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Highly accurate eigenvalues for the distorted Coulomb potential

L. Gr. Ixaru,* H. De Meyer, and G. Vanden Berghe
Department of Applied Mathematics and Computer Science, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent, Belgium

~Received 11 May 1999!

We consider the eigenvalue problem for the radial Schro¨dinger equation with potentials of the formV(r )
5S(r )/r 1R(r ) whereS(r ) andR(r ) are well behaved functions which tend to some~not necessarily equal!
constants whenr→0 andr→`. Formulas~14.4.5!–~14.4.8! of Abramowitz and Stegun@Handbook of Math-
ematical Functions, 8th ed.~Dover, New York, 1972!#, corresponding to the pure Coulomb case, are here
generalized for this distorted case. We also present a complete procedure for the numerical solution of the
problem. Our procedure is robust, very economic and particularly suited for very largen. Numerical illustra-
tions for n up to 2000 are given.

PACS number~s!: 02.60.Lj, 03.65.Ge
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I. INTRODUCTION

There is not a unique way to solve numerically the rad
Schrödinger equation

y95S l ~ l 11!

r 2 1V~r !2ED y, r .0. ~1.1!

Instead, a large variety of algorithms is available and
choice of one algorithm or another depends on the chara
istics of the problem. When the orbital quantum numbel
equals zero,V(r ) is a well behaved, nonsingular functio
and when the involved range of energies is low lying~as it is
when the ground state and a few excited states are sear
for! any standard algorithm for solving ordinary differenti
equations~Runge-Kutta or Numerov, for example! is per-
haps satisfactory. However, when high lying bound state
resonance states are investigated, special techniques s
be chosen to adequately account for the oscillatory chara
of the solution. For such a case methods based on the e
nential fitting or on the piecewise perturbation technique@1#
are among the best candidates for use. In other situations
example whenV(r ) is a succession of hills and valleys~e.g.,
Coffey-Evans potential@2#! or whenV(r ) exhibits a violent
variation around the origin@Lenard-Jones~12,6! @3## some
additional care is required.

In this paper we are concerned with the case whenV(r )
behaves as a Coulomb potential both around the origin
in the asymptotic range but not necessarily with the sa
electric charge in the two regions. There is no drastic rest
tion on howV(r ) behaves in between. We thus cover a wi
variety of physical problems, to mention only phenome
related to the total or partial screening or to the superposi
of electric and nuclear effects. All such effects become tr
table with high accuracy and, most important, our proced
is particularly suited for the case of very largen’s, as it is for
the Rydberg states@4#.

*Permanent address: Department of Theoretical Physics, Inst
of Physics and Nuclear Engineering, P.O. Box MG-6, Ma˘gurele,
Bucharest, R-76900, Romania.
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II. FORMULATION OF THE PROBLEM

As said, we are concerned with potentials of the form

V~r !5
S~r !

r
1R~r !, ~2.1!

whereS(r ) andR(r ) are well behaved functions such tha

lim
r→0

S~r !5S0 , lim
r→`

S~r !5Sas ,

lim
r→0

R~r !5R0 , lim
r→`

R~r !5Ras , ~2.2!

whereS0 , Sas , R0, andRas are constants. In atomic physic
S0 might be seen as22Z0 andSas as22Zas whereZ0 is the
nuclear charge andZas the ion charge. Specifically, it is as
sumed that around the originS(r ) andR(r ) can be written in
polynomial form

S~r !5 (
m50

M

Smr m, R~r !5 (
m50

M21

Rmr m, 0<r<r 0

~2.3!

and that somer as does exist such that

Vas~r !5
Sas

r
1Ras ~2.4!

is a good approximation ofV(r ) for all r .r as .
As also said, we are interested in the accurate comp

tion of the eigenvaluesEnl of Eq. ~1.1! for this potential,
with uniform accuracy vs the principal quantum numbern.
The procedure which will be described allows computing
associated normalized eigenfunctions as well.

We locate the eigenenergies by shooting. The half a
r .0 is first cut at some larger max.ras and a matching point
r match is fixed somewhere onI 5(0,r max#. For each test value
of E the equation is integrated from the two ends up tor match
to generate the so-called miss distance corresponding to
E. A new value ofE, hopely closer to the required eigen
value, is calculated in terms of the miss distance and
procedure is repeated as many times as necessary to brin

te
3151 ©2000 The American Physical Society
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miss-distance at the round-off level. The shooting proced
is described in many books, e.g., Ref.@1,3#.

