will domi-

nate the numerical diffusion. This was achieved by choos
a longer time step instead of decreasing the mesh cell s

The total and differential cross-section data for electr
helium elastic scattering are taken from LaBahn and Ca
way @17,18#. The differential elastic cross section has an
timated accuracy65%. For electron-helium ionization
collisions, since the second ionization is at about 70
where the electron population is small, only single ionizat
is considered@19#. The electron-helium excitation and ion
ization cross section data are taken from Alkhazov@20#. All
inelastic scattering processes are assumed isotropic. Tr
tions 11S–n1S, 11S–n1D, 11S–n3S, 11S–n3D, and 11S–
n3P, where 2<n<5 and is allowed by the selection rule
are included, though transitions between excited states
ignored. The semi-empirical inelastic cross sections have
uncertainty of625% at low impact energies and65% at
higher energies where the Born approximation is reliab
For rf discharges, simulations under the same pressures
driving voltages are also carried out using benchmark cro
section formulas from Ref.@21# for elastic electron-helium
scattering, for electron-helium ionization scattering, and
electron-helium excitation scattering.

Total cross sections for electron transitions between
cited states of helium are taken from Fonet al. @22#. The
charge exchange cross section of He1 and He is taken from
Helm @23#.

F. Numerical implementation

The recipe given here will be used as a guideline for
implementation. Analysis and justification of steps in t
recipe will be given afterwards.

Recipe:
(1) Find constants of motion. These conserved quantitie

should remain constant for both the ballistic motion and
remapping rules. It may be impossible to satisfy all cons
vation laws due to the finite mesh size effects; that is, wh
we are conserving one quantity the discreteness of the m
leads to a change of another. Hence, the priority of th
constants of motion is important and usually is determin
by the particular physical problem. For example, in a mo
with one dimension in space~z! and two dimensions in ve
locity (vz ,v'), the perpendicular component of kinetic e
ergy v'

2 is a constant of motion.
(2) Choose mesh coordinates. If a mesh coordinate is a

constant of the motion, the re-mapping procedures in the
should not distribute particles across different volumes
that coordinate. In this case, the numerical diffusion eit
during collisions or during ballistic motion can be reduce
r-
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For example, in a cylindrical system the radial distance a
the angular momentum would be better thanr andu, since
the angular momentum is conserved but the azimuthal a
u is not.

(3) Choose mesh size. The lower kinetic-energy bound o
the mesh is obviously zero, but the upper kinetic-ene
bound cannot be infinite in a simulation. The population
high-energy particles is low in most cases. In addition,
cross section approaches a constant value, usually zer
high energy. For these reasons it is justified to use a fi
range for the velocity mesh. However, the mesh range sho
be large enough to include electrons that are involved
important processes. For example, in an rf discharge w
driving voltage of 100 Volts, the highest energy cell shou
represent particles with kinetic energy of 100 eV at lea
~Particles with energy greater than the maximum are
placed with the maximum.! The mesh size should also b
fine enough in the regions of interest.~Typically we choose
Dv/v5constant,Dm5constant, and use 10 to 20m-cells. If
we use Dvz /vz5constant, Dv' /v'5constant, we have
what is probably worse resolution for the same number
mesh points.! On the spatial mesh, the mesh size may nee
be kept at the order of the Debye length to resolve the sh
dynamics correctly. To resolve the velocity mesh approp
ately @6#, such that

Dv
v

5C, ~36!

the boundaries of the velocity cells can be obtained by s
ply ‘‘integrating’’ the above equation:

vu l5vmin exp$C8l %, l 50, . . . ,nl , ~37!

wherec8 is chosen to make the constantC about 0.1. The
lowest cell is atv50; the next is usually at about room
temperature such that1

2 mvmin
2 '0.026 eV.

(4) Remapping rules. Particles are assumed uniformly di
tributed over space, within each moving cell. The vario
spatial parts of a moving cell can have different velocit
(vz ,v'), if they are in different spatial cells. If conservatio
of energy is the most important conservation law, then
can transform to an energy mesh instead of a velocity m
when we map particles from various parts of the moving c
to their corresponding final cells with the same spatial po
tion. ~This is equivalent to the rule given above—see Fig.!
Since particles are remapped to the mesh cells, which
discrete, this may cause other constants of the motion to
changed.

(5) Ballistic motion. The equations of motion can be inte
grated using the Euler scheme, or others. Since conserva
of energy is emphasized for electrons, the value of the
locity used to do remapping of electrons is not determined
integrating the equations of motion, but by conservation
energy. The conservation of momentum law is usually e
ployed for ions.

