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Strong pattern selection and amplitude equation of higher order for ionization waves
in a neon glow discharge
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Motivated by recent experiments and numerical simulations of the positive column of a neon glow discharge
we investigate the Eckhaus instability of traveling waves. Compared to the classical results the plasma system
shows some peculiarities, e.g., an asymmetric stability region and strong selection of periodic patterns. These
complex phenomena may be explained by a transition from supercritical to subcritical Hopf bifurcation near
the critical point. In the weak nonlinear region the wave dynamics is approximated by a quintic Ginzburg-
Landau equation supplemented by nonlinear gradient terms. Starting from a hydrodynamic model the coeffi-
cients of this equation, which depend on the plasma parameters, are calculated. The stability properties of plane
wave solutions are discussed for an infinitely long discharge as well as for finite ones. The theoretical results
show most of the properties that are observed in real experiments.

PACS numbds): 52.35.Py, 52.80.Hc, 05.45a

[. INTRODUCTION goal of the theoretical investigations of pattern formation to
find the link between the basic evolution equations and the
The study of nonlinear nonequilibrium phenomena in spa<oefficients of the amplitude equation in question. These co-
tially extended systems is one of the very active areas igfficients contain all relevant information of the underlying
physics and other sciences. Pattern forming instabilities anthodel in the weak nonlinear region.
pattern selecting processes attract the attention of both ex- In the field of ionization waves this is motivated by ex-
perimental and theoretical investigatidi3. An example for ~ Perimental investigations on the so-caliedvaves. Already
a physical system, which shows a very complex dynamical the experiments of Achterberg and Mich&B] some char-

behavior, is the plasma of the positive column of inert gage\cteristics of the stability diagram were investigated. In re-

discharges. One observes homogeneous states, periodic p gnt experimental studi¢s4] the pecularities with respect to

terns, traveling waves, and different types of turbulent dy-t e modern theory of nonlinear systems are emphasized. The

namics dependind on oress discharge currenity, and stability diagram indicates discharge currents of stable non-
b 9 Pressure, ge « 2 7. linear wave states characterized by their wave number. Vary-
geometry[2—-4]. The topic considered here is the ionization

. i . ) ing the current stable waves can be prepared. At the critical
instability in low-pressure neon discharges that_arlses ab_ov&)int the largest wave number appears. Increasing the cur-
a critical value of the current. Mostly the theoretical descrlp-rent waves with smaller wave numbers occurs. Each one is

tion of ionization waves is investigated on the basis of acnaracterized by its own stability range, which ends at a
hydrodynamic modef5-7] in one spatial dimension. Start- gspecific current. As a rule at a given current only one or two
ing from the homogeneous state of the positive column Hop{yave modes are permitted, i.e., with respect to the current
bifurcations are the generic wave forming processes andpere is overlapping of stability regions leading to hysteresis.
moreover, different types of Hopf-Hopf bifurcations can beThe theoretical explanation may be attempted in the frame-
shown to exis{8]. Since such types of transitions occur in work of the CGLE. In the limit of very long systems the
many different physical systems, it is desirable to find uni-stability borders that mark the so-called Eckhaus stability
versal methods that allow one to extract some generic propegion in the plane of the wave number and the control pa-
erties of the considered system. rameter are given by a parabola centered at the critical wave
The description of the wave dynamics near the instabilitynumberk.. In a bounded system only discrete wave num-
border by means of amplitude equations is such a universdlers exist. The main concern of this paper is to explain the
approach. For ionization waves close to the Pupp criticabxperimentally found asymmetric stability region that
current, Bekki9] has derived an amplitude equation that hadstrongly deviates from the expected behavior predicted by
the form of a nonlinear Schdinger equation. Like this equa- the CGLE.
tion, also the Ginzburg-Landau equation is one of a few uni- There are additional facts making an extension of the
versal models describing the evolution of patterns in theusual Ginzburg-Landau description necessary. In a recent pa-
weakly nonlinear region. There is enormous literature coverper [12] we derived a modified CGLE near the border of
ing the field of the exact and approximate analytical soludonization instability in a neon discharge using the multiple
tions of the different Ginzburg-Landau modéts. [10] and  scale method. For different pressures the solutions of the
references thereinMoreover, the classification of the solu- CGLE were compared with numerical calculations of the full
tion manifold by means of numerical methods is a well es-set of balance equations. For example, in the low-pressure
tablished instrument. For example, the borders separating reegion only traveling waves with one selected mode appear,
gions of different behavior of the complex Ginzburg-Landauwhereas the CGLE predicts additionally intermittency in the
equation(CGLE) can be found irf11]. It is one important corresponding parameter regigcf. [12]). Hence a CGLE
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with third-order nonlinearity is not sufficient to describe the X, X, X,

ionization waves at low-pressure values. The aim of this con-  T;, —— = A X+ By — + Cik— T DjuXiX
tribution is to show that higher-order terms of the modulated at 9z Iz

amplitude in the CGLE may explain these peculiarities ob-

served in numerical simulations of the full set of balance + QX a_XIJFE_ X
equations and in real experiments. The amplitude equation in A il
guestion is a quintic CGLE supplemented by nonlinear gra- .

dient terms, i.e., " Xm
+ GjiamXiXi Xm+ Hjiam XX ey

X, Xy IX
—+Fyy— —
972 K9z 9z

IA A PA
e UA— D — 4+ D —— 4+ CA* A2+ dA*2A3 IX; X,
p MA Vg 7z b 7 CA* A+ dA*“A +ij|mxkE_(9z , (2.1
_dc JA*A  Jc .
tlaziopl JA———io ) ATA—, (1D where X,=Xy(z,t) represents the four-dimensional wave
0 0 vector and a summation is to be understood as one over
repeated indexeg (k,l, . ..=1,2,3,4) unless the contrary is

whereA(z,t) is the slowly varying amplitude and the coef- explicitly stated. The row vector components

ficients (except for the group velocity; and the unfolding

parametei) are complex numbers. It is the main technical (X)T=(u,m,v,w)

task of this paper to derive the dependencies of these coeffi-

cients on plasma parameters. Compared to the standard ) N )
CGLE of third order, the nonlinear gradient terms break theare related to the radial averaged densities of charge carriers
reflection symmetryz— —z. This symmetry breaking pro- N,_metasta_ble. atomh?l, the electron temperatufg and the
vides an asymmetric stability region near the critical wave@Xial electric fieldE, i.e.,

number[15] and influences the dynamical properties of lo-

calized solution$16]. The termv4(JA/3z) breaks this sym- N—N, M—M, T-To E-E,

metry, too, but it can be removed by transformation to a U= N ' M=y vT y W=
moving reference frame. To our knowledge, the investigated 0 0
plasma system is the first one, where the strong selection of

periodic patterns is observed in experiments and numericalenote the relative deviations from the homogeneous equi-
simulations and is correctly described by a fifth-order ampli-librium state Ng,Mq,To,Eo) [7]. The space and time vari-

tude equation. ablesz’ andt’ are transformed into a dimensionless form by
Starting from a set of basic evolution equations in Sec. Il,

we derive(1.1) in Sec. lll. Some results concerning plane E 2

waves and their stability are discussed in Sec. IV. Finally we 7=27' t= b, Oy,

discuss the validity of the results obtained. To To

where the electron temperature of the homogeneous Ffate

is measured in units of voltd; is the mobility of the ions.
The hydrodynamic description of ionization waves in the = The coefficients of the linear terms are given by

positive column plasma of a dc discharge is well accepted

provided that the pressure is not to low. Starting from the set

of balance equations for the density of electrons, ions, meta-

stable atoms, and the electron temperature and using some

physically motivated approximatioriZ], one finds a system

of four nonlinear partial integrodifferential equations. The

integrals arise from the coupling of the discharge through the

external circuit, i.e., the voltage applied and the external re-

sistanceR, [7,8]. In this paper we restrict our study to the 7 Y

limit of a very large external resistanc®{— o). Experi-

mentally this can be realized by a discharge driven by a (Ay) =

current sourcécf. [14]). The limit R,— has the advantage .