Two specific issues have to be examined adequately.
~1! The equation is singular at the origin and therefore

numerical integration around the origin should be carried
by a procedure which explicitly accounts for this fact. Sin
on the other hand, the effect of the singularity progressiv
dies out whenr is increased, the integration intervalI has to
be split into two subintervals, a narrow subinterval arou
the origin,I 15(0,r 0#, and the remainingI 25(r 0 ,r max#. The
algorithm to be used onI 1 should be consistent with th
singular nature of the equation while the algorithm to
used onI 2 should be chosen on the basis of a different c
dition.

~2! The condition to be fulfilled by the algorithm forI 2 is
mainly dictated by another characteristic of the proble
namely, thatI 2 is typically a very long interval. For example
in the classical hydrogen atom case@S(r )522 and R(r )
50] the energy levels areEnl51/(n1 l 11)2. @Note in pass-
ing that, due to the scale adopted in Eq.~1.1!, the energy
levels are twice their values in the usual atomic units.# To
compute numericallyE1999,0 for this innocent looking prob-
lem r max should be taken such thatV(r max).E1999,0, i.e.,
r max.83106. As a consequence, the method to be used
such a broadI 2 should be of a type which enables produci
highly accurate results at unusually big steps, with widths
several thousands or so. This is not at all the case with
standard methods for differential equations but, fortunat
this condition was the easiest to fulfil. In fact, the piecew
perturbation method, originally formulated in Ref.@1#, was
recently reexamined and a high order version was c
structed@5,6#. The method can work without difficulty with
big steps, produces very accurate results and, more than
its accuracy stays the same no matter how big the energ
This is the method we choose forI 2.

Therefore, the problem ofI 1 is the one which requires
detailed investigation, and in this paper we chose placin
on the central focus. A first question to be answered is wh
shouldr 0 be located and what algorithm has to be chosen
I 1?

The position ofr 0 results as a compromise of two opp
site tendencies. If we taker 0 so close to the origin that only
the centrifugal component matters, then the regular solu
on I 1 ~this is the only solution we are interested in! is simply
y(r )5r l 11; the Coulomb term introduces components w
higher exponents. The point is that when we start to adva
the solution onI 2, then for a while the solution is still domi
nated by such a form of the solution and if the method c
sen forI 2 would be a classical method~Runge-Kutta or Nu-
merov, for example! the width of the steps will be dictate
by how good such a shape of the solution can be appr
mated by a low degree polynomial. This is obviously a po
approximation and therefore the resulting steps will be
small for making the integration efficient. For some relat
investigation see Ref.@7#. A similar situation is taking place
with the piecewise perturbation algorithm too because h
the starting approximation is that ofl ( l 11)/r 21V(r )
through a step function. A way to increase the value ofr 0
consists of taking a better approximation around the ori
and one possibility is to take just the regular Coulomb fu
tion Fl for y. ~For a numerical procedure to calculate t
re
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Coulomb functions, see Ref.@8#.! However, this is equiva-
lent to fully disregarding the other components inS(r ) and
R(r ) and in many cases this may be a too severe simplifi
tion.

In short, if the usual ways are only considered, then a
small r 0 is convenient forI 1 but it creates difficulties onI 2
while the opposite is true ifr 0 is enlarged. An escape from
this situation consists in developing a new procedure forI 1
which compactly accounts for both the singularity of t
equation and the structure~2.3! of S(r ) and R(r ). Such a
procedure is worked out in the next section.

III. AN ACCURATE SOLUTION ON I 1

The Coulomb wave equation

w95F l ~ l 11!

x2 1
2h

x
21Gw ~3.1!

admits two linear independent solutions, one regularFl and
one singularGl . Formulas ~14.4.5!–~14.48! in @9# allow
writing Fl and its derivative in terms of the spherical Bess
functions. The expansion ofFl reads

Fl~h,x!5133353•••3~2l 11!Cl~h!x

3(
k5 l

`

bk~p/2x!1/2Jk11/2~x!, ~3.2!

with bl51, bl 115(2l 13)h/( l 11),

Cl~h!52le2ph/2uG~ l 111 ih!u/G~2l 12!,

and

bk5
2k11

k~k11!2 l ~ l 11!

3S 2hbk212
~k21!~k22!2 l ~ l 11!

2k23
bk22D ,

k. l 11. ~3.3!

