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Unified model for partially coherent solitons in logarithmically nonlinear media
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We investigate the propagation of a partially coherent beam in a nonlinear medium with logarithmic non-
linearity. We show that all information about the properties of the beam, as well as the condition for formation
of incoherent solitons, can be obtained from the evolution equation for the mutual coherence function. The key
parameter is the detuningD between the effective diffraction radius and the strength of the nonlinearity.
Stationary partially coherent solitons exist whenD50 and the nonlinearity exactly compensates for the spread-
ing due to both diffraction and incoherence. For nonzero detunings the solitons are oscillating in nature, and we
find approximate solutions in terms of elliptic functions. Our results establish an elegant equivalence among
several different approaches to partially coherent beams in nonlinear media.

PACS number~s!: 42.65.Tg, 42.65.Jx, 42.25.Kb
s

h
s
re
am
c

co
e
e

tr
t

sa
e

ta
n

r-
i

ha
m
e
a

ac
te

l
ed
ly

as

l de-
a

the
d to
ity
pre-
rent
y
en

lu-
ti-

sed
ze
his
the

a
her-
n
in
en
ich

ic
rm
ly

he
m
er-
s a
ical
g
m.

c
y,
Among recent advances in the field of optical soliton
demonstration of the formation of incoherent~or partially
coherent! spatial solitons@1–12# has attracted particularly
strong attention as it opens the possibility of using lig
sources with degraded or poor coherence in soliton-ba
all-optical signal processing. Typically, spatial solitons a
created by self-trapping coherent optical beams, i.e., be
whose phase at any two points is fully correlated. Su
beams differ significantly from those generated by an in
herent light source in which there is no correlation betwe
light emitted from two different points. This results in som
level of randomness~or partial correlation! in the phase
across the beam. The weaker the phase correlation, the s
ger the incoherence@13#. As a result, a partially coheren
beam spreads faster than its coherent counterpart of the
width. Additionally, the intensity distribution across th
beam exhibits a speckle structure, which prevents the ‘‘s
dard’’ uniform self-focusing observed in instantenous no
linear media as the beam tends to form filaments.

It turns out, however, that self-focusing and soliton fo
mation are still possible provided the nonlinear medium
inertial and responds much slower than the time scale c
acterizing the random phase variation. In such cases the
dium will respond to the time averaged intensity, which, b
ing a smooth function of the spatial variables, will induce
smooth waveguidelike structure trapping the beam. In f
the first experiments with incoherent solitons were conduc
using the relatively slow photorefractive nonlinearity@1,2,6#.

The self-focusing of partially coherent light in inertia
~slow! nonlinear Kerr-like materials was originally suggest
by Akhmanovet al. in 1967 @14#, and studied subsequent
by Pasmanik@15# and Aleshkevichet al. @16#. On the other

*Present address: Department of Mathematical Modelling, Te
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hand, the formation of temporally incoherent solitons w
suggested and investigated by Hasegawa@17#.

There are several approaches as far as the theoretica
scription of propagation of partially coherent beams in
slow nonlinear medium is concerned. In recent works,
coherent density approach has been sucessfully applie
find incoherent soliton solutions with stationary intens
profiles in saturable media. This approach is based on re
senting the beam as a superposition of mutually incohe
components@3#. For the case of a logarithmic nonlinearit
the exact analytical stationary soliton solution has be
found @4#. In another approach, the stationary soliton so
tion for a logarithmic nonlinearity was found using a mul
mode decomposition of the field@9#. Finally, in the diffrac-
tionless limit, the geometric optics approach was also u
@11,12#. However, this approach is only valid when the si
of the beam is large compared to the wavelength. In t
limit, diffraction can be neglected, and the spreading of
beam is determined solely by its incoherence.

The most natural way of treating the propagation of
partially coherent beam is to use the so-called mutual co
ence function@13#, which gives a measure of the correlatio
between the amplitude of the field at two different points
the beam. Unfortunately, while rigorous, this method oft
leads to analytically unsolvable nonlinear equations wh
have to be dealt with either by approximate methods@15# or
numerically@16#. However, in the special case of logarithm
nonlinearity this rigorous approach leads to a closed fo
analytical solution for the evolution of stationary partial
coherent beams.