that the basic equations reduce to partial differential equa- 1 0 0

tions, i.e., all integrals drop out and calculations are simpli-

fied. Although the external circuit is important for the under-

standing of the bifurcation behavior of ionization waves

[7,8], its influence on the solution manifold of the amplitude

equation is rather weak, at least in the considered region of (Bjw) =

plasma parametefd.2]. In the limit R,— e the set of basic

equations can be written as

II. BASIC EQUATIONS
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points, the real part of the coefficient of the nonlinear term in
the Hopf normal form equation goes through zero. This type
of degeneration is a necessary condition for the introduction
of higher-order terms into a Ginzburg-Landau-type modula-
tion equation15,17.

The structure of Eq(2.1) is sufficiently general in order
to describe different physical systems, too. The coefficients
Ajc, - - . Ljum contain the particular properties of the sys-
tem under consideration. Therefore, we shall derive the
higher-order amplitude equation as general as possible and
the link to the special plasma system will be made at the end
of our considerations.

Ill. DERIVATION OF THE AMPLITUDE EQUATION

For clarity, a brief survey of the perturbation theoretical
method is giver(cf. [12,18). Let ¢ be the small expansion
parameter defined by

() p,=133Pa
(i) p,=160 Pa | |
_ 0 -
(!u) p,=187 Pa £2= C’ (3.1)
(iv) p;=213 Pa lc
(v) p=240 Pa

where the discharge currentis the control parameter argd

2 3 4 5 6 7 8 its value at the critical point. Then the wave vecky is
k expanded in a power series with respectto
FIG. 1. Instability curves op waves parametrized by selected ®
pressure values. The homogeneous state becomes unstable above Xp= > e X(@=eXM+e2XP+. .. (3.2
these curves. The transition to the unstable region is connected with a=1

a subcritical(black circle$ or a supercriticalsolid line) Hopf bi- ) ) ]
furcation. (Discharge radius,=1 cm and the dimensionless wave and each of these terms is represented by a Fourier series
number k is normalized with respect to the equilibrium data

To/Eo). x§“>=NE XON(r,&)expiN(kz—wt). (3.3
a 0 B O
D 0 O The basic pair ¢,k)=(w.,k;) corresponds to the critical
(Ci)= (2.2 mode that becomes unstable at the minimum of the instabil-
—6 0 -5, 0 ity curve. The Fourier coefficienté(®’N are weakly varying
0 0 0O O functions of space and time, i.e., they depend on stretched
variables
The coefficients of the nonlinear terni , . .. ,Ljgm can
be found in the Appendix. Note thatyy, ...,7s; r=gt, é=g(z—ut), (3.9
hy, ... hg; 09, ...,08; @and pq, ...,p1o are coefficients

that result from a series expansion of the production and losghere v is a free real parameter. Since the coefficients
terms up to the third ordefct. [7,8]). In contrast to the ki- 7, hy, o, pn, @andD depend on the discharge currépt
netic coefficientsy, 8,8y, . . . .6, andx, which are assumed (see[7] for their definition3, they also depend oa. This
to be constant numbers, these parameters depend on the dependence can be approximated by a Taylor expansion near
tual equilibrium solution, e.g., on the curreiyt The series the critical point (¢ ,k;), €.9.,
expansion of the production and loss terms up to the third
order is an approximation. Since collision rates are calcu-
lated by using empirical formula&f. [7]) terms of fourth
and fifth order do not improve the precision of the results.
Therefore(2.1) is our basic system and no further expansionHere the prime stands for the partial derivative with respect
terms of higher-order nonlinearity will be included. to £2 and 0 indicates the critical point {,k;). The same

In order to motivate the necessity of using Ef}.1), itis  expansion is used for the coefficier@s,, Djy, andGjm -
instructive to look for the bifurcation typeub- or supercriti-  The remaining coefficients do not depend ensince the
cal Hopf bifurcationg along the instability curve of the  kinetic coefficientse, 8, §;, and« are constant numbers.
waves. Figure 1 shows the results of such calculations for Substituting all these expansions up to the fifth order with
various values of the gas pressysg These diagrams are respect to the small parameter into the basic equat@ris
obtained with the methods described in H&f. A transition  and equating the coefficients of equal powerdkads to a
between sub- and supercritical behavior can be observed nelaierarchy of linear inhomogeneous problems. The corre-
the minima of the instability curves. At these transition sponding equations can be solved by means of elementary

1
Ajk:Ajk|0+82Ajk|0+ 584Ajk|0+"'. (35)
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methods, however, the evaluations involve tedious algebra

and therefore we report here only selected results.

A. First order of perturbation theory

Because of the properi®N=(X{*)~Ny* only the mode
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Qj(2w,2k) Y(P?= (92 (3.1

and the inhomogeneity can be calculated by

m22=[Djulo—K3(Ejia + Fji) +ikQj1YkY .

numbersN=0 are relevant to our considerations. We defineThe problem associated with the mode numier1 can be

the mode-dependent linear operafdy, by

Because the Fourier modes form an independent system
functions, the first order irz yields an infinite system of
homogeneous equations with a solution

X(M0=0, X(MN=0 for N=2,

1
Mo
Vio
Wio

XM=dy(6,0)Y, (Y= 3.7

The component¥, fulfill the homogeneous equations

and their explicit solution form can be found [ib2] for our

plasma system. The evaluation of the dispersion relation

det(2j,) =0 yields the instability curves of the linear theory
(cf. Fig. 1 and see alspl2]). We note thatd,(&,7) is an
arbitrary amplitude function that will be fixed at orde?.

solved explicitly,

P, Y
=1 (2)1_ N |
N=1: X DY —i 9 9K’ (3.12
Where(bf@z(g,r) is an unknown amplitude and, more-

over, this order fixes the free parametem (3.4) to be the
group velocity of the wave at the critical point

Jw
VEUgT | (3.13
0
The N=0 mode yields

N=0: X@=@prp, y@P° (3.19

with
Q(0,0 Y= 7(?° (3.15

and

1(2)0: iIKQi (YEY =Y YF)+[Djilo+ KA(Fjii = Eji) ]

X(YEY + YY), (3.16

This is a typical property of the perturbation method used. AtThe solution of(3.11) and(3.15 can be found by means of

any ordera a new amplitudeb ,(&,7) is introduced for the
N=1 mode, which will be fixed by means of a partial dif-
ferential equation at ordez+ 2.

