PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity
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We study spatiotemporal three-dimensional bright solitons in optical media whose non-linear response
includes third- and fifth-order terms. By means of numerical simulations, lower and upper stability and exis-
tence borders for the solitons without the internal “spin” are identified. Using the variational method based on
two different trial functions and collating the results, we obtain approximate solutiorspfioning (vortex)
solitons. The presence of the lower stability border for both the zero-spin and spinning solitons is a drastic
difference of the three-dimensional solitons from those in one and two dimensions. The results show that the
corresponding stability and existence borders are chiefly determined by the spatial dimension, quite weakly
depending on the soliton’s “spin.” However, the energy of the spinning soliton is much larger than that of the
zero-spin one.

PACS numbeps): 42.65.Tg

[. INTRODUCTION known for a long timeg21]; 3D spherically symmetric soli-
tons and their stability in the same model were studied in
Optical spatiotemporal solitons, or the so-called light bul-detail by Edmundsofi22]. Note, however, that higher-order
lets (LB’s) [1-7], have been attracting a growing interest in soliton modes, consisting of a dark spot that is surrounded by
the last decade, as they are expected to be a new fundamenliight rings, were numerically found to be unstable in the 2D
physical object, and also have a potential to implement ulsaturable modg]23].
trafast all-optical switching in a bulk mediuf8—12]. Vari- For weak fields,I/1,<1, Eqg. (1) yields the usual self-
ous effects generated by interactions between the spatioterfecusing Kerr responsen,~ngl. With the increase of the
poral solitons, such as scattering, fusion, repulsion, andihtensity, it is necessary to take into consideration the next-
spiraling, have also been theoretically studigc,13—186. orderself-defocusingerm in the expansion of the full refrac-
It is well known that in the Kerr medium with a purely tive index:
cubic nonlinear response, LB’s formally exist, but, in both
the two- and three-dimension&D and 3D cases, they are
unstable against the spatiotemporal collapse induced by a n=ngy+ Nyl —nyl?, 2
combined effect of the nonlinearity and anomalous disper-
sion[3]. To prevent the collapse, it is necessary to change
the nonlinearity. One possibility is to consider media with awheren,, is its linear parth,=ny, andn,=2ny/l.
quadratic (second-harmonic generatingionlinearity [12]. Although thecubic-quintic(with respect to the field am-
The theoretical work in this direction, begun long addd  plitude, see beloydependence(l) corresponding to Eq.
and continued recentfi2], has finally led to the experimen- (2) was obtained from the expansion of the saturable depen-
tal observation of a LB. In fact, the observed object was ajence(1) for small values of the intensity, it makes sense to
quasi-2D bullet in a 3D sample of the Li®ptical crystal.  consider the cubic-quintic modé®?) as an independent one,
The size of the sample was1 cm. Work aimed at the ob- valid beyond the framework of applicability of the expansion
servation of a fully localized 3D bullet in the same mediumto Eq. (1) [24,13. This is stimulated, in particular, by the
is now in progres$17]. fact that the dependencg|) in a form well approximated
Alternatively, the collapse can be checked by a saturatiomy Eq. (2) has been found experimentally in some organic
of the Kerr responsgl8-20. The dependence of the non- materials[25]. From the theoretical viewpoint, there is a
linear correction to the refractive index on the light intensity drastic difference between the saturable and cubic-quintic
| is then models. As was demonstrated long ago by Kolokd26],
the (nonspinning spatiotemporal solitons in the former
Ny=nel (1+1/15) 7%, (1) model are stable, because the model satisfies the self-
focusing conditiondn/dI>0 at all values ofl. Obviously,
where ng is the Kerr coefficient, andg is the saturation this is not the case for the cubic-quintic model; hence the
intensity. For this model, the existence and stability of 2Dsolitons’ stability must be studied separately in this model. It
axisymmetric “bullets” (spatiotemporal solitonshas been is noteworthy that the quintic term, while preventing the col-
lapse, causes only a small change in the effective potential of
the interaction between far-separated spatiotemporal solitons
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dispersive medium, where the refractive index is taken in thesaturable mod€l22]. We determine a stability threshold for
form (2), is the cubic-quintic nonlinear Schiimger the soliton solutions, along with their existence boundary. In

