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Highly accurate eigenvalues for the distorted Coulomb potential
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We consider the eigenvalue problem for the radial Sdimger equation with potentials of the forkf(r)
=S(r)/r+R(r) whereS(r) andR(r) are well behaved functions which tend to somet necessarily equgal
constants when—0 andr —oc. Formulas(14.4.5—(14.4.8 of Abramowitz and StegupHandbook of Math-
ematical Functions8th ed.(Dover, New York, 1972, corresponding to the pure Coulomb case, are here
generalized for this distorted case. We also present a complete procedure for the numerical solution of the
problem. Our procedure is robust, very economic and particularly suited for veryraigemerical illustra-
tions forn up to 2000 are given.

PACS numbds): 02.60.Lj, 03.65.Ge

I. INTRODUCTION II. FORMULATION OF THE PROBLEM

. . . . As said, we are concerned with potentials of the form
There is not a unique way to solve numerically the radial

Schralinger equation S(r)
V(r)=——+R(), (2.9)
, (10+1)
y'= r2 +V(r)-EJy, r>0. (1. whereS(r) andR(r) are well behaved functions such that
IimS(r)=S,, limS(r)=S,.,
Instead, a large variety of algorithms is available and the HOS( )=S0 Mms( )=Sas
choice of one algorithm or another depends on the character-
istics of the problem. When the orbital quantum number IMR(r)=Ry, IIMR(r)=Rgs, (2.2
equals zeroV(r) is a well behaved, nonsingular function r—0 r—

and when the involved range of energies is low lyiag it is
when the ground state and a few excited states are searchéfereSy, Sas, Ro, andR,s are constants. In atomic physics
for) any standard algorithm for solving ordinary differential So might be seen as 2Z, andS;s as—2Z,s whereZ, is the
equations(Runge-Kutta or Numerov, for examplés per-  nhuclear charge and,s the ion charge. Specifically, it is as-
haps satisfactory. However, when high lying bound states opumed that around the orig(r) andR(r) can be written in
resonance states are investigated, special techniques sho@@ynomial form
be chosen to adequately account for the oscillatory character

M M-1
of the solution. For such a case methods based on the expo- B m B m
nential fitting or on the piecewise perturbation techniflie S(r)—mz,o Smf™, R(r)= mE:O R ™, O<r=ro
are among the best candidates for use. In other situations, for (2.3

example wheV/(r) is a succession of hills and valles.g.,
Coffey-Evans potentidl2]) or whenV(r) exhibits a violent and that some 5 does exist such that
variation around the origifiLenard-Joneg12,6 [3]] some
ad(|j|t|onal care is required. . V()= S;as+ R 2.4
n this paper we are concerned with the case wYén as r as

behaves as a Coulomb potential both around the origin and
in the asymptotic range but not necessarily with the samé a good approximation of(r) for all r>r ..
electric charge in the two regions. There is no drastic restric- As also said, we are interested in the accurate computa-
tion on howV(r) behaves in between. We thus cover a widetion of the eigenvalueg,, of Eqg. (1.1) for this potential,
variety of physical problems, to mention only phenomenawith uniform accuracy vs the principal quantum number
related to the total or partial screening or to the superpositiohe procedure which will be described allows computing the
of electric and nuclear effects. All such effects become tracassociated normalized eigenfunctions as well.
table with high accuracy and, most important, our procedure We locate the eigenenergies by shooting. The half axis
is particularly suited for the case of very lang®s, asitis for  r>0 is first cut at some large,,,=>r.s and a matching point
the Rydberg statelgl]. I matchiS fixed somewhere oh= (0O,r .- FOr each test value

of E the equation is integrated from the two ends upiQcn

to generate the so-called miss distance corresponding to that

*Permanent address: Department of Theoretical Physics, Institute. A new value ofE, hopely closer to the required eigen-

of Physics and Nuclear Engineering, P.O. Box MG-6,gMizle,  value, is calculated in terms of the miss distance and the
Bucharest, R-76900, Romania. procedure is repeated as many times as necessary to bring the
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miss-distance at the round-off level. The shooting procedur€oulomb functions, see Reff8].) However, this is equiva-

is described in many books, e.g., REE,3]. lent to fully disregarding the other componentsSfr) and
Two specific issues have to be examined adequately. R(r) and in many cases this may be a too severe simplifica-
(1) The equation is singular at the origin and therefore theion.