Taking into account the usual Hermitian scalar product

<\?|>Z>:Y’|f Xk

the solution of the adjoint homogeneous problem can be

found as
XPI=w (&7 YR, (3.9
where

T d_
Qjyi=o

Kramer’s rule or other standard methods.

C. Third order

Nontrivial solutions exist forN=3,2,1,0 and all other
mode number&N=0 yield homogeneous systems that have
the trivial solution only. FoiN=3 one finds

N=3: X®3=(d,)3Y®3, (3.17

whereY{®? is independent og, r and fulfills the inhomoge-
neous equation
Qk(30,3K) Y3= 733 (3.18

with

and ¥ is an arbitrary amplitude. Furthermore, we choose

¥ =1 without any restriction. The explicit solutio‘fi‘,;ld can
be found once more ifl2].

B. Second order

To this order the mode numbelks=3 provide the trivial
solution. Hence, we consider the solutionsNb+ 2,1,0 only.
A more extended version of the second-order calculation i
given in[12],

N=2: X@?=(d,)>v?? (3.10

where

7%= [Djlo— 2KF g J(Y, Y(D2+ Y2%Y))
+ikQy(2Y, Y[+ Y(I2Y) — KB (4Y, Y(?)?
+ YY)+ Gjuimlo— K2(Hijam+ Likim) 1YY, Yo

The inhomogeneous system correspondingNte2 can di-

gectly be solved by means of the second-order solutions and

one finds

ad, Y (P?

g€ ok -
(3.19

N=2: X{?=2d,d,YP?—id,
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The modeN=1 requires a special consideration. The corre-
sponding inhomogeneous problem has nontrivial solutions
only if a Fredholm alternative condition is satisfied. This
solvability condition leads to the CGLEEf. also[12])

b, PP o
szq)]ﬂ'b 5%2 +cP] D1, (3.20
where the complex coefficients are given by
Jw i Pw Y]-ad* 7TJ(3)1
=—i—| , b=z—| , c=———
P dge?|, 2 9k?| Tim Y3 Y,
(3.21

and the componentsj(s)1 can be found in the Appendix. The
explicit solution of theN=1 mode can be written as

P, JY; aY; 1d*d, °Y

(3)1_ IR BEP: S Bl |

O R R P PR 9E K2
+ T DIV, (3.22

Here ®3=®3(£,7) is a new unknown amplitude andg>*
solves the equation

Qix(w K YI'= 7 —cTyY,. (3.23

B. BRUHN AND B.-P. KOCH

PRE 61

771(3)0: (vgTjkt Bjk)Y(k2)0+ i[Djilo+ KA (Fjii—Eji)]

Yy oYy _
X ka+wY| +[Q]k|+2|k(ij|
. vy avYy
~Ej) IV YT +KQjua| Y = — Y-

(3.29

Note thatm{>)° is a complex valued inhomogeneity, whereas
X(3)° represents a real valued solution. Without proof we
give the following connection between the solutions of the
second and third order fad=0:

Y(kZ)O

ak :(Y(k3)0)* _Y(k3)O,

—i
which can be used to check a numerical solution.

D. Fourth order

In this order it is sufficient to look at the mode numbers
N=0,1,2 only because the higher-order nontrivial modes
(N=3,4) do not contribute to the calculations of the nonlin-
ear gradient terms and the term of fifth powe«1n1). More-
over, forN=2 andN=0 a particular(iincomplete solution
is discussed, which simplifies all our calculations. We find

Of course, this inhomogeneous problem fulfills the solvabil-

ity condition by taking into account the definition afby
(3.21). The solutionY{*)* strongly depends on the properties
of the special matriX);(w,k). In the case of our plasma
system the rank of);, is three at least in the considered
range of plasma parameters and therefore the solution can
found by Y{?'=0 and

ak®~ 7o /K] BK?— 17
T 74 Dk*~ Ne—lw s
1—6,k? hy h,—ikk— 6,k?
YON [ aPecy,
x| YO =| 7f-cY, (3.24)
Ygsn 71_ge.)l

N=2: X=X (®,)%YP?+..., (3.28
where the dots indicate further terms, e.g., terms that contain
a derivative ofd; with respect tc¢. But all these additional
erms do not contribute to the fifth-order-term calculations.
The vectory{Y?in (3.28 is a solution of the inhomogeneous
equation

Q20,20 Y(V?= - 2cT, YP?+ 72, (3.29
where the inhomogeneity results from all terms ¥ (P,)3
andc is defined by(3.21). The explicit form of7{*)? can be
found in the Appendix. In a similar manner one obtains for
the N=0 mode a particular solution

N=0:

XM= (@F @ )2y . .. (3.30

This subsystem has an invertible coefficient matrix and can

be solved by means of Kramer's rule.

The last step of the third perturbation order requires the

study of theN=0 mode. The solution can be written as
N=0:

*

1210
X0 (0105 + Bo@]) YD+ by 2

ID,
O (Y0, (3.25
where the complex vector{>)° is a solution of
Q(0,0YP°=7{30 (3.26

with the inhomogeneity

and

k(0,0 Y= — (c+c*) T YP0+ 7M°. (3.3)
This inhomogeneityr{* is given in the Appendix, too. We
note that the first term of the right-hand side(8f31) results
from a term—T; (X% 7). InsertingX{?)° given by Eqg.
(3.14 and using(3.20 by taking into account3.30 pro-
vides the desired structure. Of cour$g,29 and(3.31) can
be solved by means of a standard method.

In a next step we look for the solvability condition of the
N=1 mode. After elementary manipulations one finds

9D,

(DT P,)
Fralalil ab, ————

29

ac| APTD3)
'%0 9
(3.32
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where the constard is defined by At this stage, the reconstruction of a general amplitude
function ®(¢&,7) is possible, which contains the contribu-
y PVRCL tions of successive ordef49]. Let
YJ * 7TJ( ) +|T
A= _ 0 (3.33 D(E,7)=D1+ePy+e’Dgt -
TImYI *Ym

and taking into consideration the evolution Ed$.20),

and the components of{*)! are listed in the Appendix. The (3-32, and(3.39 one finds

dots in(3.32 indicate further terms that are lineardm,, for ® 20

example, terms of the ;ype)(azq)zlagz) or c(did} a—=p®+ba—+c<D*<I>2+s
+2®5®,®,). These additional terms correspond to the J7 9&?

variational equation of3.20 with §®,— ®,. Therefore the

ac
a I(?k

) ID* O
o/ 9

Fredholm solvability condition yields a linear inhomoge- —iE q)*q)@_l_ 4 e2(dd* 23+ )
neous partial differential equation that fixes the second am- ak 0 dE '
plitude ®,. The inhomogeneity is formed by terms that con-

tain the first amplitudeb, and their derivative$cf. (3.32)]. (3.37

Beside the nonlinear gradient terms there are two additiona}l

: e., the usual CGLE with cubic order nonlinearity is a first
linear terms of the type

approximation only of the wave dynamics of the full system
near the instability border. The additional terms describe fur-

L &3¢1+e& ther details of the dynamics, for example, tB¢s) terms

9E3 d€ break the reflection symmetrg— — ¢ and theO(e?) term
models the influence of higher-order nonlinearities. From the
with coefficients mathematical point of view it is not quite clear whether such
type of perturbation theory yields convergent results. We
1 e Pw shall show in Sec. V that the additional terms produce some

= — =- . (3.349  peculiarities we have observed in real experiments.

