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Unified model for partially coherent solitons in logarithmically nonlinear media

Wiestaw Krdikowski
Laser Physics Centre, Australian Photonics Cooperative Research Centre, Research School of Physical Science and Engineering,
The Australian National University, Canberra ACT 0200, Australia

Darran Edmundson and Ole Bdng
Optical Science Centre, Australian Photonics Cooperative Research Centre, Research School of Physical Science and Engineering,
The Australian National University, Canberra ACT 0200, Australia
(Received 13 April 1999

We investigate the propagation of a partially coherent beam in a nonlinear medium with logarithmic non-
linearity. We show that all information about the properties of the beam, as well as the condition for formation
of incoherent solitons, can be obtained from the evolution equation for the mutual coherence function. The key
parameter is the detuning between the effective diffraction radius and the strength of the nonlinearity.
Stationary partially coherent solitons exist wher 0 and the nonlinearity exactly compensates for the spread-
ing due to both diffraction and incoherence. For nonzero detunings the solitons are oscillating in nature, and we
find approximate solutions in terms of elliptic functions. Our results establish an elegant equivalence among
several different approaches to partially coherent beams in nonlinear media.

PACS numbes): 42.65.Tg, 42.65.Jx, 42.25.Kb

Among recent advances in the field of optical solitons,hand, the formation of temporally incoherent solitons was
demonstration of the formation of incoherefur partially  suggested and investigated by HaseghWid.
coherent spatial solitons[1-12] has attracted particularly There are several approaches as far as the theoretical de-
strong attention as it opens the possibility of using lightscription of propagation of partially coherent beams in a
sources with degraded or poor coherence in soliton-baseslow nonlinear medium is concerned. In recent works, the
all-optical signal processing. Typically, spatial solitons arecoherent density approach has been sucessfully applied to
created by self-trapping coherent optical beams, i.e., beanfind incoherent soliton solutions with stationary intensity
whose phase at any two points is fully correlated. Suclprofiles in saturable media. This approach is based on repre-
beams differ significantly from those generated by an incosenting the beam as a superposition of mutually incoherent
herent light source in which there is no correlation betweercomponentg3]. For the case of a logarithmic nonlinearity
light emitted from two different points. This results in some the exact analytical stationary soliton solution has been
level of randomnesgor partial correlatiop in the phase found[4]. In another approach, the stationary soliton solu-
across the beam. The weaker the phase correlation, the straiien for a logarithmic nonlinearity was found using a multi-
ger the incoherencgl3]. As a result, a partially coherent mode decomposition of the fie[®]. Finally, in the diffrac-
beam spreads faster than its coherent counterpart of the sarienless limit, the geometric optics approach was also used
width. Additionally, the intensity distribution across the [11,12. However, this approach is only valid when the size
beam exhibits a speckle structure, which prevents the “stanef the beam is large compared to the wavelength. In this
dard” uniform self-focusing observed in instantenous non-imit, diffraction can be neglected, and the spreading of the
linear media as the beam tends to form filaments. beam is determined solely by its incoherence.

It turns out, however, that self-focusing and soliton for- The most natural way of treating the propagation of a
mation are still possible provided the nonlinear medium ispartially coherent beam is to use the so-called mutual coher-
inertial and responds much slower than the time scale chaence functior{13], which gives a measure of the correlation
acterizing the random phase variation. In such cases the mbetween the amplitude of the field at two different points in
dium will respond to the time averaged intensity, which, be-the beam. Unfortunately, while rigorous, this method often
ing a smooth function of the spatial variables, will induce aleads to analytically unsolvable nonlinear equations which
smooth waveguidelike structure trapping the beam. In facthave to be dealt with either by approximate methjdds or
the first experiments with incoherent solitons were conductesiumerically[ 16]. However, in the special case of logarithmic
using the relatively slow photorefractive nonlineafity2,6].  nonlinearity this rigorous approach leads to a closed form

The self-focusing of partially coherent light in inertial analytical solution for the evolution of stationary partially
(slow) nonlinear Kerr-like materials was originally suggestedcoherent beams.
by Akhmanovet al. in 1967[14], and studied subsequently  In this paper we show that the evolution equation for the
by Pasmanif15] and Aleshkevicltet al.[16]. On the other coherence function in a logarithmically nonlinear medium

has an exact analytical stationary solution for partially coher-

ent beams. We show that this special nonlinearity allows a

*Present address: Department of Mathematical Modelling, Techrigorous use of the Gaussian-Schell model for the optical
nical University of Denmark, Building 305/321, DK-2800 Lyngby, beam [13], with its Gaussian statistical properties being

