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Bifurcation of internal solitary wave modes from the essential spectrum
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1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019
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The bifurcation of internal modes from the phonon band in models supporting solitary wave solutions is
currently one of the exciting phenomena in the field. We will present a number of analytical and semianalytical
techniques for the detection, study, and understanding of these modes. We will see how they appear, without
threshold, due to the discretization of the continuum equations. This perturbation is viewed in terms of a
singular continuum approximation and analyzed by both perturbation theory and the Evans’s function method.
It is shown that these methods give equivalent results. Moreover, they are corroborated by mixed analytical-
numerical computations based on the recently developed discrete Evans’s function method. The extent to
which these predictions survive to strong discretizations is discussed. The results will be presented in the
context of both the sine-Gordon and thef4 models.

PACS number~s!: 45.05.1x, 45.10.Hj, 63.20.Pw
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I. INTRODUCTION

In the past few decades, solitary wave solutions have b
recognized as a characteristic of many physical syst
ranging from information transmission in Josephson ju
tions and optical fiber arrays@1–5# to the transcription of
genetic material and the local denaturation of the base
hydrogen bonds in the DNA double helix@6–10#. It has been
recognized, however, that many of these applications~such
as the Josephson junctions, the DNA problem, the motion
dislocations in solid state physics@11–13#, or even the be-
havior of an array of coupled torsion pendula@14#! are in-
herently discrete in nature and thus necessitate that the p
lem be studied in the context of a lattice. Hence, in the p
two decades, there has been a rapidly increasing numb
papers that are concerned with the drastic modification
the continuum solitary wave system behavior, once it
posed on a lattice. Very important contributions in identif
ing these traits were given by Peyrard and Kruskal@15# and
Ishimori and Munakata@16# for the sine-Gordon equatio
and by Combs and Yip@17# for the f4 model.

In brief, the main changes that occur when studying m
els with Hamiltonian structure supporting solitary wave s
lutions on a discrete setup are the following:

~i! The breaking of translational invariance creates a n
zero Goldstone frequency which coupled to the phonons
ates wave excitations radiating energy away from the co
ent structure and, thus, contributing to its energy loss.

~ii ! Also, all the configurations are no longer equivale
on the lattice but there is a maximum~kink centered on a
site! and a minimum~kink centered between sites! energy
configuration leading to the creation of a barrier analogou
the one dislocations have to overcome in order to propa
on a lattice, and hence is termed the Peierls-Nabarro~PN!
barrier.

~iii ! Due to the resonances, the gradual kinetic energy
leads to trapping of the kink in one of the PN barriers b
tween two lattice sites. It, thereafter, executes a nonline
damped oscillation in that potential barrier until it reaches
asymtotically stable state@18#.
PRE 611063-651X/2000/61~3!/3114~8!/$15.00
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However, even though there was a series of papers
elaborated on and clarified the above issues~i.e., the reso-
nances@18,19#, the PN oscillation@18–20#, the stability of
coherent solitonlike structures on diffusively coupled lattic
@21#, as well as the collective variable behavior of the
structures@22–26#!, not all of the story was unveiled. In
particular, Braun, Peyrard, and Kivshar observed much la
@27# that in a range of parameter values for the discrete s
Gordon equation~also known as the Frenkel-Kontorov
model and originally proposed for the study of dislocatio
@11#!, a discrete mode bifurcated from the bottom edge of
phonon spectrum. Both mathematically and physically
study of this bifurcation is an important problem—
mathematically because one can develop techniques to q
titatively predict when this bifurcation will occur and wha
its magnitude will be, and physically because this inter
mode will create oscillations that will modify the shape
the transmitted information~i.e., in the array of coupled Jo
sephson junctions!. Therefore, one would be interested
finding out what the form of this shaping factor will be~and
thus its effect on the transmitted bits or kinks! and when it
will appear.

One important subsequent paper of Kivsharet al. @28#
revealed the characteristic that the birth of these inter
modes is thresholdless~i.e., the mode appears as soon as
continuum problem is set on a lattice!. These authors also
gave a quantitative method of prediction of the magnitude
these bifurcations based on singular perturbation theory.