numerical integration around the origin should be carried out In short, if the usual ways are only considered, then a too

by a procedure which explicitly accounts for this fact. Since,smallrq is convenient for ; but it creates difficulties o,

on the other hand, the effect of the singularity progressivelywhile the opposite is true if, is enlarged. An escape from

dies out wherr is increased, the integration interdahas to  this situation consists in developing a new procedurel for

be split into two subintervals, a narrow subinterval aroundwhich compactly accounts for both the singularity of the

the origin,l;=(0,r], and the remaining,= (ro,Mma- The  equation and the structur@.3) of S(r) and R(r). Such a

algorithm to be used oh; should be consistent with the procedure is worked out in the next section.

singular nature of the equation while the algorithm to be

gg_ed onl, should be chosen on the basis of a different con- Ill. AN ACCURATE SOLUTION ON 1,
ition.
(2) The condition to be fulfilled by the algorithm fds is The Coulomb wave equation
mainly dictated by another characteristic of the problem,
namely, that , is typically a very long interval. For example, Wi— [(1+1) N 2_77_1 W 3.0
in the classical hydrogen atom cafs$(r)=—2 andR(r) x? X '

=0] the energy levels arg, = 1/(n+1+1)?. [Note in pass-

ing that, due to the scale adopted in Ef.1), the energy admits two linear independent solutions, one reg&laand
levels are twice their values in the usual atomic uhif one singularG,. Formulas(14.4.5—(14.48 in [9] allow
compute numericallfE g99 o for this innocent looking prob-  writing F| and its derivative in terms of the spherical Bessel
lem r . should be taken such tha&(r,.0>Ejgeo i.€.,  functions. The expansion ¢ reads

rmac>8%X10°. As a consequence, the method to be used on

such a broad, should be of a type which enables producing Fi(7,X)=1X3X5X---X(21+1)C(n)x
highly accurate results at unusually big steps, with widths of x,
several thousands or so. This is not at all the case with the 12
X 2, by(m/2x)*4J X), 3.2
standard methods for differential equations but, fortunately, k§=:I A 12) i 1X) 32

this condition was the easiest to fulfil. In fact, the piecewise

perturbation method, originally formulated in R¢L], was  with bj=1, b, ;=(2[+3)7/(1+1),

recently reexamined and a high order version was con-

structed[5,6]. The method can work without difficulty with Ci(mp)=2'e ™T(I+1+in)|/T(21+2),
big steps, produces very accurate results and, more than this,

its accuracy stays the same no matter how big the energy ignd

This is the method we choose fby.

Therefore, the problem df; is the one which requires a N 2k+1
detailed investigation, and in this paper we chose placing it KTk(k+1)—1(1+1)
on the central focus. A first question to be answered is where
shouldr, be located and what algorithm has to be chosen for _ (k=1)(k=2)—1(I1+1)
|1° X 277bk71 2k—13 k=2
The position ofr results as a compromise of two oppo-
site tendencies. If we takg, so close to the origin that only k>1+1. (3.3

the centrifugal component matters, then the regular solution

on |, (this is the only solution we are interested issimply ~ We want to generalize this formula in a way to be convenient
y(r)=r'"1: the Coulomb term introduces components withfor our purpose. Upon using Eqd2.3) and denotingV,
higher exponents. The point is that when we start to advance Sg, V1=S;+tRy, ... Vy=Suy+Ruy-1, Eq. (1.1) be-

the solution orl ,, then for a while the solution is still domi- comes

nated by such a form of the solution and if the method cho-

sen forl, would be a classical methgq&Runge-Kutta or Nu- I(1+1) M S
merov, for examplethe width of the steps will be dictated y'=|—"2 +m§=:0 Vil ™ —E
by how good such a shape of the solution can be approxi-

mated .by a low degree polynomial. Thi$ Is obviousl.y a poorand, with the change of the variable= VE r, and of the
approximation and therefore the resulting steps will be toq‘unction w(x)=y(r), it reads

small for making the integration efficient. For some related '

y (3.9

investigation see Ref7]. A similar situation is taking place il M
with the piecewise perturbation algorithm too because here W= (I+1 + E m-1_4 3

: A 5 2 UmX w, (3.9
the starting approximation is that off(I+1)/r=+V(r) X m=0

through a step function. A way to increase the value pf

consists of taking a better approximation around the originvherev,=V,,/E™* Y2 The Coulomb wave equation is the
and one possibility is to take just the regular Coulomb func-particular case of the latter for,=2% and v,,=0, m
tion F, for y. (For a numerical procedure to calculate the=1,2,... M.
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In dealing with the present generalization we prefer to

