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The bifurcation of internal modes from the phonon band in models supporting solitary wave solutions is
currently one of the exciting phenomena in the field. We will present a number of analytical and semianalytical
techniques for the detection, study, and understanding of these modes. We will see how they appear, without
threshold, due to the discretization of the continuum equations. This perturbation is viewed in terms of a
singular continuum approximation and analyzed by both perturbation theory and the Evans’s function method.
It is shown that these methods give equivalent results. Moreover, they are corroborated by mixed analytical-
numerical computations based on the recently developed discrete Evans’s function method. The extent to
which these predictions survive to strong discretizations is discussed. The results will be presented in the
context of both the sine-Gordon and ti#é models.

PACS numbeps): 45.05+x, 45.10.Hj, 63.20.Pw

[. INTRODUCTION However, even though there was a series of papers that
elaborated on and clarified the above isslies, the reso-

In the past few decades, solitary wave solutions have beemanceg 18,19, the PN oscillatiof18-20, the stability of
recognized as a characteristic of many physical systemeoherent solitonlike structures on diffusively coupled lattices
ranging from information transmission in Josephson junc{21], as well as the collective variable behavior of these
tions and optical fiber arrayl—5] to the transcription of structures[22—26)), not all of the story was unveiled. In
genetic material and the local denaturation of the base pajsarticular, Braun, Peyrard, and Kivshar observed much later
hydrogen bonds in the DNA double he[i®8-10]. It has been  [27] that in a range of parameter values for the discrete sine-
recognized, however, that many of these applicati@®€h  Gordon equation(also known as the Frenkel-Kontorova
as the Josephson junctions, the DNA problem, the motion ofnodel and originally proposed for the study of dislocations
dislocations in solid state physi¢41-13, or even the be- [11)) a discrete mode bifurcated from the bottom edge of the
havior of an array of coupled torsion pendiis]) are in- honon spectrum. Both mathematically and physically the
herently d|sgret§ in nature and thus necessitate th_at the pro udy of this bifurcation is an important problem—
lem be studied in the context of a lattice. Hence, in the pastyathematically because one can develop techniques to quan-
two decades, there has been a rapidly increasing number gfaiively predict when this bifurcation will occur and what
papers that are concerned with the drastic modifications gfs magnitude will be, and physically because this internal
the continuum solitary wave system behavior, once it ispode will create oscillations that will modify the shape of
posed on a lattice. Very important contributions in identify- e transmitted informatiofi.e., in the array of coupled Jo-
ing these traits were given by Peyrard and Kruglall and  gephson junctions Therefore, one would be interested in
Ishimori and Munakatd 16] for the 4sme-Gordon equation  finding out what the form of this shaping factor will i@nd
and by Combs and Yip17] for the ¢" model. . thus its effect on the transmitted bits or kinkand when it

In brief, the main changes that occur when studying mody,;| appear.
eI; with Hami!tonian structure supporting_ solitary wave so-  ope important subsequent paper of Kivstetral. [28]
lutions on a discrete setup are the following: revealed the characteristic that the birth of these internal

(i) The breaking of translational invariance creates a Nonm,qdes is thresholdlegge., the mode appears as soon as the
zero Goldstone frequency which coupled to the phonons cresontinuum problem is set on a latticeThese authors also
ates wave excitations radiating energy away from the cohefgaye a quantitative method of prediction of the magnitude of

ent structure and, thus, contributing to its energy l0ss.  these bifurcations based on singular perturbation theory.
(ii) Also, all the configurations are no longer equivalent oy aim in this paper will be twofold:

on the lattice but there is a maximutkink centered on a
site) and a minimum(kink centered between sijegnergy (1) For two important models that support solitonlike so-
configuration leading to the creation of a barrier analogous tdutions, namely the discrete sine-Gordon apfimodels, we
the one dislocations have to overcome in order to propagatwill first study discreteness as a perturbation of the con-
on a lattice, and hence is termed the Peierls-Nab@n)  tinuum through the singular perturbation theory proposed in
barrier. [28] and through the Evans function as propose{2i,30.