(6) Collisions. Differential scattering cross-section da
are rarely available, so inelastic scattering, like ionizat
and excitation, is usually assumed to be isotropic.

(7) Time step. For the simulation of a plasma, at lea
three basic characteristic frequencies restrict the time
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Dt. To avoid running out of particles, there should be
most one collision in a time step; the time stepDt must
satisfy the relation

Dt!ns
215@Nv rels tot~v rel!#

21, ~38!

whereN is the density of scatterers,v rel is the relative speed
and s tot(v rel) is the total cross section. The total collisio
time t5n21 can be obtained as

1

t
5 (

i

all processes
1

t i
.

UsuallyDt;0.2t,e21t,t. To resolve the dynamic behav
ior of electrons, which are the fast species in a process
plasma, the time step should be less than plasma chara
istic time scale,

Dt,
2p

ve
52pS ne2

e0mD 21/2

, ~39!

wherem is the electron mass,n is the electron number den
sity, ande is the electron charge. Finally, if an external fie
is present,Dt should be much less than the time scale of
external field:Dt,2p/v, wherev is the angular frequency
of the external field. If the electromagnetic fields vary ra
idly in a time-varying system, the time step is limited by t
field period. However, this restriction is imposed by the el
tromagnetic field solver, not by the CS.

The choice of these independent variables (z,v,m) to de-
scribe the electron distribution function is somewhat ar
trary. Another choice for phase-space coordinates
(z,vz ,v'). It has some advantages in ballistic motion f
constant field cases, but complicates the collision proces
Most of the difficulty in programming comes from the fini
mesh size effects. The variables (v,m) and (vz ,v') give rise
to different amounts of diffusion if one considers a ‘‘balli
tic’’ move or a ‘‘move’’ due to a collision.

In a ‘‘ballistic’’ move in a one-dimensional systemv' is
constant, so (vz ,v') are useful—since thev' variable need
not be remapped. However, (vz ,v') yields low resolution of
pitch angle for low-energy cells and uneven resolution
high-energy cells.~Pitch angle resolution ofDm;0.1 is
probably adequate for allv.!

In a purely collisional move, wherev is exactly equal to a
value that lies on the mesh, then if the collision does
changev, only m varies so only it has to be remapped. F
moving cells, if we follow the moving cell for about a colli
sion time,v is not likely to match a value on the mesh. Th
when we remap after the collision there is some diffusion
v as well asm. For this reason, there is no great advantage
following the moving cell for longer than a collision time—
collisions are already introducing errors. The (v,m) pair still
offer an advantage, in this case—because the phase spa
more efficiently partitioned using these variables. Wh
LLMC’s are used, the collisions cause most of the numer
diffusion. It is thus helpful to use (z,v,m), which sometimes
reduces numerical diffusion in collisions. The main reas
these variables reduce diffusion, however, is that them vari-
able needs fewer cells than~say! v' , freeing memory for
better resolution inv.
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G. Merging moving cells

We have considered limiting the number of moving ce
by merging nearby~in phase space! moving cells, which
originate from the same initial cell, into a composite ce
using conservation laws to determine the characteristics
the new moving cell. It is essential to ensure that suc
merging does not move the particles in space~i.e., the den-
sity in each spatial cell must be the same before and after
merge!. This is to ensure that artificial currents are n
created—including displacement currents, and spurious e
tric fields. This merging is in some sense very similar
simply remapping moving cells onto the fixed mesh, a
then ~as usual! launching moving cells from the fixed cells
As long as the fixed mesh has adequate resolution, rem
ping is more straightforward, since it uses the existing p
cedures, and so is probably preferable. The low-energy m
ing cells are unlikely to merge because the velocity does
stay within the fixed cell. The high-energy cells are unlike
to merge because moving cells leave the fixed cell in spa
However, merging does not always seem to give a sta
result. As an alternative, it was found that launching mov
cells only every second time step produced no noticea
effect on the simulation; further delays in launching app
to alter the simulation.

H. Numerical diffusion

Since the moving cells are remapped periodically, if
moving cell should stay at roughly the same velocity duri
its lifetime, the numerical diffusion in velocity space can
estimated by a random-walk picture of diffusion with th
diffusion coefficient in velocity space:

Dv5
1

2 S Dv
2 D 2

n rep, ~40!

wheren rep ~set tov/dx or nel) is the replacement frequenc
of mapping back moving cells in the CS. From the veloc
resolution Eq.~36!, if the parallel~z! component of the ve-
locity is in reality nearly constant, then the above equat
can be expressed as:

Dv5
1

8

C2v3m

dx
, ~41!

wheredx is the distance traveled by the moving cell befo
mapping back.