1 — _
work with the set of functions(Z), 74(Z), s=0,1,2. .. Pe(X)= 5 x¢’(x)+2 2 X ST g 77|+s(—X2)}
(see Appendixinstead of the Bessel functions. There are $=0 =0
two reasons for it(i) this set is at the basis of the whole (3.1

formalism of the piecewise perturbation method we usé,on

and (ii) the simple differentiation properties of these func- , 1
tions make the manipulations simplier. As a matter of fact, Pe(X)= 2E
these functions are related to the spherical Bessel functions

E(—x2) = (w20 M2 11x), —Dmes(=XA) + s 1 (—XP)]

no(—x?) = (mwl2)Vx~TY23 . (x), s=0,1,2 ...
) T (3.6 wherewq;=0,wy;=—(j+1)g;;, j=0,1,2..., and

X" (X)+ Eo 20 X TS hwg [—(I+s
s=0 j=

: (3.12

p

E (Ws—l,j—p_(p+1)

p=0

and therefore Eq(3.2) readsF(7,x) = B¢(x), where 2] +2s5+1

Wsi=(s+])(2l+s+]+1)

() =X g2(X) 7 s(—x3), gax) =Dy X" | |
- (s—j—2)(2l+s—j—1)
80 XGs-1j-p)vp™ 21+2s—3 Ws—z,j},

and g is a constant, viz8=1xX3X5---(21+1)C/(7).

We are interested in the expressiond(fx) for the dis-
torted Coulomb wave equatidi3.5). The results are as fol-
lows:

The regular solution of Eq3.5) is

s=2,3,...,j=012.... (3.13

For a numerical evaluatiop”(x) is replaced by the right-
hand side(RHS) of Eq. (3.5 with ¢ for w.

Remarks.
3 % (1) As expected, in the particular casg=2% and v,
¢(X)=X2 9<(X) 74s(—%?), gs(x)= 2 gij”s“. =0, m=1,2...formulas(3.8 and(3.10 reduce to the for-
s=0 j=0 7

mulas(14.4.5-8 in Ref.[9] except, of course, for the con-
(3.8 stant factorg.
(2) Conversion of these values, obtained in xheariable,

The coefficientys,; are to the values to be used in the origimavariable is:y(r)

Goo=1, Uo;=0, j=123..., =400, Y(N=VES' (), ye(=de(d,  Yye(r)
=\E Pe(X).
(21+3)v; ) (3) The values ofy: andyg are useful for calculating the
YT+ +2) 1=012..., integral ofy? on |,. As shown in Ref[10] the following
formula exists:
21+ 2s+1 P
Os,j= F ; z Os—1j-pV fo 2 .\ ’
ey PR R | ymdr=y toyetro-yirotro. 314
(s—j—2)(2l+s—j—1)
- 21+ 2s—3 s—2 They are also used in the process of forming the derivative of
the miss-distance with respectBowhich, at its turn, is nec-
s=23 i=0,1,2 3.9 essary to locate the eigenvalues by a Newton-Raphson pro-

cedure.

Its derivative with respect t& is ) . .
E=0; indeed, sincex=E r, Eq. (3.1) cannot be defined.

o With the new formulas this difficulty is easily circumvented
' ()=2 2 go[—(I+s=D)mis(—x3) because we can conveniently shift the inpytand E, V7"
s=017=0 =V,+A, E™=E+A, say, and then take= E™"r.
e (—X3) X TS, (3.10 (5) The above formulas directly apply to the casebof
positive. When E is negative, x=iy—Er and v
whereP=min{j,M}. =i~ (MDy_[(—E)M* D2 and it is readily verified from
Since Eq.(3.5 comes from the original equation through Eqg. (3.9 thatgs is either real or purely imaginary depend-
an E dependent scaling it is clear thé{x) and ¢’ (x) will ing of whethers+j is even or odd. It follows that foE
depend onE both implicitly (through x) and explicity = <0 one can avoid complex arithmetic by setting
(throughv,). The latter is reflected in thE dependence of =\ —Er, v,,=V,,/(—E)™" 1”2 and by inserting at some
Js)j - appropriate places a minus sign in Eg§.8) and(3.9).