(CQNLSYS) equation: Sec. lll, which is the core of this worlspinning 3D light
. 5 ) ) bullets are studied by means of the variational approximation
2i kE,+ VT E+ kDErr+2x“(ny/ng) |E[“E (VA). We find the corresponding solutions, using two essen-

tially different versions of VA, and discuss their common
properties and distinctionéwith the conclusion that both
predict crucially important properties in a nearly identical
form). Similar to the zero-spin 3D solitons, and unlike the
2D vortex oneq13], the solution for the spinning 3D soli-
tons has stable and unstable branches. The stability threshold
for the solutions is found. In Sec. IV, we compare the prop-
erties of the 3D light bullets with and without spin. We con-
clude that, while the minimunithreshold energy of the
spinning soliton is more than four times as large as that of
the zero-spin one, the stability threshold, defined in terms of

_2K2(n4/n0)|E|4E:0, (3)

where « is the propagation constanfwave numbey,
D= —d?k/dw?>0 is the coefficient of the temporal disper-
sion, which is assumednomalous(there is no chance to
have solitons if the dispersion is normal, with<0), T=t
—2lvg (vg being the group velocity of the carrier wavis
the “reduced time,” and the Laplacia‘ﬁf (representing the
spatial diffraction acts on the transverse coordinates.
Defining  rescaled variables u=E\n,/n,, T

— _ 2

=Tnyy2«/Dnon,, {=zkna/noNy, and €7  the soliton's propagation constant, very weakly depends on

=(X,y) kny2Ingn,, one transforms Eq3) into a normal-  pe spin.

ized form: To conclude the introduction, it is relevant to briefly dis-
iu§+V2u+|u|2u—|u|4u=0, @ cuss how, in principle, the bullets may be generated in an

experiment. For the zero-spin case, an incident laser pulse

where V2= 32192+ 3% aq°+ 321972 is the spatiotemporal may s_elf-trap into the bullgt in the bulk medium, as was the
case in the recent experimef&]. To generate a spinning

Laplacian. Note that, like the usual cubic NLS equation, theb llot lse that h d th h
normalized CQNLS equatiof) contains no dimensionless ullet, one may Use a puise that has passe rough a spe-
cially shaped phase mask, which can lend the pulse the nec-

parameters. Nevertheless, soliton solutions to(Eghave an it d in th al
important difference from those found for the Kerr media; essary vorticity, as was done in the wa].

namely, the NLS equation admits an obvious rescaling of

solutions without changing the form of the equation. This Il. ZERO-SPIN SOLITONS

ma_kes I po§5|ble for a smgle s_ollto_n to represent all the Following Ref.[3], we introduce the spatiotemporal ra-
soliton solutions[3]. The situation is different for the dius

CQNLS equation, in which rescaling the variables without a

change of the equation’s form is impossible. Therefore, it is N e

necessary to search numerically for a whole family of solu- F=NEE T ®)

tions, by varying values of a properly defined control param- . .
eter. This was done for 2D bright vortex solitons, i.e., Iocal-and search for solutions to E¢d) in the form u(¢, ,7,()

ized solutions with an internal vorticit{‘spin” ) 1, in Ref. = exp(k)V(r). An equation forv(r) can then be easily ob-

[13]. Later, the analysis was extended to 2D solitons withta'ned:

zero spin[27].