The diffusion in velocity space for particles movin
across the system can be cast as:

dv5A2Dvtdiff , ~42!

and

t diff5Ntcoll

5
L2

l2
tcoll

5
L2

v2
ncoll ,
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whereN5L2/l2 is the number of collisions before the pa
ticles diffuse across the system,L is the system dimension
andl is the elastic scattering mean-free path. So the num
cal diffusion in v, before particles cross the system, w
changev by

dv5
LDv
2v

An repncoll, ~43!

wheren rep5v/dx or nel ~see below! andncoll51/tcoll is the
elastic-scattering frequency. This expression fordv was used
to check that numerical diffusion gave a smaller change iv
than the dominant physical processes, in the simulations
follow.

I. Number of moving cells

The number of moving cells on the train for an initial ce
is chosen as the minimal of the number of the time steps
collision time, and the number of the time steps for the c
to travel one spatial cell based on the initial velocity. Ho
ever, to reduce moving cells to a reasonable number
those initial cells with lowm value, an upper limit is also
imposed: usually, 30 moving cells will highly reduce th
numerical diffusion and give good simulation results. Mo
moving cells can be used depending on the comp
memory resource and on computation time.

III. SIMULATION RESULTS AND DISCUSSION

We will present two sets of benchmark tests, for the
with LLMC’s: a ‘‘swarm’’ experiment, which is a discharg
with a spatially uniform electric field, and rf capacitive di
charge simulations. We shall see that the use of LLMC
produces an improvment in accuracy, in less collisio
cases.

Helium gas is used in these benchmark tests, since
physical and chemical processes involved are relativ
simple so that we can concentrate on the effects of the
with LLMC’s.

A. Swarm simulation

A typical swarm experiment is a one-dimensional axia
symmetric system. The electrons are accelerated by the
plied electric field in a weakly ionized gas. We shall simula
swarm experiments, using the CS with LLMC’s, for the p
rameterE/N in the range from 8 to 282 Td~where 1 Td
510217 V cm2) at room temperature, 293.15 K. Since io
dynamics are not important in these swarm simulations, t
are ignored and the secondary electrons are assumed
emitted from the cathode monoenergetically. Rigorously,
secondary electron energy should be spread in a ce
range. To speed up the convergence, a constant numb
electrons are assumed to be ejected from the cathode
energy equal to that of the lowest energy cell, and along
positive z-direction (m51). The differential cross sectio
for anisotropic elastic scattering is integrated over the s
tering angle, as Eq.~20! to give an isotropic momentum
transfer cross section. Elastic scatterings are treated as b
isotropic but using the momentum transfer cross section
yield the correct drift velocity for electrons. For simplicity
ri-
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excitation processes have been separated into two gro
The transition from the ground state to the 23S state has the
threshold energy 19.82 eV. The loss of electron energy
other excitation processes is averaged over all the ab
transitions and set up with the threshold energy 21.5 eV
the benchmark cross-section data, all excitation processe
simplified to one representative process with threshold 1
eV @21#. The convergence criterion is set such that the el
tron density fraction changes less than 1023 in one time step.
The separation of the two parallel plates is 2 cm, and the
voltage drop between them is 400 Volts for all simulation
Changing the background gas pressure will give the des
range ofE/N. However we note that exact voltages and g
pressures in the experiments are not always available. U
different pressures, while keeping the sameE/N ratio, may
result in different swarm parameters.

The simulation result for theE/N5200 Td case is shown
in Fig. 6 to Fig. 7. Results from swarm experiments co
piled by Kücükarpaciet al. @24# are also displayed. Care ha
been taken to ensure a proper comparison of the flow ve
ity ^vz& from the CS with the experimentally-obtained dr
velocity vd ~often denoted asW). Even though there is som
debate about the velocities measured in experiments, the
velocities are related by the following equation:

^vz&5vd2DLa, ~44!

whereDL is the longitudinal diffusion coefficient,a is the
first Townsend ionization coefficient, and the operator̂•&
averages over the velocity distribution. We take the me
value of the average kinetic energies before collisions
after collisions. Then the value,DL /m, can be easily con-
structed from the Einstein relation:

FIG. 6. Electron density and average velocity: The solid li
denotes the result using detailed cross-section data, the th
dashed line indicates the result using benchmark cross-section
The other dashed line is read from experimental data.E/N
5200 Td.
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DL

m
5

kBTe /mnm

q/mnm
5

^mv2&
3q

, ~45!

wherenm is the momentum transfer collision rate andm and
q are the electron mass and charge, respectively. Origin
the ionization coefficienta is defined through the relation
I 5I 0 exp$a(d2d0)%, whereI is the current at the distanced
from the cathode, andd0 is the effective distance, which
accounts for the fact that electrons emitted from the cath
attain a steady state, determined by the value ofE/N in the
gas, only after a number of collisions. Alternatively,a/Ng
can be approximated@25#, if diffusion is neglected, as:

a

Ng
5

^s i~v !v&

^vz&
, ~46!

whereNg is the helium atom number density, ands i is the
ionization cross section.

As shown in Fig. 6, the density of electrons grows exp
nentially with distance from the cathode. The results us
the benchmark momentum transfer cross section
electron-helium elastic scattering are somewhat lower t
the detailed momentum transfer cross section. The ioniza
coefficients from both simulations are essentially the sa
~see Fig. 7!. The drift velocityvd is higher in the case wher
the benchmark cross-section data are used. The same e
is also reflected in the average kinetic energy~see Fig. 7!.
The measured data agree better with the simulations
higher pressures, where it is a good approximation t
swarm parameters are functions ofE/N. The first Townsend
coefficient expressed as a function ofE/N is shown in Fig. 8.
In the low E/N range, where the pressure is high, t
premise of low diffusion, made to obtain Eq.~46!, is no

FIG. 7. Average kinetic energy and ionization coefficient: T
solid line denotes the result using detailed cross-section data
thicker dashed line indicates the result using benchmark cr
section data. The other dashed line is read from experimental
E/N5200 Td.
ly,
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longer satisfied. If we interpret the slope the density pro
plot asa, then we get a considerably better fit to the expe
mental data.~Recently, a set of swarm parameters, such
drift velocity and ionization coefficient were obtained with
new technique using photoelectrons induced by a pulse l
@26#. Under different helium gas pressures, the electron d
velocity may show an order of 3 difference in some ranges
E/N.!

From these simulation results, the CS with LLMC’s a
pears to agree with experimental data well. However, err
in scattering cross section data and the effect of pres
difference between simulations and experiments may ca
the deviation of simulation results from the experimental
measured values. The regular CS shows similar simula
results—with differences being of the order of 5%. Sin
swarm experiments are performed under high pressures,
collision rates suppress the advantage of the CS w
LLMC’s over the regular CS. The regular CS is more ef
cient for simulating discharges at high pressures.

B. RF discharges

As pointed out by Levitskii@27#, at low rf discharge volt-
ages ionization is provided by plasma electrons, which
called thea mode, while at high discharge voltages ioniz
tion is maintained by fast electrons initiated at the rf ele
trodes ~including the secondary electrons!, which is called
the g mode. In what follows, we study discharges in thea
mode, since this calls for an accurate simulation of the he
ing of electrons from low energies until they reach the io
ization threshold, which is a stringent test of the simulati
technique.~In the g mode, the electrons that do the ioniz
tion are energetic as soon as, or very soon after, they e
the discharge.! In all the one-dimensional simulations of
helium discharges here, when choosing the number of m
ing cells on each train we base this on the number of ti
steps in a collision time. For simulations in higher dime
sions, the number of LLMC’s on each train is limited b
computer resources.

While the kinetic model we shall use for electrons is t
same as in the previous section, the ions are also tre
kinetically by using a two-dimensional CS. The variablesz
and vz are used to design the mesh for ions. A room te

he
s-
ta.

FIG. 8. The ratio of the first Townsend coefficient to the neut
density: Detailed cross-section data are used in these swarm ex
ments. The first Townsend coefficient is also obtained by two
ferent methods ofa/N calculation, using benchmark cross-secti
data. The solid line is read from experimental data.
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3170 PRE 61J. FENG AND W. N. G. HITCHON
perature Maxwellian distribution is assumed in the perp
dicular direction for ions. The regular CS is used for ions a
the z-component of velocity is determined from Newton
second law instead of conservation of energy. This proced
for finding velocity will guarantee the conservation of m
mentum. The momentum transfer cross-section data are
in the elastic collision process for ions and neutrals. Besi
elastic scattering, the dominant scattering for high-ene
ions is charge exchange scattering. In the CS simulati
charge exchange cross-section data are increased propo
ally for low-energy ions to compensate for the elastic io
neutral scattering~which is omitted!.