(iii ) Due to the resonances, the gradual kinetic energy los#/e will show the equivalence of the two approaches for this
leads to trapping of the kink in one of the PN barriers be-problem and will quantify their predictions.
tween two lattice sites. It, thereafter, executes a nonlinearly (2) On the other hand, using linear stability analysis and a
damped oscillation in that potential barrier until it reaches arsemianalytical methodology introduced [ia1], the discrete
asymtotically stable stafel8]. Evans function technique, we will trace the exact bifurcation
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of the discrete internal mode from the phonon band and wilvergencdas the astute reader can readily realize viewing the
indicate where(and why the semicontinuum methods will lower bound of the innermost integral’s integrand as a con-
break down. We will refer to the singular perturbation meth-stant and seeing the divergence arise from
ods or the continuum Evans technique as semicontinuum agd/coshx) f*dx'costx’]. Thus, this substitution is necessary
proaches since they are attempting to approximate the effects order to avoid any unphysical divergences.

of discreteness by a singuldrigher-order derivativepertur- Linearization around the perturbed kink using
bation of the continuum problem. Such methodologies _
should be anticipated to work well close to the continuum u(x,t)=u’+ eu™+w(x)exp(i wt) (4)

limit (for weak discretenegssThey should also, however, be

expected to break down for strong discreteness. The reasdfiflds the perturbed eigenvalue problem
for that is that many of the inherently discrete phenomena
(such as the breaking of translational invariance and the non-
zero Goldstone frequency or the nonequivalence of configu-
rations and the PN barrieare not captured by such singular

continuumlike perturbations. The spectrum of the unperturbed fully integrable continuum

In this way, we hope to provide a comprehensive set ofsine—Gordon modef31] consists of(i) a Goldst_one eigen-
tools and of results pertinent to this problem in order tomode with zero frequency and the even spatial structure of

. . . . _ O . .
reveal the main characteristics and the physical aspects (TJtFe_ _kmk spatlal derivativeWg(X) =U and_(n_) a semr
behavior of these solitary wave modes. infinite continuum band of phonons that satisfies the disper-

Our presentation will be organized as follows: In Sec. 115N relation?=1+k?. The corresponding wave functions
we will follow the approach of28] in presenting the singu- ©0F €achk are W(x,k) =expk)[ (k+i tanhx)/(k+i)]. The
lar perturbation methodology. In Sec. Iil the continuumOWer edge of the bandk=0) hasweqee=1/d and a non-
Evans function approach will be presented and the equiv(,is_ecularly growing hyperbolic tangent eigenfunction pr_ofll_e.
lence of its results to the ones of Sec. Il will be established, ©ON€ can now take advantage of the fact that this is a
In Sec. IV, the discrete Evans technique will be introducecfOmPplete(basis set of eigenfunctions to express the per-
and implemented. Its results will be compared to the lineafuroed eigenfunctions of E¢5) using their projection on this
stability analysis and to the semicontinuum perturbatior?@SiS Set. Thus one can write
methods. Finally, in Sec. V, a summary of the results and
tcrcljigcvlyc?l?r\:;lﬁgewoelljlﬂiansezn outlook of potential extensions of W(X):aGWGJrf a(k)W(x,k)dk. (6)

2 .
————1|w+eulsinu®w. (5

— w?W=W,, +
costx

Back substitution in Eq(5)—neglecting the irrelevant con-
tribution of the Goldstone projection—yields

Let us consider the case of the sine-Gordon equation

Il. PERTURBATION THEORY

treating discreteness as a perturbation. Following the nota- € (= K(k,k")a(k")
tion of [28] we can write it as a(k)= 27) v K2+ €2p2 ' @
U= Uy, — Sinu+ eg(Uu), (1) where