6 o3|, dkde?| Finally, we return to the original space and time variables

~and introduce the amplitude functics (¢, ) =A(z,t) to
However, as Eckhaus and lodds] have shown, these lin-  fjnd

ear terms can be shifted to higher-order corrections by means

of a rescaling in the degenerated césfe also[17]). There- A 5 A A .
fore the nonlinear gradient terms are the only important con- e e?pA-vy -+ b— +cA* A%+ dA*?A°
tributions for our purpose. 9z
£ Fifth ord . Jc ZJA*:& dc N*"A&A
. Fl oraer a I% . 7 IW . E

In this order it is sufficient to examine thgé=1 mode
only. The solvability condition of the corresponding inhomo- A phase rotation
geneous problem yields a linear partial differential equation
for the third amplitudeb (&, 7) that is introduced in the third A(zt)=exgis?pi)A(z,t), p=p,+ip;
order of perturbation theorjcf. (3.22],

removes the term-p; and we obtain
b3

C+dDFED3+ (3.39
a7 A, In  PPA ) -
—=e"pA—vyg—+b— +CA*A+dA* A
where ot 9z iz
ac JA*A  dc A
adsr _(5)1_ [~k Cv(3)1 = AN it YN N
e Yi o [ (cad:ch)TJkYk ]. (336 +|a - o) g OA Aaz’ (3.39
TImYI Ym

which is the final form of the amplitude equation with the
The dots in(3.39 indicate a lot of terms linear i®;. Some  unfolding parameter
of these terms depend oh; and ®,, however, we have
written the most important inhomogeneous term only. The e
components ofr{>* can be found in the Appendix too. The H=Pre™=pPr
calculation of the inhomogeneities{*?, ... 7" is very
intricate because the number of terms very strongly increaseghe coefficients can be calculated by mean&atl), (3.33,
with the number of the perturbation order. Moreover, any ofand (3.36). Since the inhomogeneitiesj(“”\' depend on the
these termgcf. 7{>* in the Appendix contain some sum- solutions Y™ with B<a, a successive evaluation of all
mations over the vector indexes that must be performed foinhomogeneous problems must be performed at the critical

the concrete physical system. point.

IO_lc

(3.39

le
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IV. CONSTANT AMPLITUDE SOLUTIONS aries of the stability region close 6 more precisely, we
AND THEIR STABILITY perform an analysis without the restriction to small values of
k—k. andc, . This analysis is made by means of the varia-

In this section plane wave solutions of the amphtudetional equation corresponding (6.39

equation(3.38 of the form

A(z,t)=Rexpi[(k—ko) ]x+Dg], Xx=z—(vg+ujt J6A 96A  9?6A
(4.1) 7=82pr5A+uW+b e +C(A25A* + 2A* ASA)
are examined, where, R, and® are free real parameters. c J
Splitting the complex parameters into real and imaginary +la—i—| ||A—(ASA* +A*SA)
b=b,+ib;, c=c,+ic;, d=d,+id;, a=a,+ia; KPP L N .
4.2 +OA—(A*A) | =i i A* A OA+(ASA

and inserting4.1) into (3.38) yields two real algebraic equa- 9
tions that determin® andu (cf. [20]). The wave amplitude +A* 5A) &A
can be written as

+d(2A3A* SA* + 3A*2A%5A),

where A(Xx,t) represents a small perturbation of the ampli-
tude. Inserting the basic soluti¢d.1) for A and taking into

Jc,
¢+ (k—ke)—p-

R2= — 0_\/K consideration the complex conjugate variational equation
2d, yields a two-component vector differential equation. This
i equation can be simplified by means of a unitary transforma-
wit tion U of the type used if12] and we find
+(k—k )ac’ )2
Cr+(k=ke)= S 9 ac| | o
ak 2 — k)2 1 i “
o/  &°Ppr—b(k—k;) —=|b,—+|u—2bj(k—k)+R?—| |—|1S
A= - . (4.3 at " ax2 ! ¢ ok | | ax) 7t
ac? d, 4.9 x 0
. . , . 9? | | a\ .=
This wave represents a real solution above of the instability +| bj—+|2b,(k—k.) —R2—~| | —|KS,
border of the linear theorg?p,=b,(k—k.)?. Additionally, X2 K || %
there is an existence segment in the’, ,k—k.) plane p
bounded by the parabolaA=0 and the linear instability +2R2 cr+2R2dr+(k—kc)i
curve. We would like to note that these two parabolas are ak
tangent at the point 5
Ci ~ >
c, brCrZ +la,+ W , &) MS,
(k=k)==—7 & P=T T2 (4.9
- _r ac;
o | ( ok |, +2R? ci+2R2di+(k—kc)W i
There exists a second solution f&f with a positive sign ac, | 19\ -
in front of the rootyA within this segment. But this second Hai— | || PS (4.5
solution is unstable as Eckhaus and looss have sha®in 0

Hence we investigate the stability properties of the first so-
lution (4.3 only. There is a main result concerning its sta-where the matrix operators are defined by
bility [15].

For sufficiently small values ofk—k.) andc,, stable _ /1 0\ . (0 -1 . 1 00 . (0 O
solutions of the typ&4.3) can only exist in a small neigh- |=(0 1), K=(1 0 ) |V|=(0 0), P=(1 0),
borhood of a single curvE€ in (ux,k—k.) space. The curve
I' is a branch of a parabola that starts at the critical point.

This phenomenon is denoted as strong pattern selectioﬁ‘,nd
i.e., any value of the control parameter yields a unique wave
number. In a neon glow discharge, we have observed experi- oA
mentally a small stability band that is asymmetric with re- SA*
spect to the substitutiork(-k;)— — (k—k.). The observed
transitions show the peculiarities of an Eckhaus instability . . > .
[14]. The same behavior is found in numerical simulations of The stability properties 0§, can be studied by means of
the full set of balance equatiofil]. The width and the form € ansatz
of the stability band strongly depend on the plasma param- . . R
eters, e.g., on the pressypg. In order to find these bound- Si(x,t)=[Xcoggx)+Y sin(gx)]exp(At),

):Oél
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whereX,Y are constant two-dimensional vectors anig an ~ Sinceg”=0 one also has the equivalent conditions
arbitrary wave number. Inserting this ansatz o5 we

obtain a fourth-order algebraic equation that can be factor- a,>0, P(q)>0, (4.9
ized resulting in

A2+ (ag+ib) N+ (ag+iby)=0. (4.6)  which are also applicable in the cage>0. Of course(4.7)

can be discussed numerically, if the discharge lerigif
The real coefficients, ,b;,a0,by can be found in the Ap- finite and therefore a lower limit of the wave number of the
pendix. Note that4.6) has the same form but different co- perturbation exists. In an infinitely long system the stability

efficients as in the case of R¢fl2]. Therefore we can use against arbitrary long wavelength disturbances., g—0)
the corresponding stability conditioitsf. also[22]) can be studied by means of

a;>0, P(q)=a%ag+(a;h;—bgy)by>0 <« stability.