Our aim in this paper will be twofold:

~1! For two important models that support solitonlike s
lutions, namely the discrete sine-Gordon andf4 models, we
will first study discreteness as a perturbation of the c
tinuum through the singular perturbation theory proposed
@28# and through the Evans function as proposed in@29,30#.
We will show the equivalence of the two approaches for t
problem and will quantify their predictions.

~2! On the other hand, using linear stability analysis an
semianalytical methodology introduced in@21#, the discrete
Evans function technique, we will trace the exact bifurcati
3114 ©2000 The American Physical Society
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PRE 61 3115BIFURCATION OF INTERNAL SOLITARY WAVE MODES . . .
of the discrete internal mode from the phonon band and
indicate where~and why! the semicontinuum methods wi
break down. We will refer to the singular perturbation me
ods or the continuum Evans technique as semicontinuum
proaches since they are attempting to approximate the ef
of discreteness by a singular~higher-order derivative! pertur-
bation of the continuum problem. Such methodolog
should be anticipated to work well close to the continuu
limit ~for weak discreteness!. They should also, however, b
expected to break down for strong discreteness. The re
for that is that many of the inherently discrete phenome
~such as the breaking of translational invariance and the n
zero Goldstone frequency or the nonequivalence of confi
rations and the PN barrier! are not captured by such singul
continuumlike perturbations.

In this way, we hope to provide a comprehensive set
tools and of results pertinent to this problem in order
reveal the main characteristics and the physical aspect
behavior of these solitary wave modes.

Our presentation will be organized as follows: In Sec.
we will follow the approach of@28# in presenting the singu
lar perturbation methodology. In Sec. III the continuu
Evans function approach will be presented and the equ
lence of its results to the ones of Sec. II will be establish
In Sec. IV, the discrete Evans technique will be introduc
and implemented. Its results will be compared to the lin
stability analysis and to the semicontinuum perturbat
methods. Finally, in Sec. V, a summary of the results a
conclusions as well as an outlook of potential extensions
this work will be outlined.

II. PERTURBATION THEORY

Let us consider the case of the sine-Gordon equa
treating discreteness as a perturbation. Following the n
tion of @28# we can write it as

utt5uxx2sinu1eg~u!, ~1!

where e5h2/12 and g(u)5uxxxx if we consider only the
fourth derivative@i.e., the first-order perturbation in the Tay
lor expansion: (ui 111ui 2122ui)/h

25( j 51(2h2 j 22/
2j !)( ]2 ju/]x2 j )].

The expression of the perturbation can be suitably mo
fied if higher-order terms are included. Expressing the so
tion as a perturbation series@usinge as a perturbation~con-
trol! parameter# u5u01eu11••• one can explicitly derive
the equation thatu1 satisfies,

uxx
1 2cosu0u15g~u0!, ~2!

and find the solution to be

u1~x!5
1

coshxE2`

x

dx8cosh2x8E
2`

x8
dx9

g~u0!

coshx9
. ~3!

It is important here to make the observation that the low
limit of our integration is2` as opposed to 0 as appears
@28#. For the case of the sine-Gordon with the fourth- and
higher-order derivative perturbation explicit calculations c
show that the integral with a zero lower bound yields a
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vergence@as the astute reader can readily realize viewing
lower bound of the innermost integral’s integrand as a c
stant and seeing the divergence arise fro
(1/coshx)*xdx8cosh2x8#. Thus, this substitution is necessa
in order to avoid any unphysical divergences.

Linearization around the perturbed kink using

u~x,t !5u01eu11w~x!exp~ ivt ! ~4!

yields the perturbed eigenvalue problem

2v2w5wxx1S 2

cosh2x
21D w1eu1sinu0w. ~5!