We want to generalize this formula in a way to be conveni
for our purpose. Upon using Eq.~2.3! and denotingV0
5S0 , V15S11R0 , . . . ,VM5SM1RM21, Eq. ~1.1! be-
comes

y95F l ~ l 11!

r 2 1 (
m50

M

Vmr m212EGy ~3.4!

and, with the change of the variablex5AE r, and of the
function w(x)5y(r ), it reads

w95F l ~ l 11!

x2 1 (
m50

M

vmxm2121Gw, ~3.5!

wherevm5Vm /E(m11)/2. The Coulomb wave equation is th
particular case of the latter forv052h and vm50, m
51,2, . . . ,M .
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In dealing with the present generalization we prefer
work with the set of functionsj(Z), hs(Z), s50,1,2, . . .
~see Appendix! instead of the Bessel functions. There a
two reasons for it:~i! this set is at the basis of the who
formalism of the piecewise perturbation method we use oI 2
and ~ii ! the simple differentiation properties of these fun
tions make the manipulations simplier. As a matter of fa
these functions are related to the spherical Bessel functi

j~2x2!5~p/2x!1/2J21/2~x!,

hs~2x2!5~p/2!1/2x2(s11/2)Js11/2~x!, s50,1,2, . . .
~3.6!

and therefore Eq.~3.2! readsFl(h,x)5bf(x), where

f~x!5x(
s50

`

gs
0~x!h l 1s~2x2!, gs

0~x!5bl 1sx
l 1s

~3.7!

andb is a constant, viz,b513335•••(2l 11)Cl(h).
We are interested in the expression off(x) for the dis-

torted Coulomb wave equation~3.5!. The results are as fol
lows:

The regular solution of Eq.~3.5! is

f~x!5x(
s50

`

gs~x!h l 1s~2x2!, gs~x!5(
j 50

`

gs, j x
l 1s1 j .

~3.8!

The coefficientsgs, j are

g0,051, g0,j50, j 51,2,3, . . . ,

g1,j5
~2l 13!v j

~ j 11!~2l 1 j 12!
, j 50,1,2, . . . ,

gs, j5
2l 12s11

~s1 j !~2l 1s1 j 11! F (p50

P

gs21,j 2pvp

2
~s2 j 22!~2l 1s2 j 21!

2l 12s23
gs22,j G

s52,3, . . . , j 50,1,2, . . . . ~3.9!

Its derivative with respect tox is

f8~x!5(
s50

`

(
j 50

`

gs, j@2~ l 1s2 j !h l 1s~2x2!

1h l 1s21~2x2!#xl 1s1 j , ~3.10!

whereP5min $j,M%.
Since Eq.~3.5! comes from the original equation throug

an E dependent scaling it is clear thatf(x) andf8(x) will
depend onE both implicitly ~through x) and explicitly
~throughvm). The latter is reflected in theE dependence o
gs, j .

We have the additional result that the first derivative
f(x) and off8(x) with respect toE @let them be denoted a
fE(x) andfE8 (x), respectively# can be expressed as
t,
s

f

fE~x!5
1

2E Fxf8~x!1(
s50

`

(
j 50

`

xl 1s1 j 11ws, j h l 1s~2x2!G ,

~3.11!

fE8 ~x!5
1

2E Fxf9~x!1(
s50

`

(
j 50

`

xl 1s1 jws, j@2~ l 1s

2 j !h l 1s~2x2!1h l 1s21~2x2!#G , ~3.12!

wherew0,j50, w1,j52( j 11)g1,j , j 50,1,2, . . . , and

ws, j5
2l 12s11

~s1 j !~2l 1s1 j 11! F (p50

P

~ws21,j 2p2~p11!

3gs21,j 2p!vp2
~s2 j 22!~2l 1s2 j 21!

2l 12s23
ws22,j G ,

s52,3, . . . , j 50,1,2, . . . . ~3.13!

For a numerical evaluationf9(x) is replaced by the right-
hand side~RHS! of Eq. ~3.5! with f for w.

Remarks.
~1! As expected, in the particular casev052h and vm

50, m51,2 . . . formulas~3.8! and~3.10! reduce to the for-
mulas~14.4.5–8! in Ref. @9# except, of course, for the con
stant factorb.

~2! Conversion of these values, obtained in thex variable,
to the values to be used in the originalr variable is:y(r )
5f(x), y8(r )5AE f8(x), yE(r )5fE(x), yE8 (r )
5AE fE8 (x).

~3! The values ofyE andyE8 are useful for calculating the
integral of y2 on I 1. As shown in Ref.@10# the following
formula exists:

E
0

r 0
y2~r !dr5y8~r 0!yE~r 0!2yE8 ~r 0!y~r 0!. ~3.14!

They are also used in the process of forming the derivative
the miss-distance with respect toE which, at its turn, is nec-
essary to locate the eigenvalues by a Newton-Raphson
cedure.