Denmark. maintained throughout propagation in the nonlinear medium.
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This is not the case in, for example, Kerr medi6,20, wherep, andr. denote the initial diameter and coherence
where nonlinearity actually induces changes in the beam'gadius of the beam, respectively. In the variati®eandp this
statistical properties. We use these solutions to find condifynction becomes

tions for the formation of stationary solitons, and compare

them with those found using completely different ap- . R? p?
proaches. We go one step further, and show that the station- I'(R,p,z=0)=exp ————|, ()
ary solitons are only a special case of a much larger class of Po  Oo

periodic solitons, for which we find approximate analytical R - ) )
solutions. Finally, we show that this method can be succes®?hereR=|R|, p=|p|, and we have introduced the effective
fully applied to treat the evolution of elliptical partially co- Coherence radius &= 1/r¢+1/(4p5). Due to the logarith-
herent beams. mic form of the nonlinearity(r) will maintain the Gauss-
Let us consider the propagation of a partially coherenian statistics during propagation, and thus the coherence
beam in a slow nonlinear bulk medium which responds tdfunction will keep the form of Eq(8). Furthermore, the input
the time averaged intensity. We start with a paraxial waveamplitude plays no role and is set to unity. We can therefore
equation describing propagation of a two-dimensional quasilook for solutions to Eq(6) using the Gaussian anzatz
monochromatic partially coherent beam with the amplitude
wr): s R P Rs
I'(R,p,z)=A(z)exp — ST, +iR-pu(2) |,
» p’(2) o*(2)

. 1., _ 9
i~ + 5 Vit an(h)y=0, (1) 9

R where A(z) and w(z) represent the amplitude and phase
wherer = (x,y). Thezdependence is understood, unless spevariation of the coherence function, apdz) and o(z) its
cifically given. The properties of the partially coherent beamdiameter and coherence radius, respectively. The initial con-
are best described by the mutual coherence functioditions areA(0)=1, p(0)=pg, o(0)=0cy, andu(0)=0. In-

F(Fl’FZ)! defined as serting these expressions into E&), we obtain a set of
ordinary differential equations for the parameters of the co-
D(ry,r)=(g(r)¢*(ra), (20 herence function:
where brackets denote temporal or ensemble averaging. In d(T_ 10
particular, the time averaged intensity is obtained from the qz T (10
coherence function a{r)=T(r,r). We take the refractive
index changedn to be a logarithmic function of the intensity: dp _ (1)
E_p/'l’l
sn()=n,Inl. ©)
It is straightforward to show that the mutual coherence d_A= —2Ap, (12)
function satisfies the differential equatiqsee also Refs. dz
[12,15,18)
d,LL 4 2n2
'y, 1 R - —= —uP-—. (13
=224 S(V2 = V2 )Ty [on(Fy) — on(7) IT12=0, dz = g2 "

(4) From the first two equations we obtain the relation

where we have defineBl;; =I'(r;,r;), i,j=(1,2). Introduc- olp=0olpo, (14)
ing the independent spatial variablRsand p,
which shows that during evolution the beam conserves its
1(» - - 5) coherence, defined as the number of speckles within the
beam diameter. The widdnarrowej the beam, the larger
(smalley the coherence radius. Combining Ed41) and
and using the specific foriEq. (3)] of the nonlinearity, (12) gives the amplitudeA(z) =[ po/p(z)]%. Finally, insert-

transforms the propagation equation into ing Eqg.(13) into Eq.(11), we obtain the evolution equation
Ay - - I d? 5
. > - — — 4_ JE— _2n
i—+ V& Vil n, In(F22 I',=0. (6) bl 2-0, (15

dz2 p%o5 P
In order to find solutions to this equation, we assume that o _ _ _
the incident beamy(r) possesses Gaussian statistics Whicrﬂescrlbmg the dynamics of the widf(z) of a partially co-

implies that the coherence function initially has the form rerent beaf“iw'th Gaussian stat|st|¢qn a_Iogarlthm!c non-
linear medium. Clearly, the dynamics is determined by a

2, .2 s competition between free spreading and nonlinearityn,lf
r1+r2_|rl—r2|2) @ P P . 2

=0, then Eq.(15 describes simple diffraction of the par-

2 _ . ; . )
tially coherent beam. A defocusing nonlinearity with<<O

2
2pp re

F(Fl,F2,2=O)=exp<—
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FIG. 1. PotentiaP(p) (solid) and its third order Taylor expan-
sion P5(p) (dashedl for an initial beam width ofop=1 and a fo-
cusing logarithmic nonlinear medium with,=1.8.

simply enhances the natural spreading of the beam, and we
will not consider it here. Instead we will concentrate on the
focusing case witm,>0.