The spectrum of the unperturbed fully integrable continu
sine-Gordon model@31# consists of~i! a Goldstone eigen-
mode with zero frequency and the even spatial structure
the kink spatial derivative,WG(x)5u0

x and ~ii ! a semi-
infinite continuum band of phonons that satisfies the disp
sion relationv2511k2. The corresponding wave function
for each k are W(x,k)5exp(ikx)@(k1i tanhx)/(k1i)#. The
lower edge of the band (k50) hasvedge51/d and a non-
secularly growing hyperbolic tangent eigenfunction profile

One can now take advantage of the fact that this i
complete~basis! set of eigenfunctions to express the pe
turbed eigenfunctions of Eq.~5! using their projection on this
basis set. Thus one can write

w~x!5aGWG1E a~k!W~x,k!dk. ~6!

Back substitution in Eq.~5!—neglecting the irrelevant con
tribution of the Goldstone projection—yields

a~k!5
e

2pE2`

` K~k,k8!a~k8!

k821e2b2
dk8, ~7!

where

K~k,k8!5E W!~x,k!u1sinu0W~x,k8!dk8 ~8!

is a Fourier space integral kernel and the bifurcating eig
value has been assumed to have a frequencyvbi f

251
2e2b2. Notice that we have specifically used Eq.~6! in Eq.
~5! for the bifurcating mode~seeking its spatial profile!,
hence the substitution of the relevant frequency.

The authors of@28# extracted the singular contribution t
the integral by settingk850 in the numerator and integratin
over the Lorentzian curve. In this way they obtained

a~k!5
sgn~e!

2ubu
K~k,0!a~0!. ~9!

However, fork50 ~i.e., the phonon band edge! Eq. ~9! im-
poses a solvability condition for the detuning parametereb,
namely,

uebu5
1

2
eE

2`

`

tanh2xu1sinu0dx, ~10!
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Up to now, we have briefly reproduced the arguments gi
in @28#. Even though some of the details may be deemed
unnecessary as the full presentation is given in@28#, we be-
lieve that in view of the establishment of the equivalence
the results of the method with the continuum Evans funct
technique, their presentation is useful. In addition, our pe
gogic aim of presenting a reference paper that encompa
all the methodologies and techniques used to date for s
problems, we believe, justifies such an exposition.

For the case of the sine-Gordon model, we have stud
not only the case of quartic but also of sixth- and high
order perturbations and we give the full results below. In
case of the quartic one, the functional form ofu1 can be
explicitly found to be

u1~x!5S 231
61x1exp~2x!x

11exp~2x! D Y coshx. ~11!

We will give the parametric dependence of the results
both models in accordance with their form as it appears
the standard reference on the subject~@15#!. The discrete
lattice equations of the Frenkel-Kontorova model are the

ui ,tt5ui 111ui 2122ui2
1

d2
sin ui ~12!

and, using the appropriate rescalingh→1/d, v→dv, the
detuning parameter of the discrete mode will be~up to
second-order perturbative corrections!

eb5
1

2 S 0.088 888 89

d2
2

0.004 761 9

d4 D . ~13!

Higher orders can be seen to saturate to this order of cor
tion to a very good degree of approximation. The discr
mode then detaching from the bottom edge (vedge51/d) of
the phonon band will have a frequencyvbi f

25(1/d2)(1
2e2b2). Similarly, the discretef4 model assumes the form

ui ,tt5ui 111ui 2122ui1
1

d2
~ui2ui

3! ~14!

and again by using the appropriate rescaling,h2→1/(2d2),
v→A2 dv, of the notation of@28#, one finds that the bifur-
cating frequency will be

vbi f
25

2

d2 S 12
1

152d4D ~15!

away from the bottom edge (vedge5A2/d) of the essential
spectrum~to first order which, as claimed in@28#, gives an
excellent approximation to the numerical predictions. T
accuracy of this statement will be examined later!. We have,
so far, reformulated~making some minor modifications! and
presented the methodology of@27,28# in identifying and
quantifying the bifurcation of discrete modes from the b
tom edge of the essential spectrum. We have also app
this methodology to the discrete sine-Gordon andf4 models.
Let us now present an alternative approach as given in
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context of the perturbed nonlinear Schro¨dinger equation in
@29,30# that will complement this presentation yielding a
equivalent formulation.