where e=h?/12 and g(u) = Uy if we consider only the
fourth derivativeli.e., the first-order perturbation in the Tay- K(k,k’)zf W* (x, k) ulsinu®W(x,k’)dk’ )
lor  expansion: i +Uu_1—2u)/h?=3;_,(2h? %
2iN (a2 ulax?)]. . . . . . .
The expression of the perturbation can be suitably modilS & Fourier space integral kernel and the b|furcat|rzlg eigen-
fied if higher-order terms are included. Expressing the soluyalge2 has been assumed to have a frequeagy”=1
tion as a perturbation seriggsing e as a perturbatiofcon- € b°- Notice that we have specifically used E6) in Eq.
trol) parametefu=u’+ eul+ - - - one can explicitly derive (5) for the blfur_catllng mode(seeking its spatial profije
the equation that® satisfies, hence the substitution of the relevant frequency.
The authors 0f28] extracted the singular contribution to
ul, —cosulul=g(u?, (2)  theintegral by setting’ =0 in the numerator and integrating
over the Lorentzian curve. In this way they obtained
and find the solution to be
sgre)

a(k)= ———K(k,0a(0). (9)

< g(u®) 2[b]

X

1 — ’ ’ "
ut(x) “osTx _xdx coshfx J_mdx prarl (3 | |
However, fork=0 (i.e., the phonon band edgEg. (9) im-

It is important here to make the observation that the lowelP0Ses a solvability condition for the detuning parameter
limit of our integration is— as opposed to 0 as appears in "amely,
[28]. For the case of the sine-Gordon with the fourth- and/or 1 (=
higher-order dgrivative pgrturbation explicit calculations can leb| = _Ef d tantxulsinuldx, (10)
show that the integral with a zero lower bound yields a di- 2 o
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Up to now, we have briefly reproduced the arguments givercontext of the perturbed nonlinear Sctiimger equation in
in [28]. Even though some of the details may be deemed a9,3(q that will complement this presentation yielding an
unnecessary as the full presentation is givefi2i], we be-  equivalent formulation.
lieve that in view of the establishment of the equivalence of
the results of the method with the continuum Evans function
technique, their presentation is useful. In addition, our peda- ] o ) )
gogic aim of presenting a reference paper that encompasses First, we give the basic idea behind the Evans function
all the methodologies and techniques used to date for sudhethod. The eigenvalue problem around the continuum kink
problems, we believe, justifies such an exposition. has a subspace of solutions that decay for large posiive
For the case of the sine-Gordon model, we have studief®- It also contains a subspace of solutions that decay for
not only the case of quartic but also of sixth- and higher-large negative, E". If there exists a frequenay for which
order perturbations and we give the full results below. In thdhese two subspaces intersece., a frequency for which

I1l. CONTINUUM EVANS FUNCTION

case of the quartic one, the functional form wf can be
explicitly found to be

1 6+ X+ exp(2x)x
u-(x)= —3+W coshx. 11

their wedge product, defined to be the Evans function:
E(w)=E"/A\E®, vanishegthen, by construction, that is an
eigenvalue which corresponds to a localized eigenfunction.
Thus, the Evans function is a function whose zeros yield the
discrete modes pertaining to the coherent structure sustained
by the model under study. Coming back to our example, the

We will give the parametric dependence of the results fo€igenvalue problem can be writt¢asing notation in accor-
both models in accordance with their form as it appears irflance to[29)) as

the standard reference on the subjgdi5]). The discrete

lattice equations of the Frenkel-Kontorova model are then

1.
ui,tt:ui+l+ui—l_2ui_¥sm Ui (12)

and, using the appropriate rescalihg-1/d, vw—dw, the
detuning parameter of the discrete mode will g to
second-order perturbative correctipns

(13

1(0.08888889 0.0047Glj
eb= — .
2 d? d*

Higher orders can be seen to saturate to this order of corr
tion to a very good degree of approximation. The discret

mode then detaching from the bottom edge {4~ 1/d) of
the phonon band will have a frequenay,;>=(1/d%)(1

— €?b?). Similarly, the discretep* model assumes the form

1
Ui,tt:Ui+1+Ui—1_2Ui+@(Ui_uis) (14

and again by using the appropriate rescalimt;-1/(2d?),
w— /2 dw, of the notation 0f28], one finds that the bifur-
cating frequency will be