We have the additional result that the first derivative of Proof. The idea consists in constructing the two sides of
é(x) and of ¢’ (x) with respect tcE [let them be denoted as Eq. (3.5 separately and then identifying the like terms.
¢e(x) and ¢g(x), respectively can be expressed as With the expressiort3.8) for ¢(x) the first derivative is

(4) The standard formulas cannot accomodate the case



3154 L. GR. IXARU, H. De MEYER, AND G. VANDEN BERGHE PRE 61
“10+1)
¢ ()= Z 9500 71 o( = X2) +XGL(X) 71-(X7) [RHS of Eq.(319]= 2, || —
d , M
FXGs g M+s( =X |- (3.19 + 0 v pX™ | gs(X) 714 5(—XP)
m=0
Since X
~@+2s-1 B, ()
5 d L. d(=x?)
d—x77|+s(—X )=mm+s(—x ) ax
+ B ()| (22
| . .
= X7 sea(—XP), (3.16 x e

see Eq(A9), and We now consider the equatiapi’ = RHS[i.e., Eq.(3.5] with
¢ for w) and identify the terms with the same label fgr

The terms withz, . s_» cancel out while from the others we
(3.17  9get

=X 51 (—XP) = s 1(—XP) — (21 + 25+ 1)
X 77|+S(_X2)1

see Eq(A4), Eq. (3.15 becomes 2950 — (41— 1) go)((x) —_2-1) go(X)

(3.23

’ _ _ ’ 2
¢ (X)_sgo {[=20145)8:00 +xGe () T+ o =X7) from 7,_,(—x?) (Note: »_; which appears whei=0

means formally¢.),

+95(¥) 75— 2(— X)) (3.18

We differentiate this once again and use the same procedurey g (x) — 4lg/(x) +21(2l +1)

as before, with the result

@' (X)= Z (xgs )—4(1+8)gl(x)+2(1+s)
gs(X)) 5 ,
X(21425+1) = — | mo(—X°) ] 295(X)
—(4|+4S—1)gS(X) Mis—1(—X?)
+@m+s—z(—x2) : (3.19

For the RHS we have in order

M
[RHS of Eq.(3.19)]=(|(|:21) + }_}O vmxml—l) H(X)
oo M
:20{ |(|+1)+2 UmX )

X Gs(X) 71 4-s( _Xz)

—Xgs(X) 77I+s(_xz)}- (3.20

We replace the lash, , s(—x?) by its expression in terms of

Mys—1(— XZ) and 77|+s—2(_X2)a

1
Moo =X = = 2l 7s2 =X = (21425-1)

(3.21

X 7]I+s—l(_X2)]y

so that

Jo ( )
Xgl(x)
X
M
|(|+1)+ 2 UX™ (3.24
from 7,(—x?), and
" gp( )
Xgp(X) — 4(I+p)g xX)+2(l+p)(21+2p+1)——
+29}.4(X)— (4|+4p+3)gp+1()
(1+1) &
( ) + 2 o™ | o), (3.29

from 77|+p(—x2), p=1,2,... .Finally we introduce the se-
ries (3.8) for the g, takeggo=1 and identify the coeffi-

cients of the like powers in each of the last three equations to

just obtain Eq(3.9). The expression3.10 for ¢’ results by
substituting the serie3.8) into Eq. (3.18. To derive the
formula for ¢z we take into account that depends ofE
through the relationshig= E r and use

¢

With ¢ as in Eq.(3.8) we have
ad)_ o s ngyJ- l+s+j+1 2
E_J'ZO szo dE X M+s(—X%) (3.27
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so that, upon noticing thatx/JE=x/2E and upon denoting cedure remains energy dependent because there the reference

dgsj/dE=2Ews; we get formula(3.13. The formulas to  potential is V(r)=I(I+1)/r? but the perturbation is the
be satisfied by thevg;’s result by just differentiating Eqs. whole V(r)—E.

(3.9 for the g¢;'s. The formula for¢g is obtained in the In our computations the upper end lgfwas set as
same way. The proof is thus completed. O
The forms(3.8) and(3.10 for the solution of Eq(3.5) are - —min 12(1+1) 10(1+5) (3.29
0_ .

of a type which would alternatively result if the piecewise 1+21 " S| |

perturbation technique were used witix) =1 (1 +1)/x? as
the reference potential and withV(x)=3M_ v x™ ! as
the perturbation, in a Schdinger equation with the unit
value for the energy. An examination from this perspectiv

enables drawing some qualitative estimation on the accura )éo|2/4(| +1)2, and for various shapes for the distorsion
to be expected from the above formulas. First, the series ov ith s andj] Ii,mited up to 50 and 25, respectively, the rela—.