The most remarkable property of the 2D vortex solitons in
the CQNLS model, discovered by means of numerical simu- . . .
lations in Ref.[13], is their stability(note, however, the in- \;V:hm t'?oeiic l;())(ur;gs;i)(/mgondltlons defined by means of
stability of ahelical vortex soliton in the same model, with ymp P '
an amplitude periodically modulated along the propagation - 42 —(af— a2+
distance, which was reported in RE28]). In sharp contrast Vin=alkj(1+yrs), y=(a'=a’+k)/6, r—0, (7
with this, 2D vortex solitons in the model with the quadratic
nonlinearity, although they exist as stationary solutions, are
subject to a strong azimuthal instability, which was predicted ) ) )

Figure 1 displays a set of solutions to E), obtained,

numerically[29,30, and then observed experimentdIB1]. ; k
A similar strong azimuthal instability of the 2D spinning fOF different values ok, by means of the shooting method. It
soliton has been found in numerical simulations of the modelS Notéworthy that the effective size of the soliton increases

with the saturable nonlinearityl) [29]. The latter fact With the parametek, i.e., contrary to what is suggested by

. . 71/2 . .
stresses a drastic difference between the saturable and cubiB€ asymptotic expressidf), k™ ~'“is notan estimate for the
quintic models. soliton’s size. With the increase of the size, the distribution

The objective of this work is to find 3D soliton solutions of the field at the soliton’s center becomes flatter. T_his cor-
of Eq. (4), i.e., the light bullets in the bulk cubic-quintic €SPOnds to a decrease of the curvature parametefined
medium. In Sec. II, we numerically search for radially sym-in EQ. (7). In the limit of =0, the soliton’s amplitude at
metric solitons without the spin. We firtdio branches in the =0 assumes either of the two limiting values, which are, in
dependence of the soliton’s energy on its propagation corfct: amplitudes of two plane-wave solutions to E4). with
stant(i.e., two different branches of the solutionsnly one ~ theé same propagation constant
of them being stable. This dependence qualitatiyblyt not
guantitatively resembles th&J-shaped curve known for the a; (k)= Vi(1+\1-4k). (9

V' +(2Ir)V' —kV+V3-V°=0, (6)

V(r)~AK)rtexp —Vkr), r—oo. 8
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FIG. 1. The solutions for 3D solitons with zero spin. The values ~ FIG. 3. The energy of the 3D zero-spin soliton vs its propaga-
of the propagation constaktare indicated near the curves. tion constant.

The dependenca(k) found numerically for zero-spin Figure 3 displays the energy of the 3D LB ksA crucial
solitons, together with that for plane waves, as given by Eqgifference of this dependence from those for the 1D and 2D
(9), is shown in Fig. 2. It is seen from this figure that, with splitons (in the same CQNLS models that the energy is
the increase ok, the amplitudea(k) approachesy(k), at-  divergingin the limit k—0. This is explained by the fact
taining this value ak=Kk{y~0.15. Thusk=Kk{>> is anex-  that, as seen in Fig. 1, although the soliton’s amplitude van-
istence boundaryf the zero-spin solitons, at which the size ishes ask— 0, the soliton is quickly getting very broad. Be-
of the soliton diverges as it is going over into a plane wavecause of the multiplier®~? in the expression foE [see Eq.
This limitation onk may be regarded as a saturation of the(11)], the energy is very sensitive to the soliton’s width. Our
propagation constant. analysis of the same dependence in the 2D case shows that

In any dimension, there is a similapper boundary for  the energy(or the beam’s power, if the 2D soliton is inter-
the values ofk at which solitons exist. In the 1D case, one preted as a spatial cylindrical beam; see, e.g., Bl at-
has, instead of Eq(6), an equationV”—kV+V®=V®=0,  tains afinite value EZ22~11.75 atk=0, and in the 1D case
with the well-known exact soliton solution the energy of the soliton given by E@L0) vanishes ak

B —0. An important consequence of the divergence of the 3D
VA(X)=4k[1+ 1= (16/3kcosti2vkX)] ™", (100 gojiton's energy ak—0 is the presence of minimum en-

whereX is the transverse coordinate. Obviously, the solution. 9y Necessary for the existence of the 3D zero-spin solitons,

. . ) whose numerical value B, /47~ 15 (note a similar prop-
(10) exists atk<k:P'= 2 atk=k1D the soliton amplitude min/ 47~ 15 ( brop

- : . erty of LB’s in the model with the quadratic nonlinearity:
coinciding with the larger plane-wave amplitudefrom Eg. they have nonzer&, ., in both the case®=2 andD=3

(9). In the 2D case, we have found, using the same shootinE;lz])