Helium has two metastable levels (21S and 23S levels!
which can lead to multistep ionization. However, since
property of the CS with LLMC’s is the focus of investiga
tion, these metastable species are not tracked at the cu
stage.

All rf discharge benchmark simulations are carried out
the system of two parallel plates 6.7 cm apart. Three dif
ent pressures are tested with various driving voltages:
mTorr, 100 mTorr, and 300 mTorr. The experimental me
sured values are listed in Table IV of Ref.@28#. The relevant
parameters are, rf voltage amplitudeVr f , plasma density in
the center of the dischargen0, and average electron energ
in the center of the discharge32 kbTe

eff . While experimental
measurements are carried out under constant rf curr
simulations are usually based on constant driving volt
Vr f .

At 30 mTorr ~with driving voltage 220 Volts!, the rf dis-
charge is less collisional, and the numerical diffusion mig
significantly affect the simulation since it might change p
ticle velocities as fast as collisions do. The ion density pro
and the time-averaged ionization rates for the regular CS
the CS with LLMC’s are shown in Fig. 9.

FIG. 9. Instantaneous ion density profiles and time-avera
ionization rate: Rf helium discharge at phase 0 after 120 rf cyc
p530 mTorr, Vrf5220 V.
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Usually, if the particle distribution functionf (v) is ex-
pressed in terms of energy« as f («), then theelectron en-
ergy distribution functionis defined as:

g~«!5 f ~«!A2« ~47!

54pn$2pkBT%23/2exp~2«/kBT!

3A2« if Maxwellian, ~48!

wheren andT are the particle number density and tempe
ture, respectively. To examine the difference of the elect
distribution function from the Maxwellian distribution, th
electron energy probability function~EEPF! is defined as
gp(«)5«21/2g(«) and is plotted on a log scale. Thus, th

d
s,

FIG. 10. Time-averaged electron energy probability function
the center of the system and the blow-up for the energy range f
0 eV to 50 eV: Rf helium discharge at phase 0 after 120 rf cyc
p530 mTorr, Vrf5220 V.

FIG. 11. Time-averaged electron ‘‘temperature’’ profile: Rf h
lium discharge at phase 0 after 120 rf cycles,p530 mTorr, Vrf

5220 V.
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occurrence of different ‘‘temperatures’’ can be observ
from the slope of the EEPF log plot. The time-averag
EEPF’s are shown in Fig. 10. From the EEPF plot, the re
lar CS shows a larger curvature, which presumably me
particles tend to move to the boundaries of the energy m
by numerical diffusion. Since inelastic collisions and rec
cooling of elastic collisions will bring electrons to the low
energy cells~Fig. 10!, the CS with LLMC’s will help the
electrons accelerated by the electric field leave the in
mesh cell, while the regular CS frequently remaps lo
energy electrons back to the zero energy cell. This can
confirmed by the time-average temperature profile~Fig. 11!.
Since this remapping causes more low-energy particle
pile up in the system, this partially explains why the regu
CS has a higher density. The velocity~energy! mesh used in
the above simulations hasDv/v50.1. As shown in Fig. 12,

FIG. 12. Time-averaged electron energy probability function
the center of the system: Rf helium discharge at phase 0 after 1
cycles,p530 mTorr, Vrf5220 V.

FIG. 13. Time-averaged density profile and ionization rate
two schemes: LLMC and LLMC with launching every second tim
step, at phase 0 after 80 rf cycles,p530 mTorr, Vrf5220 V.
d
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with a coarser velocity mesh, whereDv/v50.2, numerical
diffusion can affect the simulation result, even thou
LLMC’s are used.

The ranges of the energy mesh for particle species hav
be at least 220 eV. Changes of any particle species’ dyn

t
rf

r

FIG. 14. Time-averaged temperature profile and EEPF for
schemes: LLMC and LLMC with launching every second time st
at phase 0 after 80 rf cycles,p530 mTorr, Vrf5220 V.

FIG. 15. Time-averaged density profile and ionization rate
various times~rf cycles!: p5100 mTorr,Vrf5140 V.
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ics will affect the discharge dramatically. If the range
energy mesh for ions is limited to too small a value, io
may stay in the system too long and cause the densit
grow incorrectly. It was necessary to expand the ion ene
mesh to 220 eV~the same as the electron energy mesh!, to
obtain these simulation results.