III. CONTINUUM EVANS FUNCTION

First, we give the basic idea behind the Evans funct
method. The eigenvalue problem around the continuum k
has a subspace of solutions that decay for large positivx,
Es. It also contains a subspace of solutions that decay
large negativex, Eu. If there exists a frequencyv for which
these two subspaces intersect~i.e., a frequency for which
their wedge product, defined to be the Evans functi
E(v)5Eu`Es, vanishes! then, by construction, thatv is an
eigenvalue which corresponds to a localized eigenfunct
Thus, the Evans function is a function whose zeros yield
discrete modes pertaining to the coherent structure susta
by the model under study. Coming back to our example,
eigenvalue problem can be written~using notation in accor-
dance to@29#! as

Y85M ~x,v,e!Y ~16!

where the matrixM is

M5F 0 1

g~x!2v2 0G ~17!

andg(x)512(2/cosh2x)2eu1sinu0 as can be seen from th
preceding section. Setting

M05 lim
uxu→`

M ~v,x,0!,

the eigenvalues of this limit matrix are6g whereg52 ik
5Auv221uexp@i/2arg(12v2)# for arg(12v2)P@2p
/2,3p/2) ~the details of why we consider the branch cuts c
be found in@29# but will also be clear later on!. The corre-
sponding eigenfunctions are@1,6g#.

In our case, however, we also know@31,28# ~both in the
sine-Gordon andf4 cases! the full scattering operato
eigenspectrum and the corresponding set of eigenfuncti
In the sine-Gordon~SG! case the forward eigenfunctions th
decay for large positivex are

Y15F P~g,x!

Q~g,x!
G , ~18!

where P(g,x)5exp(2gx)@(g1tanhx)/(g11)# and Q5P8.
On the other hand, the solutions exponentially decaying
to the left of the kink (x→2`) are

Y25F P~g,2x!

2Q~g,2x!
G , ~19!

where P,Q again is as defined above. Furthermore, it
straightforward to verify that the adjoint problemZ85
2MTZ has solutions~that will be used in what follows! Z
5@2Q(v,x),P(v,x)#T. One can verify the following limit
relations@analogous to Eq.~3.5! of @29##:

lim
x→7`

Y2exp~7gx!5@1,6g#T
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and

lim
x→6`

Y2exp~7gx!5
g21

g11
@1,6g#T.

Then, using the above definition of the Evans functio
E(v)5Y2`Y1, one finds

E52gS 12
2g

11g D ~20!

that can be written as~see remark 4.3 in@29#!

E52g@11g2~v!# ~21!

with g2 continuous and vanishing at the bottom edge of
phonon band. On the other hand, according to Theorem
of @29# ~see also@32#! the derivative of the Evans functio
evaluated at the bottom edge of the phonon band is

]Ee~1/d,e50!

5E
2`

`

Z~1/d,x,0!]M e~1/d,x,0!Y1~1/d,x,0!dx

~22!

~where as usual the subscript denotes partial derivative
respect to the subscript variable!. In the sine-Gordon case

]Ee~1/d,e50!52E
2`

`

tanh2xu1sin~u0!dx, ~23!

an expression which is certainly familiar from the presen
tion in Sec. II. Now by using the differentiability of th
Evans function to expand it in a Taylor series around
bottom edge of the essential spectrum, we getE(v,e)
5E(v,0)1@]Ee(1/d,e50)1g1(v,e)#e, where g1 is also
continuous and vanishing atvedge51/d. Then, if the argu-
ment of the derivative does not belong in the doma
(2p/4,3p/4) ~due to the branch cuts taken above!, then
there is no bifurcation. In our case this statement translate
sgn(e)*2`

` tanh2(x)u1sin(u0)dx being negative. But in tha
case, the right-hand side of Eq.~10! would be negative and
the solvability condition of@28# would not be satisfied
Hence, no bifurcation would occur. On the other hand, if
quantity above is positive then the vanishing ofE(v,e) will
occur according to the expansion atvbi f