(2D) ; (3D) (2D)
method, Kng~0.18. It is noteworthy  thatknz,<Kmay Lastly, we notice that thé&)-shaped dependendg(k) is

(1D). _ . ; :
<Kmax; hence we conclude that the upper boundary of th§antamount to the existence of two soliton solutions, with
existence of the soliton solutions to E¢) decreases as the (itferent values ok, at each value of the enerdy>E

. . . min -
space dimension increases. o This is a distinctive feature of the 3D case, which is also
The most important physical characteristic of the 3D op-known in the saturable modg21,22.
tical soliton is its energy, A necessary stability condition for solitons is given by the
B well-known Vakhitov-Kolokolov(VK) criterion[21,33: the
E(k):47-,f V2(r;k)radr. (11)  dependenceéE(k) must have a positive slope, i.qu/dk _
0 >0. The fact that the energy of the 3D soliton diverges in

both limits k—o and k—0 gives rise to a pointk,
~0.026, at whichdE/dk changes its sign; see Fig. 3. Thus,
the zero-spin 3D solitons are definitely unstablekatk,,,

0.8 1 .

] and may be stable &>k, (note that, in some cases, the
0.6 Vakhitov-Kolokolov criterion turns out to be not only neces-

sary, but alsosufficient for the stability of the soliton
0.4 [26,33).
0.2 1
: [ll. SOLITONS WITH SPIN ONE

0.0 T T T T T T T T T T T T T

0.00  0.02 0.64 0.06 0.08 0.10 0.'12 0.14  0.16 A. Ansaze 1: Spherical variables

The spherical spatiotemporal coordinates, supplementing
FIG. 2. The amplituddat r=0) vs the propagation constakt the radial variable introduced in Eq(5), can be applied to
for the 3D zero-spin soliton. The maximum of the amplitude is construct solutions to Ed4) in the form of 3D solitons with
attained ak~0.12. an integer spirm+ 0. We search for such solutions as
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u(é, 7, 7,0)=explik{+ime)V(r,0), 12 10
] ; o U(n)
where cog=1r, andg is the usual angular coordinate in the | AN\
transverse plané, ). Then, Eq.(4) is transformed into ' Y |
1 71009\ N
1d( 0V . 1 9. 0W 0.6 4 N\
—|re— — — | sinf— 1/ A\ \
rZar\" ar ) rZsing a6 Y | DR 3
N VIV 0 1y ™ AN
resirf 0 e (13 1 W
o : : 02 I ez N 0.005
This is the Euler-Lagrange equati@is=0, resulting from i TN N
varying the actiorS= [{dr[JL d# with the Lagrangian ¥ =
00 4= , e
1, V|2 1 (V)2 0 10 20 30
L=2r7sind) | 5 r2l o6 r
m2y/2 1 1 FIG. 4. Solutions for 3D spinning solitons with=1. The solid
+ S o +kV2— = V4+ —VG] . (14 and dashed curves show, respectively, the functidfrg andU(p)
resint ¢ 2 3 [see Egs(15) and(21)] with the same values & which are writ-

i . ten near the curves.
Hereafter, we consider only the case=1, as it does not

seem plausible that a vortex soliton with>1 can be dy-  Substituting into this formula th&nsaze (15), one obtains

namically stable. Note that it has been demonstrated thakf. Eq. (11)]

dark optical vorticegthe ones whose field does not vanish at

infinity) are definitely unstable in>1 [34]. * )

We aim to develop the variational approximation for a E(k)=(4rr)§f0 U2(rskr#dr, (17)

description of 3D spinning soliton@ote that various forms

of VA, using Gaussian and super-Gaussharsdze or trial The energy given by the latter expression is displayed, as

functions, were applied to the description of 1D solitons ina function of the propagation constdaqtin Fig. 5. The mini-

the CQNLS mode[35]). We here adopt the trial function ~ mum of the function,E,;/47~62.6, is located ak=Kk,,