In this paper we show that the evolution equation for t
coherence function in a logarithmically nonlinear mediu
has an exact analytical stationary solution for partially coh
ent beams. We show that this special nonlinearity allow
rigorous use of the Gaussian-Schell model for the opt
beam @13#, with its Gaussian statistical properties bein
maintained throughout propagation in the nonlinear mediu

h-
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This is not the case in, for example, Kerr media@16,20#,
where nonlinearity actually induces changes in the bea
statistical properties. We use these solutions to find co
tions for the formation of stationary solitons, and compa
them with those found using completely different a
proaches. We go one step further, and show that the sta
ary solitons are only a special case of a much larger clas
periodic solitons, for which we find approximate analytic
solutions. Finally, we show that this method can be succ
fully applied to treat the evolution of elliptical partially co
herent beams.

Let us consider the propagation of a partially coher
beam in a slow nonlinear bulk medium which responds
the time averaged intensity. We start with a paraxial wa
equation describing propagation of a two-dimensional qu
monochromatic partially coherent beam with the amplitu
c(rW):

i
]c

]z
1

1

2
¹ rW

2c1dn~ I !c50, ~1!

whererW5(x,y). Thez dependence is understood, unless s
cifically given. The properties of the partially coherent bea
are best described by the mutual coherence func
G(rW1 ,rW2), defined as

G~rW1 ,rW2!5^c~rW1!c* ~rW2!&, ~2!

where brackets denote temporal or ensemble averaging
particular, the time averaged intensity is obtained from
coherence function asI (rW)5G(rW,rW). We take the refractive
index changedn to be a logarithmic function of the intensity

dn~ I !5n2 ln I . ~3!

It is straightforward to show that the mutual coheren
function satisfies the differential equation~see also Refs
@12,15,16#!

i
]G12

]z
1

1

2
~¹ rW1

2
2¹ rW2

2
!G121@dn~rW1!2dn~rW2!#G1250,

~4!

where we have definedG i j 5G(rW i ,rW j ), i , j 5(1,2). Introduc-
ing the independent spatial variablesRW andpW ,

RW 5
1

2
~rW11rW2!, pW 5rW12rW2 , ~5!

and using the specific form@Eq. ~3!# of the nonlinearity,
transforms the propagation equation into

i
]G12

]z
1¹W RW •¹W pWG121n2 lnS G11

G22
DG1250. ~6!

In order to find solutions to this equation, we assume t
the incident beamc(rW) possesses Gaussian statistics wh
implies that the coherence function initially has the form

G~rW1 ,rW2 ,z50!5expS 2
r 1

21r 2
2

2r0
2

2
urW12rW2u2

r c
2 D , ~7!
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wherer0 and r c denote the initial diameter and coheren
radius of the beam, respectively. In the variablesRW andpW this
function becomes

G~RW ,pW ,z50!5expS 2
R2

r0
2

2
p2

s0
2D , ~8!

whereR5uRW u, p5upW u, and we have introduced the effectiv
coherence radius 1/s0

251/r c
211/(4r0

2). Due to the logarith-

mic form of the nonlinearity,c(rW) will maintain the Gauss-
ian statistics during propagation, and thus the cohere
function will keep the form of Eq.~8!. Furthermore, the inpu
amplitude plays no role and is set to unity. We can theref
look for solutions to Eq.~6! using the Gaussian anzatz

G~RW ,pW ,z!5A~z!expS 2
R2

r2~z!
2

p2

s2~z!
1 iRW •pW m~z!D ,

~9!

where A(z) and m(z) represent the amplitude and pha
variation of the coherence function, andr(z) and s(z) its
diameter and coherence radius, respectively. The initial c
ditions areA(0)51, r(0)5r0, s(0)5s0, andm~0!50. In-
serting these expressions into Eq.~6!, we obtain a set of
ordinary differential equations for the parameters of the
herence function:

ds

dz
5sm, ~10!

dr

dz
5rm, ~11!

dA

dz
522Am, ~12!

dm

dz
5

4

s2r2
2m22

2n2

r2
. ~13!

From the first two equations we obtain the relation

s/r5s0 /r0 , ~14!

which shows that during evolution the beam conserves
coherence, defined as the number of speckles within
beam diameter. The wider~narrower! the beam, the large
~smaller! the coherence radius. Combining Eqs.~11! and
~12! gives the amplitudeA(z)5@r0/r(z)#2. Finally, insert-
ing Eq. ~13! into Eq. ~11!, we obtain the evolution equatio

d2r

dz2
2

4

r3

r0
2

s0
2

1
2n2

r
50, ~15!

describing the dynamics of the widthr(z) of a partially co-
herent beam~with Gaussian statistics! in a logarithmic non-
linear medium. Clearly, the dynamics is determined by
competition between free spreading and nonlinearity. Ifn2
50, then Eq.~15! describes simple diffraction of the pa
tially coherent beam. A defocusing nonlinearity withn2,0
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simply enhances the natural spreading of the beam, and
will not consider it here. Instead we will concentrate on t
focusing case withn2.0.