If LLMC’s are launched every two time steps, the resu
shown from Fig. 13 to Fig. 14 are obtained. Comparing
EEPF from both cases~see Fig. 14!, launching every two
time steps will halve the replacement frequency of LLMC
if we use the same number of moving cells in a train, so t
the numerical diffusion is highly reduced.

At 100 mTorr, the discharge is more collisional than ca
at 30 mTorr. ~See Table I!. Since the plasma density i
higher, the spatial mesh cell size has to be reduced to
order of Debye length to keep the simulation stable. Due
the higher pressure, the ionization collision frequency
higher, such that a lower driving voltage can be used
sustain the discharge. We use 140 V for the driving volta
The evolution of various physical quantities is shown in F
15 to Fig. 16. The effect of the threshold energy of vario
scattering processes can easily be seen from the EEPF
For helium gas, the single ionization threshold and vario

FIG. 16. Time-average temperature profile and EEPF at var
times ~rf cycles!: p5100 mTorr,Vrf5140 V.

TABLE I. Plasma parameters~13.56 MHz,L56.7 cm).

p Vr f n0
3
2 kbTe

eff I r f

~mTorr! ~V! (m23) ~eV! (Am22)

30 220 2.831014 9.6 10.0
100 140 1.231015 6.2 10.0
300 85 2.331015 4.5 10.0
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excitation~from ground state! thresholds are about 20 eV, s
electrons are depleted right after that region in the distri
tion function. As a result, electrons above those thresho
exhibit different ‘‘temperatures.’’ This is also seen in th
data from experimental measurements@29#.

At 300 mTorr the regular CS does not converge, if t
CFP is used to determine the final kinetic energy of scatte

s

FIG. 17. Time-average ion density profile and ionization ra
after 20 rf cycles:p5300 mTorr,Vrf585 V.

FIG. 18. Time-average temperature profile and EEPF after 2
cycles:p5300 mTorr,Vrf585 V.
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particles. Since the scattered electrons in this case are
back to the mesh cells with kinetic energy based on the C
violating the conservation of energy, the energy noncon
vation of these scattered electrons will dominate the d
charge behavior at high pressures and high scattering r
Using the staircase potential, energy is conserved, and
regular CS gives a convergent result. As shown in Fig. 17
Fig. 18, the regular CS and the CS with LLMC’s give simil
results.

C. Discussion

The contrast between the ‘‘regular’’ CS and the CS w
LLMC’s can be drawn from these benchmarks. The regu
CS with a staircase potential profile converges in all cas
The CS with LLMC’s with a curve-fitted potential profil
~for use in handling collisions, only! has advantages in re
ducing the numerical diffusion. In most cases, they g
comparable results, the difference in every respect~density,
temperature, electrostatic potential! being about 10% in
steady state for rf simulations. Especially at lower press
it is argued that launching LLMC every second time step~or
even less frequently! is appropriate. For swarm experimen
and rf helium discharges at 100 mTorr or above, the h
neutral gas pressure makes the discharge highly collisio
The physical diffusion will dominate numerical diffusion, s
that the CS with LLMC and the regular CS will give simila
results in those situations. The LLMC method can reduce
numerical diffusion on both the spatial mesh and the ene
~velocity! mesh. In fact, this is crucial at low pressure to g
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the correct particle distribution functions, the particle te
perature profiles, and many other scattering rates and ch
cal reaction rates. The CS with LLMC’s is suitable for mo
eling long-mean-free path particles, for example in lo
pressure high-density plasmas. The regular CS is v
efficient, consumes fewer resources and is faster than the
with LLMC’s. However, the LLMC version reduces to th
regular CS if only one moving cell is used. Both can provi
self-consistent kinetic modeling without usingad hoc as-
sumptions. The use of both methods, for comparison to e
other, is probably optimal, to ensure the results obtained
reasonable.

IV. CONCLUSIONS

We presented a detailed recipe to implement the CS w
long-lived moving cells~LLMC’s !. An estimate of the nu-
merical diffusion for moving cells with different kinetic en
ergies was given. Numbers of LLMC’s on trains are assign
accordingly to maintain the efficiency and accuracy of t
simulations. From the simulation results of the two sets
benchmark tests, swarm experiments and rf discharges,
seen that the CS with LLMC’s can significantly reduce n
merical diffusion. At high pressures, where the physical d
fusion usually dominates the numerical diffusion, the regu
CS consumes fewer computing resources and, hence, is
suitable. High density plasma sources, such as electron
clotron resonance systems, usually run at low pressu
therefore, the CS with LLMC’s has an advantage in simu
tions of these systems.
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