2 L 1
d? 15°d*

away from the bottom edgaw(qqe= J2/d) of the essential
spectrum(to first order which, as claimed if28], gives an

(19

Whit

Y'=M(X,w,€e)Y (16)
where the matrixV is
0 1
“low-w? 0 o

andg(x) =1— (2/coshx)—eu'sinu® as can be seen from the
preceding section. Setting

My= lim M(w,X,0),

|X]|— 00

the eigenvalues of this limit matrix are y where y=—ik

= JJw?—1|exdil2arg(1- w?)] for arg(l-w?)e[—m

%2'377/2) (the details of why we consider the branch cuts can

e found in[29] but will also be clear later gn The corre-
sponding eigenfunctions afé,=* vy].

In our case, however, we also knd®1,2§ (both in the
sine-Gordon and¢* casey the full scattering operator
eigenspectrum and the corresponding set of eigenfunctions.
In the sine-GordoriSG) case the forward eigenfunctions that
decay for large positivet are

P(y.X)

Q(y.x)

where P(y,x)=exp(—yX)[(y+tanhx)/(y+1)] and Q=P’.

On the other hand, the solutions exponentially decaying far

to the left of the kink k— —«) are
P(y,—x)

_Q( Y, _X)

+:

: (18

: (19

excellent approximation to the numerical predictions. The, e p Q again is as defined above. Furthermore, it is

accuracy of this statement will be examined lat&ve have,
so far, reformulatedmaking some minor modificationand
presented the methodology ¢27,28 in identifying and

quantifying the bifurcation of discrete modes from the bot-
tom edge of the essential spectrum. We have also applie

this methodology to the discrete sine-Gordon afdnodels.

Let us now present an alternative approach as given in the

straightforward to verify that the adjoint probled’ =
—M7'Z has solutiongthat will be used in what followsZ
=[-Q(w,x),P(w,x)]". One can verify the following limit
r(?lations[analogous to Eq(3.5 of [29]]:

lim Y exp(F yx)=[1,+ ]

X— F o0
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and that is dependent on the nonlinearity. Otherwise, the verifi-
cation of the equivalence of the two methods can follow the
exact same path.

It is perhaps not surprising that the two methods render
the same answer. The derivative of the Evans function is
Then, using the above definition of the Evans function:kn_oWn to be equivalent to a Mf_alnlkov functl_on, 563,34
E(w)=Y"AY", one finds Itiis also well known that Melnikov calculations can be de-

rived in an alternative way using a solvability condition, see
2y [35]. The singular perturbation theory approach used above
E=2'y< 1— Tty (200  fits into this framework and thus the equivalence of the re-
Y sults coming from the two methods is based on the equiva-
lence of the two methods as the two different approaches to
the Melnikov method.

Having presented the two approaches that treat discrete-
ness as a perturbation, we will now give a semianalytical
method that corresponds to the discrete version of the Evans

nction technique and which appeared[R1]. Its results

ill then be compared to those of the above methods and to
the ones from linear stability analysis and the differences
will be highlighted and explained.

fim Y- exp(T yx)= 2= [ 1% 4"
Y _'y+1 =yl

X— + oo

that can be written agsee remark 4.3 if29])
E=29[1+0gs(w)] (21

with g, continuous and vanishing at the bottom edge of th
phonon band. On the other hand, according to Theorem 4.
of [29] (see alsd32]) the derivative of the Evans function
evaluated at the bottom edge of the phonon band is

JE(1/d,e=0)
IV. SEMIANALYTICAL METHODS AND COMPARISON

:f Z(1/d,x,0)0M (1/d,x,0 Y * (1/d,x,0)dx A. Linear stability analysis and the discrete
— Evans function

(22) Let us now return to the fully discrete problem. In order to

onstruct a discrete eigenfunction one must find a solution
at decays to the left as well as to the right far away from
the coherent structure. The uniform steady states approached
" (exponentially far to the left and far to the right of the kink
tanttxutsin(u®)dx, (23 areu=0, u=2, respectively ¢ 1 and 1 for thep*). The
o linearized equation around the coherent structure will read

(where as usual the subscript denotes partial derivative wit
respect to the subscript variahlén the sine-Gordon case

IE(1/d,e=0)=— f

an expression which is certainly familiar from the presenta- 1

tion in Sec. Il. Now by using the differentiability of the ®?Yi=Yi+1HYi 1~ 2y~ —CO8U;Y; (24)
Evans function to expand it in a Taylor series around the d

bottom edge of the essential spectrum, we gét,e) .