25(1/d2)(1
2e2b2), whereeb is defined exactly as in the perturbatio
theory treatment. Therefore, the two approaches are show
yield the exact same result for the bifurcation of the discr
mode from the bottom edge of the continuum spectrum
the sine-Gordon equation. Furthermore, since the condi
is satisfied for the appearance of the mode~as the predictions
made in Sec. II indicate! for anyd, the discrete mode shoul
~according to these predictions! be present for alld as soon
as one studies the problem on the lattice~hence, its genera
tion is thresholdless!. The proof is exactly the same in th
case of thef4 model and will be left to the reader as a
interesting exercise. The only thing that changes is the fo
of the unperturbed spectrum and the form of the perturba
:
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that is dependent on the nonlinearity. Otherwise, the ve
cation of the equivalence of the two methods can follow
exact same path.

It is perhaps not surprising that the two methods ren
the same answer. The derivative of the Evans function
known to be equivalent to a Melnikov function, see@33,34#.
It is also well known that Melnikov calculations can be d
rived in an alternative way using a solvability condition, s
@35#. The singular perturbation theory approach used ab
fits into this framework and thus the equivalence of the
sults coming from the two methods is based on the equ
lence of the two methods as the two different approache
the Melnikov method.

Having presented the two approaches that treat discr
ness as a perturbation, we will now give a semianalyti
method that corresponds to the discrete version of the Ev
function technique and which appeared in@21#. Its results
will then be compared to those of the above methods an
the ones from linear stability analysis and the differenc
will be highlighted and explained.

IV. SEMIANALYTICAL METHODS AND COMPARISON

A. Linear stability analysis and the discrete
Evans function

Let us now return to the fully discrete problem. In order
construct a discrete eigenfunction one must find a solu
that decays to the left as well as to the right far away fro
the coherent structure. The uniform steady states approa
~exponentially! far to the left and far to the right of the kink
areu50, u52p, respectively (21 and 1 for thef4). The
linearized equation around the coherent structure will rea

v2yi5yi 111yi 2122yi2
1

d2
cosuiyi ~24!

in the SG model and

v2yi5yi 111yi 2122yi2
1

d2
~3ui

221!yi ~25!

in f4 ~where $ui% is the profile of the exact discrete stat
kink!.

In order to trace the discrete eigenvalues, the most sim
numerical method is to solve the full eigenvalue problem
follows.

~i! One can construct the exact discrete kink, throug
Newton-Raphson iteration, solving the system of equatio

ui 111ui 2122ui2
1

d2
sinui50 ~26!

~analogously defined forf4) with a continuum kink initial
condition.

~ii ! Using the exact discrete kink$ui%, one can then solve
the matrix eigenvalue problems of Eqs.~24! and~25! to find
the eigenfunctions and eigenvalues in the framework of
ear stability analysis.
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This methodology will yield both the localized modes
well as the extended phonon modes.

On the other hand, if one is interested in the localiz
~internal soliton! modes only, one has to construct a deca
ing solution far away from the kink, on either side of th
lattice. The linearized equation is simplified far away fro
the kink since cosui→1 and 3ui

221→2. Thus Eqs.~24! and
~25! become constant coefficient second-order differe
equations whose solutions are of the form

yi5C6~v!r 1
i 1D6~v!r 2

i , ~27!

with

r 2,15
1

2
@v2121vedge

2 6A~v21vedge
2 !~v21vedge

2 14!#.

~28!

Let us point out that the only difference in Eq.~28! between
the two models under study (SG,f4) will be their different
vedge (1/d,A2/d, respectively!.

Then, constructing a perturbation that decays asui

5D2r 2
i ~which has the proper exponential decay behav!

as i→2` and shooting through the kink@using Eqs.~24!
and~25!#, a solution with both decaying and growing parts
obtained far to the right, i.e.,

yi5C1r 1
i 1D1r 2

i . ~29!

D1 pertains to the growing part. Hence, if a frequency
found such that the prefactor of the growing part,D1(v),
vanishes, then this frequency corresponds to a mode
decays on both sides of the coherent structure and is, th
localized eigenfunction.

For a lattice that extends up toi 5L11, using Eq.~29!
for sitesi 5L21,L,L11, one obtains

D1~v!5
yL112r 1yL

r 2
L112r 2

Lr 1

5
r 2yL2yL21

r 2
L21~r 2

221!
. ~30!