sandj are infinite but in practice they must be cut off SOMe-ive error iny and iny’ was typically of 10 14 except in the

where. What about the accuracy for one and the same Cu{fcinity of the zeros of these functions. The accuracy of the
As in any p_erturbaﬂon procedure with a finite number Ofprocedure described in Sec. 3.7 of Réfl was often good as
corrections included, the answer depends on how small Qfe||, but a systematic deterioration of the accuréal/two
big is the perturbation with respect to the reference potentialpr three orders of magnitugieias observed at the ends of the
One general conclusion is that, insomuch as the referencgnergy interval. The coefficientsS,y,S;, ....Sy and
potential dies out quickly wittx, but this is not necessarily R,,R;,...,Ry_; were computed by first developir(r)
the case for the perturbation, the formulas are expected to kendR(r) over shifted Legendre polynomials and then recon-
particularly efficient only in the vicinity of the origin. The verting these expansions in powersrof
actual extension of this interval depends on the specific fea-
tures of_the problem to be solved.l_lﬂf: 0_, for example, the IV. A SHORT DESCRIPTION OF THE PROGRAM
relative importance of the perturbation is big even at sxall
and therefore the interval is necessarily very narrow. More- In essence, the program consists of an adaptation of the
over, the larger and largéw,| the smaller and smaller is the program described in Reff5,6] for the eigenvalue problem
interval. Another expectation is that, for fixekV(x), the  associated to the regular Sturm-Liouville equation. In that
efficiency of these formulas will increase witor, alterna- ~ program the Sturm-Liouville equation is first converted to a
tively, they will be convenient on a larger and larger interval.regular Schrdinger form and it is the latter which is actually
Technically, these tendencies appear under the form of 8olved. In other words, that program solves the Sdimger
slower and slower convergence of the series wke®s in-  equation only when the interval is of tHe type. We then
creased. We are aware that an additional extension of thead to enlarge it in a way to accept the intervaas well and
range ofx may be achieved provided the so called acceleraalso to add a procedure which allows convenient selection of
tion procedures were used when summing the series. Howhe subinterval of , to be used in the range of interest tér
ever, the success of each acceleration procetige, e.g., The user has to provide as input a suitably large value for
Ref. [11]) depends on the specific characteristics of the seFmax and the program constructs the partition ©f
ries. We did some tests by using the procedures of Wynn, of (ro.r max in terms of the tolerance tol also given on input.
Levin, and a hybrid of them. There were cases when some df ry,r,, ... Tk T max &r€ the mesh points of the partition,
the three gave good results but the number of such cases wefe matching point of the forward and backward solutions is
small. This indicates that in general the behavior of the seriegelected as that, for which I(I+1)/r2+V(r,) is minimal.

for which the mentioned procedures work does not fit theFor each test value o in the iteration procedure for the
behavior of our series. calculation of the eigenvalues, a current lower limit fQg,,
Another question refers to the energy dependence of thg taken. This current value, call it’ .., is given as the

accuracy. In fact, Eq3.5) is an energy dependent scaling of |5\vest mesh point for which the condition
Eqg. (3.4 we actually have to solve, and therefore for each

and the same inputandV(r) the comparative magnitude of ne fI0+1)

the reference and perturbation potential in theariable is sz \/ >—+Vas(r)—E dr>25 (4.
necessarilyE dependent. This suggests that a really energy Mt r

independent treatment will be achieved only if the perturba- , ) ) , )

tion technique will be applied directly on the original equa-'S fulfilled, wherer is the rightmost turning point for tha.
tion, not on its energy dependent representation. This is pog-iS condition is consistent with the usual WKB arguments
sible in principle but in practice some technical (see, e.g_.,_Re[_’_LZ]) as it ensures that taking the RHS bound-
inconveniences appear. The most severe is that the expredy condition simply as

sions of successive orders of the perturbation will contain TESS

increasingly complicated expressions with logarithmic func- "l y=— \/ Vo) —E V(1! 4.2
tions. By usingMATHEMATICA we were unable to obtain V' (Fma I o as(Tmad ~E ¥(Tmad (4.2
more than two orders of perturbation. We also mention that a

perturbation procedure applied directly on the original equais safe for double precision calculations. For tRabnly the

tion is described in Sec. 3.7 of RéfL]. However, that pro- currentl;=(rg,r /. is actually involved.