=E(w,0)+[JE (1/d,e=0)+gy(w,€)]e, whereg, is also N the SG model and

continuous and vanishing afqqs=1/d. Then, if the argu-

ment of the derivative does not belong in the domain ) 1 )

(— m/4,37/4) (due to the branch cuts taken abpvéhen w yi:yi+l+yi—1_2yi_¥(3ui —Dy; (25
there is no bifurcation. In our case this statement translates to

sgn(e) [“ .tanif(x)ulsinW®)dx being negative. But in that
case, the right-hand side of E@.0) would be negative and Kink)
the solvability condition of[28] would not be satisfied. In.order to trace the discrete eigenvalues, the most simple
Hence, no bifurcation would occur. On the other hand, if thenumerical method is to solve the ?ull ei env,alue roblem gs
quantity above is positive then the vanishingEio, €) will /7 9 P

occur according to the expansion aby;2=(1/d?)(1 OIOWS.

—€2b?), whereeb is defined exactly as in the perturbation (i) One can construct the exact discrete kink, through a
theory treatment. Therefore, the two approaches are shown tddewton-Raphson iteration, solving the system of equations
yield the exact same result for the bifurcation of the discrete

mode from the bottom edge of the continuum spectrum of 1

the sine-Gordon equation. Furthermore, since the condition Uj+q+Uj—3—2U;— —sinu;=0 (26)

is satisfied for the appearance of the m@akethe predictions d

made in Sec. Il indicajefor anyd, the discrete mode should

(according to these predictionbe present for altl as soon  (analogously defined fos*) with a continuum kink initial

as one studies the problem on the lattibence, its genera- condition.

tion is thresholdless The proof is exactly the same in the  (ii) Using the exact discrete kifki;}, one can then solve
case of thegp* model and will be left to the reader as an the matrix eigenvalue problems of E¢84) and(25) to find
interesting exercise. The only thing that changes is the fornthe eigenfunctions and eigenvalues in the framework of lin-
of the unperturbed spectrum and the form of the perturbatioear stability analysis.

in ¢* (where{u;} is the profile of the exact discrete static
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This methodology will yield both the localized modes as @ o

well as the extended phonon modes. 25 : o

On the other hand, if one is interested in the localized 04

(internal soliton modes only, one has to construct a decay- = § o2
15

ing solution far away from the kink, on either side of the 02

- - . - - - e 0.1
lattice. The linearized equation is simplified far away from 1t

the kink since cos;—1 and 31— 1—2. Thus Eqs(24) and 05 "

.. . 50 100 150 200 50 100 150 200

(250 become constant coefficient second-order difference i i

equations whose solutions are of the form

Yi=C(@)ri+D.(w)r), (27) o2 \

0.1 2
with g o 2sfy ]
-0.1 b
1 5 5 5 = 5 > -2 05 AN
rr1=slw+2+wgy ei\/(w + wegge (@t Wegqet 4) ] -03 o T
’ 2 9 9 9 50 100 150 200 05 1 15
i