Jc
4.7) lim a, =~ 2R?| ¢, + 2R?d, + (k—ko) 5 >>o,
For a discussion of the long wavelength perturbatigns -0 0
—0, it is reasonable to introduce the rescaling transforma-
tion limP(q)>0. (4.10
q—0
~ 8 ~ by - by - ~
a=—,, bo=—, by=—, a;=a; = P(a)=9°P(q). I .
q q q After elementary substitutions the second conditiri0
(4.8 can be written as
|
&Cr &Ci
—2R?| b,| ¢,+2R%d, + (k—ko)——| |+bi| ¢i+2R%d;+ (k—ko)—
K|, K|,
&Ci
i+ 2R%d;+ (k— ko) =
2R?| 2, (k—k.)— R22S" oy L% x
r(k=ke) K |, & Tk o &k o ) ac,
c,+2R dr+(k_kc)ﬁ
2 &Ci 2
P 5 ci+2R di+(k_kc)m
—| 2b,(k—ko) — R2— 1+ 5| >0, (4.11)
aK |,

Jc,
c,+2R2dr+(k—kc)W

whereR? is defined by(4.3). Equation(4.11) can be consid- where the tilde quantities ar®(1). Inserting the assump-
ered as a functiorf(k—k.,u)>0 sinceR? depends ornu tions (4.12 into (4.11) and considering the resulting expres-
=g?p, and k—k.). There are two marginal cases, wheresion as a power series with respect to the small pararagter
(4.17) reduces to well known results. Without proof we note one finds
that in the limit d,,d;,a,,a;,dc,/dK|q,dc;/3k|,—0 the

stable band of the usual CGLE aris@®e, e.g.[23]). The

2

second case yields the stability curl/efound by Eckhaus 2| 2 ~k_~2ﬁ
and loosq15]. Let the magnitude o€, andk—k. be suffi- ! ' ak |,
ciently small by 0<- Jo 12

~ = ~%r

Cr+2R2d,+kW 0)

c,=¢C,, k—k.=¢k. (4.12
B2 T _ 529G 2
+¢g| —2bic;R°+ 2b,k—RW (+-+)[+0(&%).
0

Then by taking into accourié.3), the amplitude of the wave
is small, too,

(4.13

The dots indicate some terms that are not important in our
R2=¢R?, discussion. The first term on the right-hand side is negative
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TABLE |. Dependence of the coefficients of the amplitude equation on the presgure

JC; dC;
Po (Pa) Ug b, b; Cr Ci K . K . a, q; d di
160 —0.192 0.0917 -—-0.0156 —2.220 10.1 —-6.63 4.90 —8.50 3.39 —329.2 —2203.2
187 —0.139 0.0740 -—0.0142 —-0.776 511 -—-3.59 2.53 —4.64 —0.363 —111.1 —744.4
200 —-0.127 0.070 —-0.0112 —-0.593 4,09 -—284 1.88 -3.70 —0.678 —70.6 —491.0
213 -0.120 0.0676 —0.0079 —0.529 343 —-2.32 1.47 -3.11 —0.759 —47.1 —344.8
240 —-0.115 0.0653 —0.0018 —0.526 264 -—-1.70 1.04 —2.47 —0.750 —-23.9 —195.4
267 —0.115 0.0646 0.0036 —0.559 221 -1.38 0.849 —-2.17 —-0.724 -14.1 —-126.1
293 —0.119 0.0650 0.0084 —0.595 196 —1.20 0.758 —2.02 —0.716 —9.54 —89.1
320 —0.123 0.0656 0.0128 —0.628 181 —1.09 0.714 —1.95 —-0.724 —-7.22 —67.2
347 —-0.129 0.0666 0.0170 —0.662 1.73 —-1.04 0.697 —1.93 —0.743 —5.96 —-53.4
373 —0.136 0.0680 0.0211 —-0.699 1.69 -—-1.01 0.694 —1.94 —-0.770 —5.23 —44.1
400 —0.144 0.0696 0.0252 —-0.739 1.68 —1.00 0.702 —1.98 —0.803 —4.79 —37.6
427 —0.152 0.0713 0.0294 —-0.783 1.70 -1.01 0.717 —-2.04 —-0.841 —4.52 -329
453 —-0.161 0.0731 0.0338 —0.833 1.73 —-1.02 0.738 —-2.12 —0.884 —4.34 —29.5
480 -0.171 0.0751 0.0383 —0.889 1.78 —1.04 0.764 —-2.21 —0.931 —-4.21 —-27.0
507 —0.181 0.0772 0.0431 —-0.951 185 —1.07 0.794 —-2.32 —0.984 —4.11 —-25.1
533 —0.192 0.0793 0.0481 —1.02 193 -—-111 0.827 —2.44 —-1.04 —4.00 —23.7
560 —0.204 0.0815 0.0534 —-1.10 202 -—-1.14 0.864 —2.58 —-1.10 —3.89 —22.7
587 —0.216 0.0839 0.0591 —1.18 213 -—-1.19 0.905 —2.73 —-1.17 —-3.75 —-22.0
1200 —-0.723 0.323 —0.352 —1.56 1.62 —2.68 —0.225 2.20 —1.59 —-9.11 1.67
and therefore the stability condition can only be fulfilled for Jc, 2
all sufficiently small values ot >0 if this term vanishes, I: 4b,s[(k—ko)—k,1°+p; K ) (e2—25)=0.
i.e., 0 4.18
~ ~ acr . . . . .
(Zb,k— Rz(g—k )=O. (4.14 A detailed discussion of the properties of this curve can be
0 found in[15].

Since we are interested in the boundaries of the stability
Here we have assumegt 0. Moreover(4.13 reduces to  phang around”, a numerical evaluation d#.11) is possible
- in all cases in which the restrictidd.12) fails. We report on

0<e[ —2biciR*]+0(&?) selected results concerning the ionization waves in the next

) » o ) section.
i.e., an additional condition arises by

b;c;<0. (4.15 V. DISCUSSION OF THE STABILITY PROPERTIES
OF IONIZATION WAVES

Rescaling(4.14 according to(4.12 one finds In order to predict the stability properties of ionization

waves in a neon glow discharge we have to solve two prob-
=0. (4.16 lems. In a first step one has to calculate the complex coeffi-
0 cients of the amplitude equatiai3.38. These coefficients
contain all information on the special plasma system that is
relevant to the wave dynamics in the weak nonlinear region.
The dependence of these coefficients on the plasma param-
1 eters, e.g.pg Or rg, is not easy to discuss because some
intermediate steps, such as the solution of inhomogeneous
o systems, must be performédf. Sec. Il). Therefore, these
coefficients were determined numerically by solving the in-
)2 homogeneous problems discussed in Sec. Ill for selected

ac,

2b,(k—k)—R? K

This equation defines the stability curte Using similar
abbreviations as Eckhaus and 109%5]

ac,
Ko=Crl Zic

pressure values and a fixed radiys=1 cm. The results are

shown in Table I. We observe a strong variation of some of

) the coefficients(e.g., a,, d,, andd;) as the pressure in-

) 1 (417  creases. These coefficients are large in the low-pressure re-
gion py<250 Pa. Taking into consideration the amplitude
equation(3.37 found by means of perturbation theory, we

we find after simple calculations expect that the additional nonlinearities are very important in

[ Yac,
ST\ 29k

2 ko [ dc
) +d,b, k, = — °< '
0

4s &ko

2

_ bikj ( ac,
®x " 4ps

oK |,
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FIG. 2. Stability band of an infinitely long dischargepo( FIG. 3. Stability band of an infinitely long discharge(
=200 Paro=1 cm) calculated from conditiofd.11) and Table . —320 pa;,=1 cm) calculated from conditiotd.11) and Table I.