Choosing the initial condition such thatl4/dz)(z=0)
=0, and integrating Eq15) once, we find that the evolution
of p(z) is described by Newton’s equation for an effective
particle,

x-z and y-z planes

(dp/dz)2+ P(p)=0, (16)

c
moving in the potentiaP(p), which is given by ( )
P(p)z—z(p—g—l +4n2In(ﬁ>. a7 :
Go\p

Po

The asymmetric potential is depicted in Fig. 1 for a beam of
diameterog=1 moving in a focusing logarithmic nonlinear FIG. 2. Nonstationary propagation of a cylindrical partially co-
medium withn,=1.8. herent beam in a logarithmic nonlinear mediu@.Beam diameter
Stationary soliton solutions with a constant beam width(dotted and peak intensitysolid) as functions of the propagation
(corresponding to the effective particle being located at thealistance(b) Three-dimensional view of the beam with an intensity
bottom of the potential wellare formed at zero detuning: isosurface at 10% of the peak valye) Longitudinal cross section

of the beam.
2 2 1
A=n;— (T_S =Nz~ 2 2_p§ =0. (18) gives(in the case of logarithmic nonlinearjta soliton solu-
Cc

tion of arbitrary diameter. However, this approach is re-
Physically, this condition means that soliton existence resStricted to cases in which diffraction is negligible, and
quires the nonlinearity-induced focusing to compensate fopPreading of the beam is caused solely by incoherédiée
beam spreading due to both diffraction and incoherence. Thigsive illumination). _
diameter of the stationary partially coherent soliton is given For nonzero detuning#0, the beam diametdas well
by as the coherence radjugill undergo periodic oscillations,
corresponding to the effective particle oscillating in the bot-
1 tom of the potential well. These general oscillating solutions
D — (19 were recently discussed in R¢lL.2], where incoherent soli-
2n,— 4l tons were studied using a geometric optics approximation.
We can find an approximate analytical expression for

We note that for perfectly goherent beams, €., rfg't.oo’ these oscillating solutions when the detuning is small. In this
we recover the known solution for coherent solitons in loga-

S . . casep(z) will remain close to the initial valugg, and we

rithmically nonlinear medu@l&lq On the_ other hand, Eq. can expand the potential aroung=po. To third order

(19 also shows that a soliton cannot exist if the coherenc (p)~P3(p), wherePy(p) is given b

radius of the input beam is lower thaf2/n,. Since the in- PI=ap), sp) 1S 9 y

verse of the coherence radius corresponds to the width of the

incoherent spectrum of the partially coherent beam, this re- 5 3 p

produces the result earlier obtained by Christodoulites. Pa(p)=4(A0+ a10°+ ay0°), 6= P 1. (20

using both a coherent density approddh and modal de- 0

composition[9]—an indication that all of these theoretical

descriptions of the beam are equivalent. Here a1=3/a§—n2/2 and a2=n2/3—4/0'(2). Using potential
At this point it is worth noting that the geometric optics (20) in Eqg. (16), we can integrate it by quadrature and obtain

approach to partially coherent solitons used in Rgf§,12,  the solution in terms of the Jacobi elliptic sn functil@i]

2
Po
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(a) Then it can be shown that the dynamics of the beam radii can
be described by the following set of differential equations:

d2 4 p% 2n
L) (22
@ d22 pX O-XO pX
dzpy 4 pyo 2n;
2 g p
0 5 10 15 20 Py 9yo Y
Distance, z where
1 1 N 1 1 1 N 1 23
o T T o T T T o
oxo Tex  4Pxo Oyo Tey 4py0

It is evident from Eq.(22) that the dynamics along both
principal axes are completely uncoupled. In general, a par-
tially coherent Gaussian beam of elliptical shape propagating
in a logarithmic nonlinear medium will experience periodic
oscillations along both axes. Further, an elliptically shaped
stationary soliton can be formed if the coherence parameters
of the beam and its diameters are given by the relations

x-z plane

2 1
Pxo 2n,—4k2’
; - (24)
Py~ -
gz plane 2n,—A4lrg,
(d) Again, these are exactly the same conditions as those ob-

tained previously using the modal decomposition of the self-

induced optical waveguidg]. Interestingly, in the geomet-
ric optics limit, although the shape of the soliton can be
arbitrary, the soliton coherence function must be isotropic.