~4! The standard formulas cannot accomodate the c
E50; indeed, sincex5AE r, Eq. ~3.1! cannot be defined
With the new formulas this difficulty is easily circumvente
because we can conveniently shift the inputV1 andE, V1

new

5V11D, Enew5E1D, say, and then takex5AEnewr .
~5! The above formulas directly apply to the case ofE

positive. When E is negative, x5 iA2E r and vm
5 i 2(m11)Vm /(2E)(m11)/2, and it is readily verified from
Eq. ~3.9! that gs, j is either real or purely imaginary depend
ing of whethers1 j is even or odd. It follows that forE
,0 one can avoid complex arithmetic by settingx
5A2E r, vm5Vm /(2E)(m11)/2, and by inserting at some
appropriate places a minus sign in Eq.~3.8! and ~3.9!.

Proof. The idea consists in constructing the two sides
Eq. ~3.5! separately and then identifying the like terms.

With the expression~3.8! for f(x) the first derivative is
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f8~x!5(
s50

` Fgs~x!h l 1s~2x2!1xgs8~x!h l 1s~x2!

1xgs

d

dx
h l 1s~2x2!G . ~3.15!

Since

d

dx
h l 1s~2x2!5

d

d~2x2!
h l 1s~2x2!

d~2x2!

dx

52xh l 1s11~2x2!, ~3.16!

see Eq.~A9!, and

2x2h l 1s11~2x2!5h l 1s21~2x2!2~2l 12s11!

3h l 1s~2x2!, ~3.17!

see Eq.~A4!, Eq. ~3.15! becomes

f8~x!5(
s50

`

$@22~ l 1s!gs~x!1xgs8~x!#h l 1s~2x2!

1gs~x!h l 1s21~2x2!%. ~3.18!

We differentiate this once again and use the same proce
as before, with the result

f9~x!5(
s50

` F S xgs9~x!24~ l 1s!gs8~x!12~ l 1s!

3~2l 12s11!
gs~x!

x Dh l 1s~2x2!1F2gs8~x!

2~4l 14s21!
gs~x!

x Gh l 1s21~2x2!

1
gs~x!

x
h l 1s22~2x2!G . ~3.19!

For the RHS we have in order

@RHS of Eq.~3.19!#5S l ~ l 11!

x2 1 (
m50

M

vmxm2121Df~x!

5(
s50

` F S l ~ l 11!

x
1 (

m50

M

vmxmD
3gs~x!h l 1s~2x2!

2xgs~x!h l 1s~2x2!G . ~3.20!

We replace the lasth l 1s(2x2) by its expression in terms o
h l 1s21(2x2) andh l 1s22(2x2),

h l 1s~2x2!52
1

x2 @h l 1s22~2x2!2~2l 12s21!

3h l 1s21~2x2!#, ~3.21!

so that
re

@RHS of Eq.~3.19!#5(
s50

` F S l ~ l 11!

x

1 (
m50

M

vmxmD gs~x!h l 1s~2x2!

2~2l 12s21!
gs~x!

x
h l 1s~2x2!

1
gs~x!

x
h l 1s22~2x2!G . ~3.22!

We now consider the equationf95RHS @i.e., Eq.~3.5# with
f for w) and identify the terms with the same label forh.
The terms withh l 1s22 cancel out while from the others w
get

2g08~x!2~4l 21!
g0~x!

x
52~2l 21!

g0~x!

x
~3.23!

from h l 21(2x2) ~Note: h21 which appears whenl 50
means formallyj.!,

xg09~x!24lg08~x!12l ~2l 11!
g0~x!

x
12g18~x!2~4l 13!

3
g1~x!

x

5S l ~ l 11!

x
1 (

m50

M

vmxmD g1~x!, ~3.24!

from h l(2x2), and

xgp9~x!24~ l 1p!gp8~x!12~ l 1p!~2l 12p11!
gp~x!

x

12gp118 ~x!2~4l 14p13!
gp11~x!

x

5S l ~ l 11!

x
1 (

m50

M

vmxmD gp~x!, ~3.25!

from h l 1p(2x2), p51,2, . . . .Finally we introduce the se
ries ~3.8! for the gs , take g0,051 and identify the coeffi-
cients of the like powers in each of the last three equation
just obtain Eq.~3.9!. The expression~3.10! for f8 results by
substituting the series~3.8! into Eq. ~3.18!. To derive the
formula for fE we take into account thatx depends ofE
through the relationshipx5AE r and use

fE5f8~x!
]x

]E
1

]f

]E
. ~3.26!