The solid lines indicate the boundaries of the stability region, i.e.;The solid lines indicate the boundaries of the stability region, i.e.,
outside of the band thp waves become unstable. The dashed linegytside of the band thp waves become unstable. The dashed line
marks the theoretical stability curdé defined by(4.18. k is the  marks the theoretical stability cundé defined by(4.18. k is the
dimensionless wave number and the corresponding critical valuegimensionless wave number and the corresponding critical values
are given byk.=4.512,1.=1.736 mA, wherep,=0.254. are given byk.=3.640,1,=0.915 mA, wherep,=0.191.

this pressure range. On the other hand, we find thas  property of the stability region for this pressure value is the
small compared to other coefficierfts. a, ,d, ,d;), butitis  existence of a lower bound with respect to the wave number,
not “very” small over the whole pressure region. The essen4 e, no stable waves exist fér—k.< —0.5. In contrast, the

tial condition that has to be fulfilled by the coefficients re- Stab|||ty region of the full System of balance equations does
quires that the ratia, /d, is a sufficiently small quantity not have this property21]. The reason for this difference
[17]. For example, the following modified scaling transfor- seems to be that the amplitude equation is an approximation

mation of the full system near the critical point. The lower bound
~ ~ ~ ~ - with respect to the wave number strongly increases with
br=eb,, bj=gb;, d=¢7'd;, di=¢7'd;, ¢;=¢ec, pressure. Figure 3 shows the results in the casepgpf
- _ =320 Pa. We did not find a lower limit of the wave number
k—ke=¢ek, p;=ep;, (5.1)  for all k—k,>—3.0 and, moreover, the cunk lies per-

fectly within the band. But there is still a contradiction to the

where the wave amplitude scalesR&==?R?, can be used theoretical results discussed in Sec. IV: Inspecting the corre-
instead of(4.12 here. Inserting(5.1) into (4.11) and per- sponding coefficients of Table | we firglc;>0, i.e., there
forming a similar treatment as in Sec. IV provides exactlymust be unstable waves onlgf. (4.19]. This example
the same results, i.e., the cuieaccording to4.14) and the  shows clearly the limits of the analytical estimations of Sec.
stability condition (4.15. Therefore we expect also the IV, especially the restricted applicability ¢#.15. The sta-
strong pattern selection property in the case of our particulability function (4.11) is positive, but very small. Therefore it
coefficients. The second step of our consideration contains hard to attack by means of the mentioned type of pertur-
the numerical evaluation of the conditigd.11). Figure 2  bation theory. Our results in the casg;>0 are confirmed
shows the stability region for a pressupg=200 Pa. Re- by numerical simulations of the full set of hydrodynamic
member that the unfolding paramejelis proportional to the balance equations at selected pressure values, which yield
current deviations from the critical valldeee Eq.(3.39]. the same stability propertid21]. Moreover, also the real

In contrast to the classical Eckhaus result we find a staexperiment shows stable waves in the same pressure region
bility band of finite length that is asymmetric with respect to[13,24).
the transformation K—k.)— —(k—k;) and is bent to Increasing the pressupg, one finds a enlargement of the
smaller wave numbers. This behavior is observed in a reatability region, which finally yields a loss of the strong pat-
neon discharge and the corresponding transitions betweedarn selection property. Such a situation is presented in Fig. 4
the stable and unstable regions, respectively, are identified &sr p,=21200 Pa. Note that one observes the so-cafled
an Eckhaus-type instabilityl 4]. We would like to note that waves[25] at this pressure value near the instability bound-
a similar stability band has been observed already by Achtary. Although the curvé' exists in this casetyc;<0), it has
erberg and Miche[13] in experiments, however, they could no practical meaning because the stability region fills a large
not realize the essential nonlinear nature of this phenomenoportion of the @, k—k.) plane. The stability region is simi-

For all sufficiently small values gk andk—Kk. the curve lar to that of the cubic order CGLE, which shows that the
I' lies within the stability band, but fok—k.<—0.3 we  higher-order nonlinear terms are not very important for these
observe an increasing deviation. This is not surprising sinc@lasma parameters. Moreover, the applicability of the degen-
the stability curvel’ is an approximation. An interesting erate modulation equation is doubtful in this case. A correct
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0.4 N

0.040 ~ p,=200 Pa
\ 0.035 - n=29 L =60 cm
0.3 1 0.030
0.025 -
0.020 -
0.015 -
04 4 0.010 -

0.005 -

p,=1200 Pa 0.000

T -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
k-k,

0.0

. . oo . FIG. 5. Stability bandsolid lineg and sets of stable wave num-
__FIG. 4. Stability regionabove the solid lineof s waves in an  porqyertical lines with corresponding mode numbest p waves
infinitely long discharge f§o=1200 Par,=1 cm) calculated from ., o system with lengtih. =60 cm (py=200 Pa,r,=1 cm) calcu-
condition(4.11) and Table I. The dashed line marks the theoreticahated from condition(4.7) and Table I. The critical values are the
stability curvel’ defined by(4.18. The corresponding critical val- same as in Fig. 2.
ues are given bk.=1.092,1.,=1.039 mA, andp,=0.368.

=200 Pa restricts the number of observable stabieave
deSCI‘iption must include the two additional linear terms Ofmodes_ For examp|e, there are Only two stable modes in a
the fourth perturbation order. We have estimated the Coefﬁdischarge of length. =30 cm atp,=200 Pa. This number
cient f according to(3.34 and found the ratigf|/|[b[~0.3.  of stable modes increases as the pressure increases for a fixed
This means that the results of Fig. 4 are correct at least fogischarge length. Figure 7 shows the corresponding stability
sufficiently small values of K—kc). In order to study the pand in the case gf,=320 Pa. This seems to be the typical
influence of a finite length on the stability propertiespf  sjtyation as observed in real experimefit8,14). Starting
waves, we have performed some additional considerationgyith a stable wave mode the Eckhaus instability appears by
In a finite column only a discrete set of wave numbkrs jncreasing or decreasing the currépt so that the stability
=kn=2mn/l (n=1,2,...) can beealized. This means that pand is left and a transition to the neighboring stable wave
due to the strong pattern selection one finds a subskt of mode occurs. Since there are overlapping stability intervals,
with finite intervals of control parameter values where theg hysteresis is observed if the current is varied. This effect
waves are stable. Of course, the width of the intervals igannot be described by means of the usual cubic order CGLE
affected by the actual plasma. parameters. Whether or not th%cause the resumng Stabmty region is bounded by a pa-
neighboring intervals overlap strongly depends on the widthahola that cannot be left by increasing the control parameter
of the Stabl“ty band and on the realized wave numbers of th?the currentl O)- As a consequence the observed hysteresis

system. Moreover, if the discharge has a finite lengte  [14] is an important argument for the necessity of using an
lower limit of the wave numbeq of the perturbation exists, amplitude equation of higher order 6339.