Choosing the initial condition such that (dr/dz)(z50)
50, and integrating Eq.~15! once, we find that the evolution
of r(z) is described by Newton’s equation for an effecti
particle,

~dr/dz!21P~r!50, ~16!

moving in the potentialP(r), which is given by

P~r!5
4

s0
2 S r0

2

r2
21D 14n2 lnS r

r0
D . ~17!

The asymmetric potential is depicted in Fig. 1 for a beam
diameters051 moving in a focusing logarithmic nonlinea
medium withn251.8.

Stationary soliton solutions with a constant beam wid
~corresponding to the effective particle being located at
bottom of the potential well! are formed at zero detuning:

D[n22
2

s0
2

5n22
2

r c
2

2
1

2r0
2

50. ~18!

Physically, this condition means that soliton existence
quires the nonlinearity-induced focusing to compensate
beam spreading due to both diffraction and incoherence.
diameter of the stationary partially coherent soliton is giv
by

r0
25

1

2n224/r c
2

. ~19!

We note that for perfectly coherent beams, i.e., forr c5`,
we recover the known solution for coherent solitons in log
rithmically nonlinear media@18,19#. On the other hand, Eq
~19! also shows that a soliton cannot exist if the cohere
radius of the input beam is lower thanA2/n2. Since the in-
verse of the coherence radius corresponds to the width o
incoherent spectrum of the partially coherent beam, this
produces the result earlier obtained by Christodoulideset al.
using both a coherent density approach@4# and modal de-
composition@9#—an indication that all of these theoretic
descriptions of the beam are equivalent.

At this point it is worth noting that the geometric optic
approach to partially coherent solitons used in Refs.@11,12#,

FIG. 1. PotentialP(r) ~solid! and its third order Taylor expan
sion P3(r) ~dashed! for an initial beam width ofs051 and a fo-
cusing logarithmic nonlinear medium withn251.8.
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gives~in the case of logarithmic nonlinearity! a soliton solu-
tion of arbitrary diameter. However, this approach is
stricted to cases in which diffraction is negligible, an
spreading of the beam is caused solely by incoherence~dif-
fusive illumination!.

For nonzero detuningDÞ0, the beam diameter~as well
as the coherence radius! will undergo periodic oscillations,
corresponding to the effective particle oscillating in the b
tom of the potential well. These general oscillating solutio
were recently discussed in Ref.@12#, where incoherent soli-
tons were studied using a geometric optics approximatio

We can find an approximate analytical expression
these oscillating solutions when the detuning is small. In t
caser(z) will remain close to the initial valuer0, and we
can expand the potential aroundr5r0. To third order
P(r)'P3(r), whereP3(r) is given by

P3~r!54~Du1a1u21a2u3!, u5
r

r0
21. ~20!

Here a153/s0
22n2/2 anda25n2/324/s0

2. Using potential
~20! in Eq. ~16!, we can integrate it by quadrature and obta
the solution in terms of the Jacobi elliptic sn function@21#

FIG. 2. Nonstationary propagation of a cylindrical partially c
herent beam in a logarithmic nonlinear medium.~a! Beam diameter
~dotted! and peak intensity~solid! as functions of the propagatio
distance.~b! Three-dimensional view of the beam with an intens
isosurface at 10% of the peak value.~c! Longitudinal cross section
of the beam.
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r~z!5r0F11u2sn2SAu1a2

r0
z;mD G , m5

u2

u1
. ~21!

Here u6 are the solutions of the quadratic equationa2u2

1a1u1D50. Using uDu!1, we obtainu2'2D/n2 and
u1'3/5.

Thus the beam width will oscillate betweenr0 and
another value, where the potential is negative. For posi
detuning the nonlinear self-focusing dominates, and
beam width decreases initially, i.e., it oscillates betweenr0
and a somewhat lower value. For negative detuning the
fraction dominates and the beam width increases initia
i.e., it oscillates betweenr0 and a somewhat larger value.