With f as in Eq.~3.8! we have

]f

]E
5(

j 50

`

(
s50

`
dgs, j

dE
xl 1s1 j 11h l 1s~2x2! ~3.27!
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so that, upon noticing that]x/]E5x/2E and upon denoting
dgs, j /dE52Ews, j we get formula~3.13!. The formulas to
be satisfied by thews, j ’s result by just differentiating Eqs
~3.9! for the gs, j ’s. The formula forfE8 is obtained in the
same way. The proof is thus completed. h

The forms~3.8! and~3.10! for the solution of Eq.~3.5! are
of a type which would alternatively result if the piecewi

perturbation technique were used withV̄(x)5 l ( l 11)/x2 as
the reference potential and withDV(x)5(m50

M vmxm21 as
the perturbation, in a Schro¨dinger equation with the uni
value for the energy. An examination from this perspect
enables drawing some qualitative estimation on the accu
to be expected from the above formulas. First, the series
s andj are infinite but in practice they must be cut off som
where. What about the accuracy for one and the same
As in any perturbation procedure with a finite number
corrections included, the answer depends on how sma
big is the perturbation with respect to the reference poten
One general conclusion is that, insomuch as the refere
potential dies out quickly withx, but this is not necessarily
the case for the perturbation, the formulas are expected t
particularly efficient only in the vicinity of the origin. The
actual extension of this interval depends on the specific
tures of the problem to be solved. Ifl 50, for example, the
relative importance of the perturbation is big even at smax
and therefore the interval is necessarily very narrow. Mo
over, the larger and largeruv0u the smaller and smaller is th
interval. Another expectation is that, for fixedDV(x), the
efficiency of these formulas will increase withl or, alterna-
tively, they will be convenient on a larger and larger interv

Technically, these tendencies appear under the form
slower and slower convergence of the series whenx is in-
creased. We are aware that an additional extension of
range ofx may be achieved provided the so called accele
tion procedures were used when summing the series. H
ever, the success of each acceleration procedure~see, e.g.,
Ref. @11#! depends on the specific characteristics of the
ries. We did some tests by using the procedures of Wynn
Levin, and a hybrid of them. There were cases when som
the three gave good results but the number of such cases
small. This indicates that in general the behavior of the se
for which the mentioned procedures work does not fit
behavior of our series.

Another question refers to the energy dependence of
accuracy. In fact, Eq.~3.5! is an energy dependent scaling
Eq. ~3.4! we actually have to solve, and therefore for ea
and the same inputl andV(r ) the comparative magnitude o
the reference and perturbation potential in thex variable is
necessarilyE dependent. This suggests that a really ene
independent treatment will be achieved only if the pertur
tion technique will be applied directly on the original equ
tion, not on its energy dependent representation. This is
sible in principle but in practice some technic
inconveniences appear. The most severe is that the ex
sions of successive orders of the perturbation will cont
increasingly complicated expressions with logarithmic fun
tions. By usingMATHEMATICA we were unable to obtain
more than two orders of perturbation. We also mention th
perturbation procedure applied directly on the original eq
tion is described in Sec. 3.7 of Ref.@1#. However, that pro-
e
cy
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cedure remains energy dependent because there the refe
potential is V̄(r )5 l ( l 11)/r 2 but the perturbation is the
whole V(r )2E.

In our computations the upper end ofI 1 was set as

r 05minH 12~ l 11!

l 121
,
10~ l 15!

uS0u J , ~3.28!

an empirical formula which disregards the energy dep
dence. OnI 1 defined in this way we tested the accuracy
the new formulas for various values ofl between 0 and 25,
uS0u between 2 and 200,E between2uS0u2/4(l 11)2 and
uS0u2/4(l 11)2, and for various shapes for the distorsio
With s and j limited up to 50 and 25, respectively, the rel
tive error iny and iny8 was typically of 10214 except in the
vicinity of the zeros of these functions. The accuracy of t
procedure described in Sec. 3.7 of Ref.@1# was often good as
well, but a systematic deterioration of the accuracy~of two
or three orders of magnitude! was observed at the ends of th
energy interval. The coefficientsS0 ,S1 , . . . ,SM and
R0 ,R1 , . . . ,RM21 were computed by first developingS(r )
andR(r ) over shifted Legendre polynomials and then reco
verting these expansions in powers ofr.