(28)
. . . FIG. 1. Spectrum of linearization around a discrete static sine-
Let us point out that the only d'ﬁeren?e In E(C?.S) b?tween Gordon kink ford=0.7. Upper left: full linearization frequency
the two models under study (S) will be their different spectrum around the exact discrete stable static kink for a 200 site
Wedge (1/d,+/2/d, respectively. lattice. Upper right: Goldstone mode spatial profile; bottom left:
Then, constructing a perturbation that decays RS internal mode spatial profile. Bottom right: Behavior of the linear-
=D _r}, (which has the proper exponential decay behaviorization spectrum frequencies as a functiondofThe dashed line
asi— —c and shooting through the kinkusing Egs.(24)  showswg as a function ofl, the thick line showsy,;¢ as a function
and(25)], a solution with both decaying and growing parts is of d, whereas the two solid lines indicate the lower and upper edge
obtained far to the right, i.e., of the phonon band (dl[\/4+(1/d2), respectively—linear stability
analysis results.
yi=C,ri+D,r}. (29
(1) A discrete Goldstone mode which, due to the breaking
D, pertains to the growing part. Hence, if a frequency isof the translational invariance has a nonzero frequency.
found such that the prefactor of the growing p®t, (v), (2) A band of extended wave@honon$ that satisfy the
vanishes, then this frequency corresponds to a mode thaispersion relationw?=2—2 cosk+1/d%. From this equa-
decays on both sides of the coherent structure and is, thus,ti@n, it can be seen that the band has frequencies only in the

localized eigenfunction. interval[ 1/d, \J4+ (1/d?)] (rather than being semi-infinite as
For a lattice that extends up te=L+1, using Eq.(29) in the continuum problen
for sitesi=L—1L,L+1, one obtains (3) In addition to the above frequencies, fo=0.515 a

shape mode bifurcates from the bottom of the phonon band.
D CYierT Yo YT Y 0 The dependence of the “distance’w{qyge— wpir) Of this
+(w)= pLFI Ly _rL—l(rZ_l)' (30 mode’s frequency from the band edge is shown in Fig. 2.
2 2t T2 2 One can see that after a maximum excurdidie maximum
For technicalnormalization reasons explained if21], itis ~ Occurring ford~0.7), the frequency of the mode approaches

(numerically convenient to start on the left side with the band edge frequency dsncreases. Eventually, its dis-
Di(w):riL (wherel is the size of our latticeand also to tance from the edge becomes of the order of *1for d

remove the branch cuts introduced from the edges of th& 1-3 @nd gradually as its frequency comes very close to the

phonon bandr(§= 1). This is done by rescaling E(B0) by one of the band edge, the spatial profile of the mode becomes
multiplying with (r%l—l)/rg [21]. We definethis rescaled extended covering all of the lattice. For larger lattices this

version of the transmission coefficient of EQO) as the occurs for largerd and for the infinite latticgpresumably

. . . . the degeneration occurs far= justifying the conclusion
discrete Evans function. Clearly, in correspondence with the : . X . X

. : ; of the thresholdless birth of this solitary wave internal eigen-
continuum construction, the zeros of the discrete Evans func-
. . . . : mode.
tion [which can be found numerically by implementing the

e 4 . .
shooting process mentioned above and using(&g], il (||_) In th_e ¢ case,.the continuum contains already two
. . . . localized eigenmodes: the zero frequency Goldstone and an
provide the localized eigenmode frequencies.

odd eigenmode of frequenayd/2d?. In the discrete case we
_ find (Fig. 3) the following:

B. Results and comparison (1) A nonzero frequencys mode due to the breaking of

Having set up all the methods relevant to the problem ofranslational invariance.

the internal shape mode bifurcations from the essential spec- (2) The counterpart of the second continuum localized
trum, let us now present their results for the two discretemode.
models of concern to this study. Linear stability analysis (3) A finite band of phonon frequencigaccording to the
shows thati) in the discrete sine-Gordon mod€lig. 1), the  dispersion relationw?=2— 2 cosk+(2/d?)] which extends
spectrum consists of the following: from weqgge= V2/d 0 wpay= A+ 2/d2.
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FIG. 2. Bifurcation of the internal mode in SG vs the discrete-
ness parameteat: the solid line shows théequivalent continuum
Evans and singular perturbation results for weyqe— wpir s a FIG. 4. Same as Fig. 2 but for th¢* model. The solid line
function of d for the quartic perturbation correction; the dash-dot shows the prediction for the bifurcatidie., W= Wegge— Wpir) Of
line shows the same as before but for the fourth plus sixth derivathe internal mode as a function dffrom semicontinuum theories.
tive perturbation. The thick line of stars shows the discrete Evanghe stars indicate the actual behavior of the same quantity as given
function and linear stability results for the behavior of the samepy semianalytical and/or numerical techniqusse text
guantity as a function of the discreteness paramgtiso see the

texy). ally merges with the band edge ds-o (the continuum
limit).