The analysis presented above can easily be extende
the case of elliptical beams. Let us denote the initial be
diameter along thex andy axes byrx0 andry0, respectively,
and the corresponding initial coherence radii byr cx andr cy .

FIG. 3. Nonstationary propagation of an elliptical partially c
herent beam in a logarithmic nonlinear medium.~a! Beam radii
~dotted! and peak intensity~solid! as a function of propagation dis
tance.~b! Three-dimensional view of the beam.~c! and ~d! Longi-
tudinal cross sections of the beam.
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Then it can be shown that the dynamics of the beam radii
be described by the following set of differential equations

d2rx

dz2
2

4

rx
3

rx0
2

sx0
2

1
2n2

rx
50, ~22!

d2ry

dz2
2

4

ry
3

ry0

sy0
2

1
2n2

ry
50,

where

1

sx0
2

5
1

r cx
2

1
1

4rx0
2

,
1

sy0
2

5
1

r cy
2

1
1

4ry0
2

. ~23!

It is evident from Eq.~22! that the dynamics along bot
principal axes are completely uncoupled. In general, a p
tially coherent Gaussian beam of elliptical shape propaga
in a logarithmic nonlinear medium will experience period
oscillations along both axes. Further, an elliptically shap
stationary soliton can be formed if the coherence parame
of the beam and its diameters are given by the relations

rx0
2 5

1

2n224/r cx
2

,

ry0
2 5

1

2n224/r cy
2

. ~24!

Again, these are exactly the same conditions as those
tained previously using the modal decomposition of the s
induced optical waveguide@9#. Interestingly, in the geomet
ric optics limit, although the shape of the soliton can
arbitrary, the soliton coherence function must be isotrop
This is a direct consequence of the fact that in this limit t
beam spreading due to diffraction is neglected. Takingrx0
5ry05` in Eq. ~24!, we obtain the soliton condition

r cx5r cy52/n2 , ~25!

i.e., nonlinearity compensates for the spreading of the be
induced solely by its incoherence. It should also be no
that in the case of an elliptical beam its dynamics in t
vicinity of the stationary solution can be described by a
proximate analytical expressions. For small detunings (Dx

[n222/sx0
2 and Dy[n222/sy0

2 ), the oscillations of the
beam diameters are again given in terms of the Jacobi elli
functions.

To illustrate our results, in Figs. 2 and 3 we show t
nonstationary propagation of two partially coherent beam
In Fig. 2, the initial parameters are chosen such thatrx0
5ry051.0, r cx5r cy51.15, andn251. In the top graph we
plot the beam radii~dotted lines!, as well as the peak inten
sity of the beam~solid line! as functions of the propagatio
distance. To emphasize the three-dimensional nature of
beam, Fig. 2~b! shows an isosurface of the beam intens
~thresholded at 10% of the peak value! along with two or-
thogonal cut planes whose intensity is displayed in Fig. 2~c!.
In this particular case, the circularly symmetric beam exh
its periodic contractions and expansions during propagat
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Since the detuning is negative, the diffraction initially pr
vails and evolution of the beam starts with expansion.

Figure 3 shows the nonstationary propagation of an el
tical partially coherent beam. Here the initial conditions a
the same as in Fig. 2, with the exception of they axis coher-
ence radius whose value is changed tor cy52.3. As detun-
ings along principal axes now have different signs (Dx
,0,Dy.0) the beam diameter along they axis initially de-
creases, while that along thex axis increases. For numerica
values of the initial parameters used in this simulation
principal beam radii oscillate with incommensurate perio
and the peak intensity exhibits quasiperiodic oscillatio
The complexity of the overall intensity distribution is show
in Figs. 3~b!–3~d!, where now the two orthogonal cut plane
display differing intensity patterns.
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In conclusion, we have presented a rigorous analysis
the propagation of partially coherent beams with Gauss
statistics in a logarithmically nonlinear medium. Our a
proach is based on the evolution of the mutual cohere
function, and is able to capture the dynamics of the be
diameter as well as its coherence properties simultaneou
This results in relatively simple equations governing the d
namics of important beam parameters. It appears that
dynamics is determined by the detuningD between the ef-
fective diffraction radius and the strength of the nonlineari
We showed that this leads to the same conditions for stat
ary soliton formation as those obtained previously using
herent density and multimode decomposition metho
thereby indicating their equivalence.
-
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