IV. A SHORT DESCRIPTION OF THE PROGRAM

In essence, the program consists of an adaptation of
program described in Refs.@5,6# for the eigenvalue problem
associated to the regular Sturm-Liouville equation. In th
program the Sturm-Liouville equation is first converted to
regular Schro¨dinger form and it is the latter which is actuall
solved. In other words, that program solves the Schro¨dinger
equation only when the interval is of theI 2 type. We then
had to enlarge it in a way to accept the intervalI 1 as well and
also to add a procedure which allows convenient selectio
the subinterval ofI 2 to be used in the range of interest forE.
The user has to provide as input a suitably large value
r max and the program constructs the partition ofI 2
5(r 0 ,r max# in terms of the tolerance tol also given on inpu
If r 1 ,r 2 , . . . ,r kmax

5rmax are the mesh points of the partition
the matching point of the forward and backward solutions
selected as thatr k for which l ( l 11)/r k

21V(r k) is minimal.
For each test value ofE in the iteration procedure for the
calculation of the eigenvalues, a current lower limit forr max

is taken. This current value, call itr max8 , is given as the
lowest mesh point for which the condition

Q5E
r t

r kAl ~ l 11!

r 2 1Vas~r !2E dr.25 ~4.1!

is fulfilled, wherer t is the rightmost turning point for thatE.
This condition is consistent with the usual WKB argumen
~see, e.g., Ref.@12#! as it ensures that taking the RHS boun
ary condition simply as

y8~r max8 !52Al ~ l 11!

r max8 2 1Vas~r max8 !2E y~r max8 ! ~4.2!

is safe for double precision calculations. For thatE only the
currentI 285(r 0 ,r max8 # is actually involved.
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The method used onI 28 is a highly accurate piecewis
perturbation method in theCP form. On each interval
@r k ,r k11# with the widthh5r k112r k the Schro¨dinger equa-
tion for a genericV(r )

y95@V~r !2E#y ~4.3!

and its derivative with respect toE,

yE95@V~r !2E#yE2y, ~4.4!

are considered. Of course, the genericV(r ) is in our case the
whole suml ( l 11)/r 21V(r ).

The algorithm links they, y8 and their first derivatives
with respect toE, vectors y(r )5„y(r ),y8(r )… and yE(r )
5„yE(r ),yE8 (r )…, at the two ends of the interval. The solutio
is propagated forwards or backwards according to the
lowing matrix equations:

y~r k11!5Tf~h!y~r k!,

yE~r k11!5TE
f ~h!y~r k!1Tf~h!yE~r k!,

y~r k!5Tb~h!y~r k11!,

yE~r k!5TE
b~h!y~r k11!1Tb~h!yE~r k11!, ~4.5!

respectively, whereT f , T E
f , T b, andT E

b are 232 matrices,

Tf~h!5F u~h! v~h!

u8~h! v8~h!
G ,

TE
f ~h!5FuE~h! vE~h!

uE8 ~h! vE8 ~h!
G , ~4.6!
l-

Tb~h!5F v8~h! 2v~h!

2u8~h! u~h!
G ,

TE
b~h!5F vE8 ~h! 2vE~h!

2uE8 ~h! uE~h!
G . ~4.7!

The expressions of u(h), u8(h), v(h), v8(h), uE(h),
uE8 (h), vE(h), andvE8 (h) are given in Ref.@5#.

The program produces the eigenvalues and the eigenf
tions under different options. The user may ask for these d
either in a preset energy range@Emin , Emax# or in a preset
range of labels@nmin ,nmax#. The program also gives an est
mated value of the error.

V. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS

We take the following four cases.
~1! Pure attractive Coulomb potentialV(r )522Z/r ,

FIG. 1. Then dependence of the relative error in eigenvalues
four cases:~a! l 50, Z51 ~solid!; ~b! l 50, Z5100 ~broken!; ~c! l
520, Z51 ~dotted!; ~d! l 520, Z5100 ~dashed!.
n of the
puted
TABLE I. The first eleven and the last three bound state levels for the Hulthe´n potential, for three values
of l. The parameters of the potential areZ550 andl50.025. The data forl 50 are given according to the
format of the output and blanks are used to separate the figures which, according to the error evaluatio
program, are correct. This evaluation is fully confirmed independently, i.e., by the deviations of the com
levels from the exact ones. For the otherl ’s only the correct figures~in the above sense! are written. Numbers
in brackets represent powers of 10.