~0.033. Consequently, the above-mentioned VK criterion
V(r,0)=U(r)siné, (15  [21] suggests that the spinning soliton with=1 may be
stable atk>k.,. Strictly speaking, the applicability of this

which, as a matter of fact, represents nothing else but @riterion to vortex solitons, whose amplitude vanishes at the

spherical harmonic with the quantum numbérsl andm  center, has not been proved, but recent results for the 2D

=1. Of course, it cannot be an exact solution to the nonlineayortex solitons in the present moddl3] show that the nu-

equation(13). One should also bear in mind that this is, in merically found stability indeed complies with the VK crite-

fact, not a spatial but apatiotemporakpherical harmonic.  rion. It is also noteworthy that thie,, does not strongly de-

Inserting theAnsdze (15) into the Lagrangian(14) and pend on the spin: a similar value found in the previous
integrating it overd, but keeping an arbitrary dependence section form=0 was 0.026.
U(r), one can readily derive the corresponding Euler- |t was not possible to find soliton solutions to E6) at

Lagrange equation, k exceeding some maximum value. Within the accuracy of
£U 24U ! A o the numerical calculation&@nd of the accuracy(gg)ovided by
the VA), this value proves to coincide witk;,,;~0.15,
Gzt - 27-KU+zUS-Us=0.  (16) : P max
200 ; iy
Solutions to this equation pertaining to different valuek of I E(k)/4n i
are displayed in Fig. 4. These solutions were found numeri- %
cally by means of the shooting method adjusted to the obvi-150 } AO
ous boundary conditions stating thd(r) must vanish lin- A -
early atr —0 and exponentially at— . Similarly to the 2D 17 s
case[13], it was found that the slope of the functidi(r) at 100 | Z o
r=0 increases wittk up to a maximum value &=0.09, “o. i
and then decreasés the 2D case, a maximum was attained Ao oo
atk=0.145). . AR 2 -
The energy of the spinning solitof12) is given by the 0.00 0.02 0.04 0.06 0.08 010
expression k

" - FIG. 5. The energy of the 3D spinning soliton. The circles and
Ezzﬂ-j r2drf sinddo Va(r, 6). triangles indicate numerical values obtained, respectively, for the
0 0 spherical and cylindricansaze[see Eqs(17) and (31)].
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FIG. 6. Distribution of the 3D spinning soliton’s fie[dhown by FIG. 7. The same as Fig. 6 kt0.125.

means of the level contoyrin the plane(p,7) at k=0.045: (1) the ) o . )
sphericalAnsaze (2) the cylindricalAnsaze stationary solution is sought for in the for(we again con-
fine ourselves to the case=1)

which was the upper existence border for the zero-spin soli- U(E m,7,0) =explik+ie)V(p, 1), (18)
tons found in the previous section. Thus, the upper existence

bound(in terms of the propagation constafdr multidimen-  cf. Eq. (12). The substitution of this into Eq4) yields
sional solitons does not depend strongly on the value of the

- : T - PV 1oV PV V
spin, but it depends upon the spatial dimension: we have T kV4VB—VE=0 (19)
checked that the upper bounds almost coincide too for 2D ap® padp Ir° p° '
solitons withm=0 andm=1 (both arek?2~0.18; see also

Ref.[13] for the casan=1). We stress that both Eq§l3) (with m=1) and(19) are
exact and tantamount to each other. However, their approxi-

mate solutions generated by VA aret equivalent. Actually,

comparison between them offers a convenient opportunity to

. . ; . . estimate the accuracy and reliability of the VA.

soliton) is 50/11.75=4.26. Comparing this to the same ratio The variational repyresentation ony(q.9) is 5S=0. with

in the 3D case, 62.6/54.17, allows us to conclude that, in «_ (e % '
S=[ydpfZ .. Ldr, where

any dimension, formation of a spinning soliton requires en-

The ratio of the minimum energies of tme=0 andm
=1 solitons in the 2D caséwhich are EZY=50 for the
soliton with m=1 [13] and E??'~11.75 for the zero-spin

min

ergy which is, roughly, four times that necessary for the for- p(({aV\2 [aV\2 V2 1 1

mation of a spinless soliton. Thus, experimental generation L=5{|==| +|==| + =z +kVZ=5V*+ Vo,
o . . 2\ dp ar p 2 3

of the spinning soliton is expected to be harder than of the (20)

zero-spin one, but not impossible.