(4) And finally a localized eigenmode bifurcating from  The results of the discrete Evans function technique and
the edge of the continuum band fr0.82. The behavior of of linear stability analysis in Figs. 2 and 4 for the “distance”
this internal mode is shown in Fig. 4 where its behavior carof the mode from the band edge are shown by the symbols.
be seen to be similar to the one of its SG counterpart. IfThe solid and dash-dot lines demonstrate tquivalent
particular, after a maximal excursiofmaximum occuring predictions of semicontinuum theories for quartic and quartic
aroundd~1.05) of its frequency away from the band edgeplus sixth-order derivative perturbations, respectively. It is

frequency,wpis approachesqq.asd increases and eventu- noteworthy that the results of linear stability and of the dis-
crete Evans method coincide for the rangedofalues that

05 are shown. For larger values df as our results indicate and

06 as was found also ifi21], the linear stability analysis be-

05 comes less accurate than the discrete Evans method due to
oo finite size effects. Thus, the discrete Evans technique is the
7 oz most accurate diagnostic of the discrete modes and of their
01 bifurcation from the essential spectrum. The discrete Evans
_0‘1’ e method results have been constructed by identifying the ze-

50 100 150 50 100 150 ros of the Evans function for frequencies lying on the imagi-
nary spectral plane axiévhere the shape mode eigenfre-
quency has to lie, due to the Hamiltonian nature of the
system. Moreover, in[21] the value of the Evans function at
the bottom of the band edgB | (w=we¢qq9d Was used to
probe internal mode bifurcations. The author$2if] noticed
that the change of sign of this value from negative to positive
indicated the detachment of the internal mode from the edge.
One can easily see that the equatiffweqge, €) = €d.E (for
the perturbed Evans function at=weqq9, together with
FIG. 3. Spectrum of linearization around an exact discrete stati(I:E qg.(22) and(10) prov_e_ the Cor.r.ectr.]ess c.)f .the above obser-
4% kink for d=1.0. Upper left: Goldstone mode spatial profile: vation, i.e., the solvability condition is satisfied and the mode

upper right: second localized mode spatial profilee text bottom bifurcates when the value of the perturbed Evans function at

left: internal bifurcating mode spatial profile; bottom right: paramet- the band edge changes sign.

ric dependence of the linear stability spectrum as a function of the On the other hand, viewing the predictions of the semi-
discreteness parametér The dashed line showsg as a function ~ continuum theories that treat discreteness as a perturbation,

of d; the dash-dot line indicates the dependence of the second I0v€ realize that their predictions are quite successful close to
calized mode frequency on the discreteness parameter; the stdfe continuum limit(i.e., for larged). As d decreases, how-
represeniwy;; = wy;;(d), and once again the solid lines define the ever, their prediction follows the one of the semianalytical
finite edge of phonons[/2/d, 4+ (2/d%)])—linear stability re- and/or numerical methods down diz=0.9 in the SG model
sults. andd~1.2 in the¢* case. For lower values of the discrete-
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1
Yiv1tYic1—2Yi— ?COSUiYiz_wzyi (34

will change (and practically all other cosine terms will be
~1) and thus in order to maintain the functional form and
parity of the mode the solution changes sign-—y,; as
linear stability analysis verifies. Ad decreases further, only
four and then two sites contribute to the kiffor instance,
for d=0.3 the kink practically consists of two sites and these
have cos=cos(2r—a)~0.9].