which is given by

0.040 4
Umin=27/1. (5.2)

0.035
In this case the stability conditiorig.10 and(4.11) are not
applicable since they are based on the ligait 0. Of course,
we can use the general conditigh7), where the substitution 0.025 -
g—Jmin Must be made. Then the polynomia(q,,;,) de- B
pends on the lengthand can be studied by means of nu-
merical methods. The results of two different lengths are o.015 |
represented in Figs. 5 and 6 for a presspye 200 Pa. Here
we have marked the set of realized stable wave nunihgers
=2an/l by vertical lines. Note that the length of the dis- o005
chargelL is connected to the dimensionless lengithy a
factorEqy /T, [7], whereEy andT are the equilibrium values
of the electric field and the electron temperature, respec:
tively. The principal shape of the band remains unchanged as
the lengthl is varied (cf. also Fig. 2, but one observes a kG, 6. Stability bandsolid lineg and sets of stable wave num-
minor enlargement of the stability region as the length of theyers(vertical lines with corresponding mode numbeo$ p waves
discharge decreases. We expect that this relatively small efn a system with length. =30 cm (py=200 Pa,r,=1 cm) calcu-
fect cannot be observed in a real neon discharge. On thated from condition(4.7) and Table I. The critical values are the
other hand, the finite length of the stability band @  same as in Fig. 2.

0.030 +

0.020 ~

0.010

0.000

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
K-k,
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0.40

p,=320 Pa

031 L =30cm 0351

0.30 -

0.25 +

H 0.20 A
0.15
0.10
0.05 A
0.0 T —— 0.00
2 -1 0 -2 -1 0
kek, kke
FIG. 7. Stability bandsolid lineg and sets of stable wave num- FIG. 8. Stability bandsolid lineg and sets of stable wave num-

bers(vertical lines with corresponding mode numben$ p waves  bers(vertical lines with corresponding mode numbeo$ p waves
in a system with lengtt. =30 cm (p,=320 Pa,ry=1 cm) calcu- in a system with lengtth. =30 cm (py,=213 Pa,r,=1 cm) calcu-
lated from condition(4.7) and Table I. The critical values are the lated from condition(4.7) and Table I. The corresponding critical
same as in Fig. 3. values are given bi.=4.326,1 .=1.553 mA, wherep,=0.234.

Our last example given in Fig. 8 shows the possibility of s her horder of the stability band at certain parameter sets a

finding nonoverlapping stability intervals of the control pa- supercritical bifurcation may appear. In this case one ob-
raTeter(e.g., mociemz 12 andn=13). On the contrary at  ggryes a stable long wavelength perturbation, whose ampli-
Po=320 Pa and. =30 cm(cf. Fig. 7) one finds one overlap ,qe increases proportional to the square root of the current
only. The nonoverlapping is accompanied by unstable wavg,crease. Hitherto such bifurcations have been found in
dynamics if the discharge currerj is choosen in the gap Rayleigh-Bmard convectiofi26] and in hydrothermal waves

between the two neighboring stability ranges. In such casg$7]. The theoretical analysis can be accomplished starting
one observes irregular transitions between two wave modegym Eq.(1.1) and using the coefficients of Table I. Further

in the numerical simulation of the full set of balance edua-phenomena, which we plan to investigate, are spatiotemporal

tionsf..A numerical study concerning the pattern selecting i”intermittency and the propagation of localized solutifta.
stabilities can be found if21].

In our opinion, not all of these details concerning the
stability properties can be found also in real experiments at
the same values of the plasma parameters. However, the We acknowledge useful discussions with P. Jonas, A.
qualitative description of the wave phenomena by means abinklage, C. Wilke, and H. Deutsch. This work was sup-
amplitude equations seems to be a good instrument to undesorted by the Deutsche Forschungsgemeinschaft through

stand most of the nonlinear properties near the bifurcationSonderforschungsbereich 198: Kinetik partiell ionisierter
point. The results of this paper give rise to additional quesPlasmen.”

tions on the details of the transition from the stability band to

t_he instability region(cf. Figs. 2-8. In.nume_rl|cal simula- APPENDIX A: DEFINITIONS

tions [21] two types of the Eckhaus instability have been

detected. If one leaves the stability band by reducing the In this Appendix we list some of our abbreviations and
discharge current always the subcritical Eckhaus instabilitdefinitions. We begin with the definition of the nonlinear
is observed, where the long wavelength perturbation incoefficients of the basic equati¢8.1), where only the non-
creases in time until a space-time dislocation evolves. On theero coefficients are given

ACKNOWLEDGMENTS

Djk| :

D115=D131=p1/2, D12=ps, Dizs=p2, D11o=Din=pa/2,
D125= D135= pal2, D215=D2g1=pel2, Dazs=p7, Dazo=pao,
D215= D221= pg/2, D3og=D23=po/2, D313=Dazn=—hy/2,
D315=Da21= —h4/2, D3ps=Daz= —hs/2, Dy14=Dyar=1/2,

D3az= —hy,
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Ejk| :
Eizi=a, Eng=p, Ezn=—261, Egig=—3d, Ezz=— 62,
F e
Fi15=F131=(a+B)/2, Fa13=Fa31= — 63/2, F33s=— 05,
Qjki
Qu3=B, Quz=a.
The cubic order coefficients are given by
Gikim*
G1125= G1231= G1315= G1135= G1321= G12137 00/6, Giza3= 02,
Gi1135= G1331= G1315= 01/3, G235 G133~ G1325= 073/3,
Gi1225= G1237= G1320= 04/3, G135 G2331= G2315= 0513,
G2233= G2337= G2325= 077/3, G225 G2237= G2320= 76/3,
G3133= Ga331= Ga313= — /3, Gazss= 06, Gazzs= —hs,
G3125= G3231= G3312= G313~ G3321= G3213= — hs/6,
G3233= G333~ G332~ — he/3,
Hikim:
Ha3331:= — 61, Haiz3=Haaiz™ — 62/2,
Likim:
L3133 — 62, La3315= L3gar= — 03/2.

Next we list the inhomogeneities used in Sec. Ill. Note that all vector components and the wave number must be evaluated at
the critical pair K. ,w.)