Lastly, the distribution of the spinning soliton’s field in To apply the VA to this problem, we follow the wofk] and
the plane p=\&+7? 1) (i.e., a cross-section atp adopt anAnsdze assuming the separation of the variabtes
=const) for two characteristic values &fis displayed in andr

Figs. 6 and 7.
V(p,7)=U(p)sectiur), (21)

B. Ansize2: Cylindrical variables where the inverse temporal widjh is a variational param-

, ) ) . eter. The Lagrangiari20), integrated over the variable
We will now consider an alternative approximation for

o . MR . yields anaveraged Lagrangian
the description of essentially the same solution, i.e., the spin-

ning 3D soliton. Here, we introduce the cylindrical spa- p
tiotemporal variable$p, ¢, 7), wherep=r sinf[in terms of (Ly=—
the spatial variablesy= &+ 7%, i.e., p is the usual radial
coordinate in the transverse 2D plat® #)]. This time, a B=k+ u?/3. (23

2 2

+ —+pBU%- EU“+ Eu6 (22)
p 3 45 '
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The standard variational procedure applied to the latter La- 12:5
grangian yields the following equations for the function
U(p) [cf. Eq.(16)] and parametep:

70
/7 Leo
" Iso
L40
v o [30
VL2 e F20
[RY k EEESS 82 T L1o
! , el 3
751\ 0.00 002 004 006 008 010 012 ©
= (L) N 00 002004 005 008 010 0.
2 dp=o0. (25) |\
0o Ju

10.0 4
d2U+1dU S BU+2UR- US=0, (24
oA 2 BU+3 U=0 (29

It should be noted that the solutidhto Eq.(24) depends on

the parameteg [defined in Eq(23)], and it is determined by
boundary conditions

U(p;B)~a(B)p at p—0;

U(p;B)~A(B)p Y2exp—Bp) at p—x (26 FIG. 8. The values;, u~*, andB~ 2 defined as per, respec-

tively, Egs.(27), (30), and (23), vs k. For comparison, the curve
with some constanta(g) andA(g). k™12 s also shown.

Using the notation

. asymptotic expression®6)]. Such a difference is possible
SJ(B)EJ U3(p:B)pdp, j=1,2,3, (27) be;cause of a fgs_t increase of the asymptgtic ngliA(d@
0 with 8. The minimum of the temporal widtlx™~, clearly
_ seen in Fig. 8, occurs &=0.067, whenu?= 8.
we can rewrite Eq(25) as It is now possible to evaluate the energy of the soliton, as
“[(qu\2 U2 u? 1 8 per the present version of the VA,
fo (E) +?pdp=(?—k 81+§82—4—583. ) )
(28 E(up)=27 | sech(unar | Upippdn
— 0
Also, Eqg.(24) can be converted into the equivalent form, L
=47 "e1(B). (3D
[(du)iuj B d( UdU) 5 u2+2 Ui 8 Ue
dp| " pZP T dp\ P dp P 3P 15p(29') The energy as a function d&f is shown in Fig. 5. The

minimum of the energy coincides with thatlat 0.033, pre-
- . ; dicted by the previous version of the Vighe minimum en-
After substitution of Eq(29) into Eq.(28), one should inte- . . N .

grate the right-hand side of EQ9) over p, the integral of ergy itself 1S Emi“/477~5.7)' .SO the two very differenan-
the first term vanishing due to the boundary conditi(26). sa'ze.pred|ct ﬁ'mOSt |dent|cal_ S.tab'l'ty bordgrs for the
This procedure results in an implicit functional relationshipSplnnlng 3D solitons, However, itis seen from Fig. 5 that the

X energy predicted by the cylindricAinsaze(21) grows faster
betweenu and 5. than that predicted by the spherical di®). It was possible
u2(B)=e7  (e,— 16e4/15), 30 find numerical solutions to Eq24) only for k<<0.14.

Thus, the upper existence limit for the spinning solitons as
which, considering the definition23), vields k(8)=j per the cylindricalAnsdze is slightly Iess th-z.in the above
—(£,— 164/15)/3e ;. limit knnq,=0.15 generated by the sphericdatsaze .

Using the shooting method, we have found soliton solu- The field distributions predicted by the two different trial
tions to Eq.(24) for different values ofB, which are dis- functions (15) and (21), at two different values ok, can
played by the dashed curves in Fig. 4. Note that the comparP€ compared by looking at Figs. &% 0.045,.*> ) and 7
son between the solid and dashed curves, representing th&=0.125,%< ). From these results, we conclude that the
soliton profiles as produced by the two differgdrisazein- VA predicts the energy of the multidimensional spinning
troduced abovébased’ respective'y’ on the Spherica' and Cy_SOlltOI’]S better than details of their Sh&(pete that the analy'
lindrical Coordinateﬁ makes sense at= 0, when the spa- sis of the VA for 1D and 2D solitons in the model with
tiotemporal and spatial radial variableandp coincide. Itis ~gquadratic nonlinearity led to a similar general conclusion
also noteworthy that the maxima of the slope at the origin fot 32)-
both approximate solutions are attainedat0.09.

Next, we calculated the values [Eq. (27)], « [Eq. (30)],
and, lastly,k. This allows us toegonstruct the dependencies V. CONCLUSION
ej(k), »~%(k), and B~ Y4k), which are shown in Fig. 8.
Note that the behavior of the soliton temporal wigih®  model of media with self-focusing cubic and self-defocusing
differs considerably from that of its spatial widgi Y [the  quintic nonlinearities. Numerically exact solutions for the
widths may be interpreted this way according to thesolitons without spin, and variational solutiofissing two

In this work, we sought for 3D soliton solutions in a
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different versions of the variational approximation, whichthe spin 1 and Rin the presentcubic-quintio model were
yield fairly close final resul{sfor the spinning solitons were performed by D. Mihalache, D Mazilu, L.-C. Crasovan, B.
obtained. We predict the existence of two branches in thé. Malomed, and F. Lederefunpublishedl The result is
dependence of the 3D soliton’s energy vs its propagatiomhat, strictly speaking, the spinning bullet is always unstable
constantk for both types of solitons. One of these branchesagainst azimuthal perturbations, which eventually leads to
corresponds to stable solitons, and the other to unstable oneglitting of the bullets into a set of several flying nonspinning
The region of existence of stable solitons is found to bepnes, the initial spin being converted into the net orbital mo-
slightly narrower for the spinning solitons: the bottom bordermentum of the “splinters.” However, depending on the ini-
is atk~0.033 for the spinning solitons, and kt=0.026 for  tja| energy of the spinning bullet, it may persist over a fairly
the zero-spin ones. The top existence borders almost exactp,'ng propagation distandgnany soliton periodsbefore the
coincide for both types of soliton. Comparison with the actual onset of the instability. In some cases, the quasistable-
known results for 2D vortex solitors 3] suggests that the propagation distance turns out to be so long that the spinning
top border is lowered with increase of the dimension from 2yyjjet is virtually stable from the standpoint of any possible
to 3. A noteworthy common property of the solitons in this experiment. Thus, the spinning bullets considered in the

model is that, almost irrespective of the dimensi@=2 or  present paper are quite meaningful physical objects.
D=3), the minimum(threshold energy necessary for the

formation of a soliton with spin 1 exceeds by more than four
tirT}eS the minimum energy necessary to create a spinless ACKNOWLEDGMENTS
soliton.

It still remains to test the stability of the spinning soliton ~ Useful discussions with N. N. Rozanov and F. W. Wise
in direct four-dimensional numerical simulations. are appreciated. We are indebted to M. Quiroga-Teixeiro for
Note added in proofVery recently, direct numerical the preprint of Ref[27]. This work has been supported in

simulations of the spinning light bullgivith the values of part by INTAS (European Uniohunder Grant No. 96-0339.
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