This is a direct consequence of the fact that in this limit the
beam spreading due to diffraction is neglected. Taking
=pyo=2> in Eq. (24), we obtain the soliton condition

FIG. 3. Nonstationary propagation of an elliptical partially co-

herent beam in a logarithmic nonlinear mediuta) Beam radii Fox=ley= 2In,, (25)
(dotted and peak intensitysolid) as a function of propagation dis-

tance.(b) Three-dimensional view of the beaifw) and(d) Longi-  j e, nonlinearity compensates for the spreading of the beam
tudinal cross sections of the beam. induced solely by its incoherence. It should also be noted

that in the case of an elliptical beam its dynamics in the

B ° VOiay = vicinity of the stationary solution can be described by ap-
p(2)=po| 1+ 6_s o0 Zmp, m_Z' (21 proximate analytical expressions. For small detunings (

=n,—2lo%, and Ay=n,—2/o5), the oscillations of the
Here 6. are the solutions of the quadratic equatiepé®>  beam diameters are again given in terms of the Jacobi elliptic
+a,0+A=0. Using |A|<1, we obtaind_~—A/n, and functions.
0,~3/5. To illustrate our results, in Figs. 2 and 3 we show the
Thus the beam width will oscillate betweepy and  nonstationary propagation of two partially coherent beams.
another value, where the potential is negative. For positivén Fig. 2, the initial parameters are chosen such hat
detuning the nonlinear self-focusing dominates, and the=p,,=1.0, ro=r,=1.15, andn,=1. In the top graph we
beam width decreases initially, i.e., it oscillates betwpgn plot the beam radi{dotted line$, as well as the peak inten-
and a somewhat lower value. For negative detuning the difsity of the bean(solid line) as functions of the propagation
fraction dominates and the beam width increases initiallydistance. To emphasize the three-dimensional nature of the
i.e., it oscillates betweep, and a somewhat larger value. beam, Fig. Zb) shows an isosurface of the beam intensity
The analysis presented above can easily be extended {thresholded at 10% of the peak valudong with two or-
the case of elliptical beams. Let us denote the initial beamhogonal cut planes whose intensity is displayed in Fig).2
diameter along th& andy axes byp,q andp,, respectively, In this particular case, the circularly symmetric beam exhib-
and the corresponding initial coherence radiirgyandr ., . its periodic contractions and expansions during propagation.



3126 KR(:_)LIKOWSKI, EDMUNDSON, AND BANG PRE 61

Since the detuning is negative, the diffraction initially pre- In conclusion, we have presented a rigorous analysis of
vails and evolution of the beam starts with expansion. the propagation of partially coherent beams with Gaussian
~ Figure 3 shows the nonstationary propagation of an ellipstatistics in a logarithmically nonlinear medium. Our ap-

tical partially coherent beam. Here the initial conditions areproach is based on the evolution of the mutual coherence

the same as in Fig. 2, with the exception of $haxis coher- function, and is able to capture the dynamics of the beam

ence radius whose value is changed@9=2.3. As detun- diamete'r as well as its cohgrence ro yerties simultaneousl

ings along principal axes now have different signs, ( ) . . . prop ) Y-
This results in relatively simple equations governing the dy-

<0,A,>0) the beam diameter along tlyeaxis initially de- . . .
creases, while that along theaxis increases. For numerical Namics of important beam parameters. It appears that this

values of the initial parameters used in this simulation th¢lynamics is determined by the detunidgbetween the ef-
principal beam radii oscillate with incommensurate periods f€ctive diffraction radius and the strength of the nonlinearity.
and the peak intensity exhibits quasiperiodic oscillationsVe showed that this leads to the same conditions for station-
The complexity of the overall intensity distribution is shown ary soliton formation as those obtained previously using co-
in Figs. 3b)—3(d), where now the two orthogonal cut planes herent density and multimode decomposition methods,
display differing intensity patterns. thereby indicating their equivalence.
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