For technical~normalization! reasons explained in@21#, it is
~numerically! convenient to start on the left side wit
D2(v)5r 1

2L ~whereL is the size of our lattice! and also to
remove the branch cuts introduced from the edges of
phonon band (r 2

251). This is done by rescaling Eq.~30! by
multiplying with (r 2

221)/r 2
2 @21#. We define this rescaled

version of the transmission coefficient of Eq.~30! as the
discrete Evans function. Clearly, in correspondence with
continuum construction, the zeros of the discrete Evans fu
tion @which can be found numerically by implementing th
shooting process mentioned above and using Eq.~30!#, will
provide the localized eigenmode frequencies.

B. Results and comparison

Having set up all the methods relevant to the problem
the internal shape mode bifurcations from the essential s
trum, let us now present their results for the two discr
models of concern to this study. Linear stability analy
shows that~i! in the discrete sine-Gordon model~Fig. 1!, the
spectrum consists of the following:
d
-

e

at
, a

e

e
c-

f
c-
e
s

~1! A discrete Goldstone mode which, due to the break
of the translational invariance has a nonzero frequency.

~2! A band of extended waves~phonons! that satisfy the
dispersion relationv25222 cosk11/d2. From this equa-
tion, it can be seen that the band has frequencies only in
interval @1/d,A41(1/d2)# ~rather than being semi-infinite a
in the continuum problem!.

~3! In addition to the above frequencies, ford>0.515 a
shape mode bifurcates from the bottom of the phonon ba
The dependence of the ‘‘distance’’ (vedge2vbi f) of this
mode’s frequency from the band edge is shown in Fig.
One can see that after a maximum excursion~the maximum
occurring ford'0.7), the frequency of the mode approach
the band edge frequency asd increases. Eventually, its dis
tance from the edge becomes of the order of 1025 for d
'1.3 and gradually as its frequency comes very close to
one of the band edge, the spatial profile of the mode beco
extended covering all of the lattice. For larger lattices t
occurs for largerd and for the infinite lattice~presumably!
the degeneration occurs ford'` justifying the conclusion
of the thresholdless birth of this solitary wave internal eige
mode.

~ii ! In the f4 case, the continuum contains already tw
localized eigenmodes: the zero frequency Goldstone and
odd eigenmode of frequencyA3/2d2. In the discrete case we
find ~Fig. 3! the following:

~1! A nonzero frequencyG mode due to the breaking o
translational invariance.

~2! The counterpart of the second continuum localiz
mode.

~3! A finite band of phonon frequencies@according to the
dispersion relationv25222 cosk1(2/d2)# which extends
from vedge5A2/d to vmax5A412/d2.

FIG. 1. Spectrum of linearization around a discrete static si
Gordon kink for d50.7. Upper left: full linearization frequency
spectrum around the exact discrete stable static kink for a 200
lattice. Upper right: Goldstone mode spatial profile; bottom le
internal mode spatial profile. Bottom right: Behavior of the linea
ization spectrum frequencies as a function ofd. The dashed line
showsvG as a function ofd, the thick line showsvbi f as a function
of d, whereas the two solid lines indicate the lower and upper e
of the phonon band (1/d,A41(1/d2), respectively!—linear stability
analysis results.
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~4! And finally a localized eigenmode bifurcating from
the edge of the continuum band ford>0.82. The behavior of
this internal mode is shown in Fig. 4 where its behavior c
be seen to be similar to the one of its SG counterpart
particular, after a maximal excursion~maximum occuring
aroundd'1.05) of its frequency away from the band ed
frequency,vbi f approachesvedge asd increases and eventu

FIG. 2. Bifurcation of the internal mode in SG vs the discre
ness parameterd: the solid line shows the~equivalent! continuum
Evans and singular perturbation results forv5vedge2vbi f as a
function of d for the quartic perturbation correction; the dash-d
line shows the same as before but for the fourth plus sixth der
tive perturbation. The thick line of stars shows the discrete Ev
function and linear stability results for the behavior of the sa
quantity as a function of the discreteness parameter~also see the
text!.