an empirical formula which disregards the energy depen-
dence. Onl; defined in this way we tested the accuracy of
the new formulas for various values bbetween 0 and 25,
So| between 2 and 200E between—|S,|%/4(1+1)? and




3156 L. GR. IXARU, H. De MEYER, AND G. VANDEN BERGHE PRE 61

The method used oh; is a highly accurate piecewise -0 ' ' '

perturbation method in theCP form. On each interval "

[F:Mr1] with the widthh=r,,; —r, the Schrdinger equa-

tion for a genericV(r) _
;

y"=[V(r)—Ely 4.3 S

<

and its derivative with respect t6, 2

ye=[V(r)—Elye—y, (4.9
are considered. Of course, the gen&f{c) is in our case the o 500 1000 1500 2000

whole suml(l+1)/r2+V(r).
The algorithm links they, y’ and their first derivatives FIG. 1. Then dependence of the relative error in eigenvalues for

with respect toE, vectorsy(r)=(y(r),y'(r)) and yg(r)  four cases(a) |=0, Z=1 (solid); (b) |=0,Z=100 (broken; (c) |

= (ye(r),yg(r)), at the two ends of the interval. The solution =20,Z=1 (dotted; (d) | =20, Z= 100 (dashed

is propagated forwards or backwards according to the fol-

lowing matrix equations:

v'(h) —v(h)}
Y(Fe) =T ()Y(r), '

b _
! (h)_{—u%h) u(h)

e(h)  —ve(h)
Ye(rie 1) =TE(Y(r) + T (h)ye(ry), T2(h)= e } 4.
EMk+1 E k ek e(h) —ul(h) ue(h) 4.7
V() =TMY(rcra), The expressions of u(h), u’(h), v(h), v’ (h), ug(h),
_ ug(h), ve(h), andvg(h) are given in Ref[5].
Ye(r) =Te(MY(rics 1) + T(Ye(rice), (4.5 EThe pEogram pro%luces the eigenvalues and the eigenfunc-

tions under different options. The user may ask for these data
either in a preset energy ran§& i, Emax Or in a preset
u(h) (h) range of label$ nin,Nmax- The program also gives an esti-
Tf(h):{ v mated value of the error.

u'thy v’(h)/)

respectively, wherd f, TL, T, andT2 are 2< 2 matrices,

V. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS

(4.6) We take the following four cases.

ug(h) UE(h)}
' (1) Pure attractive Coulomb potential(r)=—22Z/r,

f —

Tel L’E(h) vi(h)
TABLE I. The first eleven and the last three bound state levels for the Hufthgential, for three values

of I. The parameters of the potential &e 50 and\ =0.025. The data for=0 are given according to the

format of the output and blanks are used to separate the figures which, according to the error evaluation of the

program, are correct. This evaluation is fully confirmed independently, i.e., by the deviations of the computed

levels from the exact ones. For the othisronly the correct figure&n the above sengare written. Numbers

in brackets represent powers of 10.

I=0 =5 =10

n E. dev n En n E.

0 —2498.7501562499 724 —0.3[—10] 0 —68.1985069764 0 —19.42433530452
1 —623.750624999 5449 —0.5[—-09] 1 —49.7765019879 1 —16.1278839619
2 —276.529184027 0629 —0.7[—09] 2 —37.820937644 2 —13.5635796169
3 —155.00249999 90256 —0.1[—08] 3 —29.625291530 3 —11.5300024482
4 —98.75390624 87254 —0.1[—08] 4  —23.764062901 4  —9.8905446167
5 —68.20006944 32761 —0.1[—08] 5 —19.428501384 5 —8.5499045662
6 —49.778064412 3505 —0.9[—09] 6 —16.132049498 6 —7.4399576882
7 —37.822499999 3734 —0.6[—09] 7 —13.5677444066 7 —6.5109602329
8 —29.626853780 4022 —0.5[—09] 8 —11.5341662475 8 —5.7259039790
9 —23.765624999 6776 —0.3[—09] 9 —9.8947071396 9 —5.05679485664
10 —19.430063274 5708 —0.2[—-09] 10 —8.5540654812 10 —4.48214107892
60 —0.00326865258 12 0[-11] 54 —0.00626012849 48 —0.00926096971
61 —0.000989203954 9 06-12] 55 —0.00269155996 49 —0.00444878383