Thus, Eq.(34) approachesfor decreasingd) the linear-
ized equation around uniform steady states. The latter has
T - S - extended wave solutions rather than localized internal eigen-

i modes. The limit od=0 will, of course, find all sites to the

FIG. 5. Spatial profile of an exact discrete stable static 200-sitdeft of the kink at theu=0 steady state whereas to the right
kink for d=0.7. Shown are the displacement ordinateas a func- atu=2 (at —1,+ 1, respectively, for¢4)_ Hence, it is the
tion of the lattice site index fact that the kink on the lattice consists of only few sites with

ordinates differing from the uniform steady state, which
ness parametefstrong discretenesghe perturbative treat- causes the internal mode to bifurcate maximally and then
ments do not accurately predict the behavior of the frequencyradually degenerate for very smdito an extended excita-
of the bifurcating mode. It is well known from previous at- tion and eventually disappear, in contrast to the semicon-
tempts to treat discreteness as a perturbatsuich a16],  tinuum theory results. The latter, treating discreteness as a
where the Keener-McLaughlin and McLaughlin-Scott continuumlike perturbation, always sees the kink as a trans-
[36,37] singular perturbation schemes were used to treat diSationally invariant structure with a spine that consists of
creteness that such methods cannot account for the resultsnfinite points. Thus, the semicontinuum theory predictions
of very strong discreteness. As was mentioned also in thesjl to capture the fact that as the lattice becomes more and
Introduction, this is due to the fact that many of the impor-more discrete the kink is less and less densely populated
tant phenomenéthe PN barrier or the bifurcation of th®  until in the end the linearized equation matches one of the
mode are not captured by treating discreteness merely as ghonon eigenmodes that satisfy the linear wave dispersion
perturbation. Hence, the discrepancy between the semicokelation. This argument, we believe, highlights the point of
tinuum predictions and the actual behavior of the internalifference between the semianalytical and/or numerical tech-

wave mode frequency is to be anticipated. niques and the semicontinuum theoretical predictions.
However, one can go a step further in qualitatively ex-

plaining the behavior of the bifurcation frequency. In par-
ticular, asd decreases, by observing the structure of the exact
discrete kink(see, i.e., Fig. b one notices that fewer lattice
site ordinates “participate” in the “spine” of the kink. For
example, in the SG, fod<<1, practically only six sites con-
tribute to the kink structure with ordinates symmetrically
placed aroundr (i.e., U 1=2m7—Uug_;, for i=0,1,2). In
addition, only one of the three ordinates which have valu
less thanm hasu;> /2. This ordinate falls belowr/2 after
d=0.7. This can be very accurately also predicted by th
approximate equations for a six-site kink, i.e., a kink with the
approximate structure (0..,0a,b,c,2r—c,27—b,27

0

©,
N
e

V. CONCLUSIONS AND FUTURE CHALLENGES

The scope of this paper has been threefold.

(1) Firstly, to present the semicontinuum methods, such as
singular perturbation theory and the continuum Evans func-
tion technique, that approach the problem of the internal
emode bifurcation. Discreteness is viewed in each approach as

a perturbation and we have demonstrated the equivalence of
dheir results.

(2) Secondly, to expose the semianalytical and numerical
methods that one can use to identify these modes and the

Caom o) in the SG case. These approximate equa_magnitude of their frequency bifurcation from the bottom

tions (approximate because the ordinates before the first an ge'of the essential spectrum. Linear §tab|I|ty a}nalyss and
after the sixth site are set to 2 respectively read the discrete Evans function were used in that direction and

the near coincidence of thdinumerica) results was demon-
) strated.
b—2a- @S'”azo’ (31 (3) Finally, the continuumlike methods were compared to
the numerical results and the regimes in which their predic-
1 tions agreed with the numerical experiments were indicated.
ct+ta—2b-— —Zsinb=0, (32)  Also highlighted was the breakdown of these techniques for
d highly discrete regimes as well as the reason for that break-
down (the sparsely populated spine of the discrete kinklike
b+ 27— 3c— izsinc=0, (33) structure. In that context the qualitative picture of the inter-
nal mode behavior, as produced by the numerical simula-
tions, was justified by means of simple physical arguments.
and predict a solution witle<<7/2 for d<0.707. When this In conclusion, we have used a combination of available
occurs, the sign of casin the linearized equations techniques and tools to study the two models of interest, the
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