FIG. 3. Spectrum of linearization around an exact discrete st
f4 kink for d51.0. Upper left: Goldstone mode spatial profil
upper right: second localized mode spatial profile~see text!; bottom
left: internal bifurcating mode spatial profile; bottom right: param
ric dependence of the linear stability spectrum as a function of
discreteness parameterd. The dashed line showsvG as a function
of d; the dash-dot line indicates the dependence of the secon
calized mode frequency on the discreteness parameter; the
representvbi f5vbi f(d), and once again the solid lines define t
finite edge of phonons (@A2/d,A41(2/d2)#)—linear stability re-
sults.
n
n

ally merges with the band edge asd→` ~the continuum
limit !.

The results of the discrete Evans function technique
of linear stability analysis in Figs. 2 and 4 for the ‘‘distance
of the mode from the band edge are shown by the symb
The solid and dash-dot lines demonstrate the~equivalent!
predictions of semicontinuum theories for quartic and qua
plus sixth-order derivative perturbations, respectively. It
noteworthy that the results of linear stability and of the d
crete Evans method coincide for the range ofd values that
are shown. For larger values ofd, as our results indicate an
as was found also in@21#, the linear stability analysis be
comes less accurate than the discrete Evans method d
finite size effects. Thus, the discrete Evans technique is
most accurate diagnostic of the discrete modes and of t
bifurcation from the essential spectrum. The discrete Ev
method results have been constructed by identifying the
ros of the Evans function for frequencies lying on the ima
nary spectral plane axis~where the shape mode eigenfr
quency has to lie, due to the Hamiltonian nature of t
system!. Moreover, in@21# the value of the Evans function a
the bottom of the band edgeD1(v5vedge) was used to
probe internal mode bifurcations. The authors of@21# noticed
that the change of sign of this value from negative to posit
indicated the detachment of the internal mode from the ed
One can easily see that the equationE(vedge,e)5e]eE ~for
the perturbed Evans function atv5vedge), together with
Eqs.~22! and~10! prove the correctness of the above obs
vation, i.e., the solvability condition is satisfied and the mo
bifurcates when the value of the perturbed Evans function
the band edge changes sign.

On the other hand, viewing the predictions of the sem
continuum theories that treat discreteness as a perturba
we realize that their predictions are quite successful clos
the continuum limit~i.e., for larged). As d decreases, how
ever, their prediction follows the one of the semianalytic
and/or numerical methods down tod'0.9 in the SG model
andd'1.2 in thef4 case. For lower values of the discret
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FIG. 4. Same as Fig. 2 but for thef4 model. The solid line
shows the prediction for the bifurcation~i.e., v5vedge2vbi f) of
the internal mode as a function ofd from semicontinuum theories
The stars indicate the actual behavior of the same quantity as g
by semianalytical and/or numerical techniques~see text!.
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ness parameter~strong discreteness! the perturbative treat
ments do not accurately predict the behavior of the freque
of the bifurcating mode. It is well known from previous a
tempts to treat discreteness as a perturbation~such as@16#,
where the Keener-McLaughlin and McLaughlin-Sco
@36,37# singular perturbation schemes were used to treat
creteness!, that such methods cannot account for the res
of very strong discreteness. As was mentioned also in
Introduction, this is due to the fact that many of the impo
tant phenomena~the PN barrier or the bifurcation of theG
mode! are not captured by treating discreteness merely
perturbation. Hence, the discrepancy between the semi
tinuum predictions and the actual behavior of the inter
wave mode frequency is to be anticipated.