62 —0.000037832262 7 0f-12] 56 —0.000553923280 50 —0.001188166259
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TABLE Il. A set of bound state levelg,,, from the Hulthe partially screening potential. The parameters
of the potential ar&Zy="50, Z,s=1, A =0.025. Numbers in brackets represent powers of 10.
n =0 =5 =10
0 —0.2498775153124p+ 04] —0.682234257245+02] —0.194490716959[+ 02]
1 —0.623775612499+ 03] —0.498013801077+02] —0.161525484209+ 02]
2 —0.276554155902+ 03] —0.37845768882 + 02] —0.135881658647 + 02]
10 —0.19454685083 + 02] —0.85782960477 + 01] —0.450587380624 + 01]
11 —0.16158160999 + 02] —0.746824376356+ 01] —0.400881870174+ 01]
12 —0.13593777352+02] —0.653913412087+ 01] —0.357632424414+01]
50 —0.13362188273+ 00] —0.4975916339 — 01] —0.106764534% — 01]
51 —0.11265757533+00] —0.3912666814 — 01] —0.7608426770 —02]
52 —0.9403357799 —01] —0.3017823140 — 01] —0.5621004447 —02]
100 —0.3743860458 — 03] —0.3056329551 - 03] —0.24725724477 - 03]
101 —0.3602719091 — 03] —0.29519803028 - 03] —0.23964578233—- 03]
102 —0.3469430529 — 03] —0.28528961739 - 03] —0.23238111697 — 03]
Z>0 and variousl. Exact energy levelsE, =—Z?/(n+| 1,
+1)%,n=012.... Ved T \,u)= e *cogur),
(2) Hulthen screening potential
see, e.g., Ref.14], this reads
)\e*)\r 1
V(r)=—2ZVu(r,\), Z>0, Vy(r\)=——, _
i R RN =TT V<r>——2zovec<r,x,m—zzas(;—vecu,x,m).
(5.9) (5.3

and variousl. Exact eigenvalues are only known fbe0,
Viz. Epo=—[2Z—(n+1)A]%4(n+1)?, n=0,1,..., Nmax
=[\y2Z/\|—-1, see Ref[13].

(3) Partially screening Hulthepotential

V(r)= —2zovH(r,>\)—2zas(%—vH(r,x)),

Zy>0,Z,>0. (5.2
This behaves as a pure Coulomb potential with ch&igtor
smallr and as a pure Coulomb potential with chaifig at
larger.

In all cases we ask for a tolerance=+d0 8,

Problem(1) is considered with the aim of offering a first
insight on the practical features of our approach. We take
four, perhaps extreme situationga) =0, Z=1; (b) |
=0,Z=100;(c) =20,Z=1;(d) 1=20,Z=100; and ask for
the evaluation oE,,; up ton=2000. The values of the input
I max @nd of the outputy and number of steps o are in
order (a) 10°,1.09,1008; (b) 2.1, 0.025, 1268; (c)

107, 12.0, 1004;(d) 3.1, 1.025, 1242. On Fig. 1 the deci-
mal logarithm of the relative error, lgg(E,—Eg™)/E,|

is displayed van. It is seen that the number of correct sig-
nificant figures is at least 10 in all cases and that there is
some tendency to increase by one unit wimeis big. The

(4) Partially screening exponential-cosine potential. Withresult is remarkable in so much that the very magnitude of

TABLE Ill. A set of boundstate level&,, from the exponential cosine partially screened Coulomb
potential. The parameters of the potential Age=50, Z,s=1, A= =0.025. Numbers in brackets represent

powers of 10.

n =0 =5 =10

0 —0.2497550000612D+04]  —0.6699477512707+02]  —0.182144512404p+02]
1 —0.622550008557 + 03] —0.485711749449+ 02] —0.149165994843+ 02]
2 —0.275327819864+ 03] —0.36613972923 + 02] —0.123512992294 + 02]
10 —0.18218254864 + 02] —0.73435721558 + 01] —0.328994328401 + 01]
11 —0.14921061074 + 02] —0.623594367131+01] —0.2800697980738+ 01]
12 —0.12356453704 + 02] —0.5310240385481+01]  —0.237751777759+ 01]
50 —0.1531833374 — 02] —0.1028479562 — 02] —0.699631] — 03]

51 —0.14172138790 - 02] —0.965036965( — 03] —0.663808 — 03]

52 —0.1315138619 — 02] —0.907333058 — 03] —0.630684[ — 03]

100 —0.17450705849 — 03] —0.1512989287 — 03] —0.129394( — 03]

101 —0.16998420260 — 03] —0.1476427349 — 03] —0.1264983 — 03]