l 50 l 55 l 510
n Enl dev n Enl n Enl

0 22498.7501562499 724 20.3 @210# 0 268.1985069764 0 219.42433530452
1 2623.750624999 5449 20.5 @209# 1 249.7765019879 1 216.1278839619
2 2276.529184027 0629 20.7 @209# 2 237.820937644 2 213.5635796169
3 2155.00249999 90256 20.1 @208# 3 229.625291530 3 211.5300024482
4 298.75390624 87254 20.1 @208# 4 223.764062901 4 29.8905446167
5 268.20006944 32761 20.1 @208# 5 219.428501384 5 28.5499045662
6 249.778064412 3505 20.9 @209# 6 216.132049498 6 27.4399576882
7 237.822499999 3734 20.6 @209# 7 213.5677444066 7 26.5109602329
8 229.626853780 4022 20.5 @209# 8 211.5341662475 8 25.7259039790
9 223.765624999 6776 20.3 @209# 9 29.8947071396 9 25.05679485664
10 219.430063274 5708 20.2 @209# 10 28.5540654812 10 24.48214107892
60 20.00326865258 12 0.1@211# 54 20.00626012849 48 20.00926096971
61 20.000989203954 9 0.6@212# 55 20.00269155996 49 20.00444878383
62 20.000037832262 7 0.1@212# 56 20.000553923280 50 20.001188166259
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TABLE II. A set of bound state levelsEnl from the Hulthén partially screening potential. The paramete
of the potential areZ0550, Zas51, l50.025. Numbers in brackets represent powers of 10.

n l50 l 55 l 510

0 20.24987751531249@104# 20.682234257245@102# 20.1944907169591@102#

1 20.623775612499@103# 20.498013801077@102# 20.161525484209@102#

2 20.276554155902@103# 20.37845768882@102# 20.135881658647@102#

10 20.19454685083@102# 20.85782960477@101# 20.450587380624@101#

11 20.16158160999@102# 20.746824376356@101# 20.400881870174@101#

12 20.13593777352@102# 20.653913412087@101# 20.357632424414@101#

50 20.13362188273@100# 20.4975916339@201# 20.1067645345@201#

51 20.11265757533@100# 20.3912666814@201# 20.7608426770@202#

52 20.9403357799@201# 20.3017823140@201# 20.5621004447@202#

100 20.3743860458@203# 20.3056329551@203# 20.24725724477@203#

101 20.3602719091@203# 20.29519803028@203# 20.23964578233@203#

102 20.3469430529@203# 20.28528961739@203# 20.23238111697@203#
ith

t
ke

t

i-

g-
is

of
Z.0 and variousl. Exact energy levels:Enl52Z2/(n1 l
11)2, n50,1,2, . . . .

~2! Hulthén screening potential

V~r !522ZVH~r ,l!, Z.0, VH~r ,l!5
le2lr

12e2lr
,

~5.1!

and variousl. Exact eigenvalues are only known forl 50,
viz. En052@2Z2(n11)l#2/4(n11)2, n50,1, . . . , nmax

5bA2Z/l c21, see Ref.@13#.
~3! Partially screening Hulthe´n potential

V~r !522Z0VH~r ,l!22ZasS 1

r
2VH~r ,l! D ,

Z0.0, Zas.0. ~5.2!

This behaves as a pure Coulomb potential with chargeZ0 for
small r and as a pure Coulomb potential with chargeZas at
large r.

~4! Partially screening exponential-cosine potential. W
Vec~r ,l,m!5
1

r
e2lrcos~mr !,

see, e.g., Ref.@14#, this reads

V~r !522Z0 Vec~r ,l,m!22ZasS 1

r
2Vec~r ,l,m! D .

~5.3!

In all cases we ask for a tolerance tol51028.
Problem~1! is considered with the aim of offering a firs

insight on the practical features of our approach. We ta
four, perhaps extreme situations:~a! l 50, Z51; ~b! l
50, Z5100;~c! l 520,Z51; ~d! l 520,Z5100; and ask for
the evaluation ofEnl up ton52000. The values of the inpu
r max and of the outputr 0 and number of steps onI 2 are in
order ~a! 107, 1.09, 1008; ~b! 2.105, 0.025, 1268; ~c!
107, 12.0, 1004;~d! 3.105, 1.025, 1242. On Fig. 1 the dec
mal logarithm of the relative error, log10u(Enl2Enl

comp)/Enlu
is displayed vsn. It is seen that the number of correct si
nificant figures is at least 10 in all cases and that there
some tendency to increase by one unit whenn is big. The
result is remarkable in so much that the very magnitude
mb
nt
TABLE III. A set of boundstate levelsEnl from the exponential cosine partially screened Coulo
potential. The parameters of the potential areZ0550, Zas51, l5m50.025. Numbers in brackets represe
powers of 10.