However, one can go a step further in qualitatively e
plaining the behavior of the bifurcation frequency. In pa
ticular, asd decreases, by observing the structure of the ex
discrete kink~see, i.e., Fig. 5!, one notices that fewer lattic
site ordinates ‘‘participate’’ in the ‘‘spine’’ of the kink. Fo
example, in the SG, ford,1, practically only six sites con
tribute to the kink structure with ordinates symmetrica
placed aroundp ~i.e., ui 1152p2u62 i , for i 50,1,2!. In
addition, only one of the three ordinates which have va
less thanp hasui.p/2. This ordinate falls belowp/2 after
d50.7. This can be very accurately also predicted by
approximate equations for a six-site kink, i.e., a kink with t
approximate structure (0, . . . ,0,a,b,c,2p2c,2p2b,2p
2a,2p, . . . ,2p) in the SG case. These approximate eq
tions ~approximate because the ordinates before the first
after the sixth site are set to 0,2p, respectively! read

b22a2
1

d2
sina50, ~31!

c1a22b2
1

d2
sinb50, ~32!

b12p23c2
1

d2
sinc50, ~33!

and predict a solution withc,p/2 for d,0.707. When this
occurs, the sign of cosc in the linearized equations

FIG. 5. Spatial profile of an exact discrete stable static 200-
kink for d50.7. Shown are the displacement ordinatesui as a func-
tion of the lattice site indexi.
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yi 111yi 2122yi2
1

d2
cosuiyi52v2yi ~34!

will change ~and practically all other cosine terms will b
'1) and thus in order to maintain the functional form a
parity of the mode the solution changes signyi→2yi as
linear stability analysis verifies. Asd decreases further, only
four and then two sites contribute to the kink@for instance,
for d50.3 the kink practically consists of two sites and the
have cosa5cos(2p2a)'0.9#.

Thus, Eq.~34! approaches~for decreasingd) the linear-
ized equation around uniform steady states. The latter
extended wave solutions rather than localized internal eig
modes. The limit ofd50 will, of course, find all sites to the
left of the kink at theu50 steady state whereas to the rig
at u52p ~at 21,11, respectively, forf4). Hence, it is the
fact that the kink on the lattice consists of only few sites w
ordinates differing from the uniform steady state, whi
causes the internal mode to bifurcate maximally and th
gradually degenerate for very smalld to an extended excita
tion and eventually disappear, in contrast to the semic
tinuum theory results. The latter, treating discreteness a
continuumlike perturbation, always sees the kink as a tra
lationally invariant structure with a spine that consists
infinite points. Thus, the semicontinuum theory predictio
fail to capture the fact that as the lattice becomes more
more discrete the kink is less and less densely popula
until in the end the linearized equation matches one of
phonon eigenmodes that satisfy the linear wave disper
relation. This argument, we believe, highlights the point
difference between the semianalytical and/or numerical te
niques and the semicontinuum theoretical predictions.

V. CONCLUSIONS AND FUTURE CHALLENGES

The scope of this paper has been threefold.
~1! Firstly, to present the semicontinuum methods, such

singular perturbation theory and the continuum Evans fu
tion technique, that approach the problem of the inter
mode bifurcation. Discreteness is viewed in each approac
a perturbation and we have demonstrated the equivalenc
their results.

~2! Secondly, to expose the semianalytical and numer
methods that one can use to identify these modes and
magnitude of their frequency bifurcation from the botto
edge of the essential spectrum. Linear stability analysis
the discrete Evans function were used in that direction
the near coincidence of their~numerical! results was demon
strated.

~3! Finally, the continuumlike methods were compared
the numerical results and the regimes in which their pred
tions agreed with the numerical experiments were indica
Also highlighted was the breakdown of these techniques
highly discrete regimes as well as the reason for that bre
down ~the sparsely populated spine of the discrete kinkl
structure!. In that context the qualitative picture of the inte
nal mode behavior, as produced by the numerical simu
tions, was justified by means of simple physical argumen

In conclusion, we have used a combination of availa
techniques and tools to study the two models of interest,

te
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SG andf4 discrete model equations, the thresholdless g
eration of an internal mode pertaining to the kink solita
wave due to discreteness. The smooth maximization of
bifurcation and the vanishing of the mode for strongly d
crete lattices were numerically indicated and the disparity
this prediction from the one of perturbative treatments cla
fied.

An interesting extension of this study would involve a
attempt to create a rigorous perturbative technique w
which one could predict the mode frequency behavior in
highly discrete~smalld) versions of the lattice models. Thi
challenging theoretical task will be left for future studies.
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