102 —0.16563500787 — 03] —0.1441175462 — 03] —0.1236987 — 03]




3158 L. GR. IXARU, H. De MEYER, AND G. VANDEN BERGHE PRE 61

4 T T T ACKNOWLEDGMENTS
o1 i L. Ixaru acknowledges financial support from the Na-
tional Science Foundatio(Flanders, Belgium Part of this
o i work was also supported by the Bilateral Scientific and
N Technological Cooperation 1998, Flanders-Romania, Grant
& 2 e g No. BIL 98/47.
b% --------------------------
= _ T APPENDIX
s T § Functionsé(2), no(2), n.(2), ..., were originally in-
. t_roduc_ed in Sec. 34 of Refl1] and denoted there as
-8 : ' ' &(2),mo(2), m1(2), ... . They are defined as follows. The

1000 1500 2000 3 A
° 500 functions&(Z) and no(Z) are generated first by the formu-

FIG. 2. The screening effect for eigenvalues: pure Coulomblas:
potential with chargeZ,=50 (broken, Z,,=1 (dashed and two

partial screening potentials, Hulthésolid) and exponential-cosine C0£{|Z|1’2) if Z<0
(dash-and-dojs &§2)= ) ’ (A1)
cosiz¥?) if z=0,
the energy level decreases wheis increased. In casds) : 1/2 112 .
. . . sin(|Z|79)1Z if Z<0
and (b), for example,Eyn00is by six orders of magnitude (| |_ /2]
lower than the ground state energy. It is also seen that all m(Z2)=¢1 ifZ=0 (A2)

four curves are well packed together in spite of the fact that sinh(zY?)/z1? if Z>0,
the parameters of these cases are so different. This is a direct
indication that the stepsize selection rule works properly. Fi
nally, the number of steps is extremely small.
To tackle problem 2 with our program, the expression of
the Hulthe potential should be first brought to the form n(2)=[&(2)— no(2)11Z, (A3)
(2.9). It can be easily verified that,;(r,\)=R(r)/r where
R(r)=e M2/ o[ (\r)?/4]. With this problem we consider  9y(Z)=[7s_2(Z)— (25— 1) 9s_1(Z))/Z, 5=2,3,4 . . .
two issues. The first is to check for the accuracy of the error (A4)
estimation of our program. Since the exact eigenenergies are _
known for =0, in Table | we present our output for this If 270, and by following values & =0:
case and place a blank after the figure which, according to
the program error evaluation, may be altered by. We ns(0)=1/(2s+1)!!, s=1,234... . (A5)
separately list the very difference between the exact and our _ ) ] )
eigenvalues to conclude that the prediction is convincingly! hese functions satisfy the following properties.
confirmed. The second issue is to make available accurate (i) Power series:
numerical eigenvalues for cases where there is no analytic
form (I=5 andl =10). Such data may be used as references ~
when checking for the performance of other programs. 775(2)2252 UsZ%(29+2s+1)! (AB)
The results for problemg3) and (4) are collected in a=0
Tables Il and Ill and on Fig. 2. Only the correct figures areii
mentioned for the eigenvalues. It is again seen that although

while %4(Z) with s>0 are further generated by recurrence

the eigenvalues vary with six or seven orders of magnitude 1 if s=0,

the number of exact significant figures exceeds eight in Table Osq= ; (A7)
+ +2)...(g+ >0.

[I. The situation is comparatively worse in Table Ill. Yet, the @*+1@+2)...(a+s) its=0

absolute error is well within tol for all cases. On Fig. 2 we (i) Behavior at largdZz|:

illustrate the physical feature of problen®) and (4) for |

=0. Each of the two potentials has a pure Coulomb potential (s+1)/2

at the limits. Then the low lying energy levels have to be 7 :[g(Z)/Z for oads, (A8)

close to the ones for 2Z,/r while whenn is increased they ° 70(Z)/2%2  for evens.

have to gradually approach those ef2Z,,/r. We plot o o _
log0|Eno| for the two limiting Coulomb potentials and for (iii) Differentiation with respect ta:
the two partially screening potentials. The graphs just con-
firm the expectation. 1 1
We conclude that the approach developed in this paper is ¢'(2)=5mo(Z) and n¢(2)= 5 1s+1(2),
highly accurate, robust and safe. Its capacity of producing
highly accurate results at high valuesrofs perhaps unpar-
alleled by any other approach. s=0,1,2.... (A9)
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