n l50 l 55 l 510

0 20.24975500006120@104# 20.6699477512707@102# 20.1821445124040@102#

1 20.622550008557@103# 20.485711749449@102# 20.149165994843@102#

2 20.275327819864@103# 20.36613972923@102# 20.123512992294@102#

10 20.18218254864@102# 20.73435721558@101# 20.328994328401@101#

11 20.14921061074@102# 20.623594367131@101# 20.280069798073@101#

12 20.12356453704@102# 20.5310240385481@101# 20.237751777759@101#

50 20.1531833374@202# 20.1028479562@202# 20.699631@203#

51 20.14172138790@202# 20.9650369650@203# 20.663808@203#

52 20.1315138619@202# 20.907333058@203# 20.630684@203#

100 20.17450705849@203# 20.1512989287@203# 20.1293940@203#

101 20.16998420260@203# 20.1476427349@203# 20.1264983@203#

102 20.16563500787@203# 20.1441175462@203# 20.1236987@203#
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the energy level decreases whenn is increased. In cases~a!
and ~b!, for example,E2000,0 is by six orders of magnitude
lower than the ground state energy. It is also seen tha
four curves are well packed together in spite of the fact t
the parameters of these cases are so different. This is a d
indication that the stepsize selection rule works properly.
nally, the number of steps is extremely small.

To tackle problem 2 with our program, the expression
the Hulthén potential should be first brought to the for
~2.3!. It can be easily verified thatVH(r ,l)5R(r )/r where
R(r )5e2lr /2/h0@(lr )2/4#. With this problem we conside
two issues. The first is to check for the accuracy of the e
estimation of our program. Since the exact eigenenergies
known for l 50, in Table I we present our output for th
case and place a blank after the figure which, according
the program error evaluation, may be altered by61. We
separately list the very difference between the exact and
eigenvalues to conclude that the prediction is convincin
confirmed. The second issue is to make available accu
numerical eigenvalues for cases where there is no ana
form (l 55 andl 510). Such data may be used as referen
when checking for the performance of other programs.

The results for problems~3! and ~4! are collected in
Tables II and III and on Fig. 2. Only the correct figures a
mentioned for the eigenvalues. It is again seen that altho
the eigenvalues vary with six or seven orders of magnit
the number of exact significant figures exceeds eight in Ta
II. The situation is comparatively worse in Table III. Yet, th
absolute error is well within tol for all cases. On Fig. 2 w
illustrate the physical feature of problems~3! and ~4! for l
50. Each of the two potentials has a pure Coulomb poten
at the limits. Then the low lying energy levels have to
close to the ones for22Z0 /r while whenn is increased they
have to gradually approach those of22Zas /r . We plot
log10uEn0u for the two limiting Coulomb potentials and fo
the two partially screening potentials. The graphs just c
firm the expectation.

We conclude that the approach developed in this pape
highly accurate, robust and safe. Its capacity of produc
highly accurate results at high values ofn is perhaps unpar
alleled by any other approach.

FIG. 2. The screening effect for eigenvalues: pure Coulo
potential with chargeZ0550 ~broken!, Zas51 ~dashed! and two
partial screening potentials, Hulthen~solid! and exponential-cosine
~dash-and-dots!.
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APPENDIX

Functionsj(Z), h0(Z), h1(Z), . . . , were originally in-
troduced in Sec. 3.4 of Ref.@1# and denoted there a
j̄(Z),h̄0(Z), h̄1(Z), . . . . They are defined as follows. Th
functionsj(Z) andh0(Z) are generated first by the formu
las:

j~Z!5H cos~ uZu1/2! if Z,0,

cosh~Z1/2! if Z>0,
~A1!

h0~Z!5H sin~ uZu1/2!/uZu1/2 if Z,0

1 if Z50

sinh~Z1/2!/Z1/2 if Z.0,

~A2!

while hs(Z) with s.0 are further generated by recurrenc

h1~Z!5@j~Z!2h0~Z!#/Z, ~A3!

hs~Z!5@hs22~Z!2~2s21!hs21~Z!#/Z, s52,3,4, . . .
~A4!

if ZÞ0, and by following values atZ50:

hs~0!51/~2s11!!!, s51,2,3,4, . . . . ~A5!

These functions satisfy the following properties.
~i! Power series:

hs~Z!52s(
q50

`

gsqZ
q/~2q12s11!! ~A6!

with

gsq5H 1 if s50,

~q11!~q12! . . . ~q1s! if s.0.
~A7!

~ii ! Behavior at largeuZu:

hs~Z!.H j~Z!/Z(s11)/2 for odds,

h0~Z!/Zs/2 for evens.
~A8!

~iii ! Differentiation with respect toZ:

j8~Z!5
1

2
h0~Z! andhs8~Z!5

1

2
hs11~Z!,

s5 0,1,2, . . . . ~A9!

b
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