= 2R (YR Y2 YD2Y ) = KPEj (AYE Y21 Y2+ YPOY)) +ikQu(2Y5 Y2 = Y(2Y + Y20Y)
+Djlo(Yi Y24 Y22 4+, Y20+ V(D0 + [Gikimlo— K2Hjim I (YKY Y+ YE Y Yt Y YY)
FR2Ljm(Y Y Y= YR Y Y it YiY T Yo,
2= Dy [o( Y2V PO+ YO 24 Y Y+ Y + YRV 4+ Y Y (D3) —K2E 4 (4Y POV (D24 Y, YT+ YTy,
FYO3YF +9YE Y3 — k2 (Y, Y+ YRTY = 3Y (D3 — 3V Y3 +ik Q) (2YPOY D2+ Y, Y[+ Y1y,
=YY+ 3YEY ) 4 Giaml o YO Y i Y Y0 Y Y YR 04+ Y, Y22 E 4 Y, Y Y024+ Y (D2 Y
FYPEY ot YEYP2Y L+ YEY YD) = K2H (YO Y it VY20V 4+ Y Y22V R+ 4Y, Y Y22+ Y22y Y
FYPEY 0 YEYP2Y 4+ 4YEY YD)+ KL g = YOV Y 0+ 2Y, Y22V R+ 2Y, Y Y224 Y22y Y
+Y@2YFY - 2YE Y2y —2YE Y Y22
7%= Dol VIO PO+ Vi (YD * + YT+ YE YD+ (YO Y+ Y2 YD) + (Y2 * YD+ K(Fjg — Ejpa)
XYY+ YO+ YYD (YO Y+ 4YP2(Y %)+ 4(Y22)* Y(D2) —ik Q[ Vi Y * + Yty
= YRV (YO Y+ 2V DAY P - 2V VD24 Gl ol VYT YR O YE Y YO+ Y Y0
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Y YOV YOV YA YOOV EY ot YOV Y YYDV E+ YEYFY @24 (YD) R Y Y it Vi YD) F Y
+Y Y (Y2 T K2H gl + YE YPOY 4 Y YOV R+ VD2V EYE 4 YE Y2V R +4YE Y Y24+ (YD) Y Y,
+Y (YRR Y +4Y, Y (Y2 + YO Y+ YOOVFY ]+ KL jaml 2Y5 Y2V 5+ 2Y5 Y Y2 - Y22y v
— (Y2 Yt 2V (YD) Yot 2V, (YD) * + Y20V Y+ YOV Y ],

*

Yy Yy d
(I =Djalo| YiY[P O+ YOV +i— Ky@2yiy@2 L . ) k?E Jk|<Y( OV +4i —~

*

Yi Yy
= —y@2jy(@2 ak) 2ikE;, Y22y}

(204 y@2y @20 _ L0V 212,y (@10 2 ’W* @2, iy @27

F QYT+ YITNYT) +kQja| Vi - =2 - T THIYTTY [+ 2K F | T TR —

i (2)0_ v/(2)0 (2)2y/% wv(2)2) 2 Yy Yy
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d m k

. Y
+ |k2ij|m( YkWYm—i_ YkY| W - WY|Ym

+ iijkIm(Yle* Ym+ YkY|Y:.|) - 2ikij|mYkY|Y:1.

Note that a partial derivative with respectkaneans the derivative at the critical valke k.. The last inhomogeneity is

given by

77](5)12 Djkl |O[YkY|(4)O+ Y(k4)0YI + Y(k3)1Y|(2)0+ Y(k2)0Y|(3)1+ Y(k4)2Y|* + Yakc Y|(4)2+ Y(k2)2(YI(3)1)* + (Y(k3)1)* Y|(2)2+ YE<3)3(Y|(2)2)*
+ (YE<2)2)* Y|(3)3] _ szjkI[Y(k4)OYI + Y(k2)0Y|(3)1+ Y(k4)2Y|* + 4Y; Y|(4)2+ Y(k2)2(Y|(3)l)* + 4(Y(k3)1)* Y|(2)2
+ 4Y(k3)3(Y|(2)2)* 4 9(Y(k2)2)* YI(S)S] + 2k2ij|[Y(k4)2Yl* + Y: Y|(4)2+ Y(k2)2(Y|(3)l)* + (Y(kS)l)* Y|(2)2+ 3Y(k3)3(Y|(2)2)*
+ 3(Y(k2)2)* Y|(3)3] + iijkI[Y(k4)0Yl + Y(kZ)OYI(S)l_ Y(k4)2Yik _ Y(k2)2(YI(3)1)* + 2Y>|: Y|(4)2+ 2(Y(k3)l)* Y|(2)2
—2YD3Y P2 4 3(YP2)F YD+ Gl of (Y2 * YV Y24 (Y222 VD2 Y Y (22 (D04 v D2y y ()0
YYD @24 YRRV POV - YDA YP2) Y+ YR (YD) * + Y, YA YD + Y (YDA Y (2
+Y, YROY (204 v(2I0y Y (2004 y(20y(20y 4 y{2OY(2yx 1+ YOV Y D2 VEYEY D31 VD3V Y 4+ VY (D3
F YO Y Y YEYELY L+ YEY YOI Yy vE 4y YOI 1y, Y (YO * + YDYEY 4+ Y (YO *y
Y Y YO —K2H [ 4(YP2)* Y Y224 (Y2 * Y22y 4 4V Y20y D24y (02y (200 x 4y (D)2 (D)2 v
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VY YN+ YEOYEY Y (YD Y 4 Y Y YO+ KL [ 2Y 2 Y2 Y = 2( Y2 Y Y ()2
+2Y22Y, (Y@ —o(y(22)x Y22y 44y, Y(D2(Y(22)% 1 4y, (Y(22)* y(2)24 oy(20y(2)2y* 4 oy (2)0yxy(2)2
+3YEYFYEBE_yE3yryE L 3yry@3yx vy v —vEYEly S vEy YOIy (DY YE 4y, Y@ yE
Y Y (YOO YEEY Y (YO * Y 4y, YY)

Finally we give the coefficients of the quadratic equatidré)

a;=2b,q°—2R?| ¢, +2R?%d, + (k— k)

)

+R2ar),

é’k

ak

Jc
b= —2q( u—2b;(k—ke) +2R?—
0
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2 2 2 2 9C; 2 2 2 2 Jc;i
ap=—0%b,| —b,g°+ 2R c,+2R dr+(k—kc)W —qg°b;| —b;g°+ 2R ¢;+ 2R di+(k—kc)ﬁ
0 0
Jc Jc
—_ 02 _ _p2_ _ _ap2_ " 24
q (Zbr(k ke)—R oK 0)(Zb,(k ko) —3R oK 0+2R a
aCi &Ci
—g?| u—2bij(k—ke)+R?>—| || u—2b;(k—k,)+3R?>—| +2R?, |,
ok 0 ok 0
3 2 9C 2 3 29Ci 2
bo=0°b;| 2b,(k—k;)—3R“*—~| +2R%a; | —g°b,| u—2b;(k—k;) +3R*—| +2R“a,
ok 0 ok 0

Jc
+| 2b,(k—ke) ~R*—~ )(—qzbiJrZRz
J 0
+ gl u—2b, (k—k.)+ R2ZS:
qju i( c) W o

( —g°b, +2R?

o
ci+2R2di+(k—kC)W

J

, Jc,
c + 2R dr+(k— kC)é’_k

J

where the phase velocity [cf. (4.1)] can be calculated by means of

bi(k—ke) %G
u: . — —
: ¢ 9k o

R2—R?(cj+ d;R?)/